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Density jumps across phase transitions in soft-matter systems
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We investigate the magnitude of density jumps across phase transitions in soft-matter systems composed of
macromolecular particles, like star polymers or colloidal suspensions. The standard route to predict phase
transformations is to start from an effective interaction potential between these macroparticles and map the
phase diagram onto that of the corresponding effective one-component system. Using density-functional per-
turbation theory, we demonstrate that this procedure leads to wrong density jumps if the number of micro-
scopic degrees of freedom is coupled to the number of macroparticles. In particular, the microscopic degrees
of freedom can drive a macroparticle phase transition tésbehorig i.e., to occur without any jump in the
macroparticle density.S1063-651X98)04005-7

PACS numbd(s): 82.70.Dd

I. INTRODUCTION free) charged suspensions where high accuracy scattering
data for the liquid-solid phase boundaries are kn¢@in
Mesoscopic soft-matter systems composed of supramo- Other interesting soft-matter systems exhibiting a rich
lecular aggregates like colloids or star polymers representhase behavior are polymeric micellges0] and star poly-
excellent realizations of classical liquids on a mesoscopieners[11]. Here, calculations of the effective interactions are
length scale. By now, different colloidal suspensions can acavailable[12] describing the experimental data3] for the
tually be well synthesized such that they consist of monodisphase diagrarh14].
perse spherical particles whose interaction can be modeled In this paper we study the relation between the phase
by a simple spherically symmetric effective pair potentialdiagram of a soft-matter system and that of a one-component
V(R), R denoting the distance between the centers of twasystem interacting via the effective pair potenfigR) in
macromolecular particleEl]. The interesting point is that more detail. Calculating phase boundaries means that one
these colloidal spheres can serve as model systems to stubgs to equate the total pressure and the chemical potential at
phase transitions such as freezing, melting, and solid-to-solifixed temperature. Hence the phase boundaries can strongly
transformationg2,3]. Recent research has focused on a debe affected by the huge numbeof microscopic degrees of
tailed comparison between the experimental data of théreedom which significantly contribute to the total pressure.
phase diagram and theoretical calculations assuming a coif-this numberf is fixed by the numbeN, of macropar-
crete form ofV(R). ticles, we show that the location of phase boundaries is sig-
A remarkable agreement was achieved for sterically stanificantly affected by the microscopic degrees of freedom. In
bilized colloids which are modeled as hairy balls describedhis case, phase transitions can happen t@sbehoric (i.e.,
by a hard-sphere potential simply governed by excluded volthere is no density jumpA linear relation betweeh andN,
ume terms. In fact, experimental studies using samples df, for instance, established for star polymers with a fixed
monodisperse polymethylmethacryld@MMA) sphered4]  arm number or for salt-free charged suspensions where glo-
reveal that the freezing transition perfectly coincides withbal charge neutrality couples the number of counterions to
that theoretically predicted from the hard-sphere modelthe number of macroions.
there is a strong first-order freezing transition with a huge Our results are based on density-functional perturbation
density jump of about 10% from a fluid into a face-centered-theory by which we obtain the effective potential together
cubic crystal. with additional contributions to the total free energy from the
For charged colloidal suspensions the traditional lineamicroscopic degrees of freedom. We first focus on a model
screening theory of Derjaguin, Landau, Verwey, and Overof beads and springs for which the procedure is most trans-
beek[5] is frequently invoked to describe the effective inter- parent. This is then generalized towards a more realistic
particle interactions. For index-matched suspensions this irechain model of star polymers. Depending on the system pa-
teraction assumes a Debye-thel (or Yukawa form for  rameters, we find that the correlational free energy of the
V(R). In fact by renormalizing the bare charge as dictated bymonomers can dominate the total pressure. Then we use the
nonlinear screening theory for strongly coupled systédis  density-functional language to describe linear screening
Monovoukas and Ga$?] could show that the experimental theory for charged suspensions where we find that the en-
phase diagram of highly salted charge-stabilized polystyrengopic contributions of the counterions to the total pressure
spheres could indeed be mapped onto that of a pure Yukawaduces any density jump across freezing considerably in the
system explored by computer simulatif8]. Less satisfac- absence of salt. On the other hand, sterically stabilized sus-
tory agreement is achieved in the regime of deioni@adt-  pensions and highly salted charged colloids exhibit density
jumps across phase transformations.
Usually one performs a double tangent construction to get
*Also at Institut fir Festkaperforschung, Forschungszentrum Ju the coexisting densities in a plot of the isothermal free ener-
lich, D-52425 Jlich, Germany. gies per particle versus inverse density. Our analysis shows
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‘ . whereK is the spring constant. We assurf®e 1 in the fol-
lowing. An analytical treatment of the effective interactions
becomes possible if the hard spheres do not interact with
f ‘ each other, or—formally—if the diameter vanishes. Then
. ‘ the number density profilﬁ(F) of the hard spheres around a
‘ ‘ . single core centered at positidfnis readily calculated to be
‘ R 312 o o
@ @ P(r):f(z) ex{ — BK(T—R)¥2]=¢(Ir—R), (2
Ow
| | where,BE_llkBT is the inversg thermal_ energy azlx(_r) has
| R | the meaning of a densny orb|tal funqtlon. .The typical exten-
FIG. 1. Schematic picture of the bead-spring model uged. sion of the density profiles is contamgd in the length scale
springs carrying hard spheres of diameteare attached to a small 2= VKsT/K. The corresponding canonical free energy of the

