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Confinement of a mirror plasma with an anisotropic electron distribution function
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A theoretical model has been developed for an electron-cyclotron-resonance-heated plasma confinement in

a mirror magnetic trap. The model is based on the simultaneous study of noncollisional kinetics of electrons
and gas dynamics of ions. At the trap center, the electron velocity distribution function is approximated by
bi-Maxwell distribution with two effective temperatures, transverse and longitudinal to the magnetic field.
Electrons were assumed to be hotter than ions. Axial distributions of the ambipolar potential and plasma
density as well as the ion confinement time have been investigated both numerically and analytically. A simple
formula for the lifetime is suggested. Numerical simulations as well as the formula show that the confinement
time is heavily dependent on the electron distribution anisotropy and, in the strongly anisotropic case, on ion
temperature if the latter is not too small. With increasing anisotropy the ambipolar potential changes qualita-
tively, acquiring a peak between the trap center and the p&063-651X98)09705-0

PACS numbgs): 52.50.Gj, 52.55.Dy, 52.55.Jd

[. INTRODUCTION The paper proposes a model of plasma confinement under
Empl t of high ¢ d ¢ ¢ intense ECRH conditions. It is assumed that we know the
mployment ot high-power gyrotrons and magnetrons fofe e ;1 trap center formed by interactions of electrons

electron-cyclotron-resonancéECR)  plasma heating has ih the intense resonance field. The use of a model EDF lets
made it possible to get mirror plasmas with a highly ener-g 4y0id solving a problem of electron diffusion in velocity
getic electron componefi—4]. As a result, open magnetic gpace caused by the rf field. Within the model framework,
traps with powerful ECR heatindECRH) are widely used in  jon confinement time, self-consistent profiles of ambipolar
applied and fundamental research. The traps are ba5i03|bbtential, and plasma density are deduced by means of ana-
employed as external ion sources for cyclotron acceleratongtical estimations and numerical studies.
[5]. In addition, the extracted ion beams are successfully
used in atomic and solid-state physics, material science, Il. MODEL DEVELOPMENT
semiconductor fabricatiofb], and ion-beam lithographig].
Another promising application of ECRH traps is their use as
soft-x-ray source$7,8,4]. The model studies a steady-state confinement of ECRH
Expanding applications of traps with an intense ECRHPlasma in a mirror magnetic traffrig. 1). The steady state
require an adequate theory of plasma confinement. Powerfiisults from a balance between two effects: electron-impact
ECRH produces a strongly anisotropic electron velocity disionization of neutral atoms and leakage of the charged par-
tribution function (EDF): The mean energy of the motion Ucles through the plugs. A two-component plasisangly
transverse to the magnetic field is much greater than the er‘f—harge_d lons and electronis being considered. The mag-
ergy of the longitudinal motiorf9,10]. The most popular netic field is _assumed to be large enough to neglect radial
models for the plasma lifetimgl1-13 do not take into ac- electron and ion losses. .
count that the intense heating strongly effects confinemené According to theoretical studigd.0], under the powerful
processes. The Pastukhov modl&l,12] analyzes electron CRH, the I_EDF at the central part of the trap is stretched
diffusion into the loss cone of velocity space; only diffusion 210NgVe. [Fig. 2@)]; Vg, Ve, are electron velocity compo-
caused by Coulomb collisions is considered. However, due A B(x), G(x)
to intense heating, the electron motion in velocity space is 1l
quite different: The prevailing diffusion mechanism is not
the Coulomb scattering, but an interaction with the rf field
[10]. The Pastukhov model does not consider the latter chan- Go
nel of losses. !
The Ryutov-Mirnov gas dynamic trap moddi3] consid- >
ers plasma losses as a gas leakage from a vessel through a
nozzle, where the Maxwell EDF is assumed. The model does
not take into account that an anisotropic EDF may cause a
much bigger lifetime than an isotropic one because of a per- FIG. 1. Axial magnetic inductiom(x) profile. The number of
fect confinement of large pitch-angle electrons that prevail imeutral atoms ionized in a unit volume per unit tiG¢x) is not to
an anisotropic case. scale.x=0 is a plane of symmetry.

