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Growing length scale related to the solidlike behavior in a supercooled liquid
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The behavior of propagating shear waves in a supercooled liquid is analyzed, taking into account the proper
structural effects at high density. The longest wavelength for the propagating shear waves that the undercooled
liquid can sustain grows with density. This length scale, which is linked to a characteristic solidlike behavior
of the supercooled liquid, follows a power-law divergence with an exponent 1.2 in the vicinity of the ideal
glass transition instability of the self-consistent mode-coupling thd&3063-651X98)07005-4
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The nature of the glass transition has been widely inveswork we analyze the behavior of the shear waves close to the
tigated in recent years from mainly two different approachestransition point approaching from the liquid side.
the kinetic modelg1] and the quasiequilibrium model2— The simplest models of undercooled liquids mainly study
4] where an underlying continuous phase transition in théhe dynamics of the conserved densities such as mass, mo-
supercooled liquid results in its freezing into a solidlike mentum, and energy. There have also been attefhfts1g
amorphous state. However, the sedi!6] for a correlation o extend the set of slow modes to include properties more
length associated with any possible thermodynamic transiSPecific to the solidlike nature of the amorphous state. The
tions has so far produced negative results. In the kinetic ag€laxation of a shear in a fluid is studied by analyzing the
proach, the widely studied modg] is obtained from a self- tra_nquse autocprrelanon_ fur)ctlon and in the Iow—d_ensny
consistent mode-coupling approximation of the memoryﬂu'd th|s _cqrrelatlon fur_1ct|on Is characterized by a S|r_nple
function in terms of the slowly decaying density ﬂuctuations.p0|e signifying a diffusive process. For the dense fluid at

This model has a dynamic instability characterized by th small_ e_nough length spale(se., large enough wave num-
: . . - er9 it is a damped oscillatory mode, referred to as the shear
divergence of the viscosity and transition of the supercoole

waves [19,20. We investigate here the dynamics of the

liquid to an ideal glassy phase beyond a critical density. Th.('i’ransverse autocorrelation function by including in the corre-

structure of the liquid does not undergo any drastic change ig,,nding memory function the generalized shear viscosity
t_h|s trans!tlon. In the ideal glassy phase_ the erS|ty cqrreI:Tle the so-called mode-coupling term, which accounts for
tion function freezes to a nonzero long-time limit. The ideal e cooperative dynamics at high densities. The role of struc-
glassy phase has solidiike properties and it can Suppoffra| effects on the slowing down in relaxation near the in-
propagating shear waves. stability is determined from the wave-vector dependence
When a low-density fluid is sheared it does not sustain thg¢22] of the mode-coupling contributions in the theory. We
shear and the stress is proportional to the shear rate, while tave considered here a simple model for the structure of the
an elastic solid the stress is proportional to the strain. Théiquid, but the results obtained here should be more generic.
viscoelastic response of the supercooled liquid is formulated The dynamics of the transverse autocorrelation function
in terms of the combination of the above two behaviors andp(q,t) [21] normalized with respect to the equal time value
the solidlike nature of the medium is reflected through thes given by
propagating shear waves. Theories of liquid state that include
only the short time or uncorrelated collisiof&9] in a liquid (1) + 76(q) (1) + ftn (q,t—7) (g, 7)d7=0
therefore do not account for the propagating shear waves. By ' 0 ' o M ' '
considering the cooperative nature of the dynamics in a (N}
dense liquid through the mode-coupling terms in the memory )
function [10-17, the propagating shear waves at largeWhere the memory functiof20] »(q,t) corresponds to the
enough wave numbers are accounted for. tran_sverse part of the viscosity tensor, giving the.shear Vis-
The mode-coupling model with a glass transition as re€osity. Usually, (q,2) = 7o+ 7m(d.,2), where 7, is the
ferred to above also has been derived from similar approxiShort time or bare part, arising from uncorrelated binary col-
mations. With extended mode-coupling modglg—15 it  lision of the fIw_d particles. The mode-coupllng contrlb_utlon
has been shown that the dynamic transition is removedOr 7mc takes into account the cooperative effects in the
However, the complete analysis still predicts a qualitativedense fluids and has contributions from the coupling of the
change in the dynamics around a temperature range high8ydrodynamic fields. In the supercooled liquid the density
than the calorimetric glass transition temperature. This is ductuations are considered to be dominant apg is ex-
signature of a dynamic instability that is present in thepressed self—consstently in terms of the density gutocorrela—
simple model and such behavior has indeed been observedti®n functions. The Laplace transform of the density correla-
a number of different systems such as fragile liquids fromtion functionG,,(q,t) normalized with respect to its equal
light scattering and neutron scattering studies. In the presetitme value can be expressed in the forb3]
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operative motions in the dense liquid. In the simplest ap- 0.0 [} /"=

