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Molecular-dynamics study of long-lived structures in a fragile glass-forming liquid
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We present molecular-dynamics results for a two-component, two-dimensional Lennard-Jones supercooled
liquid near the glass transition. We find that the supercooled liquid is spatially heterogeneous and that there are
long-lived clusters whose size distribution satisfies a scaling relation up to a cutoff. The similarity of several
properties of the supercooled liquid to those of a mean-field glass-forming fluid near the spinodal suggests that
the glass transition in the supercooled liquid is associated with an underlying thermodynamic instability.
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I. INTRODUCTION

The characterization of supercooled liquids near the g
transition is an active area of research@1#. Outstanding un-
solved problems include the possible existence of an un
lying thermodynamic glass transition, the history depende
of the glass properties, and the mechanisms responsibl
the large increase in relaxation times as the glass transitio
approached. In this article we discuss our molecu
dynamics simulations of a two-component, two-dimensio
(d52) Lennard-Jones supercooled liquid. A summary
some of our results has been published earlier@2#.

To help the reader understand our interpretation of
molecular-dynamics data and the questions we pose, we
review the behavior of a mean-field model of a structu
glass transition@3#. In the mean-field model, particles inte
act via a repulsive, two-body potential of the form@4# V(r )
5gdf(gr ), wherer is the interparticle distance andd is the
spatial dimension. The range of the interaction isR5g21. In
the limit R→`, the static properties of the uniform fluid ar
described exactly by mean-field theory@4#. The equilibrium
structure functionS(k) can be shown to satisfy the Ornstei
Zernicke form,S(k)51/@11brf̂(k)#, wherer is the par-
ticle density,b215kBT, and f̂(k) is the Fourier transform
of f(x). We choose the step potential,f(x)51 for x<1
andf(x)50 for x.1. The Fourier transformf̂(k) is nega-
tive for various values ofk. This property off̂(k) implies
that in the mean-field limit,S(k) becomes negative in som
range ofk for sufficiently largebr. Hence for fixedr, the
system has a spinodal singularity@5# at a temperatureT
5Ts which is defined by the condition 11bsrf̂(k0)50,
where k0 is the location of the minimum off̂(k). At T
5Ts , S(k) diverges atk0; for T.Ts , S(k0) diverges as
(T2Ts)

2g with the mean-field exponentg51. Note that the
spinodal is the limit of thermodynamic stability of the un
form phase and is a critical point~for a given density!. How-
ever, unlike the usual critical point, the structure functi
diverges at a nonzero value ofk.

For d53 andr51.95, the spinodal is atTs50.705 (kB
571063-651X/98/57~5!/5707~12!/$15.00
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51) @3#. Although the singularity is well defined only in th
mean-field limit, simulations must be done for finiteR.
Monte Carlo simulations forR53 with r51.95 yield aS(k)
which has a maximum atkÞ0 that increases rapidly asT is
decreased untilT'0.75, below which the peak ceases
increase asT is lowered@3,6#. This behavior is characteristi
of a pseudospinodal@7#.

One way of understanding the simulation results forS(k)
is to interpret the spinodal as a singularity of the free ene
as a function ofT,r. If the interaction range is finite, the
singularity is in the four-dimensional complex (T,r) plane
as has been found in transfer matrix studies of long-ra
ferromagnetic Ising models@8#. The singularity moves close
to the real axis as the range of interaction increases. We r
to the complex singularity in finite-range systems as a ps
dospinodal. The physical effects of the pseudospinodal
pend on how far it is from the real axis. AsR increases, the
pseudospinodal better approximates a true singularity
has measurable effects ifR is sufficiently large.

