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We consider the unfold dynamics of generalized Gaussian strudiB@Ss exposed to different kinds of
external forces. A GGS consists Bf monomers connected by harmonic springs into a network; when its
spectral dimensiod, exceeds the critical value of 2 the GGS is in a collapsed state. Sommer and Bliimen
Phys. A 28, 6669 (1995] showed that collapsed structures can be unfolded under external forces; they
demonstrate this for the case where each monomer is exposed to a force with a random direction: Then
networks with a spectral dimension up to 4 become unfolded. In the present paper we focus on the dynamics
of such unfold processes. We investigate GGSs exposed to different kinds of external(fuitiag one
monomer, uncorrelated forces, long-range correlated forces, and diblocklike)foMesshow that external
perturbations that act only on a few monomers are not able to unfold a collapsed structure; on the other hand,
more general kinds of forces lead to a stretching of GGSs eva.fo? as long asl;<d., whered, depends
on the kind of the force field. In general, during the unfold process theRsiakthe GGS grows via a power
law Rxt® (0<a<1), wherea depends oml as well as on the kind of force field that is applied.
[S1063-651%98)08205-1

PACS numbes): 36.20.Ey, 05.40k], 87.15.By

[. INTRODUCTION are expected to be formed during gelation procegsesfor
instance, the percolation model discussed in R&J. Cates

The theoretical investigation of the conformational and[8] showed that the radius of gyration of such networks
dynamical properties of flexible polymers often proceedsobeys
from a very simplified model, the Rouse modl&)2]. In this 2 L on(2—doid
model the polymer is considered as being a sequence of Rg=b*N="5s for ds<2 @)
beads connected via harmor{entropig springs(Gaussian
chain); the chain incessantly changes its shape due to therm&$€€ also Ref.9]). HereN denotes the number of beads and
agitation. Though this model disregards many features of & iS the mean distance between adjacent beddss the
physical chain(e.g., the excluded volume effect, hydrody- spectral _dlmensmn of the netwo(lseg, for instance, Refs.
namic interactions, and topological effectsleads in a se- [10,11); in the case of a regular objed, equals the Eu-
ries of casege.g., semidilute solution and melts below the clidean dimension. Equatiofi) is valid for ds<d.=2; on
entanglement limjtto a reasonable description of the physi- the other hand, fods>d. the radius of gyration is of the
cal situation[2]. Moreover, due to its simplicity, the model order ofb, i.e., the overall size of the network is governed by
serves in many cases as a first step towards the theoretidi# local propertiegcollapsed staje[9].
formulation and the understanding of polymers in a great This collapse transition sheds also a light on some recent
variety of environments. Thus, recently a series of works wag/orks on polymer localizatiofl2—-14. Thus Solf and Vilgis
devoted to the investigation of single polymer chains undef13] and Kantor and Karddi4] considered the behavior of
different kinds of external forces, namely, polymers in sol-@ one-dimensional Gaussian chain compridihgnonomers
vent flows[3,4] and charged chaing@olyampholytesin ex-  in Which in additionM randomly selected pairs of monomers
ternal electrical field$5,6]. For these cases many conforma- are restricted to be in contact. They showed that the radius of
tional and dynamical features were calculated analytically irgyration scales a®;~b?N/M. Thus the structure is in a
the framework of the Rouse model. collapsed statéwith Ry~b) whenM is of the order ofN,

It is now tempting to augment these investigations to ob4.e., when the number of bonds of the resulting structure is of
jects that show a more general connectivity, namely, to théhe ordeN+M~2N. Note that for a square lattidémem-
so-called generalized Gaussian struct{@6Ss, which are  brane”) that obeysds=d.=2 the number of bonds is also
generalizations of the Gaussian chain. GGSs may serve approximately 2.
simplified models for membranes, gels, and polymer net- The collapsed state of GGSs witly>2 is physically not
works. Note that GGSs do not account for intermolecularmeaningful and the behavior of real networks and mem-
interactions, i.e., whether excluded volume or entanglemerttiranes will then usually be governed by other effects such as
effects are taken into account. However, in dry polymer netthe excluded volume. However, it was shown by Sommer
works the excluded volume may be screerfsighilarly to  and Blumen[9] that the application of external forces may
polymer melts [2,7]); furthermore, entanglement effects unfold collapsed GGSs; thus a random force field leads to an
should be quite small for sufficiently high cross-link densi- unfolding of GGSs with spectral dimensions up to 4. This
ties and thus short enough network chains. In the presemxample shows that the interplay between the chain connec-
paper we assume the GGS to be an isotropic and localltivity (represented by one parameter, the spectral dimension
homogeneous fractal network. Huge fractal macromoleculeand the external perturbation can lead to an unfolded struc-
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ture, even beyonds=2. In such cases GGSs may serve asthe solvent molecules. The thermal noise is Gausgiduite)
useful network models even beyond this critical dimensionwith zero mean, so that one has

