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Theory of anomalous chemical transport in random fracture networks

Brian Berkowitz and Harvey Scher
Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, 76100 Rehovot, Israel

~Received 28 October 1997!

We show that dominant aspects of chemical~particle! transport in fracture networks—non-Gaussian
propagation—result from subtle features of the steady flow-field distribution through the network. This is an
outcome of a theory, based on a continuous time random walk formalism, structured to retain the key space-
time correlations of particles as they are advected across each fracture segment. The approach is designed to
treat the complex geometries of a large variety of fracture networks and multiscale interactions. Monte Carlo
simulations of steady flow in these networks are used to determine the distribution of velocities in individual
fractures as a function of their orientation. The geometry and velocity distributions are used, in conjunction
with particle mixing rules, to map the particle movement between fracture intersections onto a joint probability
densityc(r ,t). The chemical concentration plume and breakthrough curves can then be calculated analytically.
Particle tracking simulations on these networks exhibit the same non-Gaussian profiles, demonstrating quan-
titative agreement with the theory. The analytic plume shapes display the same basic behavior as extensive
field observations at the Columbus Air Force Base, Mississippi. The quantitative correlation between the time
dependence of the mean and standard deviation of the field plumes, and their shape, is predicted by the theory.
@S1063-651X~98!15805-1#

PACS number~s!: 47.55.Mh, 91.60.2x, 92.40.2t
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I. INTRODUCTION

Chemical transport in geological formations is often o
served to be anomalous, i.e., non-Gaussian. The advance
chemical or tracer plume is anomalous if the transport co
ficients are either space or time scale dependent. Such t
port has been observed frequently in field studies, where
persion of contaminants is studied by pulse injection o
tracer into the flow field of a saturated heterogeneous or f
tured formation. In a large-scale field study carried out in
heterogeneous alluvial aquifer at the Columbus Air Fo
Base~Mississippi!, for example, bromide was injected as
pulse and traced over a 20 month period by sampling fr
an extensive three-dimensional well network@1,2#. The
tracer plume that evolved was remarkably asymmetric~Fig.
1!, and cannot be described by classical Gaussian mo
Tracer injection studies in well-mapped fractured formatio
such as at the Stripa site~Sweden!, also display a variety of
anomalous, clearly non-Gaussian, types of behavior~e.g.,
Ref. @3#!.

These extensive and costly field studies are carried
because the understanding and quantification of flow
contaminant transport in fractured and heterogeneous for
tions is of considerable practical importance in terms of
ploitation and preservation of aquifers. Particular empha
has been placed on evaluating properties of hard rock for
tions as potential underground repository sites for the stor
of radioactive and industrial wastes@4#. As a consequence
major efforts have been devoted over the last few year
the development of realistic theoretical models capable
simulating flow and transport processes in fractured and
erogeneous porous formations. These efforts have led to
nificant understanding of the dynamics of flow and transp
processes in these disordered systems.

Predictive capabilities related to real fractured and hete
geneous media remain, however, severely limited@5#. In
571063-651X/98/57~5!/5858~12!/$15.00
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part, this is due to the very complex nature of fracture n
works in the subsurface, which precludes complete and
tailed mapping of fractures. As a result, studies must rely
extrapolation of exposed features to generate a statis
characterization of fracture systems. This analysis is
manding, as fractures exist in a broad range of geolog
formations and rock types, and are produced under a var
of geological and environmental processes. As a result of
variability in rock properties and structures, as well as
variety of fracturing mechanisms, fracture sizes range fr
microfissures of the order of microns to major faults of t
order of kilometers, while fracture network patterns ran
from relatively regular polygonal arrangements to apparen
random distributions. The hydraulic and transport proper
of these formations vary considerably, being largely dep
dent on the degree of fracture interconnection, apert
variations in the fractures, and chemical characteristics of
fractures and host rock.

A number of recent studies have addressed theoretica
pects of anomalous transport, using a variety of stocha
treatments~e.g.,@6–11#!. The spatial dependence of transpo
coefficients is usually explained as being due to permeab
fields with coherence lengths varying over many sca
However, spatial variability is not in itself sufficient to ex
plain all anomalies in plume shapes. For example, the
draulic conductivity field at the Columbus site@2# is rela-
tively well distributed ~see Fig. 2 of @2#!, and the
approximate diagnostic transport models used to study
plume evolution capture only some of the key characterist
Modeling attempts to quantify tracer transport at the Str
site ~e.g., Ref.@3#! have also met with limited ability to pre
dict the full evolution of the plume.

The principal purpose of this paper is to demonstrate p
sistent time-dependent anomalies in a model fract
system—a well-connected network with elements of ra
domly varying lengths, apertures, and orientations—in wh
5858 © 1998 The American Physical Society
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FIG. 1. Longitudinal distribution of an injected tracer in a heterogeneous aquifer, at six points in time. The dashed line represe
distribution for tracer migrating according to the classical Gaussian model~after Ref.@2#, Fig. 7!.
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the spatial scale of observation is much greater than the
ment sizes. We show that anomalous time-dependent tr
port depends on subtle features of the random velocity
tribution F~v!, determined from steady-state flow throug
even simple ‘‘homogeneously heterogeneous’’ systems~cf.
Ref. @12# for a short, preliminary version of this work!. We
then extend our analysis to field data from experiments
ried out in a heterogeneous geological formation~aquifer!,
and find strong evidence of time-dependent anomalous tr
port.

In this initial application there is a strong interplay b
tween the analytic formalism and extensive simulations
steady flow in numerical discrete fracture models~such as
le-
s-

s-

r-

s-

f

shown in Fig. 2; see below!. The geometry and the velocit
distribution are used, in conjunction with particle mixin
rules, to map the particle movement between fracture in
sections onto a joint probability densityc(s,t), the probabil-
ity per time for a transition between fracture intersectio
separated bys with a difference of arrival times oft. In this
mapping we retain the key space-time correlations of p
ticles as they are advected across each segment and disp
by the random velocity field of the network. This approa
makes tractable the determination of the full evolution of t
chemical density~plume!, P(s,t), in large systems, in both
two and three dimensions.P(s,t) is compared with many
realizations of particle tracking simulations~PTS’s! on the
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5860 57BRIAN BERKOWITZ AND HARVEY SCHER
same networks used to obtainF~v!. We also show that the
key features ofP(s,t) are manifest in the field observation
at the Columbus Air Force Base@1,2#.

