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Nature of the Blue-Phase-lll-isotropic critical point: An analogy with the liquid-gas transition
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The analogy with the liquid-gas critical point is analyzed to clarify the nature of the pretransitional behavior
of physical properties in the vicinity of the Blue-Phase-llI—isotropic transition in chiral liquid crystalline
systems. The analogy is unusual: temperature serves as the ordering field and entropy plays the role of the
order parameter. Both mean field and parametric equations of state are formulated in terms of scaling fields.
The scaling fields are linear combinations of the physical fields, which are temperature and chirality. It is
shown that mixing of the physical field variables naturally leads to a strong asymmetry with respect to the
transition temperature in the behavior of the physical properties that cannot be described by simple power laws.
While the mean field theory gives a good description of the experimental data, the scaling theory, if one
incorporates mixing of the field variables, gives even better agreement with the experimental data, placing this
transition in the same universality class as the three-dimensional Ising h8d@663-651X97)07812-4

PACS numbegs): 64.70.Md, 65.20+w, 61.30—v

[. INTRODUCTION ends at a critical point in the temperature—chiral-fraction
plane[4,5] (Fig. 1). Both heat capacity and optical measure-
Liquid crystals are phases of matter in which the mol-ments demonstrate that the discontinuty and the width of the
ecules possess orientatiofahd sometimes positionatrder ~ two-phase region at the transition gradually disappear as the
even though the molecules undergo diffusion in much thechiral fraction is increased, until one phase converts to the
same way as in a simple isotropic liquid]. In the most other continuously. This proves that the amorphous blue
simple liquid crystal phase of elongated molecules, called th@hase possesses macroscopically the same symmetry as the
nematic phase, the molecules maintain a preferred directioigotropic liquid. The optical properties of the two phases are
in which to orient their long axes as they diffuse throughoutslightly different, however, so below the critical point an
the sample. If the molecules are chiral or if the liquid crystalinterface is visible using a polarizing microscdy@. A phe-
is doped with a chiral additive, the preferred direction is nonomenological theory based on an analogy with the liquid-
longer constant but spontaneously forms a helix. This igas transition that introduces a new scalar order parameter
called the cholesteric or chiral nematic phase and the dissuggests that the BPtransition is in the same universality
tance over which the preferred orientation rotates through 2 class as the three-dimensiortaD) Ising model[7].
radians is called the pitch. If the pitch is greater than about Although this phenomenological theory recognized that
500 nm, the cholesteric phase undergoes a transition directiie physical variables, temperature and chirality, are prob-
to the isotropic liquid phase with increasing temperature. Irably not the theoretical scaling fields, nothing was done to
the case of a smaller pitch, however, the transition from thénvestigate(1) how this affects the physical properties near
cholesteric to the isotropic liquid phase is usually via one,
two, or three blue phases. These blue phases are quite exotic: 893 ' ]
(1) the preferred direction of orientation adopts a helical e
structure, but quite different from the structure present in the
cholesteric phase, ar(@) a collection of defect linegcalled 392
disclinationg form a dense network throughout the phase. In
two of the blue phases, these disclinations form either a
simple cubic or body centered cubic lattice. In the third blue
phase (BR), these disclinations, if they are present at all,
form an amorphous structure. Keyle§ was the first person
to point out that the Bfp and isotropic phases may be analo-
gous to the liquid and gas phases, in that both have the same
type of short range order and differ only quantitiatively in
the degree of this order. There have been a number of recent

reviews of the blue phas¢8]. FIG. 1. S,S-MBBPC/rac-MBBPC phase diagram resulting from

Recent experiments using mixtures of a pure steroisomahis analysis. The critical point is denoted by CP, the Blue Phases |
of a compound and the racemic mixture of the same comand Il by BR and BR,, the BR-BP,-BP,, triple point by TP, and

pound have shown that the phase transition line between thge chiral nematic phase By*. The vertical dashed lines indicate
amorphous blue phase (R and the isotropic liquid (ISO) where heat capacity data from RES] were analyzed.
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the BR,-ISO transition and2) in what ways the BR-ISO  scribe both the thermodynamic and optical properties in this
transition might be different from the liquid-gas transition. In System also.

fact, there has been extensive work on the mixing of the

physical variables, temperature and chemical potentials, in Il. SCALING FIELDS AND MIXING

near-critical one-component fluids and binary fluj8s-11]. OF PHYSICAL FIELDS

In the simplest example of such a system, namely, a one-
component fluid near the liquid-gas critical point, the chemi-

cal potential is one of the theoretical scaling fieltlse or- h, conjugate to the order paramete, and a nonordering
dering field, while the other theoretical scaling fielthe  fig|q , conjugate to the second scaling density{ 14,15, It
nonordering fieldlis a mixture of temperature and chemical jg \e|j established that fluids, fluid mixtures, and binary al-
potential. In the liquid-gas system, however, the degree tgyys pelong to the same universality class as the 3D Ising
which the chemical potential contributes to the nonorderingnodel (or, equivalently, the lattice ga§9,12,16—20.

field is very small and the lattice gas model, which does not Near the critical point the singular part of the field-

contain mixing at all, serves as a good approximafita. dependent dimensionless density of a relevant thermody-
Following the work done in the liquid-gas systdit0],  namic potential @) satisfies the following scaling law:

we first derive general expressions for the entropy and the

molar heat capacity that incorporate the mixing of the physi- A®(hy,hy)=Ad/VpRT=h3lh,| ~%f(2), (1)

cal variables. When this formulation is applied to the

BP,,-ISO transition, it is clear that this mixing has very dif- with

ferent consequences compared to the liquid-gas transition, in

such a way that temperature serves as the ordering field and

entropy plays the role of the order parameter. The molar heat

. ; where f(z) is a universal scaling function with known
capacity generally appears to be a function of three suscep-

mptoti haviofT. is the critical temperature. is th
tibilities (“strong,” “weak,” and “cross”). To calculate asymptotic behaviorT, is the critical temperaturg is the

