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Effect of criticality on wetting layers: A Monte Carlo simulation study
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A solid substrate, when exposed to a vapor, can interact with it in such a way that sufficiently close to
liquid-vapor coexistence a macroscopically thick liquid wetting layer is formed on the substrate surface. If such
a wetting transition occurs for a binary fluid mixture in the vicinity of the critical end point of demixing
transitions, critical fluctuations lead to additional long-ranged interacti@asimir forceg within the wetting
layer, changing its equilibrium thickness. We demonstrate this effect by Monte Carlo simulations of wetting
layers of a symmetrical Lennard-Jones binary fluid mixture near its critical end point. The results suggest that
the effect should also be detectable in corresponding wetting experiri8a@63-651X98)11105-4

PACS numbg(s): 05.70.Jk, 68.35.Rh, 61.20p, 64.60.Fr

[. INTRODUCTION Formally, the critical Casimir force arises as a result of the
boundary conditions placed on the spectrum of order param-

Simple liquids or binary liquid mixtures in unbounded eter fluctuations by the walls. This leads to a finite-size de-
space are homogeneous and isotropic systems. In the vicinigendence for the singular part of the critical free energy, and
of surfaces, however, these spatial symmetries are brokdmence a separation-dependent force between the walls
and the fluid phase diagram exhibits new surface-induceffl1,12. Such critical Casimir forces are in addition to the
features. Principal among these are surface phase transitionsual dispersion forces, which always exist in confined sys-
such as wetting and drying, which can occur when a fluictems[14—19. However, they differ from dispersion forces in
comes into contact with a solid wall]. These transitions are the major respect that they are governedibiversalscaling
brought about by long-ranged dispersibran der Waals  functions [9,11,12,20. Precisely at the bulk critical point
interactions between the particles of the fluid and those conthese scaling functions take universal values known as Ca-
prising the wall. simir amplitudeq9,11,20Q.

Long ranged interactions of a quite different origin occur Much theoretical work has been directed in recent years
when acritical fluid is in contact with a wal[2,3]. Criticality =~ towards an understanding of the Casimir effect in critical
is characterized by a divergent correlation length and strongystems. For the Ising universality clasghich contains the
order parameter fluctuations. As a result of the long rangeritical demixing transition of binary liquid mixturgsexact
correlations, the wall modifies the properties of the criticalresults are available id=2 dimensions for a strip geometry
fluid over considerable distances and this can dramaticallj21,22. In higher dimensions, exact results are limited to the
affect surface properties such as wetting behavior. Thus, fo€asimir force scaling function for the spherical mof8].
example, a binary liquid mixture usually demixes close to aFor the experimentally relevant case of tthe 3 Ising uni-
wall due to the preferential affinity of the wall material for versality class, only approximate results are available. These
one of the two component{gt]. If the demixing transition are based on real space renormalizafi4l, the field theo-
becomes critical, the adsorbed amount of the preferred conretic renormalization groufpl1,2@, and Monte CarlgMC)
ponent becomes macroscopic, a phenomenon known as crigimulations[20,25 for the film geometry. Other geometries
cal adsorptiori5,6]. have also been investigated with regard to the possibility of

If the system is constrained in more than one spatial diperforming direct surface force measurements of the Casimir
rection, e.g., by the introduction of a second wall, the criticalforce using atomic force microscog®6,27] (see also Ref.
behavior of the fluid is modified again. When the correlation[17]).
length becomes comparable to the smallest linear extent of While the contemporary theoretical understanding of the
the system[7-9], the size dependence of thermodynamicCasimir effect in critical fluids is rather advanced, the experi-
guantities is governed by universal finite-size scaling funcimental situation is not so satisfactory. Ideally, one should
tions. Such a finite geometry may be imposed, e.g., whefike to have experimental estimates of Casimir amplitudes
fluids are adsorbed in slits and pores, or generated spontan@id scaling functions to compare with theoretical estimates
ously in the course of a wetting transition, e.g., in a binaryand to fill the gaps where no theoretical results are available.
liquid mixture near its critical end point of demixing transi- To date, however, no direct experimental demonstrations of
tions[1,10]. the Casimir effect in critical fluid systems have been re-

