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Density jumps across phase transitions in soft-matter systems

Hartmut Graf and Hartmut Lo¨wen*
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 6 January 1998!

We investigate the magnitude of density jumps across phase transitions in soft-matter systems composed of
macromolecular particles, like star polymers or colloidal suspensions. The standard route to predict phase
transformations is to start from an effective interaction potential between these macroparticles and map the
phase diagram onto that of the corresponding effective one-component system. Using density-functional per-
turbation theory, we demonstrate that this procedure leads to wrong density jumps if the number of micro-
scopic degrees of freedom is coupled to the number of macroparticles. In particular, the microscopic degrees
of freedom can drive a macroparticle phase transition to beisochoric, i.e., to occur without any jump in the
macroparticle density.@S1063-651X~98!04005-7#
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I. INTRODUCTION

Mesoscopic soft-matter systems composed of supra
lecular aggregates like colloids or star polymers repres
excellent realizations of classical liquids on a mesosco
length scale. By now, different colloidal suspensions can
tually be well synthesized such that they consist of mono
perse spherical particles whose interaction can be mod
by a simple spherically symmetric effective pair potent
V(R), R denoting the distance between the centers of
macromolecular particles@1#. The interesting point is tha
these colloidal spheres can serve as model systems to s
phase transitions such as freezing, melting, and solid-to-s
transformations@2,3#. Recent research has focused on a
tailed comparison between the experimental data of
phase diagram and theoretical calculations assuming a
crete form ofV(R).

A remarkable agreement was achieved for sterically
bilized colloids which are modeled as hairy balls describ
by a hard-sphere potential simply governed by excluded
ume terms. In fact, experimental studies using sample
monodisperse polymethylmethacrylate~PMMA! spheres@4#
reveal that the freezing transition perfectly coincides w
that theoretically predicted from the hard-sphere mod
there is a strong first-order freezing transition with a hu
density jump of about 10% from a fluid into a face-centere
cubic crystal.

For charged colloidal suspensions the traditional lin
screening theory of Derjaguin, Landau, Verwey, and Ov
beek@5# is frequently invoked to describe the effective inte
particle interactions. For index-matched suspensions this
teraction assumes a Debye-Hu¨ckel ~or Yukawa! form for
V(R). In fact by renormalizing the bare charge as dictated
nonlinear screening theory for strongly coupled systems@6#,
Monovoukas and Gast@7# could show that the experimenta
phase diagram of highly salted charge-stabilized polystyr
spheres could indeed be mapped onto that of a pure Yuk
system explored by computer simulation@8#. Less satisfac-
tory agreement is achieved in the regime of deionized~salt-

*Also at Institut für Festkörperforschung, Forschungszentrum J¨-
lich, D-52425 Ju¨lich, Germany.
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free! charged suspensions where high accuracy scatte
data for the liquid-solid phase boundaries are known@9#.

Other interesting soft-matter systems exhibiting a r
phase behavior are polymeric micelles@10# and star poly-
mers@11#. Here, calculations of the effective interactions a
available@12# describing the experimental data@13# for the
phase diagram@14#.

In this paper we study the relation between the ph
diagram of a soft-matter system and that of a one-compon
system interacting via the effective pair potentialV(R) in
more detail. Calculating phase boundaries means that
has to equate the total pressure and the chemical potent
fixed temperature. Hence the phase boundaries can stro
be affected by the huge numberf of microscopic degrees o
freedom which significantly contribute to the total pressu
If this number f is fixed by the numberNm of macropar-
ticles, we show that the location of phase boundaries is
nificantly affected by the microscopic degrees of freedom
this case, phase transitions can happen to beisochoric ~i.e.,
there is no density jump!. A linear relation betweenf andNm
is, for instance, established for star polymers with a fix
arm number or for salt-free charged suspensions where
bal charge neutrality couples the number of counterions
the number of macroions.

Our results are based on density-functional perturba
theory by which we obtain the effective potential togeth
with additional contributions to the total free energy from t
microscopic degrees of freedom. We first focus on a mo
of beads and springs for which the procedure is most tra
parent. This is then generalized towards a more reali
chain model of star polymers. Depending on the system
rameters, we find that the correlational free energy of
monomers can dominate the total pressure. Then we use
density-functional language to describe linear screen
theory for charged suspensions where we find that the
tropic contributions of the counterions to the total press
reduces any density jump across freezing considerably in
absence of salt. On the other hand, sterically stabilized
pensions and highly salted charged colloids exhibit den
jumps across phase transformations.