Lo e critical density,V is the volume, andy, 8, and y are uni-
these susceptibilities, one needs an explicit form of the equg; y B Y

i f state. We develon t it i i f stat ersal critical exponents interrelated by the relationship
lon ot state. Yve develop two alternative equatons o Sae+2ﬁ+ v=2. For the universality class of the 3D Ising

one based on the Landau expansiorean field theoryand o401 =011 B=0.325, andy=1.24[12,21. The rel-

the other a parametric equation of state obeying scalingant thermodynamic potential for fluids is the grand ther-

theory. In both cases, the large amount of mixing of themodynamic potentiaf) = — PV, whereP is the pressure. As

physical variables in the th_eoretical scaling field p_roduceqiquid crystals are weakly compressible systems, an appro-
such a strong asymmetry with respect to the transition temx

3 Ipriate choice for the thermodynamic potential is the Gibbs
perature that simple power laws cannot be used even very,, energy.

close to the critical point. The mean field equation of state The scaling *

agrees reasonably well with the experimental data, but the

parametric equation of state obeying scaling theory gives (
1=~

We consider a system with an isolated critical point that is
characterized by two relevant scaling fields, an ordering field

Z:h1/|h2|ﬁ+7, (2)

densities” conjugate to, andh, are

IAD

even better agreement with the experimental data. This is &T) =|h,|Af'(z), 3)
1 h2

firm evidence that the BjrISO transition is in the same
universality class as the 3D Ising model.

The best experimental evidence available is the heat ca- IAD
pacity data for a near-critical chiral-racemic mixture of (pz——(—) =h,|h,|~“y(2), (4)
S,S-(+)-4"- (methylbuty) phenyl-4'{methylbuty) biphenyl dha |y

carboxylate §,S-MBBPC) [5]. These data are analyzed us-
ing both equations of state to find the coefficients that dewheref’(z)=df/dz and
scribe the mixing of the physical variables. These values are
then used to show that the heat capacity data from other W(2)=(2—a)f(2) = (B+y)zf'(2). 5
regions of the phase diagram are also accurately described. i o )
Since there are also optical activity and turbidity results for ©One may define the susceptibilitieg (strongly diver-
this system, it is also shown that the same coefficients dedend and x, (weakly divergent which are associated with
scribe these data if the optical properties are assumed to die densitiesp; and @,
pend on a linear combination of the two scaling densities.

Finally, the pure compoundS-(+)-4-(2-methylbuty) X :(%) =|h,|~"f"(2) (6)
phenyl-4-hexyoxybenzoateS{CE4) is also near the critical Yol ang h 2 ’

point, and latent heat experiments have been performed on ?

mixtures of this compound with its racemic mixtuf&3]. Py
The latent heat, optical activity, and light scattering data are X2=(T2) =|h,| ¥ (2), @)
analyzed using both equations of state to find the mixing any h,

coefficients for this system. Both mean field theory and scal-

ing theory describe the data quite well. Although these datavith ¥(z)=(1—a)#(z)— (B+ y)zy'(z) and wheref”(2)
alone do not support one theory over the other, they showd?f/dz*> and¢'(z)=d/dz. In addition one may define a
that a consistent selection of parameters enables one to deross susceptibility as
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e 9@y the mixing parametel8,12], becomes well definefl0,11.
X12=X21=(3T) :(0T In simple fluids the magnitude of the mixing parameter is
2/'hy 1ih, small (b,<0.1) [22], and the main contribution to the scal-
— |1 BF (2)—( B+ " ing field h, comes from the temperature.
[l "B (2) = (B+ 12 (). ® Taking a,=0 corresponds to the choice of the critical
H _ -1
Specifically, in zero ordering fieldhg=0), the scaling POInt entropySc=p. “(JP/JT), , and we have for the scal-
densities and the scaling susceptibilities behavepas  ing fields and for the conjugate densities
+Bolhol?, @2=[Ag/(1—a)]hylh,| ¢, and x;=Tg|h,| "7,

x2=Ag |h,|~* with system-dependent scaling amplitudes h,=Ag, (19
Ay=(2—a)(1—a)f.(0), By=f"(0), and I'y=f"(0), h.=AT+b.h 16
where A, By, and 'y are system-dependent amplitudes 2 2 (16)
interrelateid by the universal amglitude ratie\; T'g /B3 o1=Ap—b,AS, 17)
=0.06,I'"=4.9"", and A, =1.97A;, so that only two of

the amplitudes are independ¢h¥]. The superscripts or sub- p,=AS. (18)
scripts “plus” and “minus” correspond to limits off (z) _ _ _

taken above lf;>0) and below f,<0) the critical point, The physical response functions, namely, the isothermal

respectively. We note that above the critical point in zerocompressibility and the isochoric heat capaciy,(R), can
ordering field ¢;=0, ¢,=0, and y;,=0 sincez=0 and be expressed through the scaling susceptibilitiee super-

f'(2)=0. script “r” denotes the regular part of a physical quantity
The simple Ising model and the lattice gas model have a 5 PRY

special symmetry with respect to the sign of the ordering (_P) _ (_P 4 o RT(v+b2v.+2b 19

field. For the Ising model, the ordering field is the magnetic ap) Pl op . PRTx1+box2+ 2b2x10), (19

field, and the order parameter is the magnetizafi®j. For

the lattice gas, since the relevant thermodynamic potential is T (oS\" b%)(z

Q=-PV and its density is the negative of the pressBre (plpe)(CyIR)= R &_T) +t——— (20

the chemical potential differenag— g, plays the role of the Pe p 1+boxox;

ordering field, and the density differen is the order . I

parar%e%eliﬂ]: ty d pepe | One can see that the main contribution to the compress-

ibility of a near critical fluid is the strongly divergent suscep-
h,=(g—go/RT.=Ag, (99  tibility x;, while the main contribution to the isochoric heat
capacity is the weakly divergent susceptibiljty. As

e1=(p—pc)lpc=Ap. (10
_T[dP) [dp
The nonordering fielth, and its conjugate scaling densipy CP_CV-? a1/ \ap . (22)
are P
_ _ the molar heat capacity at constant pressure asymptotically
ho=(T—To)/T=AT, (1D pehaves as the isothermal compressibibility.
In liquid crystals near the BfFISO transition, the physi-
©2=(pS=pcSo)/pR=AS, 12

cal meanings of the scaling fields and scaling densities are
wheresS is the molar entropy an@ the universal gas con- very different. The physical fields_ at constant pressgr_e'in this
stant case are th_e temperature and chlr_eﬂwy _The best deflnltlo_n