An important consequence of confinement in near-criticaported. This state of affairs seems to be attributable to the
fluids is the generation of long-ranged forces between thélifficulties of performing high resolution surface force mea-
confining walls[11,12. This phenomenon is a direct analog surements within the extremely tight constraints of reduced
of the well-known Casimir effect in electromagneti$B].  temperature and pressure necessary to maintain criticality. In
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view of this, other more indirect routes to investigating the 7
Casimir force have been sought. Perhaps the most promising
of these is the effect of the Casimir force on wetting layers of
a binary fluid mixture, as first considered by Nightingale and l}iﬁiucifiﬁ?im
Indekeu in Ref[10]. If the vapor of a binary fluid is exposed

to a solid substrate which strongly attracts the fluid particles,
a thick liquid wetting layer will form on the substrate for
state points sufficiently close to liquid-vapor coexistence. If,
in addition, the temperature is chosen close to the critical end
point (CEP) temperaturdat which the line of critical demix-

ing transitions intersects the liquid-vapor coexistence gurve
the presence of Casimir forces within the wetting layer will
change its equilibrium thickness compared to a noncritical Density p

state point of the same undersaturafif,11]. Since highly

accurate measurements of Wetung film thicknesses are pos- FIG. 1. Schematic I’epresentation of the phase diagram of a sym-
sible using modern ellipsometry techniques, this would apmetrical b_inary fI_uid_ mixture in Fhe density-temperature plane. The
pear a rather promising approach to probing the Casimif”” curve is the Il_q_wd-gas F:qemstenc_e' envelope. The dashe'd curve
force experimentally. As yet, however, there have been n& the\ line o'f.crltlcal demlxmg trap5|t|on§. The twq cqrves inter-
clear reports of such an effect in experimental wetting stugSect at th_e critical end point. The singularity in the liquid branch at
ies of binary fluid mixture$28]. the CEP is also showf83].

In view of the dearth of empirical results for the critical \yity symmetrical mixtures exhibiting a critical end point.
Casimir force, we have undertaken a computer simulatiofrp,q liquid-vapor phase diagram of such a system in the
|nvest|g_at|on of wetting pehawor close to the CEP of a b"density—temperaturep(T) plane is shown schematically in
nary fluid mixture. The aim of our study was twofold: on the Fig. 1. At high liquid densities there exists a* line of
one hand to investigate the theoretical predictions of RefS,gnsoute critical points. Above this line the liquid is mixed,
[10,11, and on the other to try to make contact with realpije pelow the line it is demixed. As the liquid density is
systems by working with as realistic a simulation model ajecreased, the demixing transition temperature moves to
feasible. Most previous simulation work on critical phenom- |5y temperatures. At some point, however, the liquid
ena in confined geometry has taken the form of MC studiegnase hecomes unstable with respect to the vapor. The inter-
of lattice gas models, favored for reasons of their computagection hetween tha line and the liquid-gas coexistence
tional tractability[29,30]. Such simulations are usually per- ¢,;rye marks the critical end point, which is unique as being
formed using _short-ranged surface fields to mimic the effec he only point at which a critical liquid coexists with a non-
of walls. In this work, however, we have employed an off- . iicq| gas.
lattice Lennard-Joned.J) symmetrical binary fluid model at  cyjtical end points have been the subject of some interest
a planar solid wall, and have incorporated the effects of Iongi recent years on account of the singularities they induce in
ranged dispersion interactions between the fluid and the wally, o first-order coexistence phase boundamythis case the
To our knowledge the wetting behavior of such a system haﬁquid—gas boundary These singularities have been studied

only been previously studied for temperatures well below the, ) theoretically{32] and by simulatiof33]. One is mani-
consolute critical temperaturg81]. Hitherto, no attempts fact as a bulge in the liquid branch density at the CEP, as
have been made to investigate directly the effect of criticalityghown in Fig. 1. Another is found in the coexistence chemi-

on the for'mation of wetting layers either in lattice or con- . potential. In the present work, however, we shall be con-

tinuum fluid ”FOde'S- . : . cerned with the influence of the CEP on the wetting proper-
Our paper is organized as follows. Section Il is devoted {Qjeg 4t the liquid-gas boundary and how it manifests the

providing some brief background material conceming thecagimir effect. In the following subsection we review exist-

bulk phase diagram of symmetrical binary mixtures and theng theoretical predictions for the Casimir effect in wetting
theory of the effect of criticality on wetting layers. In Sec. |5vers of a binary fluid mixture.