A. Principles of the model
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Vel (a) \AL (b) B. Electron velocity distribution function

Assuming that the ECR-heated zone is located at the cen-
tral cross section of the trap, we approximate the EDF in that
section by a bi-Maxwell distributiofFig. 2(a)]
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wherem is the electron mass, the node in subscripts desig-
nates values at the trap centég and T, are the electron
Tey Vel Tey Vel mean energies of the motion parallel and perpendicular to the
m ‘m magnetic field x axis), respectively, and the normalization
constant is omitted. Als@, and T, can be interpreted as
effective temperatures of the cold and hot electrons. Refer-
ence[17] exploited a relativistic version of the distribution
(1) for electron-cyclotron-emission studies.

nents;| and.L in subscripts designate axial and radial direc-  Noncollisional electron confinement is assumeadgs¢L,
tions. A much greater velocity spread in the radial direction\ is the electron mean free path, antd & the distance
than in the axial one is characteristic for ECR ion sourcepetween the plugsthe trap is assumed to be adiabatic. Un-
plasmas[9]. Two electron fractions can be distinguished der those condition$, depends only on integrals of motion
[Fig. 2@]: an energetic-hot electron population with mean(energy and adiabatic invariant

energy (effective temperatujeT,, and a cold component

FIG. 2. Electron velocity distribution functiota) at the central
cross section antb) outside the trap aB<Bo(1—Tg/Te,).

with temperaturel ¢ . Anisotropy of the distribution is con- mVﬁH mv;
centrated in the hot fraction, while the cold-electron distribu- 5 T — ep=const, (2a)
tion is isotropic. ECRH plasma experiments give character-
istic valuesTg, =1-50 keV andT ¢ =10-30 eV[1,2,7. \2

That anisotropic EDF results from the interaction of elec- —e const, (2b)
trons with the ECR frequency field4,10. The interaction B

causes electron diffusion in the plane of perpendicular ve- h is th biool 2B is th lized
locities. The rf-induced diffusion is very strong: It fills the whereg is the ambipolar potentiaB} is the normalized mag-

loss cone of velocity space even in the absence of the Coelic inductionB(x=L)=B,=1;p in subscripts designates

lomb collisions and boosfE,, . Formation of the EDF and va/ues at the plugand —e is the electron charge. The inte-

plasma confinement are closely linked processes. Here we (g:galg, (2)_ Ie;dus t:he cor_npute the EDF at an arbitrary cross
not attempt to solve both problems. Upon taking some modetection inside the trap:

for the electron velocity distribution, we do not need to know 6o
the detailed mechanism of the electron leak from the trap in f= exr{ _.m (VZ +V2 4 ele 9"0))
order to compute the plasma lifetime. Had we known the 2T\ el Tet m

mechanism, we could have computed the input rf power re-
quired to gain particular electron temperatutgs and T . + m ( _ M
We only use the bi-Maxwell model distribution in order to 2Ty Ter
simplify computations. Our basic results can be formulated
in terms of characteristic transverse and longitudinal temBeyond the plugs we can again compute the EDF using Eq.
peratures. (2). However, outside we should adjust Eg), taking into

lon motion is to be described gas dynamically because waccount the fact that the large pitch-angle electrons reflect
are primarily interested in the systems used as ECR ion anom the plugs and stay inside, i.e., the velocity space has an
soft-x-ray sources. In those applications ions are rather col@Mpty region, in whictf=0. At x>L, relations(2) are only
Tion<Te [1,3]. satisfied within one sheet hyperboloid in the velocity space

We assume quasineutrality and study plasma both inside
and outside the trap. The latter enables us to unambiguously
determine the ion velocity in the plug and thereby uniquely
compute the ion confinement time and distributions of
plasma density and ambipolar potential. which sets the boundary of the empty region. In the velocity