X of chirality is probably the coefficient in front of the chiral

Real fluids near the liquid-gas cr|t|c§ll point, however, QOt rm in the thermodynamic potentif], but this is never

not possess the symmetry of the lattice gas. The physica : . -

X . . ) measured directly. In practice, the chiralikycan be tuned

fields, which are the chemical potential and temperature, o X
. ; ; . ) .~ "By the averagdoveral) compositionX of a mixture of a

have no definite scaling dimensionality and one should iden;

. L ’ ; o ) highly chiral compound with its racemic mixtutehiral frac-
tify the scaling fields with the linear combinatiof@,10]: tion), so that the density of the Gibbs free energy is

hi=a18g+aAT, (13 B[P, T k(X)]=B(P.hy,h) +B(P.T.X). (22

h,=b,AT+Db2Ag, (14 Thus the scaling fields are linear combinations of the tem-

wherea; andb; are system-dependent coefficients. The scal? erature and chiral fractiofd, 7]

ing fields may be normalized in such a way tlat=1 and hy=a,AX+a,AT, (23)
b;=1, but then two system-dependent critical amplitudes
appear(for instanceI'; andB). h,=b;AT+b,AX, (24)

Near the liquid-gas critical point, the coefficiea} de-
pends on the choice of zero entropy and is arbitrary in claswhere AX=(X—X)/X., and X is the critical chiral frac-
sical thermodynamics, i.e., can be chosen to be zero withoudton. In contrast to a liquid-gas critical point, all the coeffi-
affecting any measurable properties. As soon as the value efentsa; and b; are well defined. The ratia,/a, can be
a, is assigned, the value &, which is often referred to as found experimentally from the slopaT/AX of the phase
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Note, asp;%|hy|?, @,|hy|17¢, and asB<1-— a, the lead-

results show this slope to be very small. Figure 1 indicatesng term in the entropy is associated with the order parameter

that the slope may be slightly negative in t8&5S-MBBPC
system|[5]. Therefore, the ordering fielth; is associated
mainly with temperature. We also note that the coefficant
must be negative for the BRISO transition, as higher tem-
perature corresponds to the state with lower ordering.

Inverting Eqgs.(23) and(24) we can expresAT andAX
in terms ofh, andh, as

a
b,a;—azb,

b,

AT= azb,—bya;

h,+ h,, (25

by
b;a;—azb,

ay

AX= asb,—bya;

hy+ h,. (26)

The entropy enhancemeAtS is a linear combination of
the two scaling densitieg, and ¢,, conjugate to the scaling
fields h, andh,, respectively:

AS (&A&)) +b (27
==\ AT =axp1 T 012
IAT P.x
|
c or _RT(aAS __ RT[JAS
Px—Lpx= T P,x_aZT_C 07—hl

:az

R (aAS) +(
Tl \ ohg hy X
R
:az-l—_ a
Cc

dp
W) “’l(
2

Note that near the critical point;>|x12> x». Therefore,

the leading term in Eq31) is the strongly divergent suscep-

tibility x.

aAs) (
ol
@)

ahy ),

RT ) 2
=5 (a5x1+bix2+2a50b1x12).
C

P1-
One may introduce a densitylike variabjeconjugate to

the chiral fraction. As this variable is a thermodynamic co-
ordinate, one can reasonably assume it to be proportional to
the inverse pitch. Like the entropy, the enhancement in this
variable,A ¢, is a linear combination of the two scaling den-
sities:

Al=a,¢011t by, (29)

If a; is very small, the contribution t&¢ from by,
dominates. Forp, and ¢, we then find

b,
a;b;—azb,

by
a;b;—azb,

¢1= AS, (29
a

a;b;—azh,

az
a;b;—azh,

@,= AS AL (30

The singular part of the isobaric heat capadiy x is
expressed in terms of the susceptibilities:

)P,X

ahz)

dhy P.X
RT a dp2
T.| 72

by
ohy) . |a,

+a
2 a,

d
2 hl h1

(31)

where p, and py, are the liquid and gas densities, respec-
tively.
The BR,, criticality is different. The actual density here is

We emphasize the essential difference between the physin irrelevant variable as it is the same in the coexisting
cal meanings of the scaling fields and scaling densities fOphases and does not change much with temperature. The
the liquid-gas phase transition on the one hand, and thgrdering field is associated mainly with temperature. The iso-

BP,,-ISO transition on the other harfdee Table)l In fluids

baric heat capacity approximately serves as the strongly di-

near the liquid-gas critical point, the strongly divergent SUSvyergent susceptibilityy;, although the more weakly diver-

ceptibility y; is mainly associated with the isothermal com-
pressibility, while the isochoric heat capacity serves as th

weakly divergent susceptibility,. The order parametep,
is mainly associated with the molar density apgwith the

molar entropy only. The mixing of the physical fields does

ent susceptibilitiesy;, and x,, also contribute toCp x

hen the distance from the critical point increases. The order
parameter is mainly associated with the entropy, so that mea-
surements of the latent heat as a function of chiral fraction
approaching the critical point could give direct information

not change the asymptotic critical behavior but causes NOMNs5n the behavior of the order parameter.
asymptotic corrections like the so-called “singular diam-

eter” of the liquid-gas coexistence cury23]:

Lt pv Ao e
=byp,= bzmh2|h2| )