Usually one performs a double tangent construction to
the coexisting densities in a plot of the isothermal free en
gies per particle versus inverse density. Our analysis sh
5744 © 1998 The American Physical Society
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57 5745DENSITY JUMPS ACROSS PHASE TRANSITIONS IN . . .
that the microscopic degrees of freedom may change
situation insofar as one has simply to take the minimum
the free energies in the effective one-component syst
Hence phases in the effective one-component model tha
metastable and preempted by a density jump of other ph
transitions can now turn out to be thermodynamically sta
soft-matter phases.

Although our arguments are simple, the results have
parently not been stated for soft-matter systems, apart f
very recent papers by van Roij and co-workers@15,16#. The
importance of the microscopic degrees of freedom in s
matter systems was already pointed out by Silbert and
workers@17,18# but the implication on phase transitions w
not discussed there. In the case of charged suspension
osmotic pressure was recently obtained together with
counterionic contributions in Ref.@19# but its influence on
density jumps across phase transitions was not discu
there. We finally remark that there is also an analog to liq
metals where the electrons play the role of microscopic
grees of freedom@20#.

Our paper is organized as follows: First we introduce
bead-spring model for a star polymer in Sec. II. Usi
density-functional perturbation theory we show that the
fective interaction potentialV(R) is Gaussian. Calculating
the freezing transition we demonstrate that the numberf of
microscopic degrees of freedom in fact reduces the den
jump across freezing. Then, in Sec. III, we generalize
result to star polymers. The linear screening theory of sa
suspensions with an effective Yukawa pair potential is d
cussed extensively in Sec. IV. We finally conclude in Sec.

II. BEAD-SPRING MODEL FOR SUPRAMOLECULAR
AGGREGATES

A. Definition of the model

In order to demonstrate clearly the interplay between
microscopic and mesoscopic degrees of freedom for a co
dal phase transition let us introduce and discuss a sim
bead-spring model. The centers of a supramolecular par
are modeled as pointlike cores wheref microscopic springs
are attached. Each spring carries one hard sphere of diam
s at its other end, see Fig. 1. Hence the potential energy
hard sphere at positionrW attached to its core at positionRW is

U~ urW2RW u!5K~rW2RW !2/2, ~1!

FIG. 1. Schematic picture of the bead-spring model usedf
springs carrying hard spheres of diameters are attached to a sma
central core. The core-core separation isR.
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whereK is the spring constant. We assumef @1 in the fol-
lowing. An analytical treatment of the effective interactio
becomes possible if the hard spheres do not interact w
each other, or—formally—if the diameters vanishes. Then
the number density profiler(rW) of the hard spheres around
single core centered at positionRW is readily calculated to be

r~rW !5 f S bK

2p D 3/2

exp@2bK~rW2RW !2/2#[f~ urW2RW u!, ~2!

whereb[1/kBT is the inverse thermal energy andf(r ) has
the meaning of a density orbital function. The typical exte
sion of the density profiles is contained in the length sc
a5AkBT/K. The corresponding canonical free energy of t
harmonically coupled indistinguishable beads is

F05
f

b
lnFL3f S bK

2p D 3/2G , ~3!

whereL is the thermal de Broglie wavelength of the spher

B. Density-functional perturbation theory of the effective
interaction

Let us first note that the result from Sec. II A can altern
tively be obtained by minimizing the free energy dens
functional

F0„@r~rW !#,RW …5
1

bEVd3rr~rW !$ ln@L3r~rW !#21%

1E
V
d3rr~rW !U~ urW2RW u! ~4!

with respect tor(rW) under the constraint of fixed averag
density

E
V
d3rr~rW !5 f , ~5!

whereV is the system volume. Inserting the result into t
functional yields again the corresponding free energy~3!.

The next step is to considerNm macroparticles~i.e.,
cores! located at positions$RW 1 , . . . ,RW Nm

% each of them car-

rying f noninteracting beads. The total density profile is th
a linear superposition of density orbitalsf centered at the
macroparticle positions. This result can be obtained again
minimizing the free energy functional

F0„@$r1~rW !, . . . ,rNm
~rW !%#,$RW 1 , . . . ,RW Nm

%…

:5(
i 51

Nm

F0„@r i~rW !#,RW i… ~6!

with respect to$r1(rW), . . . ,rNm
(rW)% under the constraint

E
V
d3rr i~rW !5 f , i 51, . . . ,Nm . ~7!

