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Growing length scale related to the solidlike behavior in a supercooled liquid
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The behavior of propagating shear waves in a supercooled liquid is analyzed, taking into account the proper
structural effects at high density. The longest wavelength for the propagating shear waves that the undercooled
liquid can sustain grows with density. This length scale, which is linked to a characteristic solidlike behavior
of the supercooled liquid, follows a power-law divergence with an exponent 1.2 in the vicinity of the ideal
glass transition instability of the self-consistent mode-coupling theory.@S1063-651X~98!07005-6#
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The nature of the glass transition has been widely inv
tigated in recent years from mainly two different approach
the kinetic models@1# and the quasiequilibrium models@2–
4# where an underlying continuous phase transition in
supercooled liquid results in its freezing into a solidli
amorphous state. However, the search@5,6# for a correlation
length associated with any possible thermodynamic tra
tions has so far produced negative results. In the kinetic
proach, the widely studied model@7# is obtained from a self-
consistent mode-coupling approximation of the mem
function in terms of the slowly decaying density fluctuation
This model has a dynamic instability characterized by
divergence of the viscosity and transition of the supercoo
liquid to an ideal glassy phase beyond a critical density. T
structure of the liquid does not undergo any drastic chang
this transition. In the ideal glassy phase the density corr
tion function freezes to a nonzero long-time limit. The ide
glassy phase has solidlike properties and it can sup
propagating shear waves.

When a low-density fluid is sheared it does not sustain
shear and the stress is proportional to the shear rate, whi
an elastic solid the stress is proportional to the strain. T
viscoelastic response of the supercooled liquid is formula
in terms of the combination of the above two behaviors a
the solidlike nature of the medium is reflected through
propagating shear waves. Theories of liquid state that incl
only the short time or uncorrelated collisions@8,9# in a liquid
therefore do not account for the propagating shear waves
considering the cooperative nature of the dynamics in
dense liquid through the mode-coupling terms in the mem
function @10–12#, the propagating shear waves at lar
enough wave numbers are accounted for.

The mode-coupling model with a glass transition as
ferred to above also has been derived from similar appr
mations. With extended mode-coupling models@13–15# it
has been shown that the dynamic transition is remov
However, the complete analysis still predicts a qualitat
change in the dynamics around a temperature range hi
than the calorimetric glass transition temperature. This
signature of a dynamic instability that is present in t
simple model and such behavior has indeed been observ
a number of different systems such as fragile liquids fr
light scattering and neutron scattering studies. In the pre
571063-651X/98/57~5!/5771~4!/$15.00
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work we analyze the behavior of the shear waves close to
transition point approaching from the liquid side.

The simplest models of undercooled liquids mainly stu
the dynamics of the conserved densities such as mass,
mentum, and energy. There have also been attempts@16–18#
to extend the set of slow modes to include properties m
specific to the solidlike nature of the amorphous state. T
relaxation of a shear in a fluid is studied by analyzing t
transverse autocorrelation function and in the low-dens
fluid this correlation function is characterized by a simp
pole signifying a diffusive process. For the dense fluid
small enough length scales~i.e., large enough wave num
bers! it is a damped oscillatory mode, referred to as the sh
waves @19,20#. We investigate here the dynamics of th
transverse autocorrelation function by including in the cor
sponding memory function the generalized shear visco
@21#, the so-called mode-coupling term, which accounts
the cooperative dynamics at high densities. The role of str
tural effects on the slowing down in relaxation near the
stability is determined from the wave-vector dependen
@22# of the mode-coupling contributions in the theory. W
have considered here a simple model for the structure of
liquid, but the results obtained here should be more gene

The dynamics of the transverse autocorrelation funct
f(q,t) @21# normalized with respect to the equal time val
is given by

ḟ~q,t !1h0~q!f~q,t !1E
0

t

hmc~q,t2t!f~q,t!dt50,

~1!

where the memory function@20# h(q,t) corresponds to the
transverse part of the viscosity tensor, giving the shear
cosity. Usually, h(q,z)5h01hmc(q,z), where h0 is the
short time or bare part, arising from uncorrelated binary c
lision of the fluid particles. The mode-coupling contributio
for hmc takes into account the cooperative effects in t
dense fluids and has contributions from the coupling of
hydrodynamic fields. In the supercooled liquid the dens
fluctuations are considered to be dominant andhmc is ex-
pressed self-consistently in terms of the density autocorr
tion functions. The Laplace transform of the density corre
tion function Grr(qW ,t) normalized with respect to its equa
time value can be expressed in the form@13#
5771 © 1998 The American Physical Society
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F~qW ,z!5
z1 iGR~q,z!

z22Vq
2~q!1 izGR~q,z!

