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Theory of anomalous chemical transport in random fracture networks

Brian Berkowitz and Harvey Scher
Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, 76100 Rehovot, Israel
(Received 28 October 1997

We show that dominant aspects of chemi¢particle transport in fracture networks—non-Gaussian
propagation—result from subtle features of the steady flow-field distribution through the network. This is an
outcome of a theory, based on a continuous time random walk formalism, structured to retain the key space-
time correlations of particles as they are advected across each fracture segment. The approach is designed to
treat the complex geometries of a large variety of fracture networks and multiscale interactions. Monte Carlo
simulations of steady flow in these networks are used to determine the distribution of velocities in individual
fractures as a function of their orientation. The geometry and velocity distributions are used, in conjunction
with particle mixing rules, to map the particle movement between fracture intersections onto a joint probability
densityy(r,t). The chemical concentration plume and breakthrough curves can then be calculated analytically.
Particle tracking simulations on these networks exhibit the same non-Gaussian profiles, demonstrating quan-
titative agreement with the theory. The analytic plume shapes display the same basic behavior as extensive
field observations at the Columbus Air Force Base, Mississippi. The quantitative correlation between the time
dependence of the mean and standard deviation of the field plumes, and their shape, is predicted by the theory.
[S1063-651%98)15805-1

PACS numbgs): 47.55.Mh, 91.60-x, 92.40—t

I. INTRODUCTION part, this is due to the very complex nature of fracture net-
works in the subsurface, which precludes complete and de-
Chemical transport in geological formations is often ob-tailed mapping of fractures. As a result, studies must rely on
served to be anomalous, i.e., non-Gaussian. The advance o&atrapolation of exposed features to generate a statistical
chemical or tracer plume is anomalous if the transport coefeharacterization of fracture systems. This analysis is de-
ficients are either space or time scale dependent. Such tramsanding, as fractures exist in a broad range of geological
port has been observed frequently in field studies, where difermations and rock types, and are produced under a variety
persion of contaminants is studied by pulse injection of aof geological and environmental processes. As a result of the
tracer into the flow field of a saturated heterogeneous or fracrariability in rock properties and structures, as well as the
tured formation. In a large-scale field study carried out in avariety of fracturing mechanisms, fracture sizes range from
heterogeneous alluvial aquifer at the Columbus Air Forceamicrofissures of the order of microns to major faults of the
Base(Mississipp), for example, bromide was injected as a order of kilometers, while fracture network patterns range
pulse and traced over a 20 month period by sampling fronfrom relatively regular polygonal arrangements to apparently
an extensive three-dimensional well netwofk,2]. The random distributions. The hydraulic and transport properties
tracer plume that evolved was remarkably asymmeffig.  of these formations vary considerably, being largely depen-
1), and cannot be described by classical Gaussian modeldent on the degree of fracture interconnection, aperture
Tracer injection studies in well-mapped fractured formationsyariations in the fractures, and chemical characteristics of the
such as at the Stripa sit€weden, also display a variety of fractures and host rock.
anomalous, clearly non-Gaussian, types of behatgog., A number of recent studies have addressed theoretical as-
Ref.[3]). pects of anomalous transport, using a variety of stochastic
These extensive and costly field studies are carried outeatmentse.g.,[6—11]). The spatial dependence of transport
because the understanding and quantification of flow andoefficients is usually explained as being due to permeability
contaminant transport in fractured and heterogeneous formdields with coherence lengths varying over many scales.
tions is of considerable practical importance in terms of ex-However, spatial variability is not in itself sufficient to ex-
ploitation and preservation of aquifers. Particular emphasiplain all anomalies in plume shapes. For example, the hy-
has been placed on evaluating properties of hard rock formadraulic conductivity field at the Columbus sif] is rela-
tions as potential underground repository sites for the storagvely well distributed (see Fig. 2 of [2]), and the
of radioactive and industrial wastg4]. As a consequence, approximate diagnostic transport models used to study the
major efforts have been devoted over the last few years tplume evolution capture only some of the key characteristics.
the development of realistic theoretical models capable oModeling attempts to quantify tracer transport at the Stripa
simulating flow and transport processes in fractured and hesite (e.g., Ref[3]) have also met with limited ability to pre-
erogeneous porous formations. These efforts have led to siglict the full evolution of the plume.
nificant understanding of the dynamics of flow and transport The principal purpose of this paper is to demonstrate per-
processes in these disordered systems. sistent time-dependent anomalies in a model fracture
Predictive capabilities related to real fractured and heterosystem—a well-connected network with elements of ran-
geneous media remain, however, severely limitéfl In  domly varying lengths, apertures, and orientations—in which
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FIG. 1. Longitudinal distribution of an injected tracer in a heterogeneous aquifer, at six points in time. The dashed line represents mass
distribution for tracer migrating according to the classical Gaussian maéiel Ref.[2], Fig. 7).

the spatial scale of observation is much greater than the elshown in Fig. 2; see belowThe geometry and the velocity
ment sizes. We show that anomalous time-dependent trandistribution are used, in conjunction with particle mixing
port depends on subtle features of the random velocity disrules, to map the particle movement between fracture inter-
tribution ®(v), determined from steady-state flow through sections onto a joint probability densii(s,t), the probabil-
even simple “homogeneously heterogeneous” systéofis ity per time for a transition between fracture intersections
Ref.[12] for a short, preliminary version of this workWe  separated bg with a difference of arrival times df. In this
then extend our analysis to field data from experiments camapping we retain the key space-time correlations of par-
ried out in a heterogeneous geological format{aquifen, ticles as they are advected across each segment and dispersed
and find strong evidence of time-dependent anomalous tranby the random velocity field of the network. This approach
port. makes tractable the determination of the full evolution of the
In this initial application there is a strong interplay be- chemical densityplume), P(s;t), in large systems, in both
tween the analytic formalism and extensive simulations otwo and three dimension$(s,t) is compared with many
steady flow in numerical discrete fracture modé@sch as realizations of particle tracking simulatiodBTS'’s on the
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FIG. 2. A portion of a typical two-dimensional fracture network FIG. 3. A portion of a typical “backbone” of a two-dimensional
used in the numerical simulations. fracture network.