Here,r i(rW) is the density of spheres centered around part
i . The total free energy isNmF0.
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5746 57HARTMUT GRAF AND HARTMUT LÖWEN
We now perturb the system by considering also the ha
sphere interaction among the beads. For weak local pac
fractions, the leading contribution can be written in the lo
density approximation by adding the term

Fint[E
V
d3rC„r tot~rW !… ~8!

to the functionalF0@$r1(rW), . . . ,rNm
(rW)%# where C(r) is

the excess free energy per unit volume of a uniform ha
sphere fluid andr tot(rW)5( i 51

Nm r i(rW) is the total number den
sity of the spheres. An analytical expression forC(r) is
provided within the Carnahan-Starling approximation@21#

C~r!5
1

b
r

h~423h!

~12h!2 , ~9!

whereh5prs3/6 is the packing fraction.
As a further approximation, we expand the addition

contribution~8! and~9! quadratically around the mean har
sphere densityr̄[ f rm whererm5Nm /V is the mean num-
ber density of the macroparticles, i.e.,

C„r tot~rW !…5C~r̄!1
dC~r̄!

dr
@r tot~rW !2 r̄ #

1
1

2

d2C~r̄!

dr2
@r tot~rW !2 r̄ #21•••. ~10!

In first-order perturbation theory the total free energy is t
of the unperturbed systemNmF0 plus the perturbation~8!
evaluated at the unperturbed density fields. This fina
yields for the total microparticle-averaged free energy

Fmic5F11F2 , ~11!

with four different terms which depend on the core dens
but not on the core configuration:

F15
1

b
lnFL3f S bK

2p D 3/2G r̄V1C~r̄!V2
1

2

d2C~r̄!

dr2
r̄2V

1
1

16

d2C~r̄!

dr2
r̄ f S bK

p D 3/2

V. ~12!

These terms are frequently called ‘‘volume terms’’@20,17#
since they directly scale with the system volumeV. Further-
more the effective potential energy is contained inF2, i.e.,

F25
1

2(i , j
iÞ j

Nm

V~ uRW i2RW j u!. ~13!

The effective pair potentialV(R) is Gaussian and given by
convolution of two density orbitals

V~R!5
d2C~r̄!

dr2 E
V
d3rf~ urW2RW u!f~r !

5
1

8

d2C~r̄!

dr2
f 2S bK

p D 3/2

exp~2bKR2/4!. ~14!
-
ng
l

-

l
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y
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Note that the effective potential depends both on the ma
particle densityrm and on temperature 1/b.

Let us finally discuss the relative importance of the fo
different ‘‘volume terms’’ in Eq.~12!: the first one does no
affect the location of phase boundaries since it simply sh
the free energy per core by a constant in both phases. If
densityr̄ is small, the functionC( r̄) is practically quadratic
in r̄, and hence the second and the third ‘‘volume term
cancel each other. The most important contribution is
remaining fourth term which describes the density-depend
correlation energy of a single star. It is this density dep
dence that will significantly affect the location of pha
boundaries.

C. The freezing transition of a Gaussian potential

Up to now we have not yet considered the canonical
erage of the macroparticles. In fact, the total free ene
gained in the last section only concerns an average over
microscopic degrees of freedom and is the pure poten
energy as far as the macroparticles are concerned. The
effective HamiltonianHeff of the macroparticles

Heff5Km1F11F2 ~15!

involves the kinetic energyKm of the macroparticles plus
their total potential energy~11!. It is this effective Hamil-
tonian which has to be canonically averaged with respec
the macroparticle coordinates$RW i%. Thus we obtain the tota
canonical free energy as

F5F11F3 , ~16!

whereF3 is the Helmholtz free energy of a classical syste
interacting via Gaussian pair potentials for fixed temperat
and core number densityrm[Nm /V. Now the crucial point
is that one has not to forget the ‘‘volume term’’F1 @22#.

We are interested in the region of low temperature a
moderate densityrm where the system behaves as an eff
tive hard-sphere system of macroparticles and freezes fro
disordered fluid into a face-centered cubic crystal. We us
mapping onto a hard-sphere reference system as prop
and used by Barker and Henderson@23# to estimate the free
energiesF3 of the ‘‘Gaussian’’ fluid and solid. This proce
dure is defined as follows: We introduce an auxiliary co
diameterd via

d5E
0

`

dR$12exp@2bV~R!#% ~17!

and approximate the free energy of thefluid by the
Carnahan-Starling free energy@21# of the corresponding
hard-sphere system which is explicitly given by

F3[F3
f 5F3

id1F3
CS, ~18!

where

F3
id5kBTNm@ ln~Lm

3 rm!21# ~19!

and
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F3
CS5kBTNm

hm~423hm!