2p

p

(32

IIl. MEAN FIELD (CLASSICAL) THEORY

It is speculated5] that the BR,-ISO transition exhibits
mean field criticality. That is why we will first consider mean
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TABLE I. “Cartoon” analogy between the liquid-gas and The critical part of the entropy is
BPy,-ISO criticalities.

b;ag ,
Leading contributions AS=aze1tbipr=arps— o ¢ (39
Liquid-gas BR),-ISO
: The isobaric heat capacity in classical theory is
Order parameter Density Entropy
(first scaling density e, .
¢, conjugate tah, Cp x=RT(a,—agb;¢;) T +Cphx- (40
X
Ordering scaling Chemical Temperature )
field h; potential Since
Nonordering Temperature Temperature mixed <0¢1) ((9(,01) (ahz) 1 ohy
scaling fieldh with chirality T TN T i T )
2 T o ah, P.h, A ahq pp T P.X
Second scaling Entropy Inverse pitch (41
density ¢, ]
conjugate tch, one obtains
Strong susceptibility Isothermal Isobaric heat capacity ¢y 1 a,—agh¢;
x1=(d¢1/dh)p, compressibility  at constant chirality ([7—1_) T T a2 (42)
px ' caohyt+3Ugpy
Weak susceptibility Isochoric Combination of ]
x2= (@, dhy)hy heat capacity temperature and and, finally,
chirality derivatives 2
of the pith _RT(ag—aghien)? .,
PX™
' TC a0h2+3U0§D% P.X
field (classical theory in which the fluctuations of the order , RT agh; |2 ;
parameter are neglected. :aleT—c 1- Ta, 1 +Cpx» (43)

The critical part of the classical field-dependent thermo-

dynamic potential at constant pressa® (P, h;,h,), which  which satisfies the general expressiga) taking Eqs.(36)—
is again a function of two scaling fields, andh,, is given  (38) into account. Graphs of the mean field scaling densities

by the Landau expansion in powers of the order paramete&nd susceptibilities using parameters appropriate for the sys-
@1 [9,20], tems to be studied are shown in Fig. 2.

A®(hy,hy)=2agh,02+ tuget—hiey, (33 IV. SCALING (LINEAR MODEL ) EQUATION OF STATE

where the constanis, andu, play the role of the classical ~ The expressions for the scaling functib(z) and its de-
system-dependent amplitudes. Minimization of this thermoJivatives can be found in some approximation by renormal-
dynamic potential with respect tp, vields the following ization group theory, but the calculations are cumbersome

equation, which defines the equilibrium value of the orderand inconvenient for practical u$20]. This is why a para--
parameter: metric representation of the equation of state near the critical

point [24—-27 has become very popular.
Uoe3+agh,@;—h,=0. (39 The simplest form of the parametric equations of state is
the so-called “linear model” with the “polar” variables
Using Eq.(34) we find expressions fop, and susceptibili- and ¢ [24,2§,

ties x1, x2, andyqs:

hy=arf*76(1- 6?), (44)
S i R P (35) hy=r(1—b?6? 4
®2 Jh 2 0P1- 2 r( 0 )! ( 5)
2 hl
. @1=krPo, (46)
ohy\ ™ B
X1= (0_@1) = (aph,+3uge?) 1, (36)  where the parameter represents the distance to the critical
ha point, the parametep is the distance along a contour of

constantr (see Fig. 3 the coefficientb?=(y—28)/y(1

(?hz -1 — i 1 -
X12= (ﬁ_@l) = —age; /(aghy+ 3Uo<P§) = —a01X1s dezfe)n:jser?[ éjc?r;\;(ta;?sl constant, and and k are system
h .
' (37) The singular behavior of thermodynamic functions is de-
fined by the variable, whereas the thermodynamic quanti-
dhy\ 71 dhy\ 71 - ties are analytic functions with respect o This parametric
X2= 9_902 =30/ 0_<P1 =apP1X1- (38) form of the equation of state satisfies the power-law behavior

hy hy of the thermodynamic functions that follows from scaling
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h A
N 0=+1/b
> 05 9, . r 9)."\
= ) TN
3 N
o ‘ N
g 0=+1 ~ - 0=0 >
5 f=-1 \ ~ h,
o cP
~
~
~
6=-1/b

FIG. 3. “Polar” variablesr and 6 used in the parametric rep-
resentation of the equation of state. The critical point is denoted by
CP and the bold line is the first order transition line. The point
labeled ¢, 6) represents an arbitrary starting point for a constant
path through the critical poir{dotted ling and a constanA X path
that misses the critical poirfdashed ling

Susceptibility

B(5-3)~bZay
fo=— , 53
" opt(2—a)(l-a)a (63

_ B(6—3)—b%a(1-2p)

FIG. 2. Mean field theory “densities'y; and ¢, and suscepti- f (54)
bilities x4, x2, and y1, calculated with the parameters from tKe 2 2b2(1— a)a
=0.45 heat capacity fit.
: . 1-28
theory. The equation of state expressed through the tradi- fu=- 5 (59
tional variablesh,, h,, and ¢ is determined by eliminating
r and @ from the above equations. _ 2
The singular part of the thermodynamic potential is given S(0)=So+ 56", (56
by [17] So=—(2—a)fo, (57)
s —akr2—a 201 g2
ACID(r,H)—akr [f(t9) 0 (l 0 )] 32:_(2_a)b2(1_23)f0_’yf2, (58)
+ (ak/6)r?(1—b?6%)?, (47
c1(6)=(1—b?6*(1-2B))/co(0), (59

which we modified by adding the last analytic term to make )
the model fully consistent with the results of renormalization Cio(0)=pBO[1— 56— 67(3—8)]/co(0), (60)
group (RG) theory. According to RG theory, there is a

fluctuation-induced analytic term in expressions for the en-C2(8)=[(1—a)(1—36%)s(0) —25,866°(1— 6°)1/co(0),
tropy and heat capacify29]. The corresponding term in the (61)
thermodynamic potentiaA®(h,,h,) is proportional toh3
and is known as the kernel terf@9]. The second scaling
density g, is obtained by differentiation of E447), yielding

Co(0)=(1—36%)(1—b%6%)+2B5b%6%(1— 6?), (62

and § is the universal critical exponent, which can be found
from the relation §—1)B8=+y. One can verify that these
expressions satisfy the asymptotic scaling laws introduced
above.