It is the purpose of the current paper to investigate the rich

dynamical and conformational behavior of GGSs under dif- (ei(n,1)=0, (@i(n,He;(n,t"))=2{T 5y S(t—t").
ferent kinds of external forces and to calculate the decisive (4)
role of the force field on the dimensial, up to which the

collapsed state can be unfolded. We start in the next schqrb i,j=X,Y,Z, and the angular brackets stand for thermal

with tr]:ehcaéer;h%n one applifesr,]a forcel on one ?iven MONG3yeraging, i.e., averaging over the realizations of the Lange-
mer of the y means of this simple example we introy; forcese(n,t). From Eqgs.(2) and(4) it follows that Eq.

duce the model and the appropriate calculation method 3) decouples in theX, Y, andZ directions. Hence, in the

Thedn, mf Secsf: :3 and I\/Hwe tc):loni:ierfdlfferent kinds of following we can restrict ourselves to one component, say
random force fields as well as blocklike forces. the X component, which obeys

n Eq.(4) i andj denote the components of the force vector,

Il. PULLING ONE MONOMER &Xn(t) 2 M (t)+ f(t)5 L2 1
T & nmXm nk

In this section we calculate dynamical and conformational Jt 4
properties of networks for the case that an external force acts ®)
on one given monomer. Recent optical developments allowy, Where we sef(t) = (f(t),0,0).
one to realize such micromanipulations of macromolecules
Thus Perkinset al. [15] and Wirtz[16] have dragged indi-
vidual DNA molecules by optical or magnetic tweezers; Am- 1 [t
blard et al. [17] have performed similar experiments with Xn(t)=z f dr>, (e OME=D) (1) S
magnetic beads in actin networks. Teem

We model the network as a GGS consistinghobeads, 1 [t
connected by harmonic springs. The configuration of the +ZJ drY, (e-KOMI=7) ox(m,7) (8)
GGS is given by the set of vectofs,(t)}, wherer,(t) eem

= (Xn(1),yn(1),2y(t)) denotes the position of theth bead at (¢ 5150 Ref.[20]). From Eq.(6) we find that the mean-

timet; n=1,... N. The potential energy({rn(t)}) of the 5 eraged position of theth monomet(on which the external
GGS contains only the elastic contributions of nelghborlngforce acts obeys (x(t))=(f/¢)[Ldr(e”/OM7), . where
segments and of the external force that acts on one monom assumed that tkI;e force is S\?wtched ont a{)kk| e f(t)

say thekth one. This leads to =f4(t). By further performing the average ovkr(struc-
K tural averaggwe obtain
UdraN=7 2 0O OF=H0r :
i,jte
" ((xON= 75 2 dr Tr(e”(K/OM7)
K
=3 2, MM -fonw, @ -
) gN f dTZ e —(K/¢) )\kT (7)

ex(n,t),

The solution of Eq(5) is given by

where the summation extends over all pdir$} of the set of

_ 2
bondsB be_tweer_1 the\ monomers. In Eq(2) K=3T/b® is Thus the average displacement of the bead on which the
the (entropig spring constant, wher€ denotes the tempera- force is applied follows from the trace of the matrix

ture in units of the Boltzmann consteky andb is the mean e~ (KIOM7 \vhich equals the sum over its eigenvalues
distance between neighboring beads. Furthermore, we intro- - (KON Here{\J, with k=1 N. denotes the set of
K AN

(rjnuecrft g:‘l\qut(ﬁe so- cal(llt\a/lciJ 1en”e,rallz)edm(/3hael:(sagfan ';g&‘sglﬁqat”elgenvalues of the GRM.
9 For largeN it is convenient to transform in Ed7) the

(GRM) [.18 20. M can be constructed as follows: Start with um ovelk into an integral ovek by introducing the spectral
all matrix elements set to zero. Then account for each bon§ensit n(\) of M. This leads to
between the monomers and m by increasing the diagonal y ’
elementsM,, and M,,,, by +1 and the nondiagonal ele-
mentsM ,,, and M ,, by —1. For a linear structuré.e., a {x(t)))y=~ f drf dx n(n)e (KOrT, (8)
polymer chain this procedure leads to a tridiagonal matrix,
which is the well-known Rouse matr{d].