same networks used to obtad(v). We also show that the tails describing the method of creating the stochastic fracture
key features oP(s,t) are manifest in the field observations networks were given in Refl14].
at the Columbus Air Force Basé,?2]. In this initial study, and following typical distributions
The theoretical framework that enables us to advancend parameter values found in the literat(eey., Refs[14,
from ¢ (st) to P(s,t) is based on a continuous time random 15]), numerous realizations of fracture networks were gener-
walk (CTRW) formalism [13]. The CTRW is capable of ated according t¢i) uniformly distributed fracture midpoints
guantifying and predicting anomalous transport. This apselected randomly over the entire fracture generation region;
proach allows us to account accurately for the subtle, yetii) two random fracture sets, with orientatiofrelative to
critically important, features of time-dependent chemicalthe horizontal hydraulic head gradigsampled from Gauss-
transport that are usually neglected. ian distributions with means and standard deviations of
In Sec. Il, we examine chemical transport in a model tha0.0°+=90° and 90.0%90°; (iii) a negative exponential
simulates steady flow and transport in two-dimensional rantength distribution, with a mean length of 1.1 m, in a domain
dom fracture networks, and use particle tracking to demonef size 18 m & direction)x20 m (y direction); (iv) a log-
strate an anomalous, time-scale-dependent, dispersion. hormal aperture distribution, with mean aperture of
Sec. lll, we outline the formalism of our theoretical CTRW 2x 10 °> m and a standard deviation of lggaperture of 0.2
approach, and present the transport equation that we soleoughly equivalent to an aperture variation of one order of
for chemical migration. In Sec. 1V, we analyze the fracturemagnitudg; (v) a scan-line density of 7.0 fractures per meter;
network model, used in Sec. Il, to obtain the fracture segand (vi) a regional applied hydraulic head gradient of 0.02.
ment and segment velocity distributions. These distributiongigure 2 shows a portion of a representative fracture network
are fit with functional forms. We use these functional formsgenerated with these parameters; it is typical of the “reason-
in Sec. V to calculate/(s,t), and then determine the integral ably well-connected networks” used frequently in theoreti-
transforms used in the solution of the transport equation. Weal studies of fracture networks.g., Refs[15,16)).
then analyze the evolution of the chemical plurRés,t). In In order to solve for flow and chemical transport, the frac-
Sec. VI, we compare our analytical results with the ensembléure network is discretized into the segments between frac-
averaged particle tracking simulations on the same twoture intersections, with constant flow in each segment. De-
dimensional random fracture networks. We also relate oufining the overall flow field from left to right across the
analytical results to the field data of Ref4] and[2], men-  domain, all fractures and “dangling” segments not compris-
tioned above. ing part of the hydraulically conducting portidior “back-
bone”) of the network are removed from the domdasee
Fig. 3. Specifying equations for conservation of mass at the
[l. SIMULATION OF CHEMICAL TRANSPORT intersections, together with suitable domain boundary condi-
IN A TWO-DIMENSIONAL FRACTURE NETWORK tions, results in a set of linear equations whose solution
yields the distribution of pressures at the intersections. Con-
stant hydraulic heads are prescribed around the entire do-
The numerical fracture model employed in this st{iis| main boundary; an applied regional head gradient is speci-
generates discrete fracture networks in two-dimensional rectied between the two vertical boundaries, and constant head
angular regions, and solves for flow and chemical transponalues along the two horizontal boundaries are prescribed
within these networks. The fracture networks are composedssuming a linear change in head between the inlet and outlet
of linear, constant aperture fractures, embedded in an impefvertical) boundaries. These boundary conditions assume that
meable matrix. Fracture network realizations are generatethe region surrounding the model domain is homogeneous,
from prescribed distributions of fracture locations, orienta-and that flow within the domain does not influence flow in
tions, lengths, and apertures, which are assumed to be statifie surrounding region.
tically independent. Fractures are generated in a region larger Chemical transport is modeled by use of a standard par-
than the model domain, and those at the domain boundanycle tracking routine. Particles move in discrete steps be-
are then truncated. This ensures that there is little decrease tween fracture intersections, and the time to move is calcu-
fracture density near the domain boundaries. Additional delated from the fluid velocity within the fracture segment.

A. Numerical fracture network model
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P(x,t)

Vertical Dimension ( m )
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X

7 FIG. 5. The vertical averag@long they axis) of P(s,t), de-
fined asP(x,t) (in arbitrary unit3 vs x (units of length ares, and
time s,/2v,, where all particle injection points are translatedxto
=0). Simulation results averaged over 50 realizationg 020 (®)
and 50(+).

Vertical Dimension ( m )

10 (chemical massremain near the point of injection on time
scales where the “average” mean position continually ad-
FIG. 4. Typical distributions of the chemical plume. The overall vances across the domain. Second, while these particles are
flow direction is from left to right. Particles are injected on the left held back, a finite percent of particles advances quickly
vertical boundary, at the point marked by a star. The size of point@icross the system, well ahead of the mean. An obvious ex-
is proportional to the number of particles in each cé). Single  planation is that these particles experience a higher fre-
fracture network realizatior(b) Composite of 100 000 particles in quency of high velocity fracture segments, along their paths,
20 fracture network realizations. permitting the faster chemical transport. Recognition of these
two features, and their interplay, which arig®ssibly some-
Plug flow is assumed within each fracture, and importantvhat surprisingly even in a relatively simple system, forms
effects of diffusion and mechanical dispersion are manifestethe basis for the use of the CTRW theory which we develop
in the complete mixing of particles at fracture intersections below.
i.e., particles leaving an intersection are distributed randomly We can further illustrate these two key features by aver-
among outflowing fracture segments in proportion to theiraging the number of particles, along the verticg) direc-
volume flow. Stream tube routing could also be implementedion. Figure 5 presents the verticadormalized average of
in the PTS’s but is not considered at this stajé]. For each  P(s t), defined asP(x,t) (in arbitrary unit$ vs x (units of
fracture network realization the statistics of a number of im-ength ares,, an average distance between intersections and
portant properties are collected and examined, as discusséhe s /2v,, wherev,, is a characteristic velocity of the flow