The problem being discussed is close to the problem o$pace inside the hyperboloid, the EDF is determined by Eq.
ambipolar potential formation in the plug/barrier cell of the (3), while outside of itfe=0 [Fig. 2b)].
tandem mirror maching15,16 used for fusion research. Generally speaking, at the central cross section, the EDF
However, there are two important differences: In the lattediffers from the model distribution(1), proposed above.
problem(i) ions are much hotter ar(d) electron distribution However, the difference, if any, does not cause a substantial
is less anisotropic because electrons may be energetical@rror in our numerical simulations because we only use the
coupled with ions in the central cell and, because of the larg&DF to compute the dependence of the plasma density on
scale of the tandem mirrors, input ECRH power per electrorand B, i.e., we are only interested in the zeroth moment of
is less than in ECR ion and soft-x-ray sources. the EDF.

BoV?
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1-B 1-«
exp(P)— 1_Kex q)l—B

at x=L. (8b)

C. Gas dynamics of ions

We will assume that ions are being contained in the gas
dynamic regime X;;<<L; \;; is the ion mean free path for
ion-ion collisiong. Hence ion collective motion can be de-
scribed gas dynamically:

n=——
1-«xB71

d k=(1-Tg/Te )/R (R=B,/By=1/By is the trap mirror ra-
a_Xj(NUj):G’ (53 tio) and the ambipolar potential is chosen to be zero in the
plugs @,=0). If the EDF is strongly anisotropigs=1/R.
p e o B and S are given functions, connected by the condition of
— (Nvjvc+péy)=— _N_‘P j,k=1,2,3. (5h) magnetic flux preservatio8(x)=S,/B(x). o
Xk M X From Eqs(8a and(8b) one can see how vital it is to take
into account the empty region in velocity space. If we ex-
HereN, v, M, andp are the ion density, velocity, mass, and panded Eq(8a) into thex>L region (i.e., did not take the
pressure, respectivelyl is the Kronecker delta function; empty region into accouptwe would acquire an infinite
and G is the number of ions and electrons being born in adensity blowup aB= «.
unit volume per unit time. The generation souf@ewill be
neglected near and beyond the pludgs(x>Lg)=0, Lg D. Boundary conditions
<L]. In order to take into account the magnetic field, E). . .
needs to be supplied with an additional requirement: lons can The set of equat|on§7) and (8) is closed. _In order to
only move along the magnetic lines of force. comp]ete the mathematical m_o_del, the equations _need to be
The ion pressure is approximated as an ideal gas pressu?pr“ed W!th boundary cond_ltl(_)ns. Let the solution meet
some physically backed restriction®:(x), n(x), andu(x)
are smooth everywher@xcept maybe the point=Lg, at

P=NTion- ) which the ion generation is abruptly turned )ofind
The ion flow is conjectured to be isothermfl;y,(X) n(x—o)—0. 9)
=consi, i.e., we neglect gas cooling when it runs along a
tube of flux. The symmetry of the model with respect to the central cross

It is convenient to convert from the three-dimensional de-section together with the smoothness requirement yields
scription to a quasi-one-dimensional one, assuming that the

magnetic induction lines are almost parallel to the trap axis. uo=0. (10)
In order to do that, we need to integrate EB). over a trap
cross section and substitute K@) into Eq. (5b). The equa- Solutions to Eqs(7) and (8a) and to Egs(7) and (8b)

from the smoothness requirement we have

d
&(Snu):gsr (73) u,=1, (11)

i.e., in the plug, the ion gas dynamic velocity turns into the
(7b) “sound speed.” A proof of the boundary conditighl) can

be found in Appendix A. Despite the EDF being non-

Maxwellian, we deduced boundary condition, which is usual
where ®=eq/Tg is the normalized ambipolar potentia, for the problem of gas flow from a vessel through a nozzle.
=N/N,, u=v/cg, cgz(TionJrTeH)/M is the ion “sound One more very important feature of the boundary condi-
speed” squaredy is the normalized ion thermal spee_[% tion is that it is in agreement with the Bohm criterifgt8]. In
=Tion/(Tiont+ Te)) uﬁzl—u.lz_, g=G/ceN, is the normal- reality, the plasma is confined in some fini.te volume. The
ized density of the ion generation source, &fd) is a trap  Plasma beam, extracted from the trap, hits a wall of a
cross-sectional area. In that normalization, the model bevacuum chamber or a surface to be processed that is more or
comes a two-parameter offié the magnetic system param- less absorbing. Accordln_g to th'e Bohm criterion, ions should
eters remain unchanged, the solution only depends o@Pproach the sheath, which shields the plasma from the wall,
Ter /Ty @ndTion/Te)). with a velocity greater than or equal to the ion sound speed.