The theoretical framework that enables us to adva
from c(s,t) to P(s,t) is based on a continuous time rando
walk ~CTRW! formalism @13#. The CTRW is capable o
quantifying and predicting anomalous transport. This
proach allows us to account accurately for the subtle,
critically important, features of time-dependent chemi
transport that are usually neglected.

In Sec. II, we examine chemical transport in a model t
simulates steady flow and transport in two-dimensional r
dom fracture networks, and use particle tracking to dem
strate an anomalous, time-scale-dependent, dispersion
Sec. III, we outline the formalism of our theoretical CTR
approach, and present the transport equation that we s
for chemical migration. In Sec. IV, we analyze the fractu
network model, used in Sec. II, to obtain the fracture s
ment and segment velocity distributions. These distributi
are fit with functional forms. We use these functional form
in Sec. V to calculatec(s,t), and then determine the integr
transforms used in the solution of the transport equation.
then analyze the evolution of the chemical plume,P(s,t). In
Sec. VI, we compare our analytical results with the ensem
averaged particle tracking simulations on the same t
dimensional random fracture networks. We also relate
analytical results to the field data of Refs.@1# and @2#, men-
tioned above.

II. SIMULATION OF CHEMICAL TRANSPORT
IN A TWO-DIMENSIONAL FRACTURE NETWORK

A. Numerical fracture network model

The numerical fracture model employed in this study@14#
generates discrete fracture networks in two-dimensional r
angular regions, and solves for flow and chemical transp
within these networks. The fracture networks are compo
of linear, constant aperture fractures, embedded in an im
meable matrix. Fracture network realizations are genera
from prescribed distributions of fracture locations, orien
tions, lengths, and apertures, which are assumed to be s
tically independent. Fractures are generated in a region la
than the model domain, and those at the domain bound
are then truncated. This ensures that there is little decrea
fracture density near the domain boundaries. Additional

FIG. 2. A portion of a typical two-dimensional fracture netwo
used in the numerical simulations.
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tails describing the method of creating the stochastic frac
networks were given in Ref.@14#.

In this initial study, and following typical distributions
and parameter values found in the literature~e.g., Refs.@14,
15#!, numerous realizations of fracture networks were gen
ated according to~i! uniformly distributed fracture midpoints
selected randomly over the entire fracture generation reg
~ii ! two random fracture sets, with orientations~relative to
the horizontal hydraulic head gradient! sampled from Gauss
ian distributions with means and standard deviations
0.0°690° and 90.0°690°; ~iii ! a negative exponentia
length distribution, with a mean length of 1.1 m, in a doma
of size 18 m (x direction)320 m (y direction); ~iv! a log-
normal aperture distribution, with mean aperture
231025 m and a standard deviation of log10 aperture of 0.2
~roughly equivalent to an aperture variation of one order
magnitude!; ~v! a scan-line density of 7.0 fractures per met
and ~vi! a regional applied hydraulic head gradient of 0.0
Figure 2 shows a portion of a representative fracture netw
generated with these parameters; it is typical of the ‘‘reas
ably well-connected networks’’ used frequently in theore
cal studies of fracture networks~e.g., Refs.@15,16#!.

In order to solve for flow and chemical transport, the fra
ture network is discretized into the segments between f
ture intersections, with constant flow in each segment.
fining the overall flow field from left to right across th
domain, all fractures and ‘‘dangling’’ segments not compr
ing part of the hydraulically conducting portion~or ‘‘back-
bone’’! of the network are removed from the domain~see
Fig. 3!. Specifying equations for conservation of mass at
intersections, together with suitable domain boundary con
tions, results in a set of linear equations whose solut
yields the distribution of pressures at the intersections. C
stant hydraulic heads are prescribed around the entire
main boundary; an applied regional head gradient is sp
fied between the two vertical boundaries, and constant h
values along the two horizontal boundaries are prescri
assuming a linear change in head between the inlet and o
~vertical! boundaries. These boundary conditions assume
the region surrounding the model domain is homogeneo
and that flow within the domain does not influence flow
the surrounding region.

Chemical transport is modeled by use of a standard p
ticle tracking routine. Particles move in discrete steps
tween fracture intersections, and the time to move is ca
lated from the fluid velocity within the fracture segmen

FIG. 3. A portion of a typical ‘‘backbone’’ of a two-dimensiona
fracture network.
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57 5861THEORY OF ANOMALOUS CHEMICAL TRANSPORT IN . . .
Plug flow is assumed within each fracture, and import
effects of diffusion and mechanical dispersion are manifes
in the complete mixing of particles at fracture intersectio
i.e., particles leaving an intersection are distributed rando
among outflowing fracture segments in proportion to th
volume flow. Stream tube routing could also be implemen
in the PTS’s but is not considered at this stage@17#. For each
fracture network realization the statistics of a number of i
portant properties are collected and examined, as discu
in the following sections.

B. Analysis of particle tracking simulations

We consider the overall evolution of a chemical plume
it migrates through the domain. For each fracture netw
realization, 5000 particles are injected into the network.
illustrate important details of the nature of the chemi
transport in Fig. 4. To minimize boundary effects and t
loss of particles from the system~as seen in Fig. 4!, we must
increase the domain size in both directions with increas
plume evolution time. Thus the computationally feasible s
of the domain limits the times at which the plume distrib
tion can be simulated. In the simulation results analyz
here, particles enter the system at fracture intersections l
within a small window centered atx52 and y510, in an
18320-m2 domain. Note that with the exception of the illu
trations shown in Figs. 2, 3, and 4, all simulations in th
study used the 18320-m2 domain.