~12hm!2
, ~20!

with Lm andhm5prmd3/6 denoting the thermal wavelengt
and effective packing fraction of the macroparticles. The f
energy of thesolid is approximated by a cell approach for th
hard-sphere crystal as used in@24# which is explicitly given
by

F3[F3
s5kBTNmH 2 lnFLm

23

A2 S 21/6

rm
1/32dD 3G2CJ , ~21!

with C52.1.
Results for the total free energy per macroparticle,F/Nm ,

in the fluid and solid phases are shown in Figs. 2 an
versus inverse core density 1/rm for different parametersf
ands/a. First, as a reference case, we have shown the re
where all additional volume terms are neglected and the
fective potentialV(R) alone is used to compute the coexis
ing densities@Figs. 2~a! and 3~a!#. Phase coexistence is ob
tained by the familiar double tangent construction. O
clearly sees that the large density jump is strongly reduce
the volume terms are taken into account as shown in F
2~b! and 3~b!. The density jump becomes smaller for an i
creasing numberf of microscopic degrees of freedom. Th
can be seen by comparing Fig. 2~b! wheref 55000 with Fig.
3~b! where f 540 000. In the latter case one can hardly s
the double tangent but the phase equilibrium construc
becomes visible when subtracting the linear part of the f

FIG. 2. Total free energyF/Nm per macroparticle in units o
kBT versus inverse macroparticle density 1/rm in units ofa3 for the
crystal phase~solid line! and the fluid phase~dot-dashed line! of the
bead-spring model. The double tangent indicating the coexis
densities is shown as a dashed line. The shaded region corres
to the density jump in the resulting phase diagram.~a! For f
55000, ands/a51/10 without volume terms.~b! For f 55000, and
s/a51/10 with volume terms.
e
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energy as shown in the inset. Hence, for largef , the phase
transition occurs when the fluid and solid energies cross
it is practically isochoric.

For the sake of completeness we have also plotted
effective potentials belonging to the parameters of Figs
and 3 together with their effective diameterd in Fig. 4. Since
the potentialV(R) becomes steeply repulsive atR'd, the
mapping onto an effective hard-sphere system is justified

III. STAR POLYMERS

Star polymers consist of a number off polymer chains
attached to a central microscopic core. The bead-sp
model of the preceding section is only a crude model of s
polymers since one arm has only one degree of freedom
behaves as a single spring. In this section we extend

g
nds

FIG. 3. Same as Fig. 2 but now for a higher number of mic
scopic degrees of freedomf 540 000, ands/a51/20. The inset of
~b! shows the free energyF/Nm per macroparticle in units ofkBT
versus inverse macroparticle density 1/rm with the linear double
tangent subtracted.

FIG. 4. Effective potentialV(R) in units ofkBT versus reduced
separationR/a together with the effective hard-core diameterd. ~a!
For ra350.004, f 540 000, ands/a51/20. ~b! For ra350.004,
f 55000, ands/a51/10.
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5748 57HARTMUT GRAF AND HARTMUT LÖWEN
previous analysis to a slightly more complicated mo
where the arms of the star are modeled by a Gaussian c
@25#, see Fig. 5. The excluded volume of the chain is th
treated perturbatively. Hence our analysis should apply c
to theQ point of a star polymer solution. In the model, on
chain carriesN0 monomers which possess a mutual avera
microscopic distanceb. Typically N0'O(1022105) while f
can be of order 32300. Note that the bead-spring model
Sec. II can be considered as a special case of the Gau
chain model whereN051.

The total monomer densityf(r ) around the fixed core a
the origin is given by a superposition of Gaussians@25#:

f~r !5 (
n51

N0

f S 3

2pb2nD 3/2

expS 2
3r 2

2nb2D . ~22!

In the continuum limit(n51
N0

•••→*1
N0dn••• this reads

f~r !5
3

2

f

pb2r FFSA3

2

r

bD 2FSA 3

2N0

r

bD G , ~23!

whereF(x)5(2/Ap)*0
xdy exp(2y2) is the probability inte-

gral. For large distancesr from the cores the leading term i
f(r ) behaves as}exp(23r2/2b2N0)/r 2 which falls off
slightly faster than the pure Gaussian profile known from
preceding section. The typical extension of the monom
density around a single star is given by the radius of gyra
Rg which is related to the second moment off(r ):

Rg
2 :5

*Vd3rr 2f~r !

*Vd3rf~r !
5

N011

2
b2. ~24!