Equations(7) are two in number but have three unknown From the boundary conditiofd1) we obtain a supersonic

functions:n(x), u(x), and®(x). We obtain the third equa- Plasma flow beyond the plugs that fulfills the Bohm crite-
tion by assuming plasma quasineutraliy= N,, inside and  fion. Outside the trapcs is a true ion sound speed, without

outside the trap. Integration of the EDF over the velocity@ny guotation signs, because cold electrons dominate in that
space yields region andT¢| may be treated as a true electron temperature.

Now, having the boundary conditior{$0) and(11), one
can integrate Eq.7) outside the ionization region:

d do
&[Sn(u2+ uf)]=—ufnS——+usn

dx dx’

K
n=———exp®) at x<L, 8
1-xB ! nP) @3 un=B., (123



5940 A. V. TURLAPOV AND V. E. SEMENOV 57

) ' ' ' ' T ' T T Formation of the peak can be understood from the follow-
%}:on = g g - ing qualitative reasoning. The hot electrdisee Fig. 23)]

on 1eV — 1 are perfectly confined at the central part of the trap and do
} . on not penetrate deep into the plugs because of their large pitch
05 0 i angles. Since the EDF is strongly anisotropic, the cold elec-
’ - trons are few at the trap cent@boutT,/Te, of the whole
number of electrons but the losses from the region are de-

0 7 termined just by the cold electrons. If the ion temperature
. Tion is higher than a certain threshold, the number of ions
-0.5 e leaving the central part of the trap, due to thermal motion,

exceeds the number of such electrons. Hence, in order to
balance the ion and electron fluxes from the region, there

I 1 1

2 L, 8 [ 12 14 16 18 should appear an ambipolar field, which reduces leakage of

z(cm) ions and stimulates electron losses from the central part of
the trap. Thus it should be a region between the center and

FIG. 3. Normalized ambipolar potential at intense ECRF(  the plug where the ambipolar potential increases outward
=10eV, T, =1 keV; here the potential is chosen to be zero at thefrgm the trap centefsee Fig. 3.

-1 ] I ! L ]

trap center. There is a slight potential dropoff atx<L ., which

Jap e Near the plug inside the trap, on the contrary, cold elec-
is indistinguishable at that scale.

trons dominate. In this region, the ambipolar field must slow
down electrons and speed up ions; otherwise, due to thermal
(12b motion, electrons would leave thg trap faster than ions.
Hence, near the plugs the potential drops off. Thus, self-
consistently with electron and ion flow balancing, we ob-

Further, the integrals will be used to estimate the height otained the ambipolar potential maximuipeak between the
the potential peak, plasma density, and ion lifetime. In addicenter and the plug.

1
5 (U2=1)+ufin(n) + uf®=0.

tion, the boundary condition€l0) and (11) let us calculate At Tg/Te <1, ur<1, we can estimate the height of the
the normalization constant, ion density in the plug peakAD=d ., — P(x=L,) as
N5 g, G0 Tes Te
= X)S(x)dx. — 12
P A® =usln| =—(R—1)u +(—) —. (13
SpCsJo i 7, (R-Durj i) (R—1)22e

Ill. TYPICAL MODEL INPUTS AND The derivation of the estimation as well as of the condition

PARAMETER SPACE INVESTIGATED (14) can be found in Appendix B; here and furtheis the

base of the natural logarithm.