[l A we introduce our symmetrical binary fluid model and
the MC simulation technique. We then detail our simulation
results for the wetting behavior of the mixture, and the influ-
ence of the critical point. Finally, in Sec. IV we summarize  To analyze theoretically the wetting behavior of the sym-
and discuss our results. metrical binary fluid in the vicinity of the CEP, it is expedi-
ent to consider the phase diagram in the chemical potential—
temperature £-T) plane, as shown schematically in Fig. 2.
Indicated on this diagram are the liquid-vapor coexistence
A. Bulk phase behavior of symmetrical binary mixtures line u(T), theX line, and the CEP.

The simplest model for a binary fluid mixture is a sym- CO_I’ISIqu’ now the thermodyngmlc path labefdh Fig.
2, which is given by the expression

metrical mixture in which the pure components are identical,
and only the interactions between unlike particle species dif- ws(T)= e T) = S, (2.2

fer. Such a model can exhibit a variety of phase diagram

topologies depending on the relative strengths of the twavhere Su>0 is a constant. This path runs parallel to the
types of interactions. In this work, we shall be concernediquid-vapor coexistence curve and passes the critical end
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B. Wetting layer thickness and criticality
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Minimizing w(l) with respect td yields the equilibrium
Liquid layer thicknesd . at criticality:

Al 2kgTA+2W)| 3
ne = (— (2.4)

ou(pi—py)

For points onS away from the CEP, however, the critical
finite-size term in Eq(2.3) drops out. A useful quantity is

Chemical potential 1

Ko (T ; o . ]
~ thus the ratio of the equilibrium thickness at criticality to
its valuelL, away from criticality, for which one findgL2]
Lc A 1/3
— =1+ — .
Temperature T " ( 1 kBTCW : (2.9

FIG. 2. Schematic phase diagram of a symmetrical binary fluid. . . i
The full curve is the first order liquid-gas phase coexistence lind® |€@ding order inj.. Here we have ignored any tempera-

4oT). The dashed curve is the critical) line of second order ture dependence of the Hamaker constant.
transitions separating the mixed and demixed liquid phases. The This relationship expresses the change in thickness of a
two curves intersect at the critical end point. Also shown is a gath Wetting layer as it becomes critical, and relates it to the Ca-
parallel tou(T) on the gas side. simir amplitudeA. As such it provides a potentially sensitive
probe of the Casimir effect itself.

point on the vapor side. In the presence of a sufficiently
attractive wall (complete wetting regime and for suffi- Ill. MONTE CARLO STUDIES
ciently small undersaturatiorise., Sy small), a thick liquid
wetting layer will form at the wall for all points o. An
expression for the thickness of such a wetting layer is obtain- The system we have studied is a symmetrical binary fluid,
able by considering the layer free energy per unit dsfa  having interparticle interactions of the Lennard-Jofie3)
fective interface potentiahs a function of its thickneds In form:

e

rij rij) |

the limit of an infinite wall, this is given by10,11]

Here the first term on the right-hand side represents the freerne following choice of parameters was made;;= oy,
energy penalty of building up a liquid layer when the Vapor= g = g=1; €;,= €sp=€, €1,=0.7¢ i.e., the pure compo-

is the stable bulk phase. The surface tension tessand  npents are identical, but the unlike interactions are weakened.
oy, contain the effects of short ranged interactions at than common with most previous simulations of LJ systems,
wall-liquid and liquid-vapor interfaces, respectively, and arethe interparticle potential was truncated at a distanc®of

independent of. The fourth term,dw(l), is a finite-size =25, No long-range correction or potential shift was ap-
term incorporating both the long ranged dispersion forcegjied.