Substituting the 3D Ising values of the critical exponents
into Egs.(52)—(62), we obtain

p,=akrl~%s(9)—akr(1—b?6?)/3. (48

Using the definitions of the susceptibilitiéd)—(8) one finds

x1=(kKla)r~7cy(0), (49)
b?=1.35944, (63

x12=Krf " tcy5(0), (50
f(9)=—0.59156+2.01995°— 1.5909%*,  (64)

x2=akr~“c,(0)—ak/3. (52
s(6)=1.11804-1.9727%?, (65)

In Egs.(48)—(51) f(#), s(6), andc;(6) are known functions

of 6: Co(6)=1—0.1043%—0.1767%", (66)

f(O)=fo+T,6%+1,6% (52 c1(0)=(1—0.47588¥?%)/cy( 6), (67)
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' ' ' ' ' f(9)=—1/6+6%—6* s(6)=1/3— 62, (73
0.8 | i
o
> ' Co()=1, ci(0)=1, ci(0)=—0, cy(6)=1/3+6?
[ 0.4 - N (74)
[0
Dc,, and for the scaling densities and susceptibilities in the para-
-(_% metric form:
(%3
2]
¢1=kr', (75)
@,=—3akro?=—3a503, (76)
. x1=(k/a)r ~*=[ach,+3uoef] (77
% x12= —kr M20=—a,0,x;, (78)
8 2
5 2B 5 2
7 xo2=akd =-—6"=ageix1, (79
2ug
L ! where the coefficienta, and uy are related tk anda as

01 02 03 follows:

a0= a/k, (80)
FIG. 4. Scaling theory “densities’p, and ¢, and susceptibili-

ties x1, x2, and xi, calculated with the parameters from the ug=a/2k3, (81
=0.45 heat capacity fit.

ak=a2/2uy. (82)

C1(0)=0(—1.24+0.5%%)/co(0), (68)

C,(6) = (0.99506+ 1.4337@2_0.9074594)/00( 0). V. INTERPRETATION OF THE EXPERIMENTAL DATA
(69 A. Isobaric heat capacity

: . P : _ The isobaric heat capacity should be fitted to E8fl)
Graphs of the scaling densities and susceptibilities using pa, jth the susceptibilities taken either from mean field theory

rameters appropriate to the systems to be studied are Sho%qs.(36)—(38)] or with use of the scaling parametric equa-

in Fig. 4. . 29—(51) A | hi
The linear model also yields the following expressions fort'ons( )—~(5D. \ more general approach 1S to use a Cross-
over theory that incorporates both the Ising asymptotic criti-

the critical amplitudes: . ! . .
P cal behavior and possible mean field behavior far away from
the critical point[29]. However, such a fit requires more

ASZM, (70) ~ accurate data and is more sophisticated, since the crossover

2b%a functions are not explicit and at least one additional adjust-

able parameter, namely, a crossover s¢@8azburg num-

K ben, appearg29].
Bo=——. (77 One should note that the structure and the meaning of Eq.
(b>-1)# (31) are substantially different from the expression
K Cox=A7|AT| *+AS|AT| Y+B*+E(T), (83
Iy =2 (72

used for fitting the experimental data[iB]. In this equation
x andy are adjustable exponents. The superscripts’‘and

Now we will show that the results of mean fieldlassi- <, d to the oh b 4b
cal) theory can be expressed through the parametric variables correspond to the phases above and bel respec-

as well. The magnitudes of the critical exponents in meal Ively. Even along the path =X, where th.e scaling fie!ds,
field theory arev=0, B=1/2, y=1, 6=3. To find the value the order parameter, and the heat capacity are functions of
of the universal constarti?=(y—28)/y(1—28) in mean temp(_arature only, none of the_ susceptibilitygs x», Or x12,

field theory, one has to employ tleexpansion for the criti- entering Eq.(31) obeys the simple power-law structure of

cal exponent$30,31. The parametee is related to the di- Eq. (83

mensionalityd of space bye=4—d. The mean field results

are valid in the limite— 0. In first order ofe, the expansion B. Latent heat
gives 28=1-3¢, y=1+ g€, a=ge, thusb®=3/2. The latent heat. is defined as

Substituting the classical values of the critical exponents
andb? into Egs.(52)—(62), we obtain L=Tg(S—Sp), (84)
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where Ty, is the BR,-ISO transition temperature, is the u
entropy of the isotropic liquid phase, aBd is the entropy of ﬁl: 3_03 h,= éle+ ézAT, (90)
BP,,. Since the order parametey, is equal to but of oppo- aghy

site sign on either side of the transition, while the second

scaling densityp, is the same on either side of the transition, n h, _ ~
Eq. (27) yields the following simple expression for the latent hz_b_l =ATHbAX, oD
heat:
with
L/RTg=2[a,¢,]| (89
with ¢, taken either from Eq(34) (mean field theory or a;= "\ /%al and a,= /%az and b,=b,/b;.
from Eq. (46) (scaling theory. aghy aghy (
92

C. Optical activity and light scattering The heat capacity expression then becomes

The optical activity and intensity of light scattering, being o
densitylike quantities(different in the coexisting phases c RT (a,— ¢1)?
should have a component dependingAafy conjugate to the PXTT = = ~3
chiral fractionA X. Therefore, like entropy, the optical activ- ¢ Ul AT+bAX+3¢1]
ity ¥ and intensity of light scattering are linear combina-
tions of ¢, and ¢,:

+ATAT+B, (93

which involves only 5 fitting parametem,, b,AX, A, B,
andUy=Uo/a3b3, if the parameten, is set to zero.
V=N @01+ N0+, (86) For scaling theory, by defining a new parametric variable