The peak cannot be observed if the ions are cold enough.
r the plasma with the strongly anisotropic EDF, the peak
vanishes at

Equations(7) and (8) with the boundary condition€9)—
(11) enable one to perform a numerical simulation. TheFo
model inputs are théi) geometry of the trapmagnetic in-
duction distributionB(x)], (ii) density of the ionization
sourceG(x), (iii) ratio of the hot- and cold-electron tempera-
tures T, /Tg), and(iv) ratio of the ion and cold electron
temperaturesT,, /T¢|. Figure 1 displays the magnetic in- T
duction distribution in the trap we studied. In the center, it
has a constant magnetic field region of length. 2We took  The latter condition is almost unattainable, for instance, at
L.=3%L andR=3. T =10 eV, Tg, =1 keV, andR=3; the peak vanishes at

The ion generation was assumed to be constant at Ti,,=10 * eV=1 K. Thus, under powerful ECRH condi-
<Lg<L and zero ak>L (Fig. 1). We simulated at differ- tions, the ambipolar potential must always have a maximum
entLgs=L. and found that the solutiof®(x),n(x),u(x)) is  between the plug and the central cross section.
almost independent dfg . For the results given belovl,g In Fig. 4 we have plotted the peak height versus the
=L.. The following range of temperature ratios was inves-ion normalized thermal speed squane%i The dependence
tigated: Tg /Tg=1-100 (g, =10 eV-10 keV, Ty can be perfectly approximated by a straight line
=10-100 eV, Tion/T=0.01-0.5.

2 1
(R-1)%’

Tion (H (14)

Ter

AD(uf)=uiA,

IV. ANALYTICAL AND NUMERICAL RESULTS

as it is seen from the estimati¢h3). However, according to
our numerical results, the slogeof that line is bigger than

Numerical simulation, based on Ed3) and (8) with the  In[(Tg, /Tg)(R—1)ur].

boundary condition$9)—(11), lets us build a self-consistent ~ One may prove analytically that in the case of the isotro-
distribution of the ambipolar potential in space inside andpic EDF (T, /T¢=1) the potential peak cannot be observed
outside the trap. Figure 3 shows simulation results for theat any T;,,. The potential decreases monotonically when
parameters characteristic for ECRH plasmas. In all cases, wgoing from the trap center to infinitgFig. 5). It was found
clearly see the ambipolar potential peak. numerically that under weak ECRH{, /Tg~1), the peak

A. Self-consistent ambipolar potential
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FIG. 4. Height of the ambipolar potential peak vs normalized

ion thermal speed Squal’edETion/(TionJrTe”). FIG. 6. Normalized plasma density at intense ECRI,€ 10

eV, Tq, =1 keV).

appears at some threshold valueTgj, /Te . For instance, at model presented not only deduces the characteristic potential

Tei /Tg=1.10, the threshold i$;,,/T¢=0.97. : : : e
Within the model framework, one can investigate the be_conflguratlon, but also computes its exact spatial distribution.

havior of the potential far from the trajB(~0). Equations

(8b) and(12) yield the estimation B. Density profile
The plasma density profile is very much dependent on the
o —In[InB| (15  EDF anisotropy, i.e., on the ratid, /Te. At large

_ . Tei /Tg, the majority of electrons are hot electrons with
and the potential slowly decreases-toe. Virtually, the es-  |arge pitch angles. They are perfectly confined at the central
timation (15) is valid only until the quasi-one-dimensional part of the trap and do not deeply penetrate into the plug.
approximation is fair, the adiabatic invariaf@b) is being  Thus the plasma with a strongly anisotropic EDF is basically
preserved, and ion gas dynamics works. being confined at the trap center, in the region of almost

If one modeled a trap with the Maxwell EDF not taking constant magnetic inductiai¥ig. 6). The localization of hot
into account the empty region in the velocity spdiceorder  electrons at that trap part has been observed experimentally
to perform it Eq.(8) should be changed to=exp®], the  [2].
analogous estimation would read Having neglected in Eqg8a) and (12b) that u(x=L,)
and n(x=L.) differ from uy=0 andn,, respectively, one
PxinB. can estimate the normalized plasma density at the trap center

as
Reference$7,3] used the potential profile with the peak as a

hypothesis. They suggested a model profile with two param-

eters: the height of the peak and the potential dropoff at Ng= Je
infinity; these two parameters were computed using plasma

experimental dataT,,, Te, Te, , and the hot-electron den-
sity [7]; Tion, the ion lifetime, and the ion densif®]). The