A. Model and simulation details

(3.2

w()=1(p=p,) St ot oytdol). (2.2 u(ri;) =4e;

and any critical finite-size effects. The fluid was confined within a cuboidal simulation cell
takes the fornj10,11] directions, respectively, wittP,=P,=P. As in previous
work on LJ fluids[36], the simulation cell was divided into
So(l)= V_V+ kgTA 23 cubic subcellgof size the cutoffR,) in order to aid identi-
|2 |2 ' fication of particle interactions. Thu®=pR. and D

=dR., with p andd both integers. To approximate a slit
In this expression, the first term on the right-hand side repgeometry, periodic boundary conditions were applied in the
resents the finite-size dependence of thenretardefidis- X andy directions, while hard walls were applied in the
persion forced34], whose amplitude is given by the Ha- unique z direction atz=0 andz=D. The hard wall atz
maker constanW. The second term represents the critical=0 was made attractive, using a potential designed to mimic
finite-size contribution to the free enerd®5] in three di- the long-ranged dispersion forces between the wall and the
mensions, controlled by a universal Casimir amplitutle  fluid [37]:
the magnitude and sign of which depend on the nature of the
boundary conditions on the wetting layer. Fopositive, the
Casimir force is repulsive, leading to a layer thickening,
while for A negative, it is attractive, resulting in thinning of
the layer. The= in Eq. (2.9 indicates that we neglect any Herez measures the perpendicular distance from the wgll,
density gradient in the liquid layer that may come aboutis a “well depth” controlling the interaction strength, and
because of the attractive wall potential. A density gradientve seto,,=1. No cutoff was employed and the wall poten-
implies that not all the liquid layer is precisely at criticality. tial was made to aatquallyon both particle species.
However, this is expected to result in relatively small correc- Monte Carlo simulations were performed using a Me-
tions to Eq.(2.3. tropolis algorithm within the grand canonicak(V,T) en-

2 3

o\ [ow
15

4 4

V(z)=e€y (3.2
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sembld 38,36. Three types of Monte-Carlo moves were em- 2.0 y
ployed:(1) Particle displacement§?) particle insertions and
deletions,(3) particle identity swaps: 4:2 or 2— 1.

By virtue of the symmetry of the system, the chemical
potentialsu, and u, of the two components were set equal
at all times. Thus only one free parameter= u,=pu,,
couples to the density. The other variables used to explore
the wetting phase diagram were the reduced well depth
e/kgT and the reduced wall potential,/kgT. During the
simulations, the principal observable monitored was the total
particle density profile:

p(2)
5

p(2)=[Ny(2)+Nyx(2)]/P?, (3.3 0.0

0.0 5.0 10.0 15.0 20.0
which was accumulated in the form of a histogram. Hege (a) z/c

andN, are the number of particles of the respective species.

Other observables monitored were the total interparticle en- 2.0 . : .
ergy and the wall interaction energy.

The wetting layer thickness was obtained from the density
profile astpl’lfp(z)dz where p; is the liquid density.
Although more sophisticated definitions of absolute layer
thickness can be envisaged, this one is adequate for our pur-
poses of detecting relative thickness changes arising from
Casimir forces.

p(@)
>

B. Method and results

The bulk liquid-vapor coexistence curve properties of the
symmetrical LJ fluid(with €;,=0.7¢) have recently been 0.0 . . .
investigated by MC simulatiofi33]. This work employed 0.0 10.0 200 300 40.0
state-of-the-art simulation techniques to investigate the na- (b) z/c

ture of g:oexistence curve singularities induced by the critice}l FIG. 3. (a) Density profilesp(z) on the approach to coexistence
end point. In the course of the study, highly accurate estizo; ¢ —1.7. The film thickness remains small right up to coexist-
mates were obtained for the location of the critical end pointence  signifying incomplete wettingb) Density profiles fore,,
Additionally, the locus of the liquid-gas coexistence curve=1 g The film thickness grows very large as coexistence is ap-
1e(T) was measured to 5 significant figures in the neigh-proached, signifying complete wetting.

borhood of the CEP.