The dynamics of the GGS is described By coupled
Langevin equations, the generalized Rouse equaf®28—
22]

The spectral density reflects the connectivity of the GGS; for
isotropic and locally homogeneous fractaié\) obeys a
power law[11]

n(\)=A92"1, ©)
ara(t)  U(ry(H})
¢ a ar (1) e(n,t). 3) i.e., here the connectivity of the network is characterized by
one parameter, the spectral dimensin The use of a con-
Here( is the friction constant per monomer apn,t) isthe  tinuous spectrum in Eq@8) is reasonable as long as,z,

thermal noise that mimics the collisions of thtéh bead with <(K/§)t<)\mﬁ1 Here N\ hax, the largest eigenvalue dil, is
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determined by the local network properties and is of order In X 1}
unity [20]. Furthermore, the smallest nonvanishing eigen- 7K
value is given by ,i,=N"2Y (cf., for instance, Ref[8]).

For ds<2 this can be seen by the following simple argu-
ment: The minimal nonvanishing eigenvalug,, is in-
versely proportional to the timeeit takes a random walker to
explore the whole fractal lattice that hak sites[note that
Eq. (3) is directly related to the master equation for a random
walker on the corresponding lattice; see, for instance, Ref.
[23]]. Now the numbeiS(t) of different sites visited by the
random walker grows with time as

(a) ds<?2

S(t)z(T/é«bZ)ds/thSIZ (10)

for d¢<2 [10,11]]. SettingS(7g) =N one obtains

n =X= )

T6={h2NZo T (12) K

and thus indeed ,=(b%T) 75 =N"2,
In order to calculat€({x(t))) for {/K<t<7gs we insert
the spectral densit{9) into Eq. (8). Ford,<2 this leads to

flZ ds/2 ¢ fpds
<<X(t)>>zz (R) deT deslzz mz__rdy? tl*dSIZI

12

(b) ds>2 In &—K

Thus, in this time range the displacement of the tagged bead

follows a power law with an exponent that decreases with ¢ 1 Response of a GGS with) d.<2 and(b) d.>2 to an
. . S S

increasingds. In the case Oflg one-dimensional chain, i.e.,eytemal force that acts on one given monomer. Schematically de-
for ds=1, ({x(t))) shows at™“subdrift behavior, a result picted is the displacement of the tagged monomer as a function of

that was reported in Ref5]. time (see the text for details
For d;=2 the integral in Eq(12) diverges at the lower
bound; note, however, that for very short timeg /K b2 [ Nma
=(b?/T the behavior of the GGS is governed by its local L=—= J dx A9s272
N

min

properties. Thus let us introdu¢éK as a lower cutoff. For

ds>2 this leads to 2 2
* W E dS_/Z_le N(z_ds)/ds for ds<2
min
<<x<t>>>:xo+}(§) g o -1 o2 1 (b2 (19
gK T msax 2? for dg>2.
2 ds
=Xn+ fb fo tl—ds/2 (13) .
00 T a21dd2 : Note that depending on the value df, the lower or the

upper bound of the integral in E415) determines the be-

wherex, denotes the bead’s displacement at the tiffi€, havior of L.
i.e.,Xo=({X({/K))). Fords=2 one finds a logarithmic time ~ Let us now survey and discuss the results. In Fig) for
dependence. We note that in the force-free case the meathe casel <2 the displacement of the tagged bead is plotted
squared displacement of a single bead shows similar behatbgarithmically against time. For very small times (/K the
ior patterng24]. bead does not “feel” any constraints that arise from the