2
1-uf

+ R (16)

Tei( 1) 1
Te R

In the weak ECRH case, the EDF is almost isotropic and the
plasma distribution over the trap is more unifotRig. 7). At

@ T T T T T ] T T n I . | | : : : : ,
-0.2
-0.4 1.4
-0.6 1.2
0.8 1
-1 0.8 F J
-1.2 0.6 F )
-L4 04 J
ig , . e 0.2+ _
2 L. 8 L 12 14 16 18 0 Co
z(cm) 1 2 3 4 L. 6 7 8 9 [

Z(cm)
FIG. 5. Normalized ambipolar potential for isotropic EDF
(Ter=T¢=10 eV, Tisn=1 eV; here the potential is chosen to be  FIG. 7. Normalized plasma density for isotropic EDF¢(
zero at the trap center =Tg=10eV,Tish=1 eV).
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Te /Tg=1, the estimatiori16) yieldsn,= Je. Far from the
trap (B—0), the density is proportional tB up to a loga-
rithmically slow factor. Thus, at infinityn vanishes and
thereby the boundary conditid®) is satisfied.

C. lon confinement time

Let us define the confinement time as the number of ions 10 b

in the trap divided by the ion flux through the plug

L
f NS(x)dx
0

NpSpCs

T=

If the central trap region with a constant magnetic field is

long enough .<L), 7 can be computed analytically:

LR
CS

Ve

Te|

R

+tR 17

T=

gl

The Ryutov-Mirnov gas dynamic trap modgl3] assumes
an isotropic electron velocity distributio§=T,, ) and es-
timates the ion lifetime asgy=L:R/cs. Obviously, Tru
factors out from formulg17), which yields, in the isotropic
case,

T= (18

L.R
Ce \/62 TRM -

It is not surprising that formul&l17) embracesrgy as a

special case because both our and the Ryutov-Mirnov mod-

els describe ions gas dynamically and assufpg to be
constant in the whole bulk of plasmatremendously differs

from 7ry\ under a high-power ECRH. In order to picture the
difference we introduce dimensionless normalized lifetime
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t T T T T T T
100

1 1
0 005 01 015 02 025 0.3

uf

FIG. 8. Normalized confinement time on a logarithmic scale vs
normalized ion thermal speed squara@zTion/(TionJrTeH). A
comparison of the estimatio(il9) (dotted line$ with numerical
calculations(solid lineg is shown for different electron tempera-
tures:Te, /T =100 (thick lineg and T, /Tg =10 (thin lines.

D. Model limitations

Now, having studied properties of the model developed,
we are in a position to elaborate upon the model limitations
\ii<<L and\.>L. Let us write these restrictions on the mean
free paths for the plasma in the plug, expressipgndA . in
terms of the magnetic system parameters, temperatures, and
plasma densitfL(cm); Tion, Te(eV); andNy(cm3)]. At
the plug, these restrictions are equivalent to the respective
expressions

2
1 X 1012><% <L,

5 ) (209

T2
10'2x N—e” >L. (20b)

p

If \;;<<L is true in the plug then it is true in the whole trap
because the density monotonically decreases outward from
the center. Thus Eq203 is the condition of ion gas dynam-

If the EDF is strongly anisotropic and the central trap regioniCS US€ in the model developed. The conditi@dh) of the

with constantB is long enough, then

2
1-u
Tel T

Te|

Ter

T’

or Int=(1-u?)In

(19

noncollisional electron pass through the plug is independent
of Te, because cold electrons dominate in the plug. It fol-
lows from Egs.(16) and (20b) that 13%T2 /No>L, i.e.,
when the condition20b) is satisfied, hot-electron confine-
ment is also noncollisional. We do not demaxgsL for
isotropically distributed cold electrons at the central part of

whence we see thatis only dependent upon the distribution the trap because their collisions do not change the EDF. Thus
anisotropy and upon the ratio of the ion and cold-electrorEgs. (20) are sufficient(but not necessayyconditions for
temperatures. In Fig. 8 we have plotted the results of numeriapplications of the model suggested.

cal computations of in comparison with the estimatidi9).