Armed with accurate estimates fai.,(T), one is in a however, the film thickness became very large as coexistence
position to perform detailed wetting studies very close towas approached and ultimately almost completely filled the
coexistence. Detailed knowledge pf,(T) is a prerequisite system[cf. Fig. 3b)]. This suggests that the wetting transi-
for obtaining a thick wetting layer and detecting changes irtion lies in the range 1< ¢, /kgT<1.8. Nevertheless, to be
its thickness due to Casimir forces. Below we discuss the&uite sure that the CEP lay well above the wetting transition
procedure we have employed for detecting such changes. (i.e., well within the complete wetting regimeall subse-

Clearly for a liquid wetting layer to display critical behav- quent work employed,,/kgT=23.0 at the CEP.
ior at the bulk CEP, it must be sufficiently thick to exhibit ~ We have studied the layer thicknelséu o(T)) along the
quasi-3D properties. But for a thick wetting layer to form at pathug(T) = o T) — Su. Given u(T), this path is speci-

a wall at all, the attractive wall potential must be sufficiently fied solely by the value o6, which has to be chosen as a
strong that complete wetting occurs at coexistence. To ercompromise between two competing factors. On the one
sure that the CEP lay well within the complete wetting re-hand,su must be sufficiently small that a thick wetting layer
gime, a number of preliminary test runs were performed informs. The thickness of this layer must be sufficiently large
which the temperature was set to its CEP valuge{ that quasi-3D critical behavior occurs, and that the liquid-gas
=0.958) and the density profile(z) monitored as coexist- interfacial properties are not unduly influenced by short-
ence was approached in a sequence of steps from the gemged packing effect close to the attractive wall. On the
side. To achieve this, the chemical potential was simply in-other hand, one wishes to avoid having a layer that is very
creased towards its coexistence value in small increments dfiick, lest the computational expense get out of hand. A
size A =0.0025. The procedure was repeated for a numbeminimum film thickness oL =100 was judged sufficiently

of different values of the wall potentia, . large for our purposes. However, since close to coexistence

For small values of,, /kgT<<1.7, it was found that the the layer thickness is extremely sensitive to changesun
film thickness grew as coexistence was approached, but dine tuning was necessary. It turned out that obtaining the
ways remained finit¢cf. Fig. 3@]. The presence of a thin required minimum thickness necessitated use of an ex-
wetting layer right up to coexistence signals incomplet-  tremely smalléu, namely 6u=0.002 (corresponding to a
tial) wetting. For stronger wall potentialse(/kgT>1.8), relative undersaturatioAu/u~10"%). At this undersatura-

—
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tion, L was observed to fluctuate in the rangec¥oL 12.5 T

=130 o : igils;x:o
Another condition to be satisfied in the simulations is that 120 b o % s17.5xd0

the largest fluctuation in the layer thickness be small com- =~ o °

pared to the linear extent of the system in trairection, i.e., 4 st . ° |

L<D. This latter condition ensures that the liquid gas inter- % ’ B i .

face does not interact with the hard wall z:D, which =) R o 7

might otherwise obscure the effects of criticality, or even ; 11.0 } . ° @ L0

lead to capillary condensation. Accordingly the cholde = o ° @ .°

=400 was made. “ lost Dnof°°o .o
Ideally, in order to facilitate direct contact with real sys- R ° . o