proximated form the renormalized expressions for the longi- :‘\/' ]

tudinal and shear viscosities are respectively given by L 4
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d =0.450 at values 0§oc=0.0075(dotted curvg 0.02 (dot-dashed
an curve), and 0.0875dashed curve
dk .. _ _ _ .
nmc(q,t)z)\of ?[c(k)—c(q—k)]zkz(l—uz) evaluation of the density correlation functi@y(q,t) from
(2m) Eqg. (2). It has been demonstrated that for densities above a
i » critical valuen. the density autocorrelation function freezes
XG,,(q— k)G, (K1), (4) c y

[7] to a nonzero value, i.eF(q,t—»)=f(q). For a hard-
where\ o= (28m*po) ! andu=q-k, the dot product of two ~ SPhere system whose static structure factor is approximated
Corresponding unit vectors. Equa“o(@) and (4) are ob- with the PerCUS-YeViCl{z?] (PY) solution with the Verlet-
tained from a field-theoretic analysis of the equations of non¥eiss(VW) [28] correction this take place at a critical value
linear fluctuating hydrodynamid4.3] for the conserved den- ©f the packing fraction=0.525[22]. An analysis[21] of
sities{y;} in the supercooled liquids, expressed in the formthe pole structure of the Laplace transform of Ex). shows

of genera“zed Langevin equatiof@s] that there is diSperSiOﬂ relation of the fomicq for all
values of the wave vectar— 0. Thus the ideal glassy phase
A oF will sustain shear waves at all length scales. The speed of the
ot =Vily]- E Lij 5_¢,+ 0;. (5) shear waves can easily be computed in terms of th@)’s
] i

[29]. Here we focus our analysis on the densities below the
V, represents the reversible part of the dynamics and is usiitical density corresponding to the dynamic instability sig-
ally expressed in terms of the Poisson bracka# between nifying a transition to the ideal glassy phase. Although the
the slow variablesL;; corresponds to the bare transport co-appearance of solidlike behavior in the dense fluid arises
efficients giving rise to dissipatiors; is the Gaussian ran- from the cooperative nature of the dynamics expressed in
dom white noise that is related to the bare transport coeffiterms of the mode-coupling terms, the wave-vector-
cients dependent bare transport coefficients are also important for

the short-time dynamics over different length scales, espe-

<9i()zlt)0j(;,:t,)>:2,871|—ij S(X— >Z’)5(t—t’). (6) cially at short distances. In the present calculation we use for

the bare transport coefficients results obtained from hard-
The quantityF is the free-energy functional having two parts sphere modelg30], wherel((x) and 7y(x) are respectively
F=F«+Fy. For the kinetic parEy the standard formi25]  expressed as (2(8)[1—jo(X)+2j,(x)] and (2/3g)[1

is used, while for the potential paft, the simple choice is —jo(X)—j2(X)], with x=qgo being the wave vectoq in
in terms of the direct correlation functiar(x) [26], terms of the hard-sphere diameterand j, the spherical
Bessel function of ordel. tg is the Enskog collision time
_ 3 _ [20].
Fulp()] f ™ pOO{INp(x)/po] = 1} We observe that fog>q, the relaxation of transverse

current correlation is oscillatory, indicating that the system
f d3x dBx’c@(x—x')Sp(X)Sp(X'), sustains shear waves up to this wave number. For wave vec-
tors smaller tharg, the decay of the correlation function is
7y ho longer oscillatory angb never goes negative. In Fig. 1 we
show the behaviog(t) obtained from a self-consistent so-
where 8= 1/kgT. Use of the form(7) obtains the result&3) lution of the coupled set of equatiofiy) and(2) showing the
and(4). For smallg both (q,t) andI'(q,t) are proportional crossover in the behavior beyond the wave veater
to g2, following the Navier-Stokes hydrodynamics. =0.025 for the packing fractiod =0.450. In order to make
We solve for the time evolution for the transverse corre-a quantitative estimate of the crossover wave number we
lation function ¢(q,t) for g small, with a self-consistent have adopted the following procedure: The mode-coupling

1
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critical density the results fit well to a power-law divergence
form with an exponent of 1.2.

