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Unfold dynamics of generalized Gaussian structures

H. Schiessel
Materials Research Laboratory, University of California, Santa Barbara, California 93106-5130

~Received 24 October 1997; revised manuscript received 20 January 1998!

We consider the unfold dynamics of generalized Gaussian structures~GGSs! exposed to different kinds of
external forces. A GGS consists ofN monomers connected by harmonic springs into a network; when its
spectral dimensionds exceeds the critical value of 2 the GGS is in a collapsed state. Sommer and Blumen@J.
Phys. A 28, 6669 ~1995!# showed that collapsed structures can be unfolded under external forces; they
demonstrate this for the case where each monomer is exposed to a force with a random direction: Then
networks with a spectral dimension up to 4 become unfolded. In the present paper we focus on the dynamics
of such unfold processes. We investigate GGSs exposed to different kinds of external forces~pulling one
monomer, uncorrelated forces, long-range correlated forces, and diblocklike forces!. We show that external
perturbations that act only on a few monomers are not able to unfold a collapsed structure; on the other hand,
more general kinds of forces lead to a stretching of GGSs even fords.2 as long asds,dc , wheredc depends
on the kind of the force field. In general, during the unfold process the sizeR of the GGS grows via a power
law R}ta (0<a<1), wherea depends onds as well as on the kind of force field that is applied.
@S1063-651X~98!08205-1#

PACS number~s!: 36.20.Ey, 05.40.1j, 87.15.By
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I. INTRODUCTION

The theoretical investigation of the conformational a
dynamical properties of flexible polymers often procee
from a very simplified model, the Rouse model@1,2#. In this
model the polymer is considered as being a sequenc
beads connected via harmonic~entropic! springs~Gaussian
chain!; the chain incessantly changes its shape due to the
agitation. Though this model disregards many features
physical chain~e.g., the excluded volume effect, hydrod
namic interactions, and topological effects! it leads in a se-
ries of cases~e.g., semidilute solution and melts below th
entanglement limit! to a reasonable description of the phy
cal situation@2#. Moreover, due to its simplicity, the mode
serves in many cases as a first step towards the theore
formulation and the understanding of polymers in a gr
variety of environments. Thus, recently a series of works w
devoted to the investigation of single polymer chains un
different kinds of external forces, namely, polymers in s
vent flows@3,4# and charged chains~polyampholytes! in ex-
ternal electrical fields@5,6#. For these cases many conform
tional and dynamical features were calculated analytically
the framework of the Rouse model.

It is now tempting to augment these investigations to
jects that show a more general connectivity, namely, to
so-called generalized Gaussian structures~GGSs!, which are
generalizations of the Gaussian chain. GGSs may serv
simplified models for membranes, gels, and polymer n
works. Note that GGSs do not account for intermolecu
interactions, i.e., whether excluded volume or entanglem
effects are taken into account. However, in dry polymer n
works the excluded volume may be screened~similarly to
polymer melts @2,7#!; furthermore, entanglement effec
should be quite small for sufficiently high cross-link den
ties and thus short enough network chains. In the pre
paper we assume the GGS to be an isotropic and loc
homogeneous fractal network. Huge fractal macromolecu
571063-651X/98/57~5!/5775~7!/$15.00
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are expected to be formed during gelation processes~cf., for
instance, the percolation model discussed in Ref.@7#!. Cates
@8# showed that the radius of gyration of such networ
obeys

Rg
2'b2N~22ds!/ds for ds,2 ~1!

~see also Ref.@9#!. HereN denotes the number of beads a
b is the mean distance between adjacent beads.ds is the
spectral dimension of the network~see, for instance, Refs
@10,11#!; in the case of a regular object,ds equals the Eu-
clidean dimension. Equation~1! is valid for ds,dc52; on
the other hand, fords.dc the radius of gyration is of the
order ofb, i.e., the overall size of the network is governed
its local properties~collapsed state! @9#.