Two principal features of the chemical transport patte
can be observed in Fig. 4. First, the transport pattern
anomalous, in that very significant quantities of partic

FIG. 4. Typical distributions of the chemical plume. The over
flow direction is from left to right. Particles are injected on the le
vertical boundary, at the point marked by a star. The size of po
is proportional to the number of particles in each cell.~a! Single
fracture network realization.~b! Composite of 100 000 particles i
20 fracture network realizations.
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~chemical mass! remain near the point of injection on tim
scales where the ‘‘average’’ mean position continually a
vances across the domain. Second, while these particle
held back, a finite percent of particles advances quic
across the system, well ahead of the mean. An obvious
planation is that these particles experience a higher
quency of high velocity fracture segments, along their pa
permitting the faster chemical transport. Recognition of th
two features, and their interplay, which arise~possibly some-
what surprisingly! even in a relatively simple system, form
the basis for the use of the CTRW theory which we deve
below.

We can further illustrate these two key features by av
aging the number of particles, along the vertical (y) direc-
tion. Figure 5 presents the vertical~normalized! average of
P(s,t), defined asP(x,t) ~in arbitrary units! vs x ~units of
length areso , an average distance between intersections
time so/2vo , wherevo is a characteristic velocity of the flow
distribution;so andvo will be defined more precisely below!.
The progression of the normalized plume,P(x,t), is highly
non-Gaussian. The peak of the distribution remains clos
the injection point, while a finite fraction of relatively fas
particles continually stretches out the concentration profile
is interesting to note that anomalous transport of this na
is well established in the electronic transport literature@18#.
Shapes very similar to those shown in Fig. 5 have been m
sured directly in amorphous chalcogenides for propaga
packets of electric charge@19#.

The anomalous nature of the evolving migration patte
can be demonstrated more quantitatively by calculating
meanl̄ (t) and standard deviations̄(t) of the chemical plume
distribution over time,P(x,t). In Gaussian transport, whic
is an outcome of the central limit theorem, we havel̄ (t)}t
and s̄(t)}t0.5, and the position of the peak of the distribu
tion coinciding with l̄ (t). As we will discuss in Sec. V and
VI, we find time exponents for our particle tracking simul
tions that are significantly different. The importance of the
exponents is best discussed in the context of the the
which we now develop to account for this phenomenon.

l

ts

FIG. 5. The vertical average~along they axis! of P(s,t), de-
fined asP(x,t) ~in arbitrary units! vs x ~units of length areso and
time so/2vo , where all particle injection points are translated tox
50!. Simulation results averaged over 50 realizations fort520 ~d!
and 50~1!.
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5862 57BRIAN BERKOWITZ AND HARVEY SCHER
III. CONTINUOUS TIME RANDOM WALKS

A random walk~RW! describes the consequences of t
accumulation of many random transitions between sta
e.g., points in a Euclidean space or a multidimensional ph
space. The transitions are generated by choosing from a
cific distribution; simplicity is assured if the state of th
walker is determined only by transition from its previo
state~e.g., there are no persistent correlations between t
sitions!. The choice of distribution will be our major cha
lenge in the application described in the present study
fracture networks.

The accumulation aspect of a RW will be illustrated by
simple example: the walker makes transitions between po
on a lattice at regular time intervals. Then ifPn( l ) is the
probability that the walker is at pointl after n steps~transi-
tions!,

Pn11~ l !5(
l 8

p~ l ,l 8!Pn~ l 8!, ~1!

wherep( l ,l 8) is the transition probability for a jump froml 8
to l with

(
l 8

p~ l ,l 8!51. ~2!

The key structure is the recursive relation in Eq.~1!, and
hence the accumulation of many transitions.

The starting point of our RW application is a generaliz
tion of this example from discrete timen to continuous time
~CTRW! with the spatial state description remaining d
crete,

R~s,t !5(
s8

E
0

t

c~s2s8,t2t!R~s8,t!dt, ~3!

whereR(s,t) is the probability per time for a particle to jus
arrive at a sites at time t, andc(s,t) is the probability per
time for a transition between sites separated bys with a
difference of arrival times oft @13#. The sites are on a lattice
and we assume periodic boundary conditions, i.e.s
5S isiai , uai u5a, the lattice constant, with$si% integers and
si1 j iN→si , for arbitrary integerj ’s, whereNa is the length
of the lattice, si52(N21)/2, . . . ,(N21)/2. Continuous
time introduces a subtlety which need not be considere
the example in Eq.~1!. We have to distinguish now betwee
the walker just arriving at the site and the probability
remaining at the site for a random time before the next jum
We define the analogy toPn by

P~s,t !5E
0

t

P~ t2t!R~s,t!dt, ~4!

where

P~ t !512E
0

t

c~t!dt ~5!

is the probability to remain on a site and
s,
se
pe-

n-

of

ts

-

in

.

c~t!5(
s

c~s,t!. ~6!

It is important to note that advective and dispersive transp
mechanisms are not separate terms in Eq.~3!, but are, rather,
inextricably combined.

The form of Eq.~3! is that of a convolution in space an
time which can be solved by discrete Fourier transform~F!
and Laplace transform~L!, respectively,

R~k,u!51/@12L~k,u!# ~7!

ki52(2p/N)@(N21)/2#,...,(2p/N)@(N21)/2#, with R
the discrete Fourier transform and Laplace transform
R(s,t), and similarly forc(s,t)

L~k,u![F$c* ~s,u!%5(
s

exp~2 ik•s!c* ~s,u! ~8!

c* ~s,u![L$c~s,t !%5E
0

`

exp~2ut!c~s,t !dt ~9!

The total transition rate must be normalized, hence

L~0,0!51. ~10!

Also, from Eqs.~6! and ~8!,

L~0,u!5c* ~u! ~11!

which is theL of c~t!. Finally, the principal object of our
calculation is given by

P~s,t !5N2d(
k

exp~ ik•s!g~k,t !, ~12!

where

g~k,t !5L21$R~k,u!@12c* ~u!#/u%,

using theL of Eqs.~4! and~5! andL21 is the inverseL. The
function P(s,t) describes the evolution of the chemic
plume and, in principle, can be determined analytically
an arbitraryc(s,t). In practice, this can be quite difficult, a
it involves an inverse Laplace transformL21. We will de-
scribe a general method to accomplish the inversion wh
will be considered in detail in Sec. 5.