Before we provide a physical interpretation of these re-connection to neighboring beads. It moves ballistically with
sults, we calculate the short- and long-time behavior ofhe constant velocity =f/{; see below Eq(14). Then, in
({(x(1))). As mentioned above, the continuous description ofthe intermediate-time regime more and more beads are in-
the spectrum in E¢(8) is not valid fort<¢/K andt>7g and  volved in a collective motion; consequently, the velocity of
we have to go back to the exact formula, E@. We con-  the tagged monomer decreases with time, followirtg %
sider here only the case of connected objects so that only ongehavior; cf. Eq.(12). Note that this time domain is very
eigenvalue vanishes, say ; thus broad for largeN. Finally, att= 7 the motion of the tagged
bead crosses over into a small drift motifsee above Eq.
(15)]. The velocity obeys =f/¢N, which follows from the
balance between the external forcand the friction{N of
the whole GGS, i.e., fot> 75 the whole network moves
For t<¢/K this leads to((x(t)))=(f/{)t. On the other ballistically and the tagged bead mirrors the motion of the
hand, for long times> 7 Eq. (14) takes the forn{(x(t))) center of mass. Note further the time-independent trsh
=(f/¢{N)t+L, where the time-independent term is given by It represents the equilibrium value of the stretching of the

1— ef(Klg)}\kt

. (14

IR
((x(1)))= N UTRK kgz
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GGS due to the external force and follows from the summa- 1 [t
tion over the 1A, values. It can also be obtained by setting (x(1))= 7 j dr>, (e”(KOMn), £, 17
t=r1g in Eq. (12). The stretching leads to ad(®>~9)ds de- o m
pendence of the size of the GGS, which is significantly larger
than the typical size in the force-free case, which is proporwhere the angular brackets denote the thermal average. Here
tional to N(2~99/2ds [¢f. Eq. (1)]. we are interested in the mean-squared displacement. Taking
In Fig. 1(b) we depict the casds>2. The behavior for the square of Eq(17), then averaging ovek, and, finally,
very short timeg<<¢/K and long timed> 7 is again gov- averaging over the different realizations{df,} leads to
erned by the ballistic motion of the tagged bead and of the
whole network, respectively. On the other hand, in the 1 .
intermediate-time regimé/K<t<rg one has a very small {(X(1))D)) = — J dTlJ dr,
displacement of the bead: At=¢/K one finds ((x(t))) N Joo "o
=f/K; see below Eq(14); then, during the following inter-
mediate regime the tagged monomer moves only a distance % 2 (e~ (KIOM(7atma)y - (f )
f/IK [cf. Eq.(13)], which is of thesameorder as the elonga- m,n
tion att=¢/K. Thus the conformation dt= 7¢ is still gov- ’ N
erned by thdocal properties of the network. Now, as noted _ f_ fth fth z e~ (KION(r1+7p)
above, GGS witlds>2 are collapsed in the force-free case. ON Jo 1t & '
Our considerations show that it is not sufficient to pull at one
monomer in order to unfold the collapsed structure.
We give now a scaling argument from which Ed.2)
follows directly (cf. also Ref.[26]). As already discussed Similarly to Sec. Il, we calculate now the intermediate-
above, the generalized Rouse equation is formally equivalenime behavior{/K<t<7g by going to a continuous distri-
to a diffusion equation on the corresponding fractal lattice bution of the eigenvalues. Faoi,<2 this leads to
For ds<2 the numberS(t) of different sites visited by a
random walker grows with time following Ed10). In the g2 oy .
framework of the Rouse dynamic3(t) can be interpreted as X)) = = (é) f dTlf dryp( 7y + ) 92
being the number of monomers that move collectively with K 0 0
the tagged bead. The domain that moves collectively has the

(18)

: ~ ; f2pYs
velocity v (t)=[£S(t)]~ f. The average displacement of the _ t2-dsi2 19
single bead can be estimated from the average displacement 52_5521'552 ' 19

of the S(t) monomers, i.e.x(t)=f})dr v(7), which (for dg

<2) leads again to Eq12). Note that Eq(10) is valid as Fords=1 one recovers the'? dependence that was found in
long as the network does not move as a whole. At later time of [55]

t> 7, g(t)=N holds and we recover the drift motion of the e
c.m. withv =f/¢N. The crossover timeg can be interpreted by introducing a small positive cutoffat the lower bound of

as being the Ia_rgest i”te”_”a' relaxation time of_the GGS'_ W(?he integral overr,; one finds then the displacement to be
close this section by noting that the above-given consider- roportional to (Z)éfd5/2_827d5/2 so that ford.< 4 the be-
S

ations also hold for the case when one applies external forc vior for very short times can be neglected. &g 4, how-

toa group ofg monomers as long ag;<<'N (a situation that ever, the displacement shows a strong dependenegwere
occurs in a class of rheological experimef#3)). we introduce, similarly to Eq.13), /K as a lower cutoff for
both integrations in Eq.19). This leads to