This collapse transition sheds also a light on some rec
works on polymer localization@12–14#. Thus Solf and Vilgis
@13# and Kantor and Kardar@14# considered the behavior o
a one-dimensional Gaussian chain comprisingN monomers
in which in additionM randomly selected pairs of monome
are restricted to be in contact. They showed that the radiu
gyration scales asRg

2'b2N/M . Thus the structure is in a
collapsed state~with Rg'b! when M is of the order ofN,
i.e., when the number of bonds of the resulting structure is
the orderN1M'2N. Note that for a square lattice~‘‘mem-
brane’’! that obeysds5dc52 the number of bonds is als
approximately 2N.

The collapsed state of GGSs withds.2 is physically not
meaningful and the behavior of real networks and me
branes will then usually be governed by other effects such
the excluded volume. However, it was shown by Somm
and Blumen@9# that the application of external forces ma
unfold collapsed GGSs; thus a random force field leads to
unfolding of GGSs with spectral dimensions up to 4. Th
example shows that the interplay between the chain con
tivity ~represented by one parameter, the spectral dimens!
and the external perturbation can lead to an unfolded st
5775 © 1998 The American Physical Society
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5776 57H. SCHIESSEL
ture, even beyondds52. In such cases GGSs may serve
useful network models even beyond this critical dimensi
It is the purpose of the current paper to investigate the
dynamical and conformational behavior of GGSs under
ferent kinds of external forces and to calculate the decis
role of the force field on the dimensiondc up to which the
collapsed state can be unfolded. We start in the next sec
with the case when one applies a force on one given mo
mer of the GGS; by means of this simple example we int
duce the model and the appropriate calculation metho
Then, in Secs. III and IV we consider different kinds
random force fields as well as blocklike forces.

II. PULLING ONE MONOMER

In this section we calculate dynamical and conformatio
properties of networks for the case that an external force
on one given monomer. Recent optical developments al
one to realize such micromanipulations of macromolecu
Thus Perkinset al. @15# and Wirtz @16# have dragged indi-
vidual DNA molecules by optical or magnetic tweezers; A
blard et al. @17# have performed similar experiments wi
magnetic beads in actin networks.

We model the network as a GGS consisting ofN beads,
connected by harmonic springs. The configuration of
GGS is given by the set of vectors$rn(t)%, where rn(t)
5„xn(t),yn(t),zn(t)… denotes the position of thenth bead at
time t; n51, . . . ,N. The potential energyU($rn(t)%) of the
GGS contains only the elastic contributions of neighbor
segments and of the external force that acts on one mono
say thekth one. This leads to

U„$rn~ t !%…5
K

2 (
$ i , j %PB

@r i~ t !2r j~ t !#22f~ t !r k~ t !

5
K

2 (
i , j 51

N

r i~ t !M i j r j~ t !2f~ t !r k~ t !, ~2!

where the summation extends over all pairs$ i , j % of the set of
bondsB between theN monomers. In Eq.~2! K53T/b2 is
the ~entropic! spring constant, whereT denotes the tempera
ture in units of the Boltzmann constantkB andb is the mean
distance between neighboring beads. Furthermore, we in
duce in Eq.~2! M i j 5(Mi j ,Mi j ,Mi j ), whereMi j is an ele-
ment ofM , the so-called generalized Gaussian Rouse ma
~GRM! @18–20#. M can be constructed as follows: Start wi
all matrix elements set to zero. Then account for each b
between the monomersn andm by increasing the diagona
elementsMnn and Mmm by 11 and the nondiagonal ele
mentsMnm and Mmn by 21. For a linear structure~i.e., a
polymer chain! this procedure leads to a tridiagonal matr
which is the well-known Rouse matrix@1#.

The dynamics of the GGS is described byN coupled
Langevin equations, the generalized Rouse equations@8,20–
22#

z
]rn~ t !

]t
52

]U„$rn~ t !%…

]rn~ t !
1w~n,t !. ~3!