Horizontal Dimension ( m )

in the following sections. distribution;s, andv, will be defined more precisely below
The progression of the normalized pluni&(x,t), is highly
B. Analysis of particle tracking simulations non-Gaussian. The peak of the distribution remains close to

Sthe injection point, while a finite fraction of relatively fast
it migrates through the domain. For each fracture networlPa.rt'CleS cpntmually stretches out the concentration proflle. It
realization, 5000 particles are injected into the network. w¢s nteresting to note that anomalqus transport of this nature
illustrate important details of the nature of the chemical'® well establlghgd in the electronic transport literatii].
transport in Fig. 4. To minimize boundary effects and theShapes'very S|m|lar to those shown in F!g. > have been mea-
loss of particles from the systefas seen in Fig. ¥ we must sured directly m_amorphous chalcogenides for propagating
increase the domain size in both directions with increasing?aCketS of electric chardd9]. . L
plume evolution time. Thus the computationally feasible size The anomalous nature of the e_vo!vmg migration pattern
of the domain limits the times at which the plume distribu- €& R€ demonstrated more quantitatively by calculating the
tion can be simulated. In the simulation results analyzedn€anl(t) and standard deviatian(t) of the chemical plume
here, particles enter the system at fracture intersections lyingistribution over timeP(x,t). In Gaussian transport, which
within a small window centered at=2 andy=10, in an is an outcome of the central limit theorem, we hayg =t
18x 20-n? domain. Note that with the exception of the illus- and o(t)=t®° and the position of the peak of the distribu-
trations shown in Figs. 2, 3, and 4, all simulations in thistion coinciding withl(t). As we will discuss in Sec. V and
study used the 1820-n? domain. VI, we find time exponents for our particle tracking simula-
Two principal features of the chemical transport patterntions that are significantly different. The importance of these
can be observed in Fig. 4. First, the transport pattern igxponents is best discussed in the context of the theory
anomalous, in that very significant quantities of particleswhich we now develop to account for this phenomenon.

We consider the overall evolution of a chemical plume a
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I1l. CONTINUOUS TIME RANDOM WALKS
¢(r>=§ ¥(s,7). (6)

A random walk(RW) describes the consequences of the
accumulation of many random transitions between states, . ) .
e.g., points in a Euclidean space or a multidimensional phas'é is |mp(_)rtant to note that advective gnd dispersive transport
space. The transitions are generated by choosing from a sp@echanisms are not separate terms in(Bg.but are, rather,
cific distribution; simplicity is assured if the state of the inextricably combined. o
walker is determined only by transition from its previous  The form of Eq.(3) is that of a convolution in space and
state(e.g., there are no persistent correlations between trarfime which can be solved by discrete Fourier transfosi
sitions. The choice of distribution will be our major chal- and Laplace transforrt), respectively,
Lf:gﬁr;nntt\e;v;pkzl.lcatlon described in the present study of R(k,u)=1[1— A(K,u)] @

~ The accumulation aspect of a RW will be illustrated by ay. = — (2 7/N)[(N—1)/2],...,(2m/N)[(N—1)/2], with R
simple example: the walker makes transitions between poinighe discrete Fourier transform and Laplace transform of
on a lattice at regular time intervals. ThenRf(l) is the  R(st), and similarly fory(s,t)
probability that the walker is at poittafter n steps(transi-

tions), A(k,u)z}‘{lr/,*(s,u)}:z exp(—ik-s)g*(su) (8)

Poia()=2 p(L1")Py(1"), (1) )

| ¢*(S.U)E£{¢(S,t)}=J exp—ut)y(st)dt (9
0

wherep(l,l") is the transition probability for a jump froiir

to | with The total transition rate must be normalized, hence

A(0,00=1. (10)
> p(l1n=1. ?)
K Also, from Egs.(6) and(8),

The key structure is the recursive relation in Efy), and A(Ou)= ¢ (u) (12)
hence the accumulation of many transitions.

The starting point of our RW application is a generaliza-which is the£ of (7). Finally, the principal object of our
tion of this example from discrete tinreto continuous time  calculation is given by
(CTRW) with the spatial state description remaining dis-

crete, P(st)zN‘d; explik-9) y(k,1), (12)
t
ReD-3 [ ws-st-nRSDdn @ where

—_pr-1 *
whereR(s,t) is the probability per time for a particle to just k) =LTHRGWIL= g7 (W)]/uf,
arrive at a sites at timet, and#(st) is the probability per  using the£ of Egs.(4) and(5) and£ ! is the inverseC. The
time for a transition between sites separatedsbwith a  function P(st) describes the evolution of the chemical
difference of arrival times df [13]. The sites are on a lattice, plume and, in principle, can be determined analytically for
and we assume periodic boundary conditions, i®., an arbitraryy(st). In practice, this can be quite difficult, as
=3isig, |a|=a, the lattice constant, witfs;} integers and it involves an inverse Laplace transforfi . We will de-
si+]jiN—s;, for arbitrary integejj’s, whereNa is the length  scribe a general method to accomplish the inversion which
of the lattice, s;=—(N—1)/2,...,(N—1)/2. Continuous will be considered in detail in Sec. 5.
time introduces a subtlety which need not be considered in \We conclude this section on the formal structure of the
the example in Eq(1). We have to distinguish now between CTRW with the definition of the first passage time distribu-
the walker just arriving at the site and the probability of tion F(s,t), which implicitly is
remaining at the site for a random time before the next jump.