Taking now into account the interaction between t
monomers modeled as hard spheres with a microscopic
ameters, one follows the same strategy as in the preced
section@25#. We then obtain the effective potential betwe
two star polymer centers to be

V~R!5
18

p2

f 2

b4R

d2C~r̄!

dr2 F I S R,
b2

3 D1I S R,
b2N0

3 D
22I S R,

b2

6
~N011! D G , ~25!

wherer̄5 f N0rm is the mean monomer density,rm denoting
the number density of the cores, and the functionI (R,a2) is
analytically given by

FIG. 5. Schematic picture of the star polymer model usedf
Gaussian chains each of which consists ofN0 monomers with a
mutual average distanceb are attached to a core. The core-co
separation between a pair of star polymers isR.
l
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I ~R,a2!5
pR2

4 F12FS R

2a D G2
pa2

2
FS R

2a D
2

ApRa

2
exp~2R2/4a2! ~a.0!. ~26!

The large distance behavior for the effective potential is g
erned by

V~R!.expS 2
3R2

4b2N0
D Y R4 ~27!

decaying faster than the pure Gaussian potential from
preceding section.

All the volume terms are now summarized by

F15FsingleNm1C~r̄!V2
1

2

d2C~r̄!

dr2 r̄2V

1
d2C~r̄!

dr2 f S 3

pb2D 3/2

@A2N0122AN021#/N0r̄V,

~28!

whereFsingle, the entropy for a single star, is irrelevant fo
the phase boundary analysis.

Proceeding with the same hard-sphere mapping as in
II C we obtain the phase boundaries for the freezing tran
tion. Results are shown in Fig. 6~a! where we plotted the
coexisting fluid and solid densities versus the arm numbef
for two values ofN0. If the density is scaled with the invers
cube of the radius of gyrationRg the phase boundaries ar
insensitive toN0 but sensitive tof . The relative density jump
(rs2r f)/r f is shown versusf in Fig. 6~b!. It can be seen
that this jump strongly depends onf : while it is more than
10% for small arm numbers (f '5), it is strongly reduced
for large arm numbers (f '200). If one would neglect the
volume terms, the density jump would be practically co
stant, i.e., independent off and N0. This is also shown in
Fig. 6~b!.

IV. CHARGED COLLOIDAL SUSPENSIONS

A. Density-functional perturbation theory
of the effective interaction

We now turn to charged colloidal suspensions and de
the effective pair potential between the macroions in a si
lar way as before. Again additional ‘‘volume terms’’ sho
up in the total free energy which have to be taken into
count when exploring the phase boundaries. To obtain
effective interaction of charged colloids we start from t
primitive model @26#, assuming that the macroions, cou
terions, and salt ions are point charges, carrying chargesZe,
qe, and 6qe, respectively. The solvent is described by
uniform background of dielectric constante. The macroion
number density isrm5Nm /V, and the system is held at fixe
temperatureT. We further assumed that the counterions a
all salt ions have the same valency and that equally char
microscopic ions are indistinguishable. Similar calculatio
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including also the finite macroion core have been rece
published by van Roij and Hansen@15#.

1. Salt-free case

Let us first focus on the salt-free case, where the solu
consists only of macroions and counterions. Global cha
neutrality connects the number of macroionsNm with the
number of counterionsNc . Integrating out the counterion
degrees of freedom formally leads to an effective Ham
tonian @27,26#

Heff5Km1Vm1Fc~T,@r#,$RW 1 , . . . ,RW Nm
%!, ~29!

consisting of the kinetic energy of the macroionsKm , the
Coulomb interaction energy between the macroionsVm , and
the free energy of an inhomogeneous one-component pla
describing the counterions in the field of the macropartic
at positionsRW i ( i 51, . . . ,Nm).

The counterion free energyFc(T,@r#,$RW 1 , . . . ,RW Nm
%)

can be expressed as a functional of the counterion o
particle density fieldr(rW) which becomes minimal for the
equilibrium density field under the constraint of fixed ave

FIG. 6. ~a! Phase boundaries for the freezing transition in
star polymer model. The coexisting densities in units of 1/Rg

3 for the
fluid and solid phase are shown versus arm numberf for N0

5100 ~solid line! and N051000 ~dashed line!. The coexistence
region is shown by the shaded area. The ratios/b is 1/5. ~b! Rela-
tive density jump (rs2r f)/r f versus arm numberf for the star
polymer model:N05100 ~solid line!, andN051000 ~dashed line!.
The dotted line is the result without taking the volume terms i
account. The ratios/b is 1/5.
ly
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age counterion density (1/V)*Vr(rW)5 r̄[(2Z/q)rm . It can
be split into three parts as follows:

Fc5Fc
id1Fc

MF1Fc
ext.

Here the nonlinear but local ideal term is given by

Fc
id5kBTE

V
d3rWr~rW !$ ln@L3r~rW !#21%.