Herez is the friction constant per monomer andw(n,t) is the
thermal noise that mimics the collisions of thenth bead with
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the solvent molecules. The thermal noise is Gaussian~white!
with zero mean, so that one has

^w i~n,t !&50, ^w i~n,t !w j~n8,t8!&52zTd i j dnn8d~ t2t8!.
~4!

In Eq. ~4! i and j denote the components of the force vect
i.e., i , j 5X,Y,Z, and the angular brackets stand for therm
averaging, i.e., averaging over the realizations of the Lan
vin forcesw(n,t). From Eqs.~2! and ~4! it follows that Eq.
~3! decouples in theX, Y, and Z directions. Hence, in the
following we can restrict ourselves to one component, s
the X component, which obeys

]xn~ t !

]t
52

K

z (
m

Mnmxm~ t !1
1

z
f ~ t !dnk1

1

z
wX~n,t !,

~5!

where we setf(t)5„f (t),0,0….
The solution of Eq.~5! is given by

xn~ t !5
1

z E
2`

t

dt(
m

~e2~K/z!M ~ t2t!!nmf ~t!dmk

1
1

z E
2`

t

dt(
m

~e2~K/z!M ~ t2t!!nmwX~m,t! ~6!

~cf. also Ref.@20#!. From Eq. ~6! we find that the mean-
averaged position of thekth monomer~on which the external
force acts! obeys ^xk(t)&5( f /z)*0

t dt(e2(K/z)Mt)kk , where
we assumed that the force is switched on att50, i.e., f (t)
5 f u(t). By further performing the average overk ~struc-
tural average! we obtain

^^x~ t !&&5
f

zN (
0

t

dt Tr~e2~K/z!Mt!

5
f

zN E
0

t

dt(
k51

N

e2~K/z!lkt. ~7!

Thus the average displacement of the bead on which
force is applied follows from the trace of the matr
e2(K/z)Mt, which equals the sum over its eigenvalu
e2(K/z)lkt. Here$lk%, with k51, . . . ,N, denotes the set o
eigenvalues of the GRMM .

For largeN it is convenient to transform in Eq.~7! the
sum overk into an integral overl by introducing the spectra
densityn(l) of M . This leads to

^^x~ t !&&.
f

z E
0

t

dtE
0

`

dl n~l!e2~K/z!lt. ~8!

The spectral density reflects the connectivity of the GGS;
isotropic and locally homogeneous fractalsn(l) obeys a
power law@11#

n~l!.lds/221, ~9!

i.e., here the connectivity of the network is characterized
one parameter, the spectral dimensionds . The use of a con-
tinuous spectrum in Eq.~8! is reasonable as long aslmax

21

!(K/z)t!lmin
21 . Here lmax, the largest eigenvalue ofM , is
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57 5777UNFOLD DYNAMICS OF GENERALIZED GAUSSIAN . . .
determined by the local network properties and is of or
unity @20#. Furthermore, the smallest nonvanishing eige
value is given bylmin.N22/ds ~cf., for instance, Ref.@8#!.
For ds,2 this can be seen by the following simple arg
ment: The minimal nonvanishing eigenvaluelmin is in-
versely proportional to the timet it takes a random walker to
explore the whole fractal lattice that hasN sites @note that
Eq. ~3! is directly related to the master equation for a rand
walker on the corresponding lattice; see, for instance, R
@23##. Now the numberS(t) of different sites visited by the
random walker grows with time as

S~ t !.~T/zb2!ds/2tds/2 ~10!

for ds,2 @10,11#. SettingS(tG)5N one obtains

tG.zb2N2/ds/T ~11!

and thus indeedlmin5(zb2/T)tG
21.N22/ds.

In order to calculatê ^x(t)&& for z/K!t!tG we insert
the spectral density~9! into Eq. ~8!. For ds,2 this leads to

^^x~ t !&&.
f

z S z

K D ds/2E
0

t

dt t2ds/2.
f bds

z12ds/2Tds/2
t12ds/2.

~12!

Thus, in this time range the displacement of the tagged b
follows a power law with an exponent that decreases w
increasingds . In the case of a one-dimensional chain, i.
for ds51, ^^x(t)&& shows at1/2-subdrift behavior, a resul
that was reported in Ref.@5#.