The fact that the mean-field model has a spinodal is
ambiguous. We now discuss the reasons why we can as
ate the spinodal with a thermodynamic glass transition.
the Monte Carlo simulation for fixedr we equilibrate the
system at a highT.Ts where the uniform phase is stable an
then quench it toT,Ts where the uniform phase is unstabl
After the quench the particles immediately form clumps w
order rR3 particles in each clump@6#. That is, the system
breaks up into regions of high particle density surrounded
regions of low particle density. The arrangement of t
clumps is noncrystalline and their number depends on
quench history@3,6#. The free energy has been calculat
numerically in the mean-field limit and has many minim
corresponding to different numbers of clumps@3,9#. For T
,Ts , the system remains trapped in a local free ene
minimum. The minimum the system chooses appears to
pend on the quench history.

The multiminima free energy and the quench history d
pendence suggest that the mean-field model has a metas
glass phase forT,Ts . However, the properties of a glass a
associated more with its dynamical properties. As we w
discuss, the glassy dynamics of the mean-field model is
5707 © 1998 The American Physical Society
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sociated with the behavior of theclumps; the particles are
not localized in the metastable glass phase. That is, the
namical properties associated with single particle beha
do not show the usual signature of the approach to a glas
simple argument based on the fact that all potential barr
in the mean-field model are finite@2# implies that the self-
diffusion coefficientD is nonzero for allT.0. Hence, if the
observation time is sufficiently long, the mean square d
placement of the particles increases indefinitely. The ar
ment proceeds as follows. Because the separation betw
the clumps is orderR, the interaction of the particles in
particular clump with the particles in neighboring clumps
minimized. Inside a clump, a particle undergoes a restric
random walk. A particle that attempts to leave a clump
periences a potential barrier due to the proximity of oth
clumps. Such a particle must interact with particles in
same clump and with particles in at least one other clum
some time during its possible escape. The upper bound o
potential barrier iscgdRd, where the constantc depends on
d. ~Recall thatgd is the strength of the interaction andRd is
proportional to the number of particles in a clump such t
gdRd51.! The probability of leaving a clump in a Mont
Carlo simulation is bounded from below by1

2 e2c/kBT for all
R and henceD.0. Similar arguments hold for a molecula
dynamics simulation of the same system.

The same argument implies that the mean-field mode
ergodic for allT.0 if single particle properties are probe
The ergodic behavior can be characterized by several fl
tuation metrics@10#. The single particle energy fluctuatio
metric Ve(t) is given by@10#

Ve~ t !5
1

N (
i 51

N

@ ē i~ t !2^ ē ~ t !&#2, ~1!

where

ē i~ t !5
1

t E0

t

e i~ t8! dt8 ~2!

is the energy of particlei averaged over the time intervalt,
and ^ ē (t)&5(1/N)( i 51

N ē i(t). The single particle energye i

of particle i includes its kinetic energy and one-half of th
potential energy of its interaction with other particles in t
system. If the system is ergodic,Ve(t);1/t for t sufficiently
large @10#. We find thatVe(t) exhibits ergodic behavior a
T50.4, a value ofT,Ts . However, forT<0.15, 1/Ve(t) is
not proportional tot during our longest runs, and the me
suredD is indistinguishable from zero atT50.15. Given our
theoretical argument thatD is nonzero for allT.0, the ob-
served behavior of 1/Ve(t) for T,0.15 implies only that the
time for a particle to leave a clump is much longer than o
observation time. We interpret this change from ergodic
nonergodic behavior as an apparent kinetic transition.

How can we reconcile theT dependence ofD andVe(t)
with our identification ofTs as the spinodal-glass transition
The answer lies in the dynamical properties of theclumps.
For example, the diffusion coefficient of the center of ma
of the clumps,Dcl , is zero forT,Ts in the mean-field limit.
To understand this behavior, note thatncl , the mean numbe
of particles in a clump, diverges asRd asR→`. In this limit,
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the number of clumps does not change with time and
mean numbers of particles exiting and entering a clump
equal. From the central limit theorem, the relative fluctu
tions of these quantities go to zero asR and ncl→`. We
conclude thatDcl<D/Ancl, and henceDcl50 in the mean-
field limit. Our simulations ofDcl for finite R are consistent
with this prediction, and also indicate that the clumps are
affected by the same local environment, that is, they h
different numbers of nearest neighbor clumps. This diff
ence in the local environment persists asR→` because the
clumps do not diffuse and cannot sample different local
vironments. Hence, the system is nonergodic on a clu
(mass;Rd) scale forT,Ts in the mean-field limit.