central core. The core-core separatiofRis harmonically coupled indistinguishable beads is
that the microscopic degrees of freedom may change the E =L inl A3f ﬁ 2 3)
situation insofar as one has simply to take the minimum of B 2 '

the free energies in the effective one-component system.

Hence phases in the effective one-component model that akghereA is the thermal de Broglie wavelength of the spheres.
metastable and preempted by a density jump of other phase

transitions can now turn out to be thermodynamically stable B. Density-functional perturbation theory of the effective
soft-matter phases. interaction

Although our arguments are simple, the results have ap- Let us first note that the result from Sec. Il A can alterna-

parently not been stated for soft-matter systems, apart from, , ; s he f :
very recent papers by van Roij and co-workgts,16. The r}{h/ﬁcyt/iotr)wzlobtamed by minimizing the free energy density

importance of the microscopic degrees of freedom in soft-
matter systems was already pointed out by Silbert and co- .1 R R
workers[17,18 but the implication on phase transitions was fo([P(f)],R)=EJ d3rp(r){In[A%p(r)]-1}
not discussed there. In the case of charged suspensions, the v
osmotic pressure was recently obtained together with the
counterionic contributions in Ref19] but its influence on
density jumps across phase transitions was not discussed
there. We flna”y remark that there is also an analog to IIqUIquth respect top(F) under the constraint of fixed average
metals where the electrons play the role of microscopic degensity
grees of freedonh20].

Our paper is organized as follows: First we introduce a 3
bead-spring model for a star polymer in Sec. Il. Using Jvd rp(r)=f, ®)
density-functional perturbation theory we show that the ef-
fective interaction potentiaV/(R) is Gaussian. Calculating whereV is the system volume. Inserting the result into the

th_e freezing transition we demon§trate that the nunibef .functiona| yie|ds again the Corresponding free end@y
microscopic degrees of freedom in fact reduces the density The next step is to consideN,, macroparticles(i.e.,

jump across freezing. Then, in Sec. lll, we generalize ou%ores) located at position$§l, o ’ﬁNm} each of them car-

result to star polymers. The linear screening theory of salted . ¢ . ing beads. Th | densi file is th
suspensions with an effective Yukawa pair potential is dis!Y"d T noninteracting beads. The total density profile is then

cussed extensively in Sec. IV. We finally conclude in Sec. v2 linéar superposition of density orbitags centered at the
macroparticle positions. This result can be obtained again by

minimizing the free energy functional

+fd3rp(F)U(|F—F?|) 4
v

Il. BEAD-SPRING MODEL FOR SUPRAMOLECULAR

AGGREGATES - - > >
Fol{pa(r), ... on (NHARL, ... Ry P
A. Definition of the model

Nm
In order to demonstrate clearly the interplay between the ::E Folpi(n)],R) (6)
microscopic and mesoscopic degrees of freedom for a colloi- =1
dal phase transition let us introduce and discuss a simple N N ]
bead-spring model. The centers of a supramolecular particiith respect t{p,(r), ... ,pn_(r)} under the constraint
are modeled as pointlike cores whdrenicroscopic springs
are attached. Each spring carries one hard sphere of diameter 3 o\ -
) . ) dorpi(r)=f, i=1,... Ny. 7
o at its other end, see Fig. 1. Hence the potential energy of a V

hard sphere at positiaﬁ attached to its core at positidR is .
Here,p;(r) is the density of spheres centered around particle