For ds>2 the integral in Eq.~12! diverges at the lower
bound; note, however, that for very short timest!z/K
5zb2/T the behavior of the GGS is governed by its loc
properties. Thus let us introducez/K as a lower cutoff. For
ds.2 this leads to

^^x~ t !&&.x01
f

z S z

K D ds/2E
z/K

t

dt t2ds/2

5x01
f b2

T
2

f bds

z12ds/2Tds/2
t12ds/2, ~13!

wherex0 denotes the bead’s displacement at the timez/K,
i.e., x05^^x(z/K)&&. For ds52 one finds a logarithmic time
dependence. We note that in the force-free case the m
squared displacement of a single bead shows similar be
ior patterns@24#.

Before we provide a physical interpretation of these
sults, we calculate the short- and long-time behavior
^^x(t)&&. As mentioned above, the continuous description
the spectrum in Eq.~8! is not valid fort,z/K andt.tG and
we have to go back to the exact formula, Eq.~7!. We con-
sider here only the case of connected objects so that only
eigenvalue vanishes, sayl1 ; thus

^^x~ t !&&5
f

zN
t1

f

NK (
k52

N
12e2~K/z!lkt

lk
. ~14!

For t!z/K this leads to^^x(t)&&.( f /z)t. On the other
hand, for long timest@tG Eq. ~14! takes the form̂ ^x(t)&&
.( f /zN)t1L, where the time-independent term is given
r
-

f.

ad
h
,

l

n-
v-

-
f
f

ne

L.
f b2

T E
lmin

lmax
dl lds/222

.H f b2

T
lmin

ds/221.
f b2

T
N~22ds!/ds for ds,2

f b2

T
lmax

ds/221.
f b2

T
for ds.2 .

~15!

Note that depending on the value ofds , the lower or the
upper bound of the integral in Eq.~15! determines the be
havior of L.

Let us now survey and discuss the results. In Fig. 1~a! for
the caseds,2 the displacement of the tagged bead is plot
logarithmically against time. For very small timest!z/K the
bead does not ‘‘feel’’ any constraints that arise from t
connection to neighboring beads. It moves ballistically w
the constant velocityv5 f /z; see below Eq.~14!. Then, in
the intermediate-time regime more and more beads are
volved in a collective motion; consequently, the velocity
the tagged monomer decreases with time, following at2ds/2

behavior; cf. Eq.~12!. Note that this time domain is very
broad for largeN. Finally, att5tG the motion of the tagged
bead crosses over into a small drift motion@see above Eq.
~15!#. The velocity obeysv5 f /zN, which follows from the
balance between the external forcef and the frictionzN of
the whole GGS, i.e., fort.tG the whole network moves
ballistically and the tagged bead mirrors the motion of t
center of mass. Note further the time-independent term~15!.
It represents the equilibrium value of the stretching of t

FIG. 1. Response of a GGS with~a! ds,2 and~b! ds.2 to an
external force that acts on one given monomer. Schematically
picted is the displacement of the tagged monomer as a functio
time ~see the text for details!.
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5778 57H. SCHIESSEL
GGS due to the external force and follows from the summ
tion over the 1/lk values. It can also be obtained by setti
t5tG in Eq. ~12!. The stretching leads to anN(22ds)/ds de-
pendence of the size of the GGS, which is significantly lar
than the typical size in the force-free case, which is prop
tional to N(22ds)/2ds @cf. Eq. ~1!#.

In Fig. 1~b! we depict the caseds.2. The behavior for
very short timest!z/K and long timest@tG is again gov-
erned by the ballistic motion of the tagged bead and of
whole network, respectively. On the other hand, in t
intermediate-time regimez/K!t!tG one has a very smal
displacement of the bead: Att5z/K one finds ^^x(t)&&
. f /K; see below Eq.~14!; then, during the following inter-
mediate regime the tagged monomer moves only a dista
f /K @cf. Eq. ~13!#, which is of thesameorder as the elonga
tion at t5z/K. Thus the conformation att5tG is still gov-
erned by thelocal properties of the network. Now, as note
above, GGS withds.2 are collapsed in the force-free cas
Our considerations show that it is not sufficient to pull at o
monomer in order to unfold the collapsed structure.