We conclude this section on the formal structure of t
CTRW with the definition of the first passage time distrib
tion F(s,t), which implicitly is

R~s,t !5ds,0d~ t201!1E
0

t

F~s,t!R~0,t2t!dt, ~13!

with d i , j being the Kronecker delta function andd(t2to),
the Dirac delta function, or, in Laplace space,

F* ~s,u!5@R* ~s,u!2ds,0#/R* ~0,u!, ~14!

As evinced in Eq.~13!, the first passage time distributio
F(s,t) appears in another integral equation forR with a
straightforward meaning. We recallR(s,t) is the probability
per time that the walker just arrives ats at time t but not
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57 5863THEORY OF ANOMALOUS CHEMICAL TRANSPORT IN . . .
necessarily for the first time. The walker might have visites
at an earlier timet for the first time and returned, an arbitra
number of times, in the remainingt2t, described byR(0,
t2t).

The first passage time distributionF(s,t) is evaluated for
the breakthrough curve for chemical transport, wheres is the
distance from the source to the collection plane. We n
parenthetically, that the frequent practice of measur
breakthrough curves in the laboratory by collecting samp
at the outlet end of a porous medium column, and compa
these curves with a probability function,P(x,t) ~e.g., a so-
lution of the classical advection-dispersion equation!, is in
fact an approximation. The measured breakthrough cu
should be compared with the first passage time distribut
to account correctly for the ‘‘absorbing boundary’’ at th
outlet, i.e., the inability of particles to diffuse in the upstrea
direction once they reach the column outlet.

IV. ANALYSIS AND CHARACTERIZATION
OF KEY STRUCTURE AND FLOW

While numerous studies have used fracture network m
els such as that described in Sec. II to examine flow
contaminant transport in fracture networks, emphasis
been placed largely on characterizing effective hydrau
conductivity and contaminant dispersion patterns, mostly
der steady-state conditions. However, these previous an
ses have not characterized certain key controlling fac
which we have clarified in defining a suitablec(s,t), the
probability per time for a transition between sites separa
by s and arrival timest. Hence we focused on collectin
statistics on fracture segment lengths, velocity, volume
flow rate, fracture angle distributions for fluid leaving an
entering fracture intersections, aperture distributions,
joint statistics ~correlations! on pairs of these parameter
After careful examination of possible subtle correlations,
identified the key controlling factors to be the segment len
distribution and the distribution of fluid velocity as a fun
tion of fracture orientation~angle! with respect to the hy-
draulic head gradient.

For randomly generated networks such as conside
here, an exponential segment length distribution is to be
pected. However, this can be distorted by including in
histogram of segment lengths ever smaller differences in
numerical position of the nodes. Thus, to define the distri
tion to be physically realistic and practical~since we only
distinguish different pressures at nodes beyond a cer
small separation!, the distribution should vanish ass→0.
The distribution which we fit to the data is

p~s!}s1/2exp~2s/so!. ~15!

Based on a set of 20 fracture network realizations, for
ample, we find the fracture segment length distribution
follow Eq. ~15!, as illustrated in Fig. 6. The parameterso is
chosen to give the best exponential fit to the data and also
peak@of Eq. ~15!# close to the physically motivated cutoff a
the very small segment lengths. The length scale is set byso ,
and is used in Fig. 5 to define the nondimensional lengthx.

The most critical characterization is the flow field. W
define a distribution of fluid velocities~leaving fracture in-
tersections!, F(v), as a function of the fracture angle relativ
e,
g
s
g

es
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to the hydraulic head gradient~Fig. 7!. There are two par-
ticular features of this distribution. First, as in the case of
fracture segment length distribution, the fluid velocity fr
quency must tend to zero, at all angles~except for a vanish-
ingly small range about690°!, as the velocity approache
zero. Second, the velocity distribution, which is similar
shape to that of the segment lengths~Fig. 6!, varies signifi-
cantly as a function of the fracture angle: the distributi
falls off exponentially at largev, exp@2v/vo(u)#, with a co-
efficientvo that is stronglyu dependent, while the dropoff a
small v is ‘‘soft’’ ~algebraic!. Orthogonal to the direction o
the head gradient, the velocity distribution is skewed shar

FIG. 6. Cumulative plot of the fracture segment length distrib
tion for 20 network realizations, and the fit with Eq.~15!.

FIG. 7. The velocity distribution within fracture segmentsF~v!.
~a! A compilation of data from 20 fracture network generation
F~v! is plotted in arbitrary units as a function ofv and u, the
direction ofv with respect to the pressure gradient,~negative! along
the x axis ~cf. Fig. 2!. The blank space on the right is the interse
tion with thev50 plane.~b! The fit with Eq.~16!.
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5864 57BRIAN BERKOWITZ AND HARVEY SCHER
toward the small velocity values. Figure 7~a! is a compilation
of data from 20 fracture network realizations.

We have been able to obtain a very good fit to charac
ize this behavior by using

F~v!}v11bFexpS 2v/vocos2
u

2D1w exp~2v/v8sin2u!G ,
(16)

whereb, w, vo , andv8 are parameters of the fit. The firs
term of the function captures the overall surface of the d
tribution, and the second term accounts for the two d
‘‘spikes’’ at angles roughly orthogonal to the direction of th
head gradient. Figure 7~b! presents an example fit of Eq.~16!
to the simulation data.

We note that essentially no correlation was found betw
fluid velocity and segment length, except that most of
unusually high velocity values were found to occur in sm
segment lengths. From our analyses, we also found little
no correlation between, for example, velocity and apertu
or velocity and volumetric flow rate other than an over
dependence of the velocity distribution on the aperture
tribution. At each intersection there is no correlation betwe
the branch velocities. Note that one can test for further c
relations that extend beyond each fracture intersection~espe-
cially the higher flow rates in the forward direction! by gen-
eralizing Eq.~15! to

p~suv!}s1/2@~12e~u!!exp~2s/so!1e~u!exp~2s/j!#,

~17!

wheree(u) is a function ofu, peaked in the forward direc
tion, and represents the small fraction of events@i.e.,e~u!!1#
where the particle travels farther than the average dista
between intersections,j.so.