, ~2!

whereVq5q/AbmS(q) corresponds to a characteristic m
croscopic frequency for the liquid state dynamics. The c
responding memory function, the generalized longitudi
viscosityGR(q,z)5G0(q)1Gmc(q,z), has a partG0 related
to bare or short-time dynamics with uncorrelated collisio
and the mode-coupling contributionGmc signifying the co-
operative motions in the dense liquid. In the simplest
proximated form the renormalized expressions for the lon
tudinal and shear viscosities are respectively given by

Gmc~q,t !5l0E dkW

~2p!3 @$q̂•kW%c~k!1$q̂•~qW 2kW !%

3c~ uqW 2kW u!#2Grr~qW 2kW ,t !Grr~kW ,t ! ~3!

and

hmc~q,t !5l0E dkW

~2p!3 @c~k!2c~qW 2kW !#2k2~12u2!

3Grr~qW 2kW ,t !Grr~kW ,t !, ~4!

wherel05(2bm4r0)21 andu5q̂• k̂, the dot product of two
corresponding unit vectors. Equations~3! and ~4! are ob-
tained from a field-theoretic analysis of the equations of n
linear fluctuating hydrodynamics@13# for the conserved den
sities $c i% in the supercooled liquids, expressed in the fo
of generalized Langevin equations@23#

]c i

]t
5Vi@c#2(

j
L i j

dF

dc j
1u i . ~5!

Vi represents the reversible part of the dynamics and is
ally expressed in terms of the Poisson brackets@24# between
the slow variables.Li j corresponds to the bare transport c
efficients giving rise to dissipation.u i is the Gaussian ran
dom white noise that is related to the bare transport coe
cients

^u i~xW ,t !u j~xW8,t8!&52b21Li j d~xW2xW8!d~ t2t8!. ~6!

The quantityF is the free-energy functional having two par
F5FK1FU . For the kinetic partFK the standard form@25#
is used, while for the potential partFU the simple choice is
in terms of the direct correlation functionc(x) @26#,

Fu@r~x!#5E d3x r~x!$ ln@r~x!/r0#21%

2
1

2bm2E d3x d3x8c~2!~x2x8!dr~x!dr~x8!,

~7!

whereb51/kBT. Use of the form~7! obtains the results~3!
and~4!. For smallq bothh(q,t) andG(q,t) are proportional
to q2, following the Navier-Stokes hydrodynamics.

We solve for the time evolution for the transverse cor
lation function f(q,t) for q small, with a self-consisten
r-
l

s

-
i-

-

u-

-

-

-

evaluation of the density correlation functionG(qW ,t) from
Eq. ~2!. It has been demonstrated that for densities abov
critical valuenc the density autocorrelation function freez
@7# to a nonzero value, i.e.,F(qW ,t→`)5 f (q). For a hard-
sphere system whose static structure factor is approxim
with the Percus-Yevick@27# ~PY! solution with the Verlet-
Weiss~VW! @28# correction this take place at a critical valu
of the packing fractionDc50.525@22#. An analysis@21# of
the pole structure of the Laplace transform of Eq.~1! shows
that there is dispersion relation of the formz;6cq for all
values of the wave vectorq→0. Thus the ideal glassy phas
will sustain shear waves at all length scales. The speed o
shear wavesc can easily be computed in terms of thef (q)’s
@29#. Here we focus our analysis on the densities below
critical density corresponding to the dynamic instability s
nifying a transition to the ideal glassy phase. Although t
appearance of solidlike behavior in the dense fluid ari
from the cooperative nature of the dynamics expressed
terms of the mode-coupling terms, the wave-vect
dependent bare transport coefficients are also importan
the short-time dynamics over different length scales, es
cially at short distances. In the present calculation we use
the bare transport coefficients results obtained from ha
sphere models@30#, whereG0(x) andh0(x) are respectively
expressed as (2/3tE)@12 j 0(x)12 j 2(x)# and (2/3tE)@1
2 j 0(x)2 j 2(x)#, with x5qs being the wave vectorq in
terms of the hard-sphere diameters and j l the spherical
Bessel function of orderl . tE is the Enskog collision time
@20#.

We observe that forq.q0 the relaxation of transvers
current correlation is oscillatory, indicating that the syste
sustains shear waves up to this wave number. For wave
tors smaller thanq0 the decay of the correlation function i
no longer oscillatory andf never goes negative. In Fig. 1 w
show the behaviorf(t) obtained from a self-consistent so
lution of the coupled set of equations~1! and~2! showing the
crossover in the behavior beyond the wave vectorqs
50.025 for the packing fractionD50.450. In order to make
a quantitative estimate of the crossover wave number
have adopted the following procedure: The mode-coupl