. t
We define the analogy t8, by R(st)= 8500(t—0" ) + f F(s7)ROt—7dr, (13
0

t
P(st)= fOH(t_T)R(S, 7)d, @ with 8 ; being the Kronecker delta function aft—t,),
the Dirac delta function, or, in Laplace space,
where F* (s,u)=[R* (s,u) — 850]/R* (O,u), (14)
Mt)=1— ft¢(r)dr (5) As evinced in Eg.(l3), the first passage Fime distribution
0 F(st) appears in another integral equation fRrwith a

straightforward meaning. We rec&(s,t) is the probability
is the probability to remain on a site and per time that the walker just arrives atat timet but not
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necessarily for the first time. The walker might have visged - ' T '
at an earlier timer for the first time and returned, an arbitrary
number of times, in the remaining- 7, described byR(0,
t—17).

The first passage time distributiét(s,t) is evaluated for
the breakthrough curve for chemical transport, wieigethe
distance from the source to the collection plane. We note,
parenthetically, that the frequent practice of measuring
breakthrough curves in the laboratory by collecting samples
at the outlet end of a porous medium column, and comparing
these curves with a probability functioR(x,t) (e.g., a so-
lution of the classical advection-dispersion equatiaa in
fact an approximation. The measured breakthrough curves L . . ]
should be compared with the first passage time distribution,  co 0.5 1.0 15 2.0
to account correctly for the “absorbing boundary” at the Frocture Segment Length (m)

outlet, i.e., the inability of particles to diffuse in the upstream  giG. 6. cumulative plot of the fracture segment length distribu-

Relative Frequency

direction once they reach the column outlet. tion for 20 network realizations, and the fit with E@.5).
IV. ANALYSIS AND CHARACTERIZATION to the hydraulic head gradielFig. 7). There are two par-
OF KEY STRUCTURE AND FLOW ticular features of this distribution. First, as in the case of the

While numerous studies have used fracture network modf_racture segment length distribution, the fluid velocity fre-

els such as that described in Sec. Il to examine flow anguency must tend to zero, at all anglescept for a vanish-

contaminant transport in fracture networks, emphasis ha'§Iglly small range about_go ).’ as th_e VEIOC.'ty z_ippr_oa_che_s
ero. Second, the velocity distribution, which is similar in

been placed largely on characterizing effective hydraullcghape to that of the segment lengtRsg. 6), varies signifi-

conductivity and contaminant dispersion patterns, mostly un= . ) S
der steady-state conditions. However, these previous anal antly as a funct_lon of the fracture angle: the_dlstrlbutlon
ses have not characterized certain key controlling factor a".S.Off expone.ntlally at large, exr[—v/vo(e)], with a co-
which we have clarified in defining a suitablé(s,t), the efficientv, that is stronglyd dependent, while the dropoff at

probability per time for a transition between sites separate mallv is “SOf.t” (algebraig. O rth_ogpna! to _the direction of
by s and arrival timest. Hence we focused on collecting e head gradient, the velocity distribution is skewed sharply
statistics on fracture segment lengths, velocity, volumetric
flow rate, fracture angle distributions for fluid leaving and
entering fracture intersections, aperture distributions, and
joint statistics (correlationg on pairs of these parameters.
After careful examination of possible subtle correlations, we
identified the key controlling factors to be the segment length
distribution and the distribution of fluid velocity as a func-
tion of fracture orientation(angle with respect to the hy-
draulic head gradient.

For randomly generated networks such as considered
here, an exponential segment length distribution is to be ex-
pected. However, this can be distorted by including in the
histogram of segment lengths ever smaller differences in the
numerical position of the nodes. Thus, to define the distribu-
tion to be physically realistic and practic&ince we only
distinguish different pressures at nodes beyond a certain
small separation the distribution should vanish as—0.

The distribution which we fit to the data is

p(s) = s Z%exp —s/s,). (15)

Based on a set of 20 fracture network realizations, for ex-
ample, we find the fracture segment length distribution to
follow Eq. (15), as illustrated in Fig. 6. The parametgyis
chosen to give the best exponential fit to the data and also the
peak[of Eq. (15)] close to the physically motivated cutoff at £ 7. The velocity distribution within fracture segmerité).
the very small segment lengths. The length scale is se§ by (a) A compilation of data from 20 fracture network generations.
and is used in Fig. 5 to define the nondimensional length  ¢(v) is plotted in arbitrary units as a function of and 6, the

The most critical characterization is the flow field. We direction ofv with respect to the pressure gradigmegativé along
define a distribution of fluid velocitiefeaving fracture in-  thex axis (cf. Fig. 2. The blank space on the right is the intersec-
tersectiong ®(v), as a function of the fracture angle relative tion with they =0 plane.(b) The fit with Eq.(16).




5864

toward the small velocity values. FiguréYis a compilation
of data from 20 fracture network realizations.
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The long time behavior of)(s,t) in Eq. (18) is deter-
mined by the power ofv in ®(v) in Eqg. (16), ¥(st)

We have been able to obtain a very good fit to character=»t=1-# t— . The asymptotic form at large time ¢f(s,t)

ize this behavior by using

determines the time dependence of the mean posi{in
and standard deviatioor(t) of P(s,t) [20,21. In the pres-

D(v)ocplth exp{ —vlv,c08 g) +w exp( —vlv'sir6) |, ence of a biage.g., pressure gradignend, for 0<B<1,
(16)
where B, w, v,, andv’ are parameters of the fit. The first (t)ert?, (19)
term of the function captures the overall surface of the dis-
tribution, and the second term accounts for the two data .
“spikes” at angles roughly orthogonal to the direction of the o(t)ecth. (20)

head gradient. Figure(ld) presents an example fit of E{.6)
to the simulation data. .