V. CHEMICAL PLUME EVOLUTION USING CTRW

We now combine the CTRW formulation~Sec. III! and
the functional distributions obtained from the simulation d
~Sec. IV!. We envision all the fracture intersections with
branch velocityv. At each such site we can evaluate t
fraction f (v) of the particles entering the branch using t
simple mixing rule discussed above, and we can sub
quently determine the displacement from the sitep(suv). We
multiply the product of these two terms by the probability
encounter the velocityv. Hence

c~s,t !5CnF~v!p~suv! f ~v !, ~18!

where Cn is a normalization constant,t5s/v, p(suv) is
given in Eq. ~17!, and F~v! is given in Eq.~16!. We first
consider the contribution off (v). The mixing rule is deter-
mined by the relative volume flowQ; for eachv there is a
distribution of aperturesA, hence each choice ofv corre-
sponds to a range ofQ(5Av). For a large enough range on
can assume thatf (v) is a slowly varying function ofv,
except for very lowv, where it can be incorporated into th
F~v!, i.e., an effectiveb. For simplicity we choosep(suv) to
be equal to the fragment distribution~15! @i.e., Eq.~17! with
e(u)50#. The evaluation ofe~u! will be considered in future
work.
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The long time behavior ofc(s,t) in Eq. ~18! is deter-
mined by the power ofv in F~v! in Eq. ~16!, c(s,t)
→t212b, t→`. The asymptotic form at large time ofc(s,t)
determines the time dependence of the mean positionl̄ (t)
and standard deviations̄(t) of P(s,t) @20,21#. In the pres-
ence of a bias~e.g., pressure gradient!, and, for 0,b,1,

l̄ ~ t !}tb, ~19!

s̄~ t !}tb. ~20!

The unusual time dependence ofl̄ (t) and s̄(t) is the hall-
mark of the highly non-Gaussian propagation ofP(s,t); it is
a manifestation of the infinite mean~first moment! ^t& of
c(s,t), i.e., c(s,t) does not fulfill the conditions of the cen
tral limit theorem. As discussed above, this so-called ano
lous dispersion has been very well documented in a la
literature of electronic transport measurements in low mo
ity disordered semiconductors and organic films@18#.

The careful determination ofb, therefore, is an importan
and subtle feature of the random velocity distribution in
fracture network that has been largely overlooked. It is ch
lenging to obtain a very narrow range ofb values with our
simulation data~recall Fig. 7!. However,b;0.7 was deter-
mined to fit the data well, and in Sec. VI we will show th
it gives an excellent quantitative account of thel̄ (t) ands̄(t)
of the PTS’s. These results, using Eqs.~19! and~20!, will be
our main quantitative agreement for the PTS’s.

As a first step in the explicit calculation of the analyt
expression for the chemical concentration, we evaluate
Laplace transformc* (s,u) of Eq. ~18!. We will evaluate
c* (s,u) by using the first term of Eq.~16! for F~v!. The
effect of the other term was found to be small. Then

c* ~s,u!5Cn2vo
b/2s1/2e2s/sos cosb

u

2
~Asu!b

3KbS 2Asu/vo
1/2cos

u

2D ~21!

~Ref. @22#, p. 22, No. 3.2.8!, whereKb(x) is the modified
Bessel function of orderb ~Ref. @23#, p. 374!. The Fourier
transform of Eq.~21! cannot be carried out analytically. W
can, however, compute the chemical concentrationP(s,t)
numerically with the procedure outlined below. For o
present purposes we can simplify this computation, a
make the procedure more illustrative by settingb5 1

2 . We
have already discussed the main quantitative predictio
Eqs.~19! and ~20!, for the PTS’s and the criteria for highly
non-Gaussian concentration transients. The main demon
tion for our calculation now of the completeP(s,t) is to
exhibit the non-Gaussian behavior and a qualitative ag
ment with the PTS’s. This can be accomplished withb
5 1

2 ; this results in Eq.~21! simplifying to the form
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c* ~s,u!5CnApvos1/2e2s/socos
u

2
s

3expS 22s1/2u1/2/vo
1/2cos

u

2D ,

2p<u<p. ~22!

~Ref. @22#, p. 22, No. 3.2.7!.
It is convenient to use a nondimensional form foru,

sou/2vo→u with a corresponding nondimensional form f
t, 2vot/so→t. In computing the Fourier transform Eq.~8! of
c* (s,u) in Eq. ~22!, we replace the lattice sum by an integr
which is the value in the limitN→`,

L~k,u!5
2

15Ap
E

o

`

ds sE
2p

p

du e2 i k•ss1/2e2s

3cos
u

2
s expS 2A8su/cos

u

2D ~23!

wherek i[kiso , s/so is replaced bys as the integration vari-
able, andL(0,0)51.

We can obtain an analytic expression forL~0,u) @setk50
in Eq. ~23! and change variabless→t/8u#,

L~0,u!5G~ 7
2 !21~8u!27/2E

o

`

dt t5/2e2t/8u

3E
o

p/2

du cosue2At secu, ~24!

by evaluating theu integral

I ~x![E
o

p/2

du cosue2x secu ~25!

by considering

2
dI~x!

dx
5E

o

p/2

du e2x secu5E
x

`

dt K0~ t ! ~26!

using Sievert’s integral~Ref. @23#, p. 1000!. We integrate Eq.
~26! to obtain

I ~x!5xK1~x!2xE
x

`

dt K0~ t !. ~27!

Insertingx5At and*o
`dt K0(t)5p/2, Eq.~27! can be writ-

ten as

I ~At!5AtS K1~At!1E
o

t

dp K0~Ap!/2Ap2p/2D .

~28!

The t integral in Eq.~24! is of the form of aL and using
general properties of aL ~Ref. @22# p. 7, No. 41, and p. 79
Nos. 13.2.4 and 13.2.8!, we obtain
l

L~0,u!5
Ap

G~ 7
2 !u7/2 S u2

d

duD 3

$u3/2eu@K1~u!1K0~u!#%

2A2p 16
5 u1/2. ~29!