= + +1' ~ T
I=N1@1+Aopp 1, (87) = — (94)

where\; are constants that depend on both the system and
experimental arrangement, add and|" are the background the equation of state is now given by
(regulay parts of W and |, respectively. According to the

experimentg 5], the optical activity and intensity of light rAT79(1— 6%)=a;AX+a,AT, (95)
scattering behave very much like the entropy predicted by
Eq. (27). F(1-b26%)=AT+byAX, (96)
VI. HEAT CAPACITY MEASUREMENTS where

The phase diagram for chiral-racemic mixtures of A a A b
S,S-MBBPC [5] is presented in Fig. 1, where the paths of a;= ,31+ and az=% and b2=b—2. (97)
constant chiral fraction used for the heat capacity measure- aby"” aby"” 1
ments are shown. The mixture with chiral fractXs- 0.45 is ) o
the lowest chiral fraction mixture with no evidence for a two 1he expression for the heat capacity is
phase region. RT

With four unknown mixing coefficients and two unknown Cp x=—(akb§ﬁ+ N)[(a,)%r ~7cy(6)+1 ~%Cy( )
constants to describe a linear background, a general fit of the Tt
theory to the experimental heat capacity data involves six +2(52)F5‘1012( 6)]+ATAT+B, 98)

fitting parameters. Howevega; can be set to zero since the
slope of the BR-ISO transition line in the temperature-
chiral fraction plane is very small. In addition, it is conve-
nient to make some substitutions f@g (mean field theory

andr (scaling theory, so that some fitting parameters do not
appear in the equation of state, and some fitting parametebct9

appear grouped together in the expression for the heat C'fjlpac():ﬁly b,AX is determined by these fits. As explained later,

which again involves only 5 fitting parametersaf=0. It
should be pointed out that the last term in expresgidn for
X2 Is included in the background heat capacity.

Least square fits to th¥=0.45 heat capacity data were
rformed for both equations of state. Sin¢eis unknown,

ity. ) . :
Y For mean field theory, by defining a normalized Orderhowever, by also performing fits to the heat cgpacﬂy data
parameter taken at other valugs of, we are able to dAetermm)éC and
calculate values fob, and AX. Values forb, and AX are
. Ug therefore given in the tables. Because a small amount of
P1= ﬁ @1, (88) modulation ¢ 17 mK) was present during the heat capacity
measurements, the fitting procedure utilized heat capacity
the cubic equation to be solved becomes expressions modified by this amount of modulation. The val-
ues for the fitting coefficients are shown in Table Il and
@3+ hyp—h;=0, (89  graphs of the theoretical fits and experimental data are shown

in Fig. 5. Notice that the fit using scaling theory is signifi-
where cantly better than the fit using mean field thedte reduced
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TABLE II. Heat capacity fitting parameters f@ S-MBBPC  close toT, still showed a frequency dependence. However,
(X=0.45). The units of the background slope and backgroufid at the analysis of thex=0.40 data is completely consistent
are J(mole K%), J(mole K), respectively. with the results for the other mixtures, which do not suffer
: : from these problems, so it is included for completeness.
Mean field theory ~ Scaling theory  \when the results from th¥=0.40, 0.45, and 0.50 fits plus

T, 392.484 K 392.485 K similar fits for theX=0.55 andX=0.75 mixtures(Figs. 8
AX 0.15+ 0.10 0.18+ 0.08 and 9 are all combined, the estimates fof. are 0.39
0ot or akb2s " 1353+ 0.16 3.836+ 0.034 +0.04 from the mean field theory fits and 0238.03 from

the scaling theory fit§Fig. 10. The values of the fitting

a (X 1077 —8324x 0079 —6.206= 0.050 o ameters for the four additional mixtures are given in
b, (x 1073 22+ 15 22+ 10 Table Ill. WhenF tests are applied between the mean field
Background slope 220.% 6.5 79.4x 47 and scaling theory fits, the difference in the quality of the fits
Background aff, 747.4+ 1.8 787.3+= 1.5 is significant at the 99% confidence level in all cases except
Reduced chi square 41 26 X=0.75, where the difference is significant at the 93% con-

fidence level.

chi squares is smallerThese fits were in fact quite stable, in

that fitting data over a larger range or eliminating data near VIl OTHER MEASUREMENTS

T, (in case impurity effects are importarthanged the val- Optical activity and light scattering measurements have
ues of the fitting parameters by amounts roughly equal talso been performed on thé=0.45 mixture[5,32]. Actu-
their uncertainties. ally, a turbidity experiment with right-circularly polarized

Fits to the heat capacity data for other values<ofoth  light was done in place of a light scattering experiment, but
above and belowX=0.45, were also performed. In these turbidity should be proportional to the total cross section for
caseséz was fixed at the value found for thé=0.45 mix- light scattering. Fits were performed assuming that both of
ture while b,AX remained a fitting parameter. The results €S€ properties depend on a linear combination of the two
are shown in Fig. 6 for th&=0.40 mixture and in Fig. 7 for scaling densities and fixing the valuesafandb,AX at the
the X=0.50 mixture. The scaling theory fits are again bettevalues determined by th¥=0.45 heat capacity fit. For the
than when mean field theory is used. It should be pointed ounean field theory fits, the equation is
that there are problems with fitting th€=0.40 data. The

slight “bump” on the low-temperature branch of the data is ab.. 1 azblA
due to the BRBPR,, phase transition, and the excess heat qf:hl\/%(pl— §A23—¢§+ATCAT+ B, (99
0 0

capacity due to this transition has not been taken into ac-
count. Additionally, there is some question whether all the
data used were truly static heat capacity data, as the data vesyd for scaling theory fits, the equation is

3000 T T T 1800 T T T T
Mean-Field Theory Mean-Field Theory

2500 1600 | .

2000 1400 .