We note that essentially no correlation was found betweerrhe unusual time dependence I¢f) and o(t) is the hall-
fluid velocity and segment length, except that most of themark of the highly non-Gaussian propagationPg,t); it is
unusually high velocity values were found to occur in smally manifestation of the infinite meaffirst momen}t (t) of
segment lengths. From our analyses, we also found little Oi(st), i.e., #(st) does not fulfill the conditions of the cen-

no correlation between, for example, velocity and aperturey., |imit theorem. As discussed above, this so-called anoma-

or velocity and volumetric flow rate other than an overallIOUS dispersion has been very well documented in a large
dependence of the velocity distribution on the aperture OIISI"lterature of electronic transport measurements in low mobil-

tribution. At each intersection there is no correlation between, . . L
. ity disordered semiconductors and organic filr8].
the branch velocities. Note that one can test for further cor- L . -
The careful determination g8, therefore, is an important

relations that extend beyond each fracture intersec¢gspe- i A
cially the higher flow rates in the forward directiopy gen- and subtle feature of the random velocity distribution in a
fracture network that has been largely overlooked. It is chal-

eralizing Eq.(15) to ) . )

lenging to obtain a very narrow range Bfvalues with our
simulation datarecall Fig. 3. However,3~0.7 was deter-
mined to fit the data well, and in Sec. VI we will show that
, ) , i it gives an excellent quantitative account of tii® ando(t)
wheree(6) is a function of6, peaked in the forward direc- f the PTS's. These results, using EGE9) and(20), will be
tion, and represents the small fraction of evénes, e(0)<1]  oyr main quantitative agreement for the PTS's.
where thg particlg travels farther than the average distance aq 3 first step in the explicit calculation of the analytic
between intersectiong>s,. expression for the chemical concentration, we evaluate the
Laplace transformy™* (s,u) of Eq. (18). We will evaluate
* (s,u) by using the first term of Eq(16) for ®(v). The
effect of the other term was found to be small. Then

p(s|v)=s¥ (1— e( 0))exp( —s/s,) + e( @) exp(—s/€)],
(17

V. CHEMICAL PLUME EVOLUTION USING CTRW

We now combine the CTRW formulatiofsec. Ill) and
the functional distributions obtained from the simulation data
(Sec. IV). We envision all the fracture intersections with a
branch velocityv. At each such site we can evaluate the
fraction f(v) of the particles entering the branch using the
simple mixing rule discussed above, and we can subse-
quently determine the displacement from the pits|v). We
multiply the product of these two terms by the probability to
encounter the velocity. Hence

P(s1)=Cr@(V)p(s|V)f(v),

where C, is a normalization constant=s/v, p(s|v) is
given in Eq.(17), and ®(v) is given in Eqg.(16). We first
consider the contribution df(v). The mixing rule is deter-
mined by the relative volume floWQ; for eachuv there is a
distribution of apertureg\, hence each choice af corre-
sponds to a range @(=Av). For a large enough range one
can assume that(v) is a slowly varying function ofv,
except for very low, where it can be incorporated into the
®(v), i.e., an effective8. For simplicity we choos@(s|v) to
be equal to the fragment distributi@h5) [i.e., Eq.(17) with
€(0)=0]. The evaluation o&(6) will be considered in future
work.

6
¥* (s,u) = C20P"%sY%e~5%s cod’ > (\su)®

(7]
XK g 2\/51/0(1,’20055) (21)

(18  (Ref.[22], p. 22, No. 3.2.8 whereK4(x) is the modified
Bessel function of ordep (Ref.[23], p. 374. The Fourier
transform of Eq(21) cannot be carried out analytically. We
can, however, compute the chemical concentraffs,t)
numerically with the procedure outlined below. For our
present purposes we can simplify this computation, and
make the procedure more illustrative by settifer 3. We
have already discussed the main quantitative predictions,
Egs.(19) and(20), for the PTS’s and the criteria for highly
non-Gaussian concentration transients. The main demonstra-
tion for our calculation now of the completé(s,t) is to
exhibit the non-Gaussian behavior and a qualitative agree-
ment with the PTS’s. This can be accomplished wgh

= 1: this results in Eq(21) simplifying to the form
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0
* (s,u)=Cp\mv 051/23—5/500035 S

0
X ex;{ —2s¥12py é/zcosz :
—mr<0<mw. (22

(Ref.[22], p. 22, No. 3.2.Y.
It is convenient to use a nondimensional form foy

SoU/2v,—u with a corresponding nondimensional form for

t, 2v,t/s,—t. In computing the Fourier transform E@®) of
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T 3
A(Ou)= REWE ( u? ﬁ) {ue [ Ky (u)+Ko(u) T}
— 27yl (29)

We use formulagRef. [23], p. 376 for the derivatives and
recurrence relations for the modified Bessel functidhisto
derive

A(OU)=p,e"Ky(u)+p,e"Ko(u)—vV2miut?  (30)

wherep,; and p, are cubic polynomialsp,(u)=(u—2u?

* (s,u) in Eq.(22), we replace the lattice sum by an integral — 2843 andpy(u)=(7u+4u’+ 2ud). In the limitu—0,

which is the value in the limiN— o,

A(K,U):L fxds wa dg e xssties
157 Jo —

6 (7
X cosz S exy{ — \/8su/cos§) (23

wherek;=k;s,, /S, is replaced bys as the integration vari-
able, andA (0,0)=1.

We can obtain an analytic expression foi0,u) [setx=0
in Eg. (23) and change variables— 7/8u],

A(Ou) =r(%)*1(8u)77/2J dr 52— 8u
[0}

w2 -
X f d6 cos ge V7 sect, (24
o
by evaluating the) integral
/2
l(x)= d6 cos ge™x secd (25)
(]

by considering

di(x)
~dx

77/2 oo
:f de e‘xsecﬂ:j dt Ko(t) (26)
o X

using Sievert's integraRef.[23], p. 1000. We integrate Eq.
(26) to obtain

I(x)=xK1(x)—xfmdt Ko(t). (27

Insertingx= /7 andf>dt Ko(t) = /2, Eq.(27) can be writ-
ten as

l(fr>=fr( Kl<ﬁ)+J dp Ko(\p)/2\p—i2|.
o
(28)
The rintegral in Eq.(24) is of the form of aZ and using

general properties of & (Ref.[22] p. 7, No. 41, and p. 79,
Nos. 13.2.4 and 13.2.8we obtain