U(Jr—R|)=K(r—R)?/2, (1)  i. The total free energy il ,Fo.
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We now perturb the system by considering also the hardNote that the effective potential depends both on the macro-
sphere interaction among the beads. For weak local packingarticle densityp,, and on temperature g/
fractions, the leading contribution can be written in the local Let us finally discuss the relative importance of the four

density approximation by adding the term different “volume terms” in Eq.(12): the first one does not
affect the location of phase boundaries since it simply shifts
}—imzf dgr‘l’(Ptot(F ) ®) the fr.ee_ejnergy per core b.y a co_ns.tant in poth phases.'lf the

densityp is small, the functionV (p) is practically quadratic

, - - i in p, and hence the second and the third “volume term”
to the functionalFo[{p1(r), . . - N, (r)}] Where W(p) IS cancel each other. The most important contribution is the
the excess free energy per unit volume of a uniform hardremaining fourth term which describes the density-dependent
sphere fluid anghy,(r) = 2 1p|(r) is the total number den- correlation energy of a single star. It is this density depen-
sity of the spheres. An analytlcal expression fB(p) is dence that will significantly affect the location of phase
provided within the Carnahan-Starling approximatj@ni] boundaries.

1 5(4-37) C. The freezing transition of a Gaussian potential

W(p)= LT 9 9 _ P .

K Up to now we have not yet considered the canonical av-
where 7= mpo3/6 is the packing fraction. erage of the macropatrticles. In fact, the total free energy

As a further approximation, we expand the addnmnalgained in the last section only concerns an average over the

contribution(8) and (9) quadratically around the mean hard- Microscopic degrees of freedom and is the pure potential
h densitp=f h — NIV is th energy as far as the macroparticles are concerned. The total

Sphere Aensity=1py WNerepm=Np,/V 1S the Mean NUM- o0 tive Hamiltoniar; of the macroparticles

ber density of the macropatrticles, i.e.,

q,(—)
Y (pioi 1))=Y (p) +———[ pioi(T) — p]

Hei=Km+F1+F, (15

involves the kinetic energK,, of the macroparticles plus
1 2w (p) their total potential energyll). It is this effective Hamil-
+-——[pul)—pl?+---. (10  tonian which has to be canonically averaged with respect to

2 dp? the macroparticle coordinaté®&;}. Thus we obtain the total

canonical free energy as
In first-order perturbation theory the total free energy is that oy

of the unperturbed systemN,F, plus the perturbatior{8) F=F,+F, (16)
evaluated at the unperturbed density fields. This finally '
yields for the total microparticle-averaged free energy whereF 5 is the Helmholtz free energy of a classical system
_ interacting via Gaussian pair potentials for fixed temperature
I:mic_Fl‘H:zy (ll)

and core number densipy,=N,,/V. Now the crucial point
with four different terms which depend on the core densityiS that one has not to forget the “volume ternfy [22].

but not on the core configuration: We are interested in the region of low temperature and
moderate density,,, where the system behaves as an effec-
1 o[ BK 3/2 W ( p)_ tive hard-sphere system of macroparticles and freezes from a
FFE'” A f(z) PV+‘1’(P)V— 2 a2 " v disordered fluid into a face-centered cubic crystal. We use a
p mapping onto a hard-sphere reference system as proposed
1 d2W¥(p)— [ BK 3?2 and used by Barker and Henderd@3] to estimate the free
16 a2 P ( - (12)  energiesF; of the “Gaussian” fluid and solid. This proce-

dure is defined as follows: We introduce an auxiliary core

These terms are frequently called “volume termi20,17] diameterd via

since they directly scale with the system voludaeFurther-

more the effective potential energy is contained i) i.e., d= focd R{1—exgd —BV(R)]} (17)
0
Nm
F2:§Z V(IRi—Ry]). (13)  and approximate the free energy of tilid by the
%] Carnahan-Starling free enerd®l] of the corresponding

. . ) , , , hard-sphere system which is explicitly given by
The effective pair potential (R) is Gaussian and given by a

convolution of two density orbitals Fo=Fl= Fiéj_H:CS, (19)
d?W (p) -
V(R>:—(2p)f d*r p(|r =R (1) where
dZ\P(p) B 3/2 kBTNm[In(A Pm) 1] (19)
———f%|—| exp(—BKR%4). (14
8 dp? (77) =F ). (19 and
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FIG. 2. Total free energ¥/N,, per macroparticle in units of
kgT versus inverse macroparticle densityplin units ofa® for the FIG. 3. Same as Fig. 2 but now for a higher number of micro-
crystal phasgsolid line) and the fluid phasédot-dashed lingof the  scopic degrees of freedofr= 40 000, ands/a=1/20. The inset of
bead-spring model. The double tangent indicating the coexistingb) shows the free energy/N,,, per macroparticle in units dégT
densities is shown as a dashed line. The shaded region corresponggsus inverse macroparticle density,1/with the linear double
to the density jump in the resulting phase diagra@. For f tangent subtracted.
=5000, andr/a=1/10 without volume termgb) For f =5000, and