It is worth noting that the validity of some of our results

The graph clearly shows that the normalized lifetime rises agoes not depend on whether or not the ion mean free path is
the anisotropy of the distribution increases and as the iosmall compared to the trap scale. B,<Tg|, one may set

temperaturgto be more precise, the ratib,,/T¢) drops

Tion="0 and sufficiently accurately compute the plasma den-

off. Comparing the factored out normalized lifetime with the sity and ion confinement time under any conditionsixgn
Ryutov-Mirnov one, we can see that the dependence on thiecluding thek;>L case. This can be explained in the fol-
ion temperature is very different in the isotropic and anisodowing physical arguments.

tropic cases. At a weak ECRH, it is the quite slow square-

At \;;>L, ion gas dynamic equatior() still hold, but

root dependencél8), while at an intense heating it is expo- instead ofpdj, in Eq. (5b) we have the diagonal pressure

nential law(19).

tensor  Pjx=NTionj(X)Sjk;  Tion2(X)=Tion(x) and
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Tion2(X) =Tiona(X)=Tion. (X). Now, in place of the uni- quasi-one-dimensional gas dynam{és Apparently, the ion
form ion temperaturd;,,,, we have second moments of the source @) will depend on the densities of ions. The electron
ion velocity distribution, which are position dependent. Thisdensity will remain dependent on the magnetic induction and
position dependence may be very strong because; atL on the potential in the same fashion as given by &B).
unconfined regions of the ion velocity space are not filledObtaining a new boundary condition in the plug requires
and dimensions of such a region acutely depend on whethdurther studies, but there is hope that it will remain as simple
it is related to the point inside or outside the electrostaticas it is: In the plug, the gas dynamic velocity of each type of
potential well. Now, in order to compute the height of theion will be equal to the respective “sound speefdtie speed
potential peak;T,, in formula (13) must be replaced with will depend on the ion charge

some functional off;,,(X) andTjon; (X). Our model cannot

compute the value of the functional and therefore is unable ACKNOWLEDGMENTS
to predictA® with any suitable precision becaused is ) _
almost proportional tdl;,, or its substitutdsee Eq.(13)], We are grateful to S. V. Golubev for helpful discussions

i.e., when we make a big error guessing the value of thé@nd to M. D. Tokman for comments on a draft of this paper.
functional, we make the same big error in the height of thel his work was partially supported by International Science
peak. As we can see now, the potential is very much depernd Technology Center Project No. 325-96.

dent on the validity of the gas dynamic approximation for

ions. In order to find the ambipolar potential distribution for APPENDIX A: PROOF OF THE BOUNDARY CONDITION

the plasma with a large ion mean free path, the kinetic de- (1D

scription of ions should be used, as it was done in computa- Solutions to Eqs(7) and(8a) and to(7) and (8b) must be

tions for plug/barrier cells of the tandem mirror machine . .
[16]. Alternatively, after calculation of the plasma lifetime s_mooth_ly matched in the_plug at=L. The bouf‘dary condi
tion u,=1 can be found in the following fashion.

within our model, the Pastukhov formufd1] might be ap- : :
plied to findAd. Equations(7) and(8a) yield, atx<L,
In the Tj,n<Tg limit, unlike the height of the peak, the

plasma density and confinement time are weakly dependent n'=— 1 2ug—nul =

on Ty, [see Egs(16) and(17)] and thus can be computed in 1-u? S

the approximatio;,,/T¢=const=0 for any ion mean free g

path. That approximation will not bring about a substantial —nu”2 } (A1)
error. Of course, when we writ&;,,<Tg for the ;<L So/(1=Tg/Ter) =S

case,T;,, should be understood as some characteristic en- _ i )
ergy rather than as a true temperature because the ion velof€re the prime stands fo/dx. It is evident from Eq(Al)
ity distribution is non-Maxwellian in this case. that if u reaches 1 before the plug theh goes to infinity.
Thusu,=<1.
P