AOUW)=1—27uY2—7u(ln u)+O(u). (31

The appearance ai'’? as leading term in the small
behavior of A(0,u) derives fromy(s,t)~t 32 for t—o.
Equation (31) indicates there is no finite time moment of
¥(st), i.e., the density of low velocities in the fracture frag-
ments has a strong influence on the mean time for a transi-
tion between fracture intersections. The logarithmic term de-
rives from the specific value of 2 for the power in the
exponent in Eq.16). The accuracy of the expression for
A(0,u) can be determined by the largdimit. Inserting five
terms of the asymptotic series f&; andK, (Ref.[23], p.
378 in Eq. (30), we find

105/

A(O,U)—> (8U)7 )

u—o

(32

which can be checked by an alternate expressiom@,u)
derived below.
We evaluate ths integral in Eq.(23) for k# 0; we derive

m

A(r,u)= 96f_ de cosg (1+ix-8) "2%%i%erfo(2),
" (33

0 .
ZE\/Z/ (cos§(1+in--:s)1’2 ,

wheres is the unit vector(cosé, sin ) andi"erfc(z) is the
nth repeated integral of the complementary error function
(Ref.[23], p. 299. If we setk=0 in (33) and use the leading
term in the asymptotic serié®ef.[23], p. 300,

o)

61\/me”i%rlo(2)~2(22) 7 3, (_1”)],((2#

(39

we again obtain Eq.32). The ¢ integral in the expression for
A(x,u) in Eqg. (33) has to be evaluated numerically. In ad-
dition to the asymptotic serig84), we will use the analytic

. 2.6 .
properties ofe” i°erfc(z) in the complexu plane and the
following representation for the numerical computation:

2, 2
6!\mei%rfo(z) = (28+ 224+ 2222+ L8 \[me¥ erfa(z) — 2°

—-722- %7 (35
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As outlined in Sec. IV, the determination of the chemical
concentratiorP(s,t) involves both an inverse Fourier trans-

form and an invers&, Eq.(12). The numerical computation
of an inversel is notoriously difficult. We derive a very
stable form for the numerical evaluation of the inveise
with analytic continuation in the complaxplane. The func-
tion A(k,u) has a branch point at=0, and is analytic in the
cut plane, with the branch cut along the negative teakis.
The Fourier transform oP(s;t) is y(k,t), where y(0t)
=1 and fork#0,

_ (*du g ut . 1-A(Oue™'™)
k0= |G 2 ) a9
We first evaluate
A(Oue™ ™M) =py(—u)e “[—Ky(u)Fimly(u)]
+pa(—u)e [Ko(u)Fimlo(u)]
Fi2mgu'?, (37)

using the analytic continuation properties of tkeBessel
functions(Ref. [23], p. 3769, wherel, andl, are the modi-
fied | Bessel functiongRef.[23], p. 379 of order 0 and 1,
respectively. For the numerators in the integral in E2§),
we can write

1-A(Que™' ™) =u¥( D, +i7d;) (39)
where
1-e “uK(u) B
<D,(u)=T—(§—§—i—§u)u3’2e "Ka(u)
+(7—4u+ 2u?)ut?e UKy(u),
( i8u%) o) 39
1/2
v =| 2] 8-+ B et )
—(7—4u+2u?)u%e Y y(u).
We can now numerically compute
1 (= du (®, +imd;)
_ —ut ="
Y= o fo a2 "2 ) T ue
(40)

by separating the range of integration into the passl and
u=1, where the former will dominate fae=1. Finally, the
inverseF in Eq. (12) is computed with use of fast Fourier
transform(FFT) NAG routines[24]. In Fig. 8, the averagén
they direction P(x,t) is plotted as a function o$; [or j
=—(N—-1)/2,...,N—1)/2]. The average is computed by
settingk,=0 in Eq.(40) and using the one-dimensional *
for Eq. (12),

BRIAN BERKOWITZ AND HARVEY SCHER

P(x,t)

140

FIG. 8. The vertical averag@long they axis) of P(s,t), de-
fined asP(x,t) (in arbitrary unit$ vs x (units of length ares, and
time s,/2v,). Theoretical results are fdr=800, 2000, 8000, and
30 000;8=3.

e '"(1-1/N)

NN

1 N2
x| S g2miliNgl~ail(1-LN)IN
JN =0

X ’)/(K,O;t)] , (42

where k=271 —(N—1)/2]s,/N. We evaluate the inverse
FFT, in the curly brackets, for values o=3", n
=integer.

A principal result of the CTRW theory is that the progres-
sion of the normalized concentration pulBéx,t), as shown
in Fig. 8, is highly non-Gaussian. The peak of the distribu-
tion remains close to the injection point and slowly de-
creases, while a forward front of particles, with a higher
encounter rate of fast transitions, continually advances the
concentration profile.

VI. COMPARISON OF CTRW, PARTICLE TRACKING
SIMULATIONS AND FIELD DATA

In this Section we make a quantitative comparison of the
CTRW theory with the PTS’s and with the field data of Fig.
1. We begin by observing that the shapes of the spreading
pulse P(x,t) predicted by the CTRW, shown in Fig. 8, are
qualitatively the same as those of tRéx,t) found from the
PTS’s, as shown in Fig. 5, modulo some statistical noise.
The theoretical curves in Fig. 8 are limit distributiofas are
Gaussiansin that their main features are determined by the
smallu limit of A(0,u) in Eq. (31). These features include a
peak lying close to the origin, while a tail spreads forward in
response to the bias. As time progresses the distribution ap-
proaches a “step function,” increasingly uniform in space,
with the residual position of the “peak” indicated by the
sharp drop near the origin. This subtlety is reflected in a
comparison with the data in Fig. 5. Despite the noise due to
the vertical averaging and the relatively small number of
realizations, the early time distribution=€ 20) clearly has a
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100 ' T T ior in each of the other fracture networks demonstrated the
i (o) 1 same sublinear dependence, but with differey values in

| the range 0.5.8<0.9. An average of these five realizations

o o7 is shown in Fig. &). Fitting these average results with Egs.