We give now a scaling argument from which Eq.~12!
follows directly ~cf. also Ref.@26#!. As already discussed
above, the generalized Rouse equation is formally equiva
to a diffusion equation on the corresponding fractal latti
For ds,2 the numberS(t) of different sites visited by a
random walker grows with time following Eq.~10!. In the
framework of the Rouse dynamics,S(t) can be interpreted a
being the number of monomers that move collectively w
the tagged bead. The domain that moves collectively has
velocity v(t)5@zS(t)#21f . The average displacement of th
single bead can be estimated from the average displace
of the S(t) monomers, i.e.,x(t).*0

t dt v(t), which ~for ds

,2! leads again to Eq.~12!. Note that Eq.~10! is valid as
long as the network does not move as a whole. At later tim
t.tG , g(t)5N holds and we recover the drift motion of th
c.m. withv5 f /zN. The crossover timetG can be interpreted
as being the largest internal relaxation time of the GGS.
close this section by noting that the above-given consid
ations also hold for the case when one applies external fo
to a group ofg monomers as long asg!N ~a situation that
occurs in a class of rheological experiments@27#!.

III. UNCORRELATED FORCE FIELD

In this section we assume that each monomer is expo
to a constant force with a random direction independen
from the force directions of the neighboring monomers. D
note by f k the force on thekth monomer; the force on eac
monomer is taken to be directed either in the positive or
the negativeX direction, i.e.,f k56 f . Then one has

^ f nf m&5 f 2dnm , ~16!

where the angular brackets denote the average with res
to different realizations of$ f k%. Polyampholytic networks in
external electrical fields and copolymers or networks of
polymers at interfaces are examples of such kinds of exte
perturbations@29#.

Following the preceding section@cf. Eqs. ~2!–~6!#, we
find for the displacement of thekth bead after switching on
the force field att50
-
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^xk~ t !&5
1

z E
0

t

dt(
m

~e2~K/z!Mt!kmf m , ~17!

where the angular brackets denote the thermal average.
we are interested in the mean-squared displacement. Ta
the square of Eq.~17!, then averaging overk, and, finally,
averaging over the different realizations of$ f n% leads to

^^^x~ t !&2&&5
1

z2N E
0

t

dt1E
0

t

dt2

3(
m,n

~e2~K/z!M ~t11t2!!mn̂ f nf m&

5
f 2

z2N E
0

t

dt1E
0

t

dt2(
k51

N

e2~K/z!lk~t11t2!.

~18!

Similarly to Sec. II, we calculate now the intermediat
time behaviorz/K!t!tG by going to a continuous distri
bution of the eigenvalues. Fords,2 this leads to

^^^x~ t !&2&&.
f 2

z2 S z

K D ds/2E
0

t

dt1E
0

t

dt2~t11t2!2ds/2

5
f 2bds

z22ds/2Tds/2
t22ds/2. ~19!

For ds51 one recovers thet3/2 dependence that was found
Ref. @5#.

Now Eq.~19! is also valid for 2<ds,4. This can be seen
by introducing a small positive cutoff« at the lower bound of
the integral overt2 ; one finds then the displacement to b
proportional to (2t)22ds/22«22ds/2 so that fords,4 the be-
havior for very short times can be neglected. Fords>4, how-
ever, the displacement shows a strong dependence on«; here
we introduce, similarly to Eq.~13!, z/K as a lower cutoff for
both integrations in Eq.~19!. This leads to

^^^x~ t !&2&&.
f 2

K2 F12S K

z
t D 22ds/2G . ~20!