1500 1200

1000 1000

Scaling Theory Scaling Theory

Molar Heat Capacity (J/[mole K])
Molar Heat Capacity (J/[mole K])

2500 1600 | .
2000 1400 [ .
1500 1200 - -
1000 1000 - -
500 1 I | 800 L 1 ] |
392.2 392.4 392.6 392.8 392.2 3924 3926 392.8 393
Temperature (K) Temperature (K)
FIG. 5. Molar heat capacity data from R¢&] and fits (solid FIG. 6. Molar heat capacity data from R¢8] and fits (solid

lines) for X=0.45. lines) for X=0.40.
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2200 I T T ] T T I T
Mean-Field Theory 1200 L
1900 -
= 1600 S 1100 |
X
)
(]
< 1300 E
& S 1000
2
= 1000 % |
g f ! f f 8 f I f f
Q o] o .
S Scaling Theory © yo00 | Scaling Theory |
% 1900 S
£ T
= ©
< 1600 s 1100 -
E E
1300
1000 |- 4
1000
1 1 ] 1 900 | | 1 [
392 392.2 392.4 392.6 3911 391.4 3917 392 392.3
Temperature (K) Temperature (K}
FIG. 7. Molar heat capacity data from R¢8] and fits(solid ~ FIG. 9. Molar heat capacity data from R¢] and fits (solid
lines) for X=0.50. lines) for X=0.75.

mated by the linear background terms, which were included
to account for the regular contribution. Similar expressions
were used to fit the turbidity data. Only a constant back-
ground term was included in the turbidity fits, since the fits
. _ . were little improved by inclusion of a term with nonzero
In order to keep the number of fitting parameters to a mini-gjope. The results are given in Table IV and Fig. 11. As with
mum, the scaling theory equation omits the last term in exthe heat capacity fits, the fits using scaling theory are equal
pression(48) for ¢,. This term contributes a relatively small tg or better than the fits using mean field theory.
amount and varies slowly with temperature, so it is approxi- Latent heat measurements on the S-CE4 system indicate
that the X=1.0 mixture is very close to the critical chiral
T | T T I fraction [13]. Optical activity and light scattering daf83]
Mean-Field Theory | also exist on theX=1.0 mixture. Since the latent heat data

are not precise enough to determiag b,, and X. accu-
rately, values for these three parameters were selected so that
1500 [ 1 good fits to both the thermodynamic and optical data result
(see Table V and Figs. 12 and)13he mean field equation

for the latent heat fit is

W=\ 1kbfrBo+\,akbi Tl s(6) + ATAT+B.
(100

1800

1200 - ]

Molar Heat Capacity (J/[mole K])

900 -
I 1 I : :
Scaling Theory 0.003 T T T T
1800
---E--- Mean-Field Theory
——&— Scaling Theory
1500 - 0.002 |-
=
<(\l
1200 - - <a
0.001 |-
900 _
1 1 | 1 |
392 392.2 3924 3926 392.8 0
Temperature (K) 0.3 0.4 0.5 0.6 0.7 0.8

Chiral Fraction
FIG. 8. Molar heat capacity data from R¢&] and fits (solid
lines) for X=0.55. FIG. 10. Determination of the critical chiral fractiofy..
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TABLE Ill. Heat capacity fitting parameters f@&,S-MBBPC mixtures based on the valuesﬁojfrom
Table 1I. The units of the background slope and backgrourii, are J(mole K)? J(mole K), respectively.

X=0.40 X=0.50
Mean field theory Scaling theory Mean field theory Scaling theory
T, 392.540 K 392.544 K 392.331 K 392.334 K
AX ~0.02 ~0.05 0.28x 0.10 0.32x 0.09
Ug? or akb2A+Y 11.49+ 0.15 4.046+ 0.043 14.361*+ 0.067  4.226+ 0.012
b, (X 10°3) 23+ 0.8 2.2+ 06
Background slope 155.6 7.9 140.7+ 6.1 193.0+ 4.4 123.1+ 2.6
Background aff 783.1*= 2.7 771.3x 2.3 765.3% 1.9 780.4+= 1.1
Reduced chi square 33 21 14 5
X=0.55 X=0.75
Mean field theory Scaling theory Mean field theory Scaling theory
T, 392.396 K 392.401 K 391.895 K 391.918 K
AX 0.41= 0.11 0.45x 0.09 0.92x 0.14 0.97+ 0.11
Uy ! or akb2AtY 15.030+ 0.067  4.4821*+ 0.0014 12.49+ 0.12 3.832+ 0.028
B, (x 1073) 1.9+ 05 1.8+ 0.4 2.3+ 04 21+ 0.2
Background slope 187.¢ 3.7 122.6+ 2.6 82.0+ 2.2 60.7+ 1.8
Background aff 758.6+ 1.8 767.1+ 1.2 817.0+ 1.8 804.1+ 1.5
Reduced chi square 35 18 1.2 0.9
a%bi L of parameters is capable of describing both the thermody-
L:2u—O RT.a,¢q (101 namic and optical data in this system also.

and the scaling equation is VIIL. DISCUSSION

L=2akb?’*"RTa,r?e. (102 The fact that both the mean field and scaling theories
describe both the thermodynamic and optical data not just

No background terms were included in the fits to the opticahear the critical point but across the phase diagram is strong
activity data and only a constant value for the backgroundevidence that the BpISO transition is analogous to the
contribution was included in the fits to the light scatteringliquid-gas transition. The fact that the scaling theory is better
data, since the inclusion of additional terms did not make thén its agreement with the experimental data also is strong
fits significantly better. Interestingly, the sign of tlkg con-  evidence that this transition belongs to the same universality
tribution to the light scattering is opposite from that for class as the 3D Ising model.
S,S-MBBPC. Note that these fits suggest that ke 1.0 Just as interesting is the fact that the physical variables
mixture is slightly above the critical point even though themix quite differently than in the liquid-gas transition. With
latent heat data indicate that it is slightly below the criticala;~0, h; is nearly temperature, making the ordering field a
point [13]. The choice ofX,=0.95 is necessary in order to temperature instead of a chemical potentfal the liquid-
achieve good fits not only to the latent heat data, but to thgas transitionor magnetic fieldfor the magnetic transition
optical activity and light scattering data as well. We includelnstead of the order parameter being density or magnetiza-
the data on S-CE4 simply to show that a reasonable selectidion, the order parameter for the BRSO transition is