All counterion correlations are approximately contained
the mean-field term

Fc
MF5

1

2EVd3rWE
V
d3rW8r~rW !r~rW8!

q2e2

e

1

urW2rW8u

and the coupling to the macroion coordinates is described

Fc
ext5E

V
d3rWr~rW !(

i 51

Nm Zqe2

e

1

urW2Ri
W u

.

We now quadratically expand the nonlinear ideal te
around the mean counterion densityr̄:

Fc
id'F01kBTE

V
d3rW ln~L3r̄ !@r~rW !2 r̄ #

1kBTE
V
d3rW

1

2r̄
@r~rW !2 r̄ #2,

with

F05NckBT@ ln~L3r̄ !21#,

which is the free energy of an ideal gas of counterions. N
the minimization ofFc(T,@r#,$RW 1 , . . . ,RW Nm

%) with respect

to r(rW) can be done analytically@28# leading to the equilib-
rium density

r~rW !5UZqU k2

4p (
i 51

Nm e2kurW2RW i u

urW2RW i u
,

wherek5A4p(q2e2/ekBT) r̄ is the inverse Debye screenin
length.

Inserting this density profile in the free energy function
leads to an effective Hamiltonian

Heff5Km1Vpot1F01F1,

where

Vpot5(
i , j

i , j

Nm

VDLVO~ uRW i2RW j u![(
i , j

i , j

Nm Z2e2

e

e2kuRW j 2RW i u

uRW j2RW i u

is the total potential energy from the usual Derjagu
Landau-Verwey-Overbeek~DLVO! pair interaction @2,5#.
There are two ‘‘volume terms:’’F0 and

F152
1

2S Nm

Z2e2

e
k1kBTNcD ,
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which involves the coupling to the macroions as well
correlational contributions.

2. Case of added salt

In this case we have the salt concentration as an additi
parameter. The total mean number density of counteri
and cations is denoted withr̄15N1 /V, whereas the coions
~carrying a charge2qe) have a mean densityr̄25N2 /V.

Again the density-functional language can be applied
volving ideal terms for the counterions and coions as wel
the mean-field term describing the Coulomb coupli
@28,29#. The free energy functional of the small ions is a
proximated by an ideal gas term

Fc
id5kBT(

j
E
V
d3rWr j~rW !$ ln@L3r j~rW !#21%,

where the summation takes into account positive and ne
tive ions j 5(1,2), a mean-field contribution

Fc
MF5

1

2(j , j 8
E
V
d3rWE

V
d3r 8W r j~rW !r j 8~r 8W !

q2e2

e

1

urW2r 8W u

and the term describing the ions in the external field of
macroions

Fc
ext5(

j
E
V
d3rWr j~rW !(

i 51

Nm Zqe2

e

1

urW2Ri
W u

.

Doing a similar analysis as in the preceding section, o
obtains the following equilibrium densities for the counte
ons and coions:

r1~rW !5S 2
Z

qD k1
2

4p (
i 51

Nm e2kurW2Ri
W u

urW2Ri
W u

1
2r̄1r̄2

r̄11 r̄2

and

r2~rW !5S Z

qD k2
2

4p (
i 51

Nm e2kurW2Ri
W u

urW2Ri
W u

1
2r̄1r̄2

r̄11 r̄2

,

wherek5Ak1
2 1k2

2 is the inverse Debye screening leng

with k6
2 54p(q2e2/ekBT) r̄6 .

Inserting these density profiles in the free energy fu
tional leads again to the usual DLVO pair interaction b
tween the macroparticlesVDLVO(R)5(Z2e2/e)(e2kR/R).
The effective Hamiltonian now involves three ‘‘volum
terms,’’ namely,

F1
0 5N1kBT@ ln~L1

3 r̄1!21#,

F2
0 5N2kBT@ ln~L2

3 r̄2!21#,

and

F152
1

2FNm

Z2e2

e
k1kBT~N12N2!S r̄12 r̄2

r̄11 r̄2
D G .
s

al
s

-
s

-

a-

e

e

-
-

B. The freezing transition of charged colloids

1. Macroionic free energies in the fluid and solid phases

Canonically averaging over the macroparticle degrees
freedom leads to a total free energy

F5Fm1F01F1,

whereFm is the free energy of a one-component system
macroparticles interacting by the effective pair potent
VDLVO(R). We divideVDLVO(R) into a short-range referenc
part V0(R) and a long-range perturbation partW(R) such
that VDLVO(R)5V0(R)1W(R), following the scheme of
Kang et al. @30#:

V0~R!5H VDLVO~R!2F~R! for R,R0

0 for R>R0

and

W~R!5H F~R! for R,R0

VDLVO~R! for R>R0 .