57 (19) and (20), we find overall exponents g8=<0.9 for I (t)
I L. s i and 8=0.8 for o(t); representative error bars for these av-
g . e 1 erages are also shown. The scant statistics of determjfing
r } . i from ®(v) for each generation do not allow us to make an
331~ . P ] exact comparison with the theory. However, we note that the
. . 1 value 8~0.7, obtained for an averageklv) (recall Fig. 7,
P I 1 is well within the error limits of agreement with the of
e 1 o(t) in Fig. 9b). Moreover, given the inherent statistical
o] Y S noise in the relatively small fracture networks we examined,
’ * T * 170 it is significant that each separate generation clearly exhibits
anomalous transport.

Particle plumes migrating by Gaussian transport can be
characterized statistically by the relationshilfs)~t and
o(t)~t%5 so thatl(t)/o(t)~t°S An extremely important
distinguishing feature of anomalous transport is that, in con-
trast, | (t)/o(t) ~const. Referring to our PTS results, and in
particular to the fittedoveral) exponents=<0.9 for I(t)
and 3=0.8 for o(t), we stress that the clear deviation of
I(t)/o(t) from the Gaussian dependence\ﬁfis a dominant
signature of anomalous transport. This unusual behavior
originates in the relatively small, but significant encounter of
the particles with a low velocity channel that slows them
down for a time much larger than a typical oh#8,25.

o T T T T T T These smaller numbers of “slow times” can be comparable
! to the accumulation of typical times, and can have a large

FIG. 9. The mearh_(t) (@) and standard deviation(t) (O) of effect on the distrjbution of the overall motion of particles.
P(x,t) Vs t (units of length ares, and times,/2v,, where all The forward partlc'les can eventl_JaIIy encounter a “slow”'
particle injection points are translated 1o=0). (a) The average channel, thus slowing the rate of increase of the mean posi-
over initial sites of one network generation with the fit of Eq)  tion, and resulting in a decreasing mean velocity. While it is
and (20) with S~0.5 (—) and 8~0.7 (---), respectively(b) The ~ Not obvious, these same dynamics also dominate the standard
average of 50 realizations with the fit of Eq4.9) and (20) with deviationo(t).

B~0.9 (—) and 5~0.8 (---), respectively. There is an overlap in Returning now to the field observations of the tracer ex-
the error widths ofg for | ando. periment in a heterogeneous aquifsee Fig. 1, we observe
that the averaged tracer plume shapes are very similar to
those of the CTRW and PTS plumes shown in Figs. 5 and 8,
respectively. The basic observation is that the peak of the
plume persists at the site of injection, and there is a progres-

“peak” whose residual position is indicated by the uppersive forward advance of tracer. The main point of our analy-
part of the drop-off regiox=10, which is close to the esti- % " "o o0 indicate that the evolu?ion of the entir}é
mated peak of the early time curve. The large difference in gl

time scales between Figs. 5 and 8 is due to the difference jRlume is governed by one mechanism. In Fig. 10, we present
8, B=0.5 in the CTRW case, while, in PTS’s, we found that & direct comparison of the advance of the measured tracer

5-0.8 (cf. below plume of Ref[2], Figs. 1a) and 7€), and the CTRW theory,
: : . . ._using 8=3 (cf. below), at two times. The twdnondimen-
A more quantitative analysis of the PTS plume behavior_; : )
; i : siona) times, 500 and 3775 used for the theoretical curves
can be achieved, as discussed in Secs. Il B and V, by deteT- L .
S £ th havior of( — ; ) : differ by a factor of 7.55, the same as the relative increase in
mination of the behavior of(t) and o(t) as functions of 506 qata from 49 to 370 days. These times yielded a good
time. We generated five fracture networks and calculated stas (ch for the mass distributions. Note that the discrepancies
tistics of the evolving plumes; in each case, we introduce etween the peaks in Figs. (@) and 1@b) are not signifi-
and tracked a large number of particl&00 were found 10 54t the sharp peaks of the tracer data are an artifact of the
be sufficient. For each fracture network generatit(t) and ~ coarse sampling step sizes. It is important to note that our
o(t) of the PTS's were averaged over a number of initialparameter fit of the theory to these data yields a value of
injection sites. Figure @) showsl (t) ando(t) for one net-  y,~5m/d; this estimate follows since the dimensionless
work generation, together with a fit to Eq4.9) and(20) for  time equals 2,t/s,, and as seen from Fig. (@, the curve
B~0.5 and 3~0.7, respectively. Although there is some fit was obtained for the dimensionless time of 500 when
noise in the PTS data, the sublingadependence of both =49 d, fors,~1 m. This rough velocity estimate is repre-

I(t) ando(t) is clear. Moreover, analysis of the PTS behav-sentative of the velocity, giving rise to typical transitions

100 T T T T 4 T T T

peak centered in the window 2<x< 14 with a forward tail
extending tax<58. The later timet(=50) has a less defined
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t {days)

0.08[T R AR ey FIG. 11. Behavior of (®) ando (O), as functions of time, of

[ 1 the measured tracer plungpoints of Ref. [2], data from Table 1

L ] from the Columbus Air Force Base data. The smooth curves$ are
0.06 - - ~t%¢(—) and o ~1t%® (---).