o/a=1/10 with volume terms. energy as shown in the inset. Hence, for lafgehe phase

transition occurs when the fluid and solid energies cross and

(A= 37m) it is practicallyisochoric
FS$S=kgTNp s (20) For the sake of completeness we have also plotted the
(1= 7m) effective potentials belonging to the parameters of Figs. 2

and 3 together with their effective diamettm Fig. 4. Since
with A, and ,,= 7p,,d°/6 denoting the thermal wavelength the potentialV(R) becomes steeply repulsive Be=d, the
and effective packing fraction of the macroparticles. The freamapping onto an effective hard-sphere system is justified.
energy of thesolidis approximated by a cell approach for the

hard-sphere crystal as used[¥] which is explicitly given Il STAR POLYMERS

by
Star polymers consist of a number bfpolymer chains
A3/ 16 3 attached to a central microscopic core. The bead-spring
Fs=F3= kBTNm[ —In Tm(—l,g—d) } C}, (21 model of the preceding section is only a crude model of star
2\ Pm polymers since one arm has only one degree of freedom and
behaves as a single spring. In this section we extend our
with C=2.1.
Results for the total free energy per macropartieleé\ ,,, BV(R)
in the fluid and solid phases are shown in Figs. 2 and 3 .‘
versus inverse core densityp}{ for different parameter$ 1.4+ pd=0.004 I d@
ando/a. First, as a reference case, we have shown the result 1.2¢ vl
where all additional volume terms are neglected and the ef- 1t Vi
fective potentiaM(R) alone is used to compute the coexist- 0.8t i
ing densitiedFigs. 2a) and 3a)]. Phase coexistence is ob- 0.6 @ — “
tained by the familiar double tangent construction. One 0'4_ £=40000, o/a=1/20 Ao
clearly sees that the large density jump is strongly reduced if 0‘2_ O a0, om0 AN
the volume terms are taken into account as shown in Figs. : o Ideffg SN
2(b) and 3b). The density jump becomes smaller for an in-
creasing numbef of microscopic degrees of freedom. This 0123456 R/a
can be seen by comparing Fighwheref =5000 with Fig. FIG. 4. Effective potentiaV/(R) in units ofkgT versus reduced

3(b) wheref=40 000. In the latter case one can hardly seeseparatiorR/a together with the effective hard-core diamedexa)
the double tangent but the phase equilibrium constructiomror pa®=0.004, f =40 000, ands/a=1/20. (b) For pa=0.004,
becomes visible when subtracting the linear part of the fre¢=5000, ando/a=1/10.
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) wR? R ma? R
I(R,a ):T 1—(1) Z) _Tq) z

\/;Ra
- exp(—R%4a?) (a>0). (26)
The large distance behavior for the effective potential is gov-
erned by
R2
~ o 4
FIG. 5. Schematic picture of the star polymer model uded. V( R)—ex;{ 4b°N, / R (27)

Gaussian chains each of which consistsNgf monomers with a

mutual average distande are attached to a core. The core-core decaying faster than the pure Gaussian potential from the
separation between a pair of star polymerfis preceding section

previous analysis to a slightly more complicated model All the volume terms are now summarized by
where the arms of the star are modeled by a Gaussian chain o

[25], see Fig. 5. The excluded volume of the chain is then — 1 dz\lf(p)_2

treated perturbatively. Hence our analysis should apply close F1=FsingdNm+¥(p)V— 2 dp? P

to the ® point of a star polymer solution. In the model, one

chain carriedNy; monomers which possess a mutual average d2W(p) [ 3 |32 _
microscopic distanck. Typically Ng~O(10?—10°) while f + d—pzf<W) [V2Ng+2—Ng—11/NopV,
can be of order 3-300. Note that the bead-spring model of

Sec. Il can be considered as a special case of the Gaussian (28)
chain model wherd,=1. _ o
The total monomer densit(r) around the fixed core at WhereFgi,ge, the entropy for a single star, is irrelevant for

the origin is given by a superposition of Gaussif2s]: the phase boundary analysis. _ .
N Proceeding with the same hard-sphere mapping as in Sec.
0 32 3r? Il C we obtain the phase boundaries for the freezing transi-
‘i’(r):nzl f 552 R~ 2np2)- (220 tion. Results are shown in Fig(® where we plotted the