K | 2-d42

Now Eg.(19) is also valid for 2<d,<4. This can be seen

Ill. UNCORRELATED FORCE FIELD

In this section we assume that each monomer is exposed f2
to a constant force with a random direction independently <<<X(t)>2>>zﬁ {1_(
from the force directions of the neighboring monomers. De-

note byf, the force on thé&th monomer; the force on each

monomer is taken to be directed either in the positive or in The behavior fort<(¢(/K and t>7g can be calculated

the negativeX direction, i.e.,f,=*f. Then one has similarly to Sec. Il by treating in Eq18) the contribution of
the vanishing eigenvalue separately. Fgr{/K one finds a
(fofm) =128m, (16) mean-squared displacement that goesfés/f)t?; this cor-

responds to the single-bead drift that we already discussed

where the angular brackets denote the average with respdaglow Eq.(14). Furthermore, the long-time behavite 75
to different realizations off,}. Polyampholytic networks in  obeys ({({(x(t))?))=(f?/¢?N)t?+ L2 We find, similarly to
external electrical fields and copolymers or networks of co-Sec. Il, that the long-time behavior has two contributions: a
polymers at interfaces are examples of such kinds of externalrift motion (here, however, by a factdd*? larger, which
perturbationg29]. follows from the fact that the typical total force is of the

Following the preceding sectiofcf. Egs. (2)—(6)], we  order N¥?) and a time-independent stretching term, which
find for the displacement of thieh bead after switching on represents the typical equilibrium sikeof the stretched net-
the force field at=0 work:
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Let us try now to derive the power layd9) through a
scaling argument similar to that presented at the end of Sec.
Il. For a given monomer the numb&(t) of neighboring
beads that move collectively with it is given by EGO) for
d,<2. The typical total force that acts on the3@) beads is
of the orderfN. The typical velocityv(t) of this collec-
tively moving group is thus of the ordgi S(t)]~f. In-
serting now Eq(10) for d,<2 and integrating the velocity
> overt leads to Eq(19), the power law that we have found by
the more rigorous calculation. Now we have shown above
that Eq.(19) is also valid for 2<ds<4. Fords>2, however,
S(t) obeysS(t)«t [instead ofS(t) «<t%2% the number of dif-
ferent sites visited by a random walker can at least grow
VeX> ) linearly with time]. So here the spectral dimension does not
K enter into the scaling expression, contrary to the expligit
dependence of Eq19).

(@) ds<4

IV. CORRELATED FORCE FIELDS
AND THE DIBLOCK SITUATION

Keeping this intricacy in mind, we use the above-given
scaling argument in order to estimate the behavior of GGSs
that are exposed to more general kinds of random force
fields, namely, force fields with long-range correlatiqnf
also Ref[26]). Assume that the forces are distributed in such

FIG. 2. Response of a GGS with) ds<4 and(b) d>4 toan 4 way that the total forcd Obeys<ft20t>§f2|\|27, with 0
uncorrelated force field. Depicted is the mean-squared displacement y<1. The caseyz% corresponds to the uncorrelated case
of a sipgle monomer averaged over the different realizations of th%liscussed above, whereas m% the forces are positively
force field (see the text and for y<3 negatively correlated. Note that the cases

=1 and 1 can be simply realized, whereas long-ranged

(b) ds>4

. f max dg2-3 (antcorrelations cannot be simply induced for many non-
L*=1z fk S A A trivial connectivities. Using Eq(10), one finds withv (t)
o =[S(t)]”"1f/¢ that the displacement fat,<2 is given by
(F204 TN ™2 (£2p4/T2N@ =945 for d <4 20 (1 pdo2
=\ g2pd72yy (Gs 42 21 4/72 _feb” T (- ydg2
(F2Y TN V2204 T2 for dg>4, x(=7 |3 t . 22)

@D Equation(22) is also valid for the range 2d.<d., where

d. depends ony (see below. The equilibrium value of the

a result that was already found by Sommer and Blufigdn  typical si_zeRg of the GGS in the force field is reachedtat
For the one-dimensional chain one ha%<N?® [5,31] (cf. = Te; Using Eq.(11) we find
also Ref[34]). From Eq.(21) it can be seen that the random 2 o (1—
force field is able to unfold collapsed GGSs as longdas Ry=x(7g)=(fb ITNEZETVH - for de<<d,.. 23)
<d.=4. Hereby the unfold dynamics follows the power law
(19); settingt={b%T\pis, ONe recovers Eq21). On the  Equation(23) suggests that the correlated force field is able
other hand, in order to unfold a GGS with>4 it is not  to unfold the structure up to the critical dimension
sufficient to apply an uncorrelated force fidlef. Egs.(20)
and(21)]. In Fig. 2 we display the dynamics of a single bead 2
for both casesl,<4 andd >4. dc:ry'