TABLE V. Optical fitting parameters folS,S-MBBPC (X=0.45). The units for the optical activity
parameters are rad/cm, except for the background slope, which {gma#). The units for the turbidity
parameters are cit, except for the background slope which is (cmK)

Optical activity Turbidity
Mean field theory Scaling theory Mean field theory  Scaling theory
T, 390.915 K 390.920 K 391.025 K 391.031 K
N1vagh,/ug or)\lkbf —447* 14 —7.69=* 0.30 104.6x 1.7 30.04= 0.21
Npa3by /ug or hyakb} @ 3340+ 59 979+ 16 854+ 147 153.9*+ 9.6
Background slope 2.0& 0.29 —1.58=* 0.25 0(fixed) 0 (fixed)
Background aff, —0.039* 0.013 —0.925=* 0.009 4.575+ 0.085 4.096x 0.012

Reduced chi square 0.7 0.8 30 1.8
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390.8  390.9 391 391.1 0 0.2 04 06 0.8 1
PR T T T Chiral Fraction
8 - -
-------- Mean-Field Theory FIG. 12. Latent heat data and fits for S-CB4~=0.95,a,=0,
"t 6L Scaling Theory | anda,=—-0.2,b,=0.01 (mean field theoryor a,=—0.06, b,
L =0.003 (scaling theory.
2 4L i
-g The variation ofAX with chiral fraction inS,S-MBBPC
2 » | ] suggests that the critical chiral fractiof, is slightly below
X=0.40. However, the heat capacity measurements on the
X=0.40 mixture showed1) a difference between the ac
0 | 1 1 ML | . . . . .
calorimetric and nonadiabatic scanning results @)dchar-
890.7 - 891 391.3 3916 acteristic changes in the phase shift between the heater
emperature (K) .
power and the observed sample temperature, which normally
FIG. 11. Optical data and fits for thé=0.45 mixture. provide strong evidence for a two-phase coexistence at a
discontinuous transition. As stated above, fitting tKe
closely related to entropy. In fact, the smallnesdgofdem-  =0.40 data was problematic and it is included in the analysis

onstrates that temperature is the most important contributiofor completeness, but it is also true that the fits to the other
to both the ordering and nonordering fields. Further theoretheat capacity data are consistent with a critical point around
ical work will be required to clarify a connection between the X=0.40. We have tested the possibility that our method of
order parametep, and the chiral order parameter introduced analysis overemphasizes supercriticality, but have found no
by Lubensky and Stark7], as well as a microscopic inter-

pretation for the mixing coefficients. 1

TABLE V. Thermodynamic and optical fitting parameters for
S-CE4 based 0iX,=0.95 anda,=—0.2, b,=0.01 (mean field
theory) or a,=—0.06,b,=0.003 (scaling theory.

(rad/cm)

2
Latent heat %
Mean field theory  Scaling theory f
S Mean-Field Theory =
22 R2E+Y g Scaling Th
aghi/ug or akby 11 5.0 =z caling Theory
Reduced chi square 0.7 0.9 ©

310.25 310.30 310.35 310.40 310.45
Optical activity s ' '

Mean field theory  Scaling theory @ X, T Mean-Field Theory
g 12 | Scaling Theory
T, 310.34 K 310.35 K 3
N1vagby /ug or A kb? —42 rad/cm —5.4 rad/cm J
\,a3by /ug or \akb; ¢ 1600 rad/cm 910 rad/cm e 8&r
Reduced chi square 1.0 2.8 .
Light scattering g ar
Mean field theory  Scaling theory =
0

Te 310.21 K 310.21K 310 310.1 3102  310.3  310.4
N1vagbsug or A kbf 130 kcounts/s 22 kcounts/s Temperature  (K)
Npa3by /ug or Apakb}™®  —3700 kcounts/s —2000 kcounts/s
Background aff . 4.1 kcounts/s 4.3 kcounts/s FIG. 13. Optical data and fits for S-CEX%,=0.95,3,=0, and
Reduced chi square 0.6 0.6 a,=—-0.2, b,=0.01 (mean field theory or a,=—0.06, b,

=0.003(scaling theory.
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clear indication that this is the case. It is interesting to notean experiment was attempted, but was hampered by multiple
that the result of our analysis of the S-CE4 data is similar, irscattering effects near the critical pojB82]. Another experi-

that theX=1.0 mixture gives experimental evidence for be-ment is planned for the near future. Perhaps more revealing
ing below the critical point, while our analysis indicates thatwould be an acoustic measurement, since sound couples to
it is above the critical point. More accurate experiments aregemperature, which clearly is the dominant variable in this
required to clarify this issue. system.

It should also be pointed out that we have included back- The BR,-ISO critical point still remains the only experi-
ground terms to account for any noncritical contributions tomentally observed example of a fluid-fluid critical point that
the data. The heat capacity background contributions falis not associated with the liquid-gas transition or with the
above the actual data, not in the region of the fit, but atdemixing transition in binary liquids. However, the recent
higher temperatures. This is probably the result of the fittingnodeling of liquid water predicts the coexistence of two
procedure used, since including the higher temperature daggueous phases in the supercooled metastable régn
changes the background contributions so they fall below alDne may expect finding other systems in which two fluid
of the data, resulting in slightly different fitting parameters phases of the same symmetry but of different structure coex-

but a fit of the same quality. ist, and the transition terminates at a critical point. The ap-
proach developed in this paper may be useful for a descrip-
IX. CONCLUSIONS tion of such phenomena.

The BR,-ISO critical point is unique. Whereas the mix-
ing of the _p_hysical _field_s is of minor impor_tance in the quqid ACKNOWLEDGMENTS
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