The behavior fort!z/K and t@tG can be calculated
similarly to Sec. II by treating in Eq.~18! the contribution of
the vanishing eigenvalue separately. Fort!z/K one finds a
mean-squared displacement that goes as (f 2/z2)t2; this cor-
responds to the single-bead drift that we already discus
below Eq.~14!. Furthermore, the long-time behaviort@tR
obeys ^^^x(t)&2&&.( f 2/z2N)t21L2. We find, similarly to
Sec. II, that the long-time behavior has two contributions
drift motion ~here, however, by a factorN1/2 larger, which
follows from the fact that the typical total force is of th
order N1/2! and a time-independent stretching term, whi
represents the typical equilibrium sizeL of the stretched net-
work:
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L2>
f 2

K2 E
lmin

lmax
dl lds/223

.H ~ f 2b4/T2!lmin
~ds24!/2.~ f 2b4/T2!N~42ds!/ds for ds,4

~ f 2b4/T2!lmax
~ds24!/2. f 2b4/T2 for ds.4 ,

~21!

a result that was already found by Sommer and Blumen@9#.
For the one-dimensional chain one hasL2}N3 @5,31# ~cf.
also Ref.@34#!. From Eq.~21! it can be seen that the rando
force field is able to unfold collapsed GGSs as long asds
,dc54. Hereby the unfold dynamics follows the power la
~19!; setting t5zb2/Tlmin , one recovers Eq.~21!. On the
other hand, in order to unfold a GGS withds.4 it is not
sufficient to apply an uncorrelated force field@cf. Eqs.~20!
and~21!#. In Fig. 2 we display the dynamics of a single be
for both casesds,4 andds.4.

It can be seen from Eq.~21! that for ds,4 the external
force may lead to a quite strong stretching of the GGS. D
to its linearity, the model of entropic Gaussian forces w
fail for large external perturbations, resulting in an unphy
cal overstretching. Hence we are led to the condition that
size of the stretched network~21! is smaller than the size o
the completely unfolded structureL'N1/ds. This leads to the
requirementf ,(T/b)N(22ds)/2ds. Thus, fords.2 the exter-
nal force may be quite strong without contradicting t
Gaussian assumption. Explicit studies of the role of the fin
extensibility for one-dimensional chains can be found
Refs.@35, 36#.

FIG. 2. Response of a GGS with~a! ds,4 and~b! ds.4 to an
uncorrelated force field. Depicted is the mean-squared displace
of a single monomer averaged over the different realizations of
force field ~see the text!.
e
l
-
e

e

Let us try now to derive the power law~19! through a
scaling argument similar to that presented at the end of S
II. For a given monomer the numberS(t) of neighboring
beads that move collectively with it is given by Eq.~10! for
ds<2. The typical total force that acts on theseS(t) beads is
of the orderfAN. The typical velocityv(t) of this collec-
tively moving group is thus of the order@zAS(t)#21f . In-
serting now Eq.~10! for ds,2 and integrating the velocity
over t leads to Eq.~19!, the power law that we have found b
the more rigorous calculation. Now we have shown abo
that Eq.~19! is also valid for 2<ds,4. Fords.2, however,
S(t) obeysS(t)}t @instead ofS(t)}tds/2; the number of dif-
ferent sites visited by a random walker can at least gr
linearly with time#. So here the spectral dimension does n
enter into the scaling expression, contrary to the explicitds
dependence of Eq.~19!.

IV. CORRELATED FORCE FIELDS
AND THE DIBLOCK SITUATION

Keeping this intricacy in mind, we use the above-giv
scaling argument in order to estimate the behavior of GG
that are exposed to more general kinds of random fo
fields, namely, force fields with long-range correlations~cf.
also Ref.@26#!. Assume that the forces are distributed in su
a way that the total forcef tot obeys ^ f tot

2 &>f2N2g, with 0
<g<1. The caseg5 1

2 corresponds to the uncorrelated ca
discussed above, whereas forg. 1

2 the forces are positively
and for g, 1

2 negatively correlated. Note that the casesg
5 1

2 and 1 can be simply realized, whereas long-rang
~anti!correlations cannot be simply induced for many no
trivial connectivities. Using Eq.~10!, one finds withv(t)
.@S(t)#g21f /z that the displacement fords,2 is given by

x~ t !.
f

z S zb2

T D ~12g!ds/2

t12~12g!ds/2. ~22!