. (23

coexisting fluid and solid densities versus the arm nunfiber
In the continuum IimitE:21~ . ~*>f’:0dn‘ .. this reads for two values ofN,. If the density is scaled with the inverse
cube of the radius of gyratioRy the phase boundaries are
3 f \Fr [ 3r insensitive td\y but sensitive td. The relative density jump
¢(r):§m{q>( EB) _(D( 2Nyb (ps— p¢)/ ps is shown versud in Fig. 6b). It can be seen
that this jump strongly depends dn while it is more than
where®(x) = (2/\7) [5dy exp(~y?) is the probability inte-  10% for small arm numbersf €5), it is strongly reduced
gral. For large distancesfrom the cores the leading term in for large arm numbersf&200). If one would neglect the
#(r) behaves asxexp(—3r?/2b®Ny)/r? which falls off  volume terms, the density jump would be practically con-
slightly faster than the pure Gaussian profile known from thestant, i.e., independent df and Ny. This is also shown in
preceding section. The typical extension of the monomeFrig. 6(b).
density around a single star is given by the radius of gyration
Ry which is related to the second momentg(r):
L, Tydrr2g(n  Ne+l . y IV. CHARGED COLLOIDAL SUSPENSIONS
9 [ud¥re(r) 2 ' (24) A. Density-functional perturbation theory
of the effective interaction

Taking now into account the interaction between the
monomers modeled as hard spheres with a microscopic di- We now turn to charged colloidal suspensions and derive
ameterc, one follows the same strategy as in the precedinghe effective pair potential between the macroions in a simi-
section[25]. We then obtain the effective potential betweenlar way as before. Again additional “volume terms” show

two star polymer centers to be up in the total free energy which have to be taken into ac-
. count when exploring the phase boundaries. To obtain the

18 2 d?W(p)| b2 b2N, effective interaction of charged colloids we start from the

V(R=— g dp? |<Ra§ TR, T) primitive model [26], assuming that the macroions, coun-

terions, and salt ions are point charges, carrying chaZges

ge, and *qe, respectively. The solvent is described by a
uniform background of dielectric constaat The macroion

. number density ip,,=N,/V, and the system is held at fixed
wherep=fNgp,, is the mean monomer densify,, denoting  temperaturel. We further assumed that the counterions and
the number density of the cores, and the functitR,«?) is  all salt ions have the same valency and that equally charged
analytically given by microscopic ions are indistinguishable. Similar calculations

: (29

b2
—2I<R,€(No+1)
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age counterion density ()IYpr(F)=p_E(—Z/q)pm. It can
be split into three parts as follows:

(a) Fo=Fo+ Fer+

Here the nonlinear but local ideal term is given by

— N= 100 FIKaT | Fp(HINA%p(7)]-1).
- Ny= 1000 v
olb=1/5 All counterion correlations are approximately contained in
e TTTTTT———e—— the mean-field term
150 200 250 _—
S [T (AN I 1
f'(\:/] =—| d°r | d°r’ ! -
2]y Uy € |r—r’|
"""""""""""""""""""""""""""" and the coupling to the macroion coordinates is described by
mZzge 1
(b) feXt d3l‘ r - =_.
p( )El < IF-R]
. We now quadratically expand the nonlinear ideal term
ool — No= 100 around the mean counterion density
--- Ny= 1000 _ S
002 i s PR kgT | QPN p(7) - ]
0

5 50 100 150 200 250 1
f +kgT f d*r—=[p(r)~p]?,

FIG. 6. (a) Phase boundaries for the freezing transition in the v 2p

star polymer model. The coexisting densities in units aglfbr the )

fluid and solid phase are shown versus arm numbédor N, with

=100 (solid line and Ny=1000 (dashed ling The coexistence _

region is shown by the shaded area. The ratib is 1/5.(b) Rela- FO=NckgT[In(A%p) 1],

tive density jump ps—ps)/ps versus arm numbef for the star o . .

polymer model:N,= 100 (solid line), andN,= 1000 (dashed ling which is the free energy of an ideal ga§ of counterions. Now

The dotted line is the result without taking the volume terms intothe minimization of 7(T,[p], {Rl, ce ,RNm}) with respect

account. The ratiar/b is 1/5. to p(r) can be done analyticallj28] leading to the equilib-

including also the finite macroion core have been recentl);'um density

published by van Roij and Hanséh5]. ’Z 2 Nm o=l —Ryl

r ol e - - 1
p(r) al4r & R

1. Salt-free case

Let us first focus on the salt-free case, where the solution 5 , : ,
consists only of macroions and counterions. Global chargt‘-ﬂ"here" J4m(q°e’/ ekgT)p is the inverse Debye screening

neutrality connects the number of macroidNg, with the length. _ . L .
number of counteriond\,. Integrating out the counterion Inserting this density profile in the free energy functional

degrees of freedom formally leads to an effective Hamil-'€ads to an effective Hamiltonian
tonian[27,26 Het=Km+ Vport FO+ FL,