We use formulas~Ref. @23#, p. 376! for the derivatives and
recurrence relations for the modified Bessel functions,K, to
derive

L~0,u!5p1euK1~u!1p2euK0~u!2A2p 16
5 u1/2, ~30!

where p1 and p2 are cubic polynomials:p1(u)[(u2 52
15 u2

2 16
15 u3) andp2(u)[(7u14u21 16

15 u3). In the limit u→0,

L~0,u!.12A2p 16
5 u1/227u~ ln u!1O~u!. ~31!

The appearance ofu1/2 as leading term in the smallu
behavior of L(0,u) derives fromc(s,t);t23/2 for t→`.
Equation ~31! indicates there is no finite time moment o
c(s,t), i.e., the density of low velocities in the fracture fra
ments has a strong influence on the mean time for a tra
tion between fracture intersections. The logarithmic term
rives from the specific value of 2 for the power in th
exponent in Eq.~16!. The accuracy of the expression fo
L(0,u) can be determined by the largeu limit. Inserting five
terms of the asymptotic series forK1 and K0 ~Ref. @23#, p.
378! in Eq. ~30!, we find

L~0,u! ——→
u→`

105Ap

~8u!7/2, ~32!

which can be checked by an alternate expression forL(0,u)
derived below.

We evaluate thes integral in Eq.~23! for kÞ0; we derive

L~k,u!596E
2p

p

du cos
u

2
~11 i k• ŝ!27/2ez2

i 6erfc~z!,

~33!

z[A2uY S cos
u

2
~11 i k• ŝ!1/2D ,

where ŝ is the unit vector~cosu, sinu! and i nerfc(z) is the
nth repeated integral of the complementary error funct
~Ref. @23#, p. 299!. If we setk50 in ~33! and use the leading
term in the asymptotic series~Ref. @23#, p. 300!,

6!Apez2
i 6erfc~z!;2~2z!27 (

m50

`
~21!m~2m16!!

m! ~2z!2m ,

~34!

we again obtain Eq.~32!. Theu integral in the expression fo
L(k,u) in Eq. ~33! has to be evaluated numerically. In a
dition to the asymptotic series~34!, we will use the analytic
properties ofez2

i 6erfc(z) in the complexu plane and the
following representation for the numerical computation:

6!Apez2
i 6erfc~z!5~z61 15

2 z41 45
4 z21 15

8 !Apez2
erfc~z!2z5

27z32 33
4 z; ~35!
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As outlined in Sec. IV, the determination of the chemic
concentrationP(s,t) involves both an inverse Fourier tran
form and an inverseL, Eq. ~12!. The numerical computation
of an inverseL is notoriously difficult. We derive a very
stable form for the numerical evaluation of the inverseL
with analytic continuation in the complexu plane. The func-
tion L(k,u) has a branch point atu50, and is analytic in the
cut plane, with the branch cut along the negative realu axis.
The Fourier transform ofP(s,t) is g(k,t), where g(0,t)
51 and forkÞ0,

g~k,t !5E
0

` du e2ut

2p iu (
6

~6 !
12L~0,ue6 ip!

12L~k,ue6 ip!
. ~36!

We first evaluate

L~0,ue6 ip!5p1~2u!e2u@2K1~u!7 ipI 1~u!#

1p2~2u!e2u@K0~u!7 ipI 0~u!#

7 iA2p 16
5 u1/2, ~37!

using the analytic continuation properties of theK Bessel
functions~Ref. @23#, p. 376!, whereI 0 and I 1 are the modi-
fied I Bessel functions~Ref. @23#, p. 374! of order 0 and 1,
respectively. For the numerators in the integral in Eq.~36!,
we can write

12L~0,ue6 ip!5u1/2~F r6 ipF i ! ~38!

where

F r~u!5
12e2uuK1~u!

u1/2 2 ~ 52
15 2 16

15 u!u3/2e2uK1~u!

1~724u1 16
15 u2!u1/2e2uK0~u!,

~39!

F i~u!5S 2

p D 1/2
16
5 2~11 52

15 u2 16
15 u2!u1/2e2uI 1~u!

2~724u1 16
15 u2!u1/2e2uI 0~u!.

We can now numerically compute

g~k,t !5
1

2p i E0

` du

u1/2 e2ut(
6

~6 !
~F r6 ipF i !

12L~k,ue6 ip!
~40!

by separating the range of integration into the partsu<1 and
u>1, where the former will dominate fort@1. Finally, the
inverseF in Eq. ~12! is computed with use of fast Fourie
transform~FFT! NAG routines@24#. In Fig. 8, the average~in
the y direction! P(x,t) is plotted as a function ofs1 @or j
52(N21)/2, . . . ,(N21)/2#. The average is computed b
settingk250 in Eq.~40! and using the one-dimensionalF21

for Eq. ~12!,
l

^P~ j , j 2 ;t !& j 2
5

e2 ip j~121/N!

AN

3H 1

AN
(
l 50

N21

e2p i l j /Ne@2p i l ~121/N!#/N

3g~k,0;t !J , ~41!

wherek[2p@ l 2(N21)/2#s0 /N. We evaluate the inverse
FFT, in the curly brackets, for values ofN53n, n
5 integer.

A principal result of the CTRW theory is that the progre
sion of the normalized concentration pulse,P(x,t), as shown
in Fig. 8, is highly non-Gaussian. The peak of the distrib
tion remains close to the injection point and slowly d
creases, while a forward front of particles, with a high
encounter rate of fast transitions, continually advances
concentration profile.