FIG. 1. Transverse current-current correlation function forD
50.450 at values ofqs50.0075~dotted curve!, 0.02 ~dot-dashed
curve!, and 0.0875~dashed curve!.
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equations are solved for small wave vectors and an invers
the timet0 for which the first zero in the transverse autoco
relation function appears is plotted against the correspon
q value. In Fig. 2 this plot is shown for packing fractionD
50.520. For smallq this shows a straight-line behavio
which corresponds to the fact that the argument of the os
latory part in the correlation function followscqt05const at
the crossover to a negative value. This straight line, howe
meets theq axis at a nonzero value, indicating the largesq
for which an oscillatory decay of the correlation functio
persists. The slope of this line is proportional to the speec
of the shear wave in the dense liquid at the correspond
density. We define a lengthL052p/q0 corresponding to this
critical value of the wave number for the shear wave a
study its behavior as one approaches a critical density of
mode-coupling instability. In Fig. 3 the variation ofL0 with
packing fractionD is shown for a system of hard sphere
Here we have used the PY solutions with VW corrections
the static structure factor of the liquid. As the critical packi
fraction 0.525 is approached the observed length scale i
cates a divergence of the length scaleL0. Very close to the

FIG. 2. Inverse of the timet0 scaled with respect to the Ensko
time tE vs qs ~see the text!.

FIG. 3. Growth of the length scaleL0 ~defined in the text! with
the packing fractionD.
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critical density the results fit well to a power-law divergen
form with an exponent of 1.2.

We have considered here the simple form of the mo
coupling kernel that results in a sharp transition of the sup
cooled liquid to an ideal glassy phase beyond a critical d
sity. With extended mode-coupling models@13,14# one
should expect the removal of any sharp divergence inL0 as
the critical packing fractionDc is approached. Such theorie
have demonstrated that in the final decay process ergod
is restored in the supercooled liquid over the longest-ti
scale and hence rules out any transition to an ideal gla
phase with infinite viscosity. However, the dynamic instab
ity predicted by the simple mode-coupling model is not
artifact of the approximation. Strong remnants of the tran
tion are seen in the study of supercooled liquid dynamics
this has led to identification of a different temperatureTc ,
signifying a qualitative change in the dynamics of the sup
cooled liquid. It has been shown in very widely investigat
studies in recent years that in experiments@31–33# and com-
puter simulations@34# at the supercooled densities for a cla
of systems referred to as fragile glasses, signatures of su
transition temperature can indeed be identified. We have
vestigated here the implications of the simple model as a
step towards understanding the growing length scales
supercooled liquid. A complete picture should emerge w
the consideration of the extended mode-coupling model.
a full analysis of the growth behavior of the length sca
using the extended model, one would be required to hav
better understanding of the short-wavelength behavior of
correlation function. Indeed, the length scaleL0 does not
represent any underlying thermodynamic phase transit
but indicates how the cooperative nature of the dynamics
structural relaxation, accounted for through the mod
coupling terms, grows with the density and is affected by
dynamic instability of the ideal glass transition. The solidli
nature of undercooled liquids has also been observed f
the transverse sound modes@35#. Mountain has observed
@36# a similar behavior of propagating shear waves fro
molecular-dynamics simulations of fragile liquids, which a
also the systems where the mode-coupling models ap
This length scale of maximum wavelength for propagat
shear waves observed from molecular-dynamics simulat
grows indefinitely, approaching the glass transition. In
present work we have demonstrated that for the s
consistent mode-coupling model this length scale follow
power-law divergence around its characteristic dynamic
stability.

We like to stress here the importance of our work w
reference to a viscoelastic theory. In a viscoelastic theor
phenomenological parameter is introduced to describ
frequency-dependent shear viscosity and using a simple
ponential time dependence in the transport coefficient
can obtain propagating shear waves in terms of this re
ation parameter. However, whether or not it has anything
do with the growing length scales in a supercooled liquidcan
only be investigated by using experimental data as an in
in these models, be it real or computer experiment. On th
other hand, we have considered a theoretical model tha
obtained from first principles. It includes as an input only t
static structure factor of theliquid. The identical model has
already been used by various authors to investigate o
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5774 57RAJEEV AHLUWALIA AND SHANKAR P. DAS
aspects of the supercooled liquid dynamics. The grow
length scale follows very naturally from the feedback of de
sity fluctuations andwithout any diverging parameters bein
used as an input.

We also like to stress the importance of the proper wa
vector dependence in the model reflecting the effects
structure on the dynamics. Since the relaxation time is
versely proportional to the shear modulus, it follows qu
easily that beyond the ideal glass transition point there
propagating shear waves at all length scales. This is rel
to the diverging shear viscosity reflecting an elastic beha
at all length scales in the ideal glassy phase, a result
s
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follows from the mode-coupling theories predicting a diver
ing shear viscosity. However, in the present analysis of
divergence of the length scaleL0, as one approaches th
instability from the liquid side, the wave-vector dependen
of the shear modulus related to the solidlike behavior is n
essary. The length scaleL0 is related to the dynamic behav
ior of the system and is representative of the distance o
which the supercooled liquid do have enough structure
sustain propagating shear waves.
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