tems and existing theoretical work, one should simulate an Soo - ° oo 8

effectively semi-infinite system having lateral dimensiéhs 10'%.94 0.96 0.98

>L. In this limit, the finite-size critical behavior of the sys- Temperature

tem depends only on the ratiéL of the correlation length to
the layer thickness, and not on the lateral dimensions of the FIG. 4. The thickness of the wetting layer as a function of tem-
simulation box[35]. Unfortunately, in this work we could perature along the thermodynamic padefined in the text. Data
not approach the semi-infinite limit as closely as we wouldare shown for each of the three system sizes studied. The results
have liked because of the huge computational expense emere obtained from multihistogram extrapolation of simulation data
tailed. In fact the largest lateral dimensions that we couldaccumulated at three points on this line, corresponding to tempera-
reach wereP=12.5r, P=150, and P=17.50, containing {uresT=0.946, 0.958, 0.97.
average particle numbers of approximatély- 1500, 1800,
and 3500, respectively. We postpone discussion of the ef-(u4(T)) is to some extent an artifact of the histogram ex-
fects of the relative smallness Bf until later. trapolation procedure and we are not particularly confident
The limiting factor in the speed of the simulations andof our estimates for the absolute film thickness. Neverthe-
(hence the attainable system sizess found to be the ex- less, weare confident of the ability of our procedure to iden-
treme slowness of the interfacial fluctuations, which ren-ify changesn the wetting layer thickness.
dered it very difficult to accumulate accurate estimates of the The results for the film thickening due to criticality can be
average thickness. In an effort to ameliorate this problemcompared with theoretical predictions for the semi-infinite
multihistogram reweighting techniques were emploj/@él. system. In this limit, the change in layer thickness is given
These allow one to combine data accumulated at individuaby Eq. (2.5). For our system, we calculate the Hamaker con-
state points and, by extrapolation, obtain estimates for obstant to beW~2.5 at the CEP. The value of the Casimir
servables at other not-too-distant state points. In our studsgimplitudeA depends on the boundary conditions on the wet-
the computational complexity meant that it was feasible tating layer. In the present model, these are of the form
accumulatep(z) at just three points on the pathfor each  (+,0) in the notation of Ref[12]. This notation denotes an
system sizgsee Fig. 2 These simulation points were cho- order parametefconcentrationthat is pinned to a constant
sen to span the CEP temperature, naméky,0.946, 0.958, value at the wall due to the high particle density there, and
0.97. Subsequently, the data from the individual simulationsvhich vanishegon averaggat the liquid-gas interface be-
were combined self-consistently and extrapolated to yieldause of the low gas density. The most recent field theoreti-
estimates fop(z) along the whole path. The data were col- cal and MC estimatel20] yield A(+,0)~0.2. Inserting this
lected from runs comprising in total approximately 30° into Eq. (2.5 givesL./Ly=~1.025. Clearly this is a smaller
Monte Carlo stepgMCS), where we define a MCS as an thickening than we see, but the trend of our results is in the
attempt to perform each of the three types of MC movesdirection of this value and could lie close to the prediction
particle displacement, insertion or deletion, and identityfor sufficiently large system size.
swap(cf. Sec Ill A). In fact, it is possible to use finite-size scaling arguments
In Fig. 4 we present our results for the layer thicknessto account for the direction of the observed trend in peak
L(us(T)), obtained by implementing this procedure. Theheight with increasingP. To this end, let us rewrite the
main feature of the results for each system $lzie a peak in  finite-size part of the critical effective interface potential
the film thickness close to the CEP. For the largest systen.3), taking account of the finite lateral extent of the system:
size, the thickness on either side of the peak is fairly con-
stant, while for the smallest system size, the accessible range W KgTA(+,0)  2lAp
of temperature was not sufficient to encompass the whole do(l)= |_2+ |2 + p3
peak. For the smallest system size, the critical thickening is
=10%, while for the largest system size it 465%. The
peak position is at higher temperatures than the bulk CEP Here we have simply added an additional scaling term to
temperature and is closer to the CEP for the largest systemccount for the finite system siZz in the periodicx andy
size than for the smallest. The peak width also clearly nardirections. The alteration to the free energy is assumed to
rows with increasing system size. We should caution, howscale likel/P, so that the contribution ta(l) (free energy
ever, that the statistical quality of our data is not particularlyper unit areascales likel/P3. This new term can be inter-
high due to the difficulties mentioned above in collectingpreted as a finite-size correction to the chemical potential.
statistics. The smoothness of the temperature dependence for Minimizing this expression as before gives the equilib-