We have considered here the simple form of the mode-
coupling kernel that results in a sharp transition of the super-
cooled liquid to an ideal glassy phase beyond a critical den-
sity. With extended mode-coupling mode|43,14 one
should expect the removal of any sharp divergenckegas
the critical packing fraction\; is approached. Such theories
have demonstrated that in the final decay process ergodicity
is restored in the supercooled liquid over the longest-time
scale and hence rules out any transition to an ideal glassy
phase with infinite viscosity. However, the dynamic instabil-
ity predicted by the simple mode-coupling model is not an
artifact of the approximation. Strong remnants of the transi-
tion are seen in the study of supercooled liquid dynamics and
this has led to identification of a different temperatdrg

FIG. 2. Inverse of the timé, scaled with respect to the Enskog signifying a qualitative change in the dynamics of the super-
time tg vs qo (see the tejt cooled liquid. It has been shown in very widely investigated

studies in recent years that in experimd@$—33 and com-
equations are solved for small wave vectors and an inverse g@luter simulation$34] at the supercooled densities for a class
the timet, for which the first zero in the transverse autocor-of systems referred to as fragile glasses, signatures of such a
relation function appears is plotted against the correspondinggansition temperature can indeed be identified. We have in-
g value. In Fig. 2 this plot is shown for packing fractidn  vestigated here the implications of the simple model as a first
=0.520. For smallg this shows a straight-line behavior, step towards understanding the growing length scales in a
which corresponds to the fact that the argument of the oscilsupercooled liquid. A complete picture should emerge with
latory part in the correlation function followsqgt,=const at  the consideration of the extended mode-coupling model. For
the crossover to a negative value. This straight line, howeves full analysis of the growth behavior of the length scale,
meets they axis at a nonzero value, indicating the larggst using the extended model, one would be required to have a
for which an oscillatory decay of the correlation function better understanding of the short-wavelength behavior of the
persists. The slope of this line is proportional to the speed correlation function. Indeed, the length scalg does not
of the shear wave in the dense liquid at the correspondingepresent any underlying thermodynamic phase transition,
density. We define a length,=27/q, corresponding to this but indicates how the cooperative nature of the dynamics of
critical value of the wave number for the shear wave andstructural relaxation, accounted for through the mode-
study its behavior as one approaches a critical density of theoupling terms, grows with the density and is affected by the
mode-coupling instability. In Fig. 3 the variation bf, with dynamic instability of the ideal glass transition. The solidlike
packing fractionA is shown for a system of hard spheres. hature of undercooled liquids has also been observed from
Here we have used the PY solutions with VW corrections forthe transverse sound modg35]. Mountain has observed
the static structure factor of the liquid. As the critical packing[36] a similar behavior of propagating shear waves from
fraction 0.525 is approached the observed length scale indmolecular-dynamics simulations of fragile liquids, which are
cates a divergence of the length schlg Very close to the also the systems where the mode-coupling models apply.
This length scale of maximum wavelength for propagating

shear waves observed from molecular-dynamics simulations
grows indefinitely, approaching the glass transition. In the
present work we have demonstrated that for the self-
consistent mode-coupling model this length scale follows a
power-law divergence around its characteristic dynamic in-
stability.

We like to stress here the importance of our work with
reference to a viscoelastic theory. In a viscoelastic theory a
phenomenological parameter is introduced to describe a
frequency-dependent shear viscosity and using a simple ex-
ponential time dependence in the transport coefficient one
can obtain propagating shear waves in terms of this relax-
ation parameter. However, whether or not it has anything to
do with the growing length scales in a supercooled liquad
only be investigated by using experimental data as an input

0.40 0.45 0.50 in these mode|sbe it real or computer experiment. On the
A other hand, we have considered a theoretical model that is
obtained from first principles. It includes as an input only the

FIG. 3. Growth of the length scalg, (defined in the tejtwith static structure factor of thiiquid. The identical model has
the packing fractiom\. already been used by various authors to investigate other
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aspects of the supercooled liquid dynamics. The growindollows from the mode-coupling theories predicting a diverg-
length scale follows very naturally from the feedback of den-ing shear viscosity. However, in the present analysis of the
sity fluctuations anavithout any diverging parameters being divergence of the length scale,, as one approaches the
used as an input instability from the liquid side, the wave-vector dependence
We also like to stress the importance of the proper wavepf the shear modulus related to the solidlike behavior is nec-
vector dependence in the model reflecting the effects ogssary. The length scals, is related to the dynamic behav-
structure on the dynamics. Since the relaxation time is injg; of the system and is representative of the distance over

versely proportional to the shear modulus, it follows quiteyhich the supercooled liquid do have enough structure to
easily that beyond the ideal glass transition point there ISstain propagating shear waves.

propagating shear waves at all length scales. This is related“I
to the diverging shear viscosity reflecting an elastic behavior S.P.D. acknowledges the hospitality and financial support
at all length scales in the ideal glassy phase, a result thaif the Hahn Meitner Institut during a visit.
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