VI. COMPARISON OF CTRW, PARTICLE TRACKING
SIMULATIONS AND FIELD DATA

In this Section we make a quantitative comparison of
CTRW theory with the PTS’s and with the field data of Fi
1. We begin by observing that the shapes of the spread
pulseP(x,t) predicted by the CTRW, shown in Fig. 8, ar
qualitatively the same as those of theP(x,t) found from the
PTS’s, as shown in Fig. 5, modulo some statistical no
The theoretical curves in Fig. 8 are limit distributions~as are
Gaussians! in that their main features are determined by t
smallu limit of L(0,u) in Eq. ~31!. These features include
peak lying close to the origin, while a tail spreads forward
response to the bias. As time progresses the distribution
proaches a ‘‘step function,’’ increasingly uniform in spac
with the residual position of the ‘‘peak’’ indicated by th
sharp drop near the origin. This subtlety is reflected in
comparison with the data in Fig. 5. Despite the noise due
the vertical averaging and the relatively small number
realizations, the early time distribution (t520) clearly has a

FIG. 8. The vertical average~along they axis! of P(s,t), de-
fined asP(x,t) ~in arbitrary units! vs x ~units of length areso and
time so/2vo!. Theoretical results are fort5800, 2000, 8000, and
30 000;b5

1
2 .
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57 5867THEORY OF ANOMALOUS CHEMICAL TRANSPORT IN . . .
peak centered in the window22,x,14 with a forward tail
extending tox&58. The later time (t550) has a less define
‘‘peak’’ whose residual position is indicated by the upp
part of the drop-off regionx&10, which is close to the esti
mated peak of the early time curve. The large difference
time scales between Figs. 5 and 8 is due to the differenc
b; b50.5 in the CTRW case, while, in PTS’s, we found th
b;0.8 ~cf. below!.

A more quantitative analysis of the PTS plume behav
can be achieved, as discussed in Secs. II B and V, by de
mination of the behavior ofl̄ (t) and s̄(t) as functions of
time. We generated five fracture networks and calculated
tistics of the evolving plumes; in each case, we introduc
and tracked a large number of particles~5000 were found to
be sufficient!. For each fracture network generation,l̄ (t) and
s̄(t) of the PTS’s were averaged over a number of init
injection sites. Figure 9~a! showsl̄ (t) and s̄(t) for one net-
work generation, together with a fit to Eqs.~19! and~20! for
b;0.5 and b;0.7, respectively. Although there is som
noise in the PTS data, the sublineart dependence of both
l̄ (t) ands̄(t) is clear. Moreover, analysis of the PTS beha

FIG. 9. The meanl̄ (t) ~d! and standard deviations̄(t) ~s! of
P(x,t) vs t ~units of length areso and time so/2vo , where all
particle injection points are translated tox50!. ~a! The average
over initial sites of one network generation with the fit of Eqs.~19!
and ~20! with b;0.5 ~—! and b;0.7 ~---!, respectively.~b! The
average of 50 realizations with the fit of Eqs.~19! and ~20! with
b;0.9 ~—! and b;0.8 ~---!, respectively. There is an overlap i
the error widths ofb for l̄ and s̄.
n
in
t

r
er-
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d

l
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ior in each of the other fracture networks demonstrated
same sublineart dependence, but with differentb values in
the range 0.5,b,0.9. An average of these five realization
is shown in Fig. 9~b!. Fitting these average results with Eq
~19! and ~20!, we find overall exponents ofb&0.9 for l̄ (t)
andb*0.8 for s̄(t); representative error bars for these a
erages are also shown. The scant statistics of determininb
from F~v! for each generation do not allow us to make
exact comparison with the theory. However, we note that
valueb;0.7, obtained for an averagedF~v! ~recall Fig. 7!,
is well within the error limits of agreement with theb of
s̄(t) in Fig. 9~b!. Moreover, given the inherent statistic
noise in the relatively small fracture networks we examin
it is significant that each separate generation clearly exhi
anomalous transport.

Particle plumes migrating by Gaussian transport can
characterized statistically by the relationshipsl̄ (t);t and
s̄(t);t0.5, so that l̄ (t)/s̄(t);t0.5. An extremely important
distinguishing feature of anomalous transport is that, in c
trast, l̄ (t)/s̄(t);const. Referring to our PTS results, and
particular to the fitted~overall! exponentsb&0.9 for l̄ (t)
and b*0.8 for s̄(t), we stress that the clear deviation
l̄ (t)/s̄(t) from the Gaussian dependence ofAt is a dominant
signature of anomalous transport. This unusual beha
originates in the relatively small, but significant encounter
the particles with a low velocity channel that slows the
down for a time much larger than a typical one@18,25#.
These smaller numbers of ‘‘slow times’’ can be compara
to the accumulation of typical times, and can have a la
effect on the distribution of the overall motion of particle
The forward particles can eventually encounter a ‘‘slow
channel, thus slowing the rate of increase of the mean p
tion, and resulting in a decreasing mean velocity. While it
not obvious, these same dynamics also dominate the stan
deviations̄(t).

Returning now to the field observations of the tracer e
periment in a heterogeneous aquifer~see Fig. 1!, we observe
that the averaged tracer plume shapes are very simila
those of the CTRW and PTS plumes shown in Figs. 5 and
respectively. The basic observation is that the peak of
plume persists at the site of injection, and there is a prog
sive forward advance of tracer. The main point of our ana
sis is to strongly indicate that the evolution of the ent
plume is governed by one mechanism. In Fig. 10, we pres
a direct comparison of the advance of the measured tr
plume of Ref.@2#, Figs. 7~a! and 7~e!, and the CTRW theory,
using b5 1

2 ~cf. below!, at two times. The two~nondimen-
sional! times, 500 and 3775 used for the theoretical curv
differ by a factor of 7.55, the same as the relative increas
tracer data from 49 to 370 days. These times yielded a g
match for the mass distributions. Note that the discrepan
between the peaks in Figs. 10~a! and 10~b! are not signifi-
cant: the sharp peaks of the tracer data are an artifact o
coarse sampling step sizes. It is important to note that
parameter fit of the theory to these data yields a value
vo'5 m/d; this estimate follows since the dimensionle
time equals 2vot/so , and as seen from Fig. 10~a!, the curve
fit was obtained for the dimensionless time of 500 whet
549 d, for so'1 m. This rough velocity estimate is repre
sentative of the velocity, giving rise to typical transition
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5868 57BRIAN BERKOWITZ AND HARVEY SCHER
~median times!, and not the overall mean time of the plum
~which is lower, as expected!. These estimates are reasonab
compatible with the rough velocity estimates suggested
Ref. @2#.