(3.9
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rium critical thicknesd. .. The ratio of critical to noncritical tions to this scaling limit yields estimated size effects com-
thickness then follows as parable to those observed in the simulations. Given the likely
magnitude of the thickening in the semi-infinite lintithich

L. kg TA(+,0)\ Y3 2kpT oA per -1 we estimate to be~3%), it seems likely that the effect
—=1+t—F — should also be experimentally detectable in réa., non-
Lo W Su(pr=py)P°

3 symmetrical absorbed binary fluids, many of which exhibit
S Hamaker constants of similar magnitude to the present

The Casimir amplitude for periodic boundaries has beerﬁ“o\?v‘?lh d to th onal | sed b
estimated ad .~ —0.15[25]. Thus the correction factor in tud It r(raggar Ittott ?i cct)mtp;]utatlonat)ililfsu??n r%'sfn ir¥1 cl)u_r
P is larger than unity and decreases towards unity? de- study, our results tes fy 0 the capability of modern simula

- L tion techniques to identify small changes in the wetting be-
creases. If we take the liquid-gas density differepge p . o . . S
. ) : g havior of realistic fluid models. Indeed, simulation is likely
~0.5, one finds that the correction factor is approximately : . . ) )
~ ! . . ’to prove of increasing value in the study of wetting by criti-
1.06 for theP=12.5 system size, reducing to approxi- cal layers, since unlike field theoretical or density functional
mately 1.02 for theP=17.5 system size. This accounts Yers, y

semi-quantitatively for the observed decrease in the size ¢ ethods, it allows one both to tackle realistic systems and to

the critical thickening as we increage eal properly with critical fluctuations. Nevertheless, algo-
9 rithmic improvements are clearly desirable and necessary if

The influence of the periodic boundaries is presumablyone is to realize geometries that are effectively semi-infinite.

also responsible for the the observed position of the peak iMe chief problem experienced in this work was of ex-

L(us(T)). For a semi-infinite system the finite-size scaling - L : ;

. ; tremely slow fluctuations of the liquid-gas interface. In view
funclzlanforw_(rT) _dlspl)lays a petalé ];OW<TCE$§2thhUS ;[he of this, it may well pay dividends in future work to employ a
peak in k('“ﬁ( ) is asr(]) expeti(e.nl 0 o<2|<_:ur r CEfP' ? simulation algorithm that focuses more of the computational
our work, however, the peak ih(us(T)) occurs for effort on the interfacial region itself, this being the bottle-

> Teep- It_s_eem_s reasonable, th(_)ugh, that were one 10 eMyacy for phase space evolution. Such algorithmic improve-
ploy the finite-size scaling function for periodic boundary ments are the matter of ongoing work

conditions inw(T) then this could actually change th_e tem- Finally, looking ahead to future work, it would doubtless
perature dependence bf(us(T)) such that the maximum ¢ jteresting to investigate the nature of the interfacial prop-
appears at somé>Tcep, if P is not much greater thah.  gies petween the critical liquid and noncritical gas phases.
Unfortunately, the scaling function for a system with tWO This matter has already been the subject of a number of
periodic and one symmetry breaking boundary conditions igeajled theoretical investigations aimed at elucidating the
presently not known to any approximation. temperature dependence of the interfacial shape and surface
tension on the approach to the CHRO0,41,32. Given
IV. CONCLUSIONS AND OUTLOOK present capabilities, a simulation study of interfacial proper-

In summary we have performed extensive Monte carldies at the CEP would certainly seem feasible and would

simulations of wetting behavior near the critical end point ofhicely complement existing experimental studié,43.
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cal system. Although an unambiguous determination of thenan for helpful discussions, and the Royal Society of Edin-
limiting size of the critical thickening was hindered by large burgh and the EPSRG@Grant No. GR/L9141pfor financial
finite-size effects, the results are in order-of-magnitudesupport. M.K. gratefully acknowledges financial support
agreement with theoretical predictions for a semi-infinitethough the Heisenberg program of the Deutsche Forschungs-
system. Indeed, a theoretical analysis of finite-size correcgemeinschaft.
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