Heit=Km+Vm+ Fo(T.[p1{RL, - .- Ry D) 29 where

consisting of the kinetic energy of the macroioks,, the N Nm 7202 o= «IRj~R|
i i EVDLVOIR RD=2 ——~ ==&+
Coulomb interaction energy between the macroidps and Vo= e |R "R |
the free energy of an inhomogeneous one-component plasma .<J |<, o
describing the counterions in the field of the macroparticles
is the total potential energy from the usual Derjaguin-
at posmonsRi (i=1, Nm)

) - - Landau-Verwey-OverbeekDLVO) pair interaction[2,5].
The counterion free energyc(T,[p].{R1, ... Ry })  There are two “volume terms:’F° and

can be expressed as a functional of the counterion one- -
1 Z%e

particle density fieldp(r) which becomes minimal for the Fl— _ 2| N -+t kaTN
equilibrium density field under the constraint of fixed aver- 20™ € B e
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which involves the coupling to the macroions as well as B. The freezing transition of charged colloids

correlational contributions. 1. Macroionic free energies in the fluid and solid phases

2. Case of added salt Canonically averaging over the macroparticle degrees of

In this case we have the salt concentration as an additiongleedom leads 1o a total free energy
parameter. The total mean number density of counterions _ 0, 1
F=F,+F+F-,

and cations is denoted Wiﬁ =N, /V, whereas the coions

(carrying a charge-ge) have a mean densify_=N_/V. whereF, is the free energy of a one-component system of
Again the density-functional language can be applied infmacroparticles interacting by the effective pair potential
volving ideal terms for the counterions and coions as well a&/°-VO(R). We divideVP-VO(R) into a short-range reference
the mean-field term describing the Coulomb couplingpart Vo(R) and a long-range perturbation pait(R) such
[28,29. The free energy functional of the small ions is ap-that VP"VO(R)=V,(R)+W(R), following the scheme of

proximated by an ideal gas term Kang et al. [30]:
_ - . R VPYO(R)—F(R) for R<R
Fi=keTS, [ &0y A%y(P)1-1), _ 0
R N S . VolRI=] for R=R,
where the summation takes into account positive and neggmg
tive ionsj=(+,—), a mean-field contribution
- R ‘F(R) for R<R,
1 - ~ . ~Qqe 1 W(R)=
FeF=52 fdsrfdsf’pmr)p,w(r’)q—ﬁ VPRO(R) - for R=Ry.
2 vy € |r—r’|

The splitting distanceR, is the nearest neighbor lattice
and the term describing the ions in the external field of thqjistanchoz \/§/2(2lp)1/3 of a bcc SOI|dF(R) is assumed to

macrolons be a linear functionF(R)=a+bR, where the constanta
N and b are determined by requiring/o(R) and W(R) and
feXt:E f 43 -(F)Em ﬁ 1 their derivatives to be continuous Rt R,. The short-range
¢ T Jv Pi =1 € |F_|§’i|' potential Vo(R) is then further approximated by a hard-

sphere interaction with an effective diameternccording to
Doing a similar analysis as in the preceding section, ondhe Barker-Henderson formula?)
obtains the following equilibrium densities for the counteri-

o R
ons and coions: d:f "dR[1—e BYoR). (30
0

q

In the fluid phase the free energy of the hard-sphere ref-
erence system is obtained as in Sec. Il C with the help of the
Carnahan-Starling expression. In addition to that we add the
free energyF;e,t associated wittW(R) perturbatively as

R ( Z)K%r N g=lr=RIl 25 5
p+(r)= — ==
* AT iZ1 r—R|  pitp-

and

q

, (F):(Z)Kz_ Nm g Rl 25 5.