The splitting distanceR0 is the nearest neighbor lattic
distanceR05A3/2(2/r)1/3 of a bcc solid.F(R) is assumed to
be a linear functionF(R)[a1bR, where the constantsa
and b are determined by requiringV0(R) and W(R) and
their derivatives to be continuous atR5R0. The short-range
potential V0(R) is then further approximated by a hard
sphere interaction with an effective diameterd according to
the Barker-Henderson formula~17!

d5E
0

R0
dR@12e2bV0~R!#. ~30!

In the fluid phase the free energy of the hard-sphere r
erence system is obtained as in Sec. II C with the help of
Carnahan-Starling expression. In addition to that we add
free energyFpert

f associated withW(R) perturbatively as

bFpert
f

Nm
5

1

2
rmE d3Rg0~R!bW~R!, ~31!

whereg0(R) is the radial distribution function of the hard
sphere fluid which is analytically available, e.g., in th
Verlet-Weis treatment@21#.

For high densities, the system is expected to freeze in
bcc-solidphase. Similar to Eq.~21!, we use a free volume
theory @31# to obtain the free energy of a bcc hard-sphe
solid

bFs

Nm
52 lnH Lm

231/2F S 2

rm
D 1/3

2deffG3J 2C, ~32!

with C52.1 and add a lattice sum@32# to get the free energy
Fpert

s associated withW(R) in the solid phase

Fpert
s 5

1

2
Nm(

RW nkl

W~RW nkl!, ~33!
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where the summation runs over the bcc-lattice positi
RW nkl . We have also considered the case of a fcc solid wit
similar route to get its free energy as in Sec. II C.

2. Results

If the ‘‘volume terms’’ are omitted in the salt-free case,
‘‘pure’’ one-component system governed by the DLVO p
tential exhibits a gas-liquid phase transition although th
are no attractive interactions@16#. The reason for that is tha
the screening parameterk depends on density. Within ou
theoretical approach, the results with a gas-liquid phase t
sition of the ‘‘pure’’ one-component system are shown
Fig. 7~a!. This transition is spurious, however, since it disa
pears if the ‘‘volume terms’’ are added to the free ener
which is shown in Fig. 7~b!. This strikingly demonstrates th
importance of the volume terms in locating phase bou
aries. Conversely it can happen that the volume terms dri
new liquid-gas transition which is absent for the ‘‘pure
one-component system. This was investigated in more d
by van Roij and Hansen@15#.

In the salt-free case, when all counterions stem from
macroions, phase equilibrium between the solid phase
the fluid phase of the macroparticles is obtained by the e
librium of the total pressure in both phases as well as

FIG. 7. Same as Fig. 2 but now for charged colloids interact
via the DLVO pair potential: Total free energyF/Nm per macro-
particle in units ofkBT versus inverse colloidal particle densi
1/rm in units of the Bjerrum lengthl3 (l[e2/ekBT). The param-
eters areZ535, T5298K, e581. Note the logarithmic scale in th
inverse density.~a! Without volume terms. Here an artificial liquid
gas phase coexistence is observed~shaded area!. The double tan-
gent is the broken line. Note that due to the semi-logarithm
inverse-density axis, the double tangent is no longer linear.~b! With
volume terms. There is no liquid-gas phase transition.
s
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equilibrium of the chemical potential of the macroparticle
Global charge neutrality then causes equalization of
chemical potential of the counterions in both phases. Ho
ever, when adding salt one has to fulfill additionally th
equality the chemical potential of the salt ions. This leads
a higher salt concentration in the fluid phase.

When calculating the phase boundaries one may fol
three different routes. First, one can directly map the sys
onto a state-independent Yukawa system and take the p
boundaries from this system as was done by Monovou
and Gast@7#. This approach neglects the density depende
of the inverse Debye screening lengthk across the phase
transition. Second, one can include this but neglect the
ume terms. The correct way is—thirdly—to include the
volume terms as well in the phase coexistence analysis.
worth noting that the phase boundaries themselves are p
tically equal and not affected by the procedure used. M
details, however, such as the relative density jump across
phase transition, are heavily affected by the procedure. T
is strikingly shown in Fig. 8 where we show the relativ
density jump for charged colloids versus salt concentrati
The parameters areZ5200, q51, e581, andT5298 K.
The pure Yukawa mapping yields a density jump which
two times larger than that obtained from a state-dependenk.
Inclusion of the ‘‘volume terms’’ shrinks the relative densi
jump further. This reduction is particularly pronounced f
strongly deionized systems where it becomes about 5
Note that there is always a residual salt concentration
about 0.1mmol/l due to the protonization of water providin
a lower limit of the salt concentration.