Given the considerable degree of uncertainty and nois
the field data~see Refs.@1# and@2# for a detailed discussion
of the methods of sampling and data processing, and rel
uncertainties!, the agreement between the field data and
CTRW theory is striking, especially in contrast to the Gau
ian distribution comparison used for reference in Fig. 1
should be stressed that the field data represent one ‘‘rea
tion’’ ~although averaged in the other two spatial dime
sions!, while the theory is for an ensemble. If the experime
could have been carried out at different injection sites a
then averaged, the fluctuations evident in the forward
would have been smoother. While there is clearly not
exact one-to-one correspondence between our frac
model—which was used as the basis for the particular
mulation of the CTRW model developed here—and the h
erogeneous aquifer at the Columbus Air Force Base, the
at least a qualitative correspondence, wherein the prefere
flow paths and high flow variability of the heterogeneo
aquifer can be mapped to a series of channels or ‘‘fracture

FIG. 10. Comparison of the advance of the measured tra
plume of Ref.@2#, Figs. 7~a! and 7~e!, and the CTRW theory, using
b5

1
2 , so'1 m. ~a! Columbus Air Force Base field data~---!, t

549 days; theory~—!, t(nondimensional)5500.~b! Columbus Air
Force Base field data~---!, t5370 days; theory ~—!,
t(nondimensional)53775.
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The connection between the anomalous transport m
sured at the Columbus field site and our CTRW framew
can be strengthened further. Figure 1 illustrates a cle
anomalous transport behavior. As discussed above, we
analyze the nature of the anomalous transport by conside
the behavior ofl̄ and s̄. In Fig. 11, we plot the measure
mean displacementl̄ and standard deviations̄, along the
longitudinal principal axis of the tracer plume, as a functi
of time. The measured data are from Table 1, snapshots
of Ref. @2#; we have not included the measured values
snapshot 7 because the radical increase in values indic
either ~i! the presence of larger-scale heterogeneities, wh
are not considered in our current theoretical developmen
~ii ! a considerable uncertainty in the data, similar to that
the data of snapshot 8~which were discarded, as discussed
Ref. @2#!. Further discussion of this point would require
deeper level of analysis of the data, in which we are n
involved.

Significantly, the behavior is clearly non-Gaussian, w
exponents for bothl̄ ands̄ of ;0.660.1. This indicates tha
the mean longitudinal velocity of the plume, defined asv̄
[dl̄(t)/dt, is decreasing in time~certainly up to 370 days!.
Moreover, note that the value ofb5 1

2 was used in the par
ticular CTRW formulation developed here@see the discus-
sion before Eq.~22!#, and in the resulting CTRW solution
used for comparison in Fig. 10. We have not tried to op
mize our comparison; a value ofb50.6 would have im-
proved the fit.

VII. SUMMARY AND CONCLUSIONS

We have examined particle transport in a tw
dimensional numerical model and in an actual complex g
logical environment. The numerical model was construc
to emulate basic aspects of a fracture network—intersec
regions of varying lengths, oriented randomly, with differe
fixed apertures and simple flow conditions. The most imp
tant findings are the nature of the low velocity tail in th
velocity distribution,

er

FIG. 11. Behavior ofl̄ ~d! and s̄ ~s!, as functions of time, of
the measured tracer plume~points! of Ref. @2#, data from Table 1
from the Columbus Air Force Base data. The smooth curves al̄
;t0.6 ~—! and s̄;t0.6 ~---!.
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F~v! ;
v→0

v11b, ~42!

its interplay with the high velocity tail in the same distrib
tion, and the resulting dominant influence on chemical tra
port patterns. Particle tracking in these fracture netwo
demonstrated the anomalous, time-dependent behavior o
plume distribution. Mapping the advective flow in each r
gion onto a probability distribution allowed us to use t
CTRW to explore the consequences of this low velocity
on an exponential widthF~v!; we find that anomalous trans
port arises for an effectiveb,1. The results are less sens
tive to all the other details of the system.

We have introduced the CTRW as a good framework
analyze the consequences of Eq.~42!; the formalism can
effectively use any~normalized! c(s,t). The theory has ac
counted for the non-Gaussian migration of a particle plum
Whenb,1, the peak of the distribution remains close to t
injection point and slowly decreases~becoming less re-
solved!, while a forward front of particles, with a highe
encounter rate of fast transitions, continually advances
concentration profile. The rate of advance of the mean of
plume is proportional totb(b,1), slower than the linea
proportionality for a plume following Gaussian transport.
significant feature of the CTRW formulation is that once t
underlying probability density of particle transitions,c(s,t),
has been defined@see Eqs.~3! and~18!#, the full evolution of
a migrating particle plume, including first, second, a
higher order moments, and spatial and temporal chem
~particle! breakthrough curves, can be calculated without
need to invoke further assumptions on the transport beha
or characteristics of the flow domain. The actual form
.
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c(s,t) can be generalized to deal with a wide variety of flo
systems. As more complex flow conditions are incorporat
e.g., into each fracture element~cf. Ref.@26#!, the anomalous
features of the transport will tend to be emphasized.

Our analysis of field data from experiments carried out
the Columbus Air Force Base is in the spirit of an ‘‘existen
proof;’’ our intent was to demonstrate the existence of tim
dependent anomalous transport in geological formations,
to spur further study of this and other field sites. This syste
an averaged three-dimensional, strongly heterogeneous,
vial aquifer, can be rationalized to share a number of sta
tical similarities to the simpler two-dimensional numeric
fracture model. The model can also be generalized to incl
an algebraic tail in the distribution of spatial features@an
interesting use, in this regard, of the jointc(s,t) is in Ref.
@27##. This statistical feature may be present in aquifer s
tems. The main feature, however, seems to be the same
of low velocity tail in the flow-field distribution. Thus one
important question that arises is: What are the properties
random system which result in Eq.~42!? The answer to this
question, and analysis of anomalous transport using
CTRW framework in other actual field systems, remain t
subject of future studies.
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