_2+—>+— —, ,Banl
4T i=1 r-R| pitp- N—pezzpmf d*Rgo(R)BW(R), (32)
m

wherezxz VK“ZL’;— is the inverse Debye screening length \ynere g (R) is the radial distribution function of the hard-

with k% =4m(q°e’/ekgT)p- . sphere fluid which is analytically available, e.g., in the
Inserting these density profiles in the free energy func+/erlet-Weis treatmenit21].

tional leads again to the usual DLVO pair interaction be-  For high densities, the system is expected to freeze into a

tween the macropgrtlc_leS/DLVO(R)I(Zzezle)(ef"R/R). bce-solid phase. Similar to Eq(21), we use a free volume

The effective Hamiltonian now involves three “volume theory[31] to obtain the free energy of a bcc hard-sphere

terms,” namely, solid

FO=N,kgT[In(A3 p,)—1], Fs 2\ 183
+ +KgT[IN(ASp ) ] ?\l =—In[Ar;31/Z[(—) — dg

m

3
p ] -C, (32
J— m
FO=N_kgT[IN(A3p_)—1],
with C=2.1 and add a lattice sufB2] to get the free energy

and Ff;e,t associated wittW(R) in the solid phase
1 202 b.—p_ 1 N
Fi=—3 Nm—K+kBT(N+—N)(p_+ p_> . Foer=5Nm> W(Rni), (33
€ pP+Tp- Rnki




57 DENSITY JUMPS ACROSS PHASE TRANSITIONS IN ... 5751

Ps— P¢
P
0.07r

0.06}
005 -
0.04f
0.03}
002 =
001}

0 02 04 06 08
BF/N, ' ' ' ' (0 [10™mol/1]
300.0

FIG. 8. The relative density jumpp{— p¢)/ps With p denoting
the macroionic density of the bcc solid phase apalenoting that
of the coexisting fluid phase versus the concentragiorof added
salt is shown. Units op_ are micromoles per liter. The macroion
charge isZ=200. The other parameters are given in the text.

200.0

100.0

equilibrium of the chemical potential of the macroparticles.
Global charge neutrality then causes equalization of the
chemical potential of the counterions in both phases. How-
ever, when adding salt one has to fulfill additionally the
equality the chemical potential of the salt ions. This leads to

FIG. 7. Same as Fig. 2 but now for charged colloids interacting® higher salt concentration in the fluid phase.

via the DLVO pair potential: Total free enerdy/N,, per macro- When calculating the phase boundaries one may follow
particle in units ofkgT versus inverse colloidal particle density three different routes. First, one can directly map the system

1/p,, in units of the Bjerrum length® (\=e?/ekgT). The param-  ©ONto a state-independent Yukawa system and take the phase
eters areZ =35, T= 298, e=81. Note the logarithmic scale in the boundaries from this system as was done by Monovoukas
inverse density(a) Without volume terms. Here an artificial liquid- and Gas{7]. This approach neglects the density dependence
gas phase coexistence is obserysdaded aréa The double tan- Of the inverse Debye screening lengthacross the phase
gent is the broken line. Note that due to the semi-logarithmictransition. Second, one can include this but neglect the vol-
inverse-density axis, the double tangent is no longer lifeéalVith ume terms. The correct way is—thirdly—to include these
volume terms. There is no liquid-gas phase transition. volume terms as well in the phase coexistence analysis. It is

worth noting that the phase boundaries themselves are prac-
where the summation runs over the bcc-lattice positiondically equal and not affected by the procedure used. More
ﬁnk,. We have also considered the case of a fcc solid with Egetalls, howgyer, such as t.he relative density jump across the
similar route to get its free energy as in Sec. Il C. phase_z j[ran3|t|on, are hez_;\vny affected by the procedure. _Th's

is strikingly shown in Fig. 8 where we show the relative
density jump for charged colloids versus salt concentration.
The parameters aré=200,q=1, e=81, andT=298 K.

If the “volume terms” are omitted in the salt-free case, a The pure Yukawa mapping yields a density jump which is
“pure” one-component system governed by the DLVO po-two times larger than that obtained from a state-dependent
tential exhibits a gas-liquid phase transition although therdnclusion of the “volume terms” shrinks the relative density
are no attractive interactiorid6]. The reason for that is that jump further. This reduction is particularly pronounced for
the screening parametar depends on density. Within our strongly deionized systems where it becomes about 50%.
theoretical approach, the results with a gas-liquid phase trarNote that there is always a residual salt concentration of
sition of the “pure” one-component system are shown inabout 0.1umol/l due to the protonization of water providing
Fig. 7(a). This transition is spurious, however, since it disap-a lower limit of the salt concentration.
pears if the “volume terms” are added to the free energy
which is shown in Fig. {). This strikingly demonstrates the
importance of the volume terms in locating phase bound-
aries. Conversely it can happen that the volume terms drive a In conclusion, a density jump across a phase transition in
new liquid-gas transition which is absent for the “pure” soft-matter systems can be very small if many microscopic
one-component system. This was investigated in more detailegrees of freedom are directly coupled to the number of the
by van Roij and Hanse[L5]. macroparticles. Then the condition of constant pressure in