Equation~22! is also valid for the range 2<ds,dc , where
dc depends ong ~see below!. The equilibrium value of the
typical sizeRg of the GGS in the force field is reached att
5tG ; using Eq.~11! we find

Rg.x~tG!.~ f b2/T!N@22~12g!ds#/ds for ds,dc .
~23!

Equation~23! suggests that the correlated force field is a
to unfold the structure up to the critical dimension

dc5
2

12g
. ~24!

We show now that this conjecture holds for three differe
cases.~i! For g5 1

2 Eq. ~24! leads indeed todc54 ~see Sec.
III !. ~ii ! The caseg50 corresponds to the alternating cas
which can be realized for linear chains, square lattices, cu
lattices, etc. In this case the forces of two neighboring mo
mers cancel each other. However, one additional force
similarly to the case where one applies a force only to o
monomer and thus leads only to a stretching of netwo
with ds,2 ~i.e., dc52; cf. Sec. II! @37#. ~iii ! g→1. In this
case one has very long-ranged correlations. A typical fo
distribution consists of a few, say two, parts of groups wh

ent
e
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all forces act in the same direction. We discuss now t
diblock case and show thatdc→`, which is consistent with
Eq. ~24!.

We start with the one-dimensional case where all mo
mers of one half of the chain are exposed to forces in
positive X direction and of the other half in the negativeX
direction~‘‘tug of war’’ !. In a simplified picture the polyme
may be interpreted as a dumbbell exposed to a force of o
f N; furthermore, since one hasN sequential springs, the ef
fective spring constant isKeff5K/N. This results in an elon-
gationR. f N/Keff5(f/K)N2, which is consistent with the re
sult of the exact calculation, Eq.~21! of Ref. @31#. Now let us
turn to a square lattice (ds52) that is exposed to a diblock
like force field. Here one hasN1/2 rows, each composed o
N1/2 sequential springs, which counteract the external t
sion. Furthermore, one hasN1/2 columns, each comprising
N1/2 springs that are perpendicular to the force field so t
we can neglect them for the current consideration. The ef
tive spring constant of the structure is nowKeff
5N1/2K/N1/25K, whereas the force is again of the orderf N.
Thus the typical size of the stretched membrane is given
R. f N/Keff5(f/K)N.

This argument can be easily extended to hypercubic
tices of arbitrary integer dimensionds>1. One finds then
that the effective spring constant is given byKeff

5N(ds21)/dsK/N1/ds5KN(ds22)/ds. Thus the size of stretche
structure is given byR. f N/Keff , which leads to

R.~ f /K !N2/ds. ~25!

We conjecture that this relation also holds for fractal n
works with nonintegerds values. As can be seen from E
s

or

s

is

-
e

er

-

t
c-

y

t-

-

~25!, a diblocklike force field can unfold collapsed structur
of any given spectral dimension, i.e., here one has ind
dc→`.

Let us now discuss the unfold dynamics in the diblo
situation. After switching on the field, a given monomer an
typically, also the monomers in the neighborhood fee
force in the same direction. Thus all monomers move bal
tically with a velocity v5 f /z. The typical displacement o
the given monomer is thus given by

x~ t !.~ f /z!t. ~26!

After the timetG the two groups that move collectively i
opposite directions will feel the connectivity of the overa
structure and the stretching process stops. It follows ind
from Eqs.~25! and~26! that the new~internal! equilibrium is
reached attG}lmin

21}N2/ds.
We close this section by noting that this simple pictu

also holds for the general case of correlated force fie
Consider again a regulards-dimensional cubic lattice with
Keff5KN(ds22)/ds. In the correlated case the typical force th
acts on the structure is of the orderf Ng. FromR. f Ng/Keff
we recover Eq.~23!.
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