V. DISCUSSION AND CONCLUSIONS

In conclusion, a density jump across a phase transitio
soft-matter systems can be very small if many microsco
degrees of freedom are directly coupled to the number of
macroparticles. Then the condition of constant pressure
both coexisting phases cannot be maintained for a finite d
sity jump since the microscopic degrees of freedom do
nate the osmotic pressure. In the case of star polymers
pressure was dominated by the correlational free energ

g

c

FIG. 8. The relative density jump (rs2r f)/rs with rs denoting
the macroionic density of the bcc solid phase andr f denoting that
of the coexisting fluid phase versus the concentrationr2 of added
salt is shown. Units ofr2 are micromoles per liter. The macroio
charge isZ5200. The other parameters are given in the text.



us
th

un

ui
as
it

ge
ie
te

on
ib

fe
tio
ed

b
if
fa
p

si
nt
th
is
re

’’
ta
a

ca
on
ul
o
ns
t

va
o
lt
o
o

ta

ful
uid
t to
in

n of
po-

the
not

he
of

ting
edi-
tion
ee

.
by

e
es
n

y the
ng
gram
-
ed in

5752 57HARTMUT GRAF AND HARTMUT LÖWEN
the self-avoiding monomers while for salt-free charged s
pensions the microscopic counterion entropy reduces
density jump across macroion freezing.

Let us now discuss further examples frequently enco
tered in soft-matter physics.

~i! Sterically-stabilized colloids. Colloids stabilized by
grafted polymers can be viewed as star polymers with q
different length scales. While the core size in the former c
is much smaller than the length of a polymer chain, it is qu
the opposite for sterically stabilized suspensions such
PMMA spheres. Here the particle diameter is much lar
than the thickness of the grafted polymer layer. This impl
that the thermodynamics and the contribution of the graf
polymer chains to the total osmotic pressure is asurface
contribution as compared to the macroparticle contributi
It hence can be neglected which opens the way for poss
density jumps across phase transitions.

~ii ! Colloids with nonadsorbing polymers. If one adds
nonadsorbing polymers to a colloidal suspension, the ef
tive interaction potential becomes attractive due to deple
forces, see, e.g.,@33#. As in the case of added salt for charg
suspensions the concentration of the polymers is not fixed
the macroparticle concentration. It hence may differ in d
ferent phases. Hence large density jumps are possible. In
liquid-gas-like phase transitions with a huge volume jum
are observed experimentally@33#.

~iii ! Effects of the solvent. One may finally worry about
the influence of the discrete microscopic solvent on den
jumps across phase transitions. Again the solvent conce
tion is not fixed by the macroparticle concentration and
ordering of the solvent near the macroparticle surfaces
surface effect which does not contribute to the osmotic p
sure.

We finally remark that the additional ‘‘volume terms
may bring about the occurrence of quite interesting crys
line phases that are only stable over a finite density range
are normally preempted by nonisochoric freezing. A typi
situation is sketched in Fig. 9. A normal double tangent c
struction within the effective one-component system wo
exclude a metastable solid 2 phase by the nonisochoric s
1–fluid transition. If only isochoric phase transformatio
are possible, the phase diagram looks quite different and
solid 2 phase becomes stable within a finite density inter
Hence it is conceivable that some unusual phases bec
stable for salt-free suspensions that do not show up for sa
suspensions. For pair potentials that exhibit a structure
different length scales this may lead to the observability
unusual open crystalline structures or colloidal quasicrys
@34#.
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To summarize: while the effective pair potential is use
to describe the static correlations as embodied in the fl
structure factor in the fluid phase one has to be careful no
forget the influence of the microscopic degrees of freedom
a discussion of the phase diagram. For a crude estimatio
the phase boundaries the effective one-component pair
tential picture applies reasonably well, but details as
magnitude of the density jumps across coexistence are
described correctly.

It would be interesting to resolve the magnitude of t
density jumps experimentally. Using the same samples
deionized charged suspensions as discussed in Ref.@9#, it
should be possible to measure the density of the coexis
fluid and solid by scattering techniques, e.g., along a s
mentation profile of a charged suspension. Our considera
would lead to a practically vanishing density gap for salt-fr
suspensions.
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FIG. 9. Total free energyF/Nm per macroparticle versus invers
macroparticle density 1/rm in the case of three possible phas
fluid, solid 1, and solid 2. If only the effective interaction is take
into account, the solid 2 phase is metastable and preempted b
density jump in the fluid–solid 1 transition. The correspondi
double tangent is shown as a dot-dashed line and the phase dia
is sketched in the lower 1/rm axis. For isochoric transitions, how
ever, as discussed in the text, the solid 2 shows up as sketch
the higher 1/rm axis.
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