In the salt-free case, when all counterions stem from thdooth coexisting phases cannot be maintained for a finite den-
macroions, phase equilibrium between the solid phase ansity jump since the microscopic degrees of freedom domi-
the fluid phase of the macroparticles is obtained by the equirate the osmotic pressure. In the case of star polymers the
librium of the total pressure in both phases as well as th@ressure was dominated by the correlational free energy of

0.0

102 10°  10° 10° 10° L/p

2. Results

V. DISCUSSION AND CONCLUSIONS
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the self-avoiding monomers while for salt-free charged sus- BF
pensions the microscopic counterion entropy reduces the /Nm
density jump across macroion freezing. solid1 solid2 fluid

Let us now discuss further examples frequently encoun-
tered in soft-matter physics.

(i) Sterically-stabilized colloids Colloids stabilized by N
grafted polymers can be viewed as star polymers with quite '
different length scales. While the core size in the former case
is much smaller than the length of a polymer chain, it is quite
the opposite for sterically stabilized suspensions such as
PMMA spheres. Here the particle diameter is much larger

solid1

solid2
<~
~ fluid
|
R

than the thickness of the grafted polymer layer. This implies solid1 | ! fll\l~id
that the thermodynamics and the contribution of the grafted 1/
polymer chains to the total osmotic pressure iswaface P

contribution as compared to the macroparticle contribution. , ,

It hence can be neglected which opens the way for possible FIG. 9. Total free energi/N,, per macroparticle versus inverse

density iumps across phase transitions macroparticle density g/, in the case of three possible phases
- Y] p . P . ) fluid, solid 1, and solid 2. If only the effective interaction is taken
(i) Colloids with nonadsorbing polymerdf one adds

dsorbi | ¢ loidal . the eff into account, the solid 2 phase is metastable and preempted by the
nonaasorbing polymers 10 a colloidal suspension, the e ecdensity jump in the fluid—solid 1 transition. The corresponding

tive interaction potentiall becomes attractive due to depletioraouble tangent is shown as a dot-dashed line and the phase diagram
forces, S_ee, e.g.33]. Asin th_e case of added salt_ for Charged is sketched in the lower g/, axis. For isochoric transitions, how-
suspensions the concentration of the polymers is not fixed byyer, as discussed in the text, the solid 2 shows up as sketched in
the macroparticle concentration. It hence may differ in dif-the nigher 14, axis.
ferent phases. Hence large density jumps are possible. In fact
liquid-gas-like phase transitions with a huge volume jump
are observed experimentallg3].

(iii) Effects of the solvenOne may finally worry about
the influence of the discrete microscopic solvent on densit

jumps across phase transitions. Again the solvent concentra discussion of the phase diagram. For a crude estimation of

tion is not fixed by the macroparticle concentration and th e phase boundaries the effective one-component bair bo-
ordering of the solvent near the macroparticle surfaces ise%r phas : ponent pair p
ential picture applies reasonably well, but details as the

surface effect which does not contribute to the osmotic pres- . o .
sure magnitude of the density jumps across coexistence are not
We finally remark that the additional “volume terms” described correcily.

may bring about the occurrence of quite interesting crystal- r';‘s;f{VOL_’llj?nbg g‘;e;erﬁgggt;ﬂ reat;li\:] € ttr;](z ?Zr?]rgtig?noretshif
line phases that are only stable over a finite density range angle. y Jump P - 9| : P
eionized charged suspensions as discussed in[BEfit

are normally preempted by nonisochoric freezing. A typlcalshould be possible to measure the density of the coexisting

situation is sketched in Fig. 9. A normal double tangent con-fluid and solid by scattering techniques, e.g., along a sedi-

struction within the effective one-component system would . ' ; . .
exclude a metastable solid 2 phase by the nonisochoric SOIiWentatlon profile of a charged suspension. Our consideration

1—fluid transition. If only isochoric phase transformationswoUId lead to a practically vanishing density gap for salt-free

are possible, the phase diagram looks quite different and thig- ' SPEnsIons.

solid 2 phase becomes stable within a finite density interval.

Hence it is conceivable th_at some unusual phases become ACKNOWLEDGMENTS

stable for salt-free suspensions that do not show up for salted
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To summarize: while the effective pair potential is useful

to describe the static correlations as embodied in the fluid
tructure factor in the fluid phase one has to be careful not to
Zorget the influence of the microscopic degrees of freedom in
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