Let u,<1. Thennr’,=0. From n"):O and Eq.(8a), we
V. CONCLUSION obtain®,=0. Let us expand the solution in a power series
A model for the confinement of plasma with the aniso-°f §=X—L (« andg are constants independent &f

tropic EDF, given at the trap center, has been developed. The 1 g2 2 _ g2 2
use of the model EDF lets us solve the confinement problem B=1-p&+o(¢), ® g™+ o(£%).

without specifying a mechanism of electron losses. Expansion of Eq(8b) up to first order reads
The results obtained indicate that the distribution anisot-

ropy strongly affects the plasma lifetime, density profile, and B @

shape of the ambipolar potential. Under intense ECRH, the n=1—§‘\/EGXF{ - E(l_K) +0(§),

plasma is basically contained at the central part of the trap,
unlike the more or less uniform distribution fog, /Tej~1.  \yhencen’+0, i.e., we have a contradiction to the smooth-
As T¢, /Tg exceeds a certain threshold, the self-consistenﬁess reqTJirement on and ®. At u.=1 the solution is

potential profile changes qualitatively: A peak appears be; | P

. X smooth. Consequently,=1.
tween the center and the plug. It is very important to take g Y

into account the ion thermal motion when computing the APPENDIX B: DERIVATION OF THE ESTIMATION (13
height of the peak because its height increases with the in- : s
FOR THE PEAK HEIGHT AND OF THE CONDITION

crease ofT;,,/Tg and the peak does not appear at all when
the ratio is zerol.| In experiments with a high-power ECRH, (14) FOR THE PEAK DISAPPEARANCE
the peak should be present at all achievable ion temperatures. we start up from Eqs(8a) and (12). Excludingn from
The enhancement of the confinement time with increasinghem we obtain
EDF anisotropy (at constantT;,,/Te)) is evident. The
plasma lifetime, computed for the particular case of an iso- B—
tropic EDF, is about equal to the lifetime in the Ryutov- u=17
Mirnov gas dynamic trap mod¢L3].

The model presented can be generalized for the descrip- 1 B
tion of a plasma with ions of different charges. As before, —(u2—1)+<b+u$ln—K=O. (B2)
each type of ion can be separately described by equations of 2 1-xkB™1

“exp— @), (B1)

- K
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Differentiating Eqgs.(B1) and (B2) with respect tox and
equating® ., =0 give

(B3)

From Eq.(B2) the height of the peaR ®=P ., — P can
be expressed as

1 1— kB gak
“(ud-u?, )+ udin——2=
2 \He peak) T 1 B, 1

AD (B4)

where the subscript refers to pointx=L.. Equation(B4)
has two unknown valuesi; andBye,,. To compute them,
we put Egs(B1) and(B2) together and, excludindp, obtain

K B(1—«)
In——
u

=In(1—«)+ 1(1—u2)+u2|n—
2 ™ B—«k

, (BS)
which is of course true both at,c, and atL.. Assuming
that ur<1 and T¢ /T <1, we get from Eq.(B5), at x
:LCY

A. V. TURLAPOV AND V. E. SEMENOV

uotd 1
¢ Te Je(R-1)

At Xpeak, Substituting Eq(B3) into Eg. (B5) and again
applying the same requirements opand T /T, , We can
compute a linear iy departure 0B, from «:

Bpeak™ K:uT\/E(l_K)-

Assembling Eqs(B3), (B4), (B6), and(B7), one finally ob-
tains the estimatiofi13).

Now we turn to the proof of the conditiofl4) of peak
disappearance. We can rewrite EB7) as

(B6)

(B7)

Bpeak™ BO"'% UT\/E(R_ 1)_g - (B8)
el

Bpeak— Bo=0 becauseB,, is the minimum of the magnetic

field in the trap. Hence the peak vanishes as the value in

square brackets in E¢B8) turns into zero, which gives us

the threshold conditioril4). One may check that when the

condition(14) is satisfied, the estimatiofl3) readsA® =0.
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