L ] The connection between the anomalous transport mea-
0.04/= f sured at the Columbus field site and our CTRW framework

i 1 can be strengthened further. Figure 1 illustrates a clearly
| anomalous transport behavior. As discussed above, we can
- analyze the nature of the anomalous transport by considering

the behavior oft ando. In Fig. 11, we plot the measured

Relative concentration

i mean displacemerit and standard deviationr, along the
SRS ——— ! longitudinal principal axis of the tracer plume, as a function
Longitudinal distonce (m) o 200 of time. The measured data are from Table 1, snapshots 2—6,

of Ref. [2]; we have not included the measured values for
FIG. 10. Comparison of the advance of the measured tracesnapshot 7 because the radical increase in values indicates
plume of Ref[2], Figs. 7a) and Te), and the CTRW theory, using either (i) the presence of larger-scale heterogeneities, which
B=3%, s;~1m. (a) Columbus Air Force Base field dafa--), t are not considered in our current theoretical development; or
=49 days; theory—), t(nondimensionak- 500.(b) Columbus Air  (ii) a considerable uncertainty in the data, similar to that in
Force Base field data(---), t=370 days; theory (—), the data of snapshot(@hich were discarded, as discussed in
t(nondimensionak 3775. Ref. [2]). Further discussion of this point would require a
deeper level of analysis of the data, in which we are now
(median times and not the overall mean time of the plume involved.
(which is lower, as expectedThese estimates are reasonably ~ Significantly, the behavior is clearly non-Gaussian, with
compatible with the rough velocity estimates suggested irexponents for both ando of ~0.6+0.1. This indicates that
Ref.[2]. the_ mean longitudinal velocity of the plume, definedwas
Given the considerable degree of uncertainty and noise ie=d|(t)/dt, is decreasing in timécertainly up to 370 days
the field datasee Refs[1] and[2] for a detailed discussion Moreover, note that the value @f= 3 was used in the par-
of the methods of sampling and data processing, and relatag:ylar CTRW formulation developed hefsee the discus-
uncertainties the agreement between the field data and thejon before Eq(22)], and in the resulting CTRW solution
CTRW theory is striking, especially in contrast to the Gaussysed for comparison in Fig. 10. We have not tried to opti-

ian distribution Comparison used for reference in Flg 1. |tmize our Comparison; a value (ﬁ:06 would have im-
should be stressed that the field data represent one “realizgroved the fit.

tion” (although averaged in the other two spatial dimen-

siong, while the theory is for an ensemble. If the experiment

could have been carried out at diff_erent .injection sites anq VII. SUMMARY AND CONCLUSIONS

then averaged, the fluctuations evident in the forward tail

would have been smoother. While there is clearly not an We have examined particle transport in a two-
exact one-to-one correspondence between our fractudimensional numerical model and in an actual complex geo-
model—which was used as the basis for the particular forlogical environment. The numerical model was constructed
mulation of the CTRW model developed here—and the hetto emulate basic aspects of a fracture network—intersecting
erogeneous aquifer at the Columbus Air Force Base, there iggions of varying lengths, oriented randomly, with different,
at least a qualitative correspondence, wherein the preferentifiked apertures and simple flow conditions. The most impor-
flow paths and high flow variability of the heterogeneoustant findings are the nature of the low velocity tail in the
aquifer can be mapped to a series of channels or “fractures.Velocity distribution,
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d(v) ~ v1th (42 (s,t) can be generalized to deal with a wide variety of flow
v—0 systems. As more complex flow conditions are incorporated,

L . . ) . . e.g., into each fracture eleme(ef. Ref.[26]), the anomalous
its interplay with the high velocity tail in the same distribu- features of the transport will tend to be emphasized.

tion, and the res“'“.”g domingnt inﬂuence on chemical trans- Our analysis of field data from experiments carried out at
port patterns. Particle trackmg_ in these fracture ngtworkﬁhe Columbus Air Force Base is in the spirit of an “existence
demonst'rat_ed t_he anoma!ous, t|me-dep(_endent b(_ahawor of tlE)(?oof;” our intent was to demonstrate the existence of time-
p!ume distribution. Mgppmg 'the'advectlve flow in each re'dependent anomalous transport in geological formations, and
gion onto a probability distribution allowed us to use theto spur further study of this and other field sites. This system,

CTRW to explotrel th%f£n5§que?cgstr?ftthls lOWI velotc|ty taIIan averaged three-dimensional, strongly heterogeneous, allu-
on an exponential widtb(v); we find that anomalous rans- a1 aquifer, can be rationalized to share a number of statis-

port arises for an effectivB<1. The results are less sensi- yioo| simjjarities to the simpler two-dimensional numerical

tive to all the other details of the system. f ; ;
. racture model. The model can also be generalized to include
We have introduced the CTRW as a good framework tg ¢

i an algebraic tail in the distribution of spatial featufjes
analyze the consequences of H42); the formalism can g P L

frectivel i The th h interesting use, in this regard, of the joi{s,t) is in Ref.
effectively use anynormalized y(s,t). The theory has ac- 577] This statistical feature may be present in aquifer sys-
counted for the non-Gaussian migration of a particle plume

P , tems. The main feature, however, seems to be the same type
When 8<1, the peak of the distribution remains close to the

S . lowl ingt | of low velocity tail in the flow-field distribution. Thus one
injection point and slowly decreasg®ecoming less re- o ant question that arises is: What are the properties of a
solved, while a forward front of particles, with a higher

I . random system which result in EG12)? The answer to this
encounter rate of fast transitions, continually advances th‘auestion and analysis of anomalous transport using the

concentration profile. The rate of advance of the mean of th%TRW framework in other actual field systems, remain the
plume is proportional td?(8<1), slower than the linear subject of future studies. '

proportionality for a plume following Gaussian transport. A
significant feature of the CTRW formulation is that once the
underlying probability density of particle transitiong(st),

has been definddee Eqs(3) and(18)], the full evolution of The authors thank Tom Clemo for sharing his computer
a migrating particle plume, including first, second, andcode, Eli Galanti for assistance, and Martin Blunt for useful
higher order moments, and spatial and temporal chemicaliscussion. B.B. thanks the European Commission, Environ-
(particle breakthrough curves, can be calculated without thement and Climate Programme for partial support. H.S.
need to invoke further assumptions on the transport behavighanks the Sussman Family Center for Environmental Sci-
or characteristics of the flow domain. The actual form ofences for partial support.
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