It can be seen from Eq21) that for d;<4 the external
force may lead to a quite strong stretching of the GGS. Due We show now that this conjecture holds for three different
to its linearity, the model of entropic Gaussian forces will cases(i) For y=3 Eq. (24) leads indeed tal,=4 (see Sec.
fail for large external perturbations, resulting in an unphysi-lll). (ii) The casey=0 corresponds to the alternating case,
cal overstretching. Hence we are led to the condition that thevhich can be realized for linear chains, square lattices, cubic
size of the stretched netwofR1) is smaller than the size of lattices, etc. In this case the forces of two neighboring mono-
the completely unfolded structute~N¥ds. This leads to the mers cancel each other. However, one additional force acts
requirementf <(T/b)N(~99/2s Thus, fords>2 the exter- similarly to the case where one applies a force only to one
nal force may be quite strong without contradicting themonomer and thus leads only to a stretching of networks
Gaussian assumption. Explicit studies of the role of the finitewith ds<2 (i.e., d.=2; cf. Sec. I) [37]. (iii) y—1. In this
extensibility for one-dimensional chains can be found incase one has very long-ranged correlations. A typical force
Refs.[35, 36| distribution consists of a few, say two, parts of groups where

(29)
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all forces act in the same direction. We discuss now thig25), a diblocklike force field can unfold collapsed structures
diblock case and show thdt— o, which is consistent with of any given spectral dimension, i.e., here one has indeed
Eq. (24). d.— .

We start with the one-dimensional case where all mono- Let us now discuss the unfold dynamics in the diblock
mers of one half of the chain are exposed to forces in thaituation. After switching on the field, a given monomer and,
positive X direction and of the other half in the negatide typically, also the monomers in the neighborhood feel a
direction(“tug of war” ). In a simplified picture the polymer force in the same direction. Thus all monomers move ballis-
may be interpreted as a dumbbell exposed to a force of ordeically with a velocityv=1f/{. The typical displacement of
fN; furthermore, since one ha&$ sequential springs, the ef- the given monomer is thus given by
fective spring constant iK 4=K/N. This results in an elon-
gationR=fN/K .=(f/K)N?, which is consistent with the re-
sult of the exact calculation, EQR1) of Ref.[31]. Now let us
turn to a square latticed{=2) that is exposed to a diblock-
like force field. Here one hai¥? rows, each composed of After the time 5 the two groups that move collectively in
N2 sequential springs, which counteract the external tenepposite directions will feel the connectivity of the overall
sion. Furthermore, one has? columns, each comprising structure and the stretching process stops. It follows indeed
NY2 springs that are perpendicular to the force field so thafrom Eqgs.(25) and(26) that the new(interna) equilibrium is
we can neglect them for the current consideration. The effeaeached atrgoc ,,HocNs,
tive spring constant of the structure is nNOWK We close this section by noting that this simple picture
=NY2K/NY2=K, whereas the force is again of the ord&.  also holds for the general case of correlated force fields.
Thus the typical size of the stretched membrane is given byonsider again a regulat.-dimensional cubic lattice with
R=fN/Keg=(f/K)N. Kos=KNE™2/% |n the correlated case the typical force that

This argument can be easily extended to hypercubic latacts on the structure is of the ordM?. FromR=fN?/K s
tices of arbitrary integer dimensiot=1. One finds then we recover Eq(23).
that the effective spring constant is given bl
=NE~ Dl /NVIs= K N(ds=2)ds - Thys the size of stretched
structure is given byR=fN/K %, which leads to ACKNOWLEDGMENTS

R=(f/K)N?ds, (25) | wish to thank Dr. J.-U. Sommer and Professor A. Blu-
men for many valuable discussions. The financial support of
We conjecture that this relation also holds for fractal net-the Deutsche Forschungsgemeinschaft is gratefully acknowl-
works with noninteged, values. As can be seen from Eq. edged.

x(t)=(f/O)t. (26)
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