In summary, the static properties of the mean-field gl
phase are dominated by localized, long-lived structu
~clumps! for T,Ts , even though particles move from clum
to clump. The time scale for the motion of the clumps d
verges in the mean-field limit, and the spinodal-glass tran
tion is seen dynamically only on a clump scale. However,
observe anapparentkinetic transition that is associated wit
the slow diffusion of the particles and the finite duration
our runs. The temperature of this apparent transition is
thanTs and depends on the observation time.

The well characterized behavior of the mean-field gla
model motivates us to ask if similar behavior occurs in s
tems with more realistic interactions. In Sec. II we discu
the static properties of a two-component, two-dimensio
system of Lennard-Jones particles and find that the sys
exhibits the usual properties associated with other sim
tions of glassy systems. In Sec. III we compute the sta
structure functionS(k) and find evidence for a weak diver
gence in the height of the diffraction peak asT is lowered.
This divergence is interpreted as evidence for the influe
of a pseudospinodal. In Sec. IV we propose a criterion
clusters of solidlike particles and find evidence of clus
scaling and an ergodic to nonergodic transition in the dyna
ics of the clusters. In Sec. V we discuss the interpretation
our molecular-dynamics results in terms of a mean-field p
spective.

II. LENNARD-JONES MODEL

Because it is easier to identify geometrical structures
two dimensions than in three, we consider a two-dimensio
system. We also specify that the particles interact via
Lennard-Jones potential because of the extensive simula
of supercooled Lennard-Jones liquids. However, a sing
component, two-dimensional Lennard-Jones system quic
nucleates to a solid and is unlikely to form a glasslike sta
We follow Wong and Chester@11#, who have done a Monte
Carlo study of the quenched states of two-component, t
dimensional Lennard-Jones systems with the goal of cho
ing the density and the size of the minority component
that it inhibits nucleation of the majority component to
solid.

We designate byVab the interaction between a particl
belonging to speciesa and a particle belonging to speciesb
and write Vab54e@(sab /r )122(sab /r )6#. We follow Ref.
@11# and choosesaa5s, sbb53s/2, and sab5 1

2 (saa
1sbb)55s/4. The energy parametere and the massm are
the same for both species. The Lennard-Jones potential i
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off at r 52.5sab and shifted so that the potential is to zero
the cutoff. We choose units such that lengths are measure
terms ofs, energies in terms ofe, and the time in terms o
t5(ms2/e)1/2. For example, the reduced number density
r* 5rs2. In the following, we will omit the asterisk and
quote all results in reduced units. Because the time can
expressed either in terms of the number of time steps o
terms oft, we will explicitly specify the units of time.

The majoritya component is taken to be 80% of the tot
number of particlesN. All but one of the simulations are fo
N5500. This relatively small number of particles was ch
sen so that long runs could be made. The duration of the
for each temperature was 100 000t unless otherwise noted
The molecular-dynamics simulations were performed w
periodic boundary conditions at constant energy and volu
@12# at a density ofr50.952, corresponding toL522.92,
whereL is the linear dimension of the simulation cell. W
used the velocity form of the Verlet algorithm@12# with a
time step ofDt50.005t for all temperatures except forT
55.5 for which we chooseDt50.0025t to achieve reason
able energy conservation. The mean temperatures and
sures of our eight different runs are shown in Table I. A
typical example of the statistical accuracy of these mean
ues, we note that the run atT53.1 corresponds to a mea
temperature of 3.15 over the first 50 000t and 3.13 over the
second 50 000t. However forT52.25, the mean tempera
tures were 2.21 and 2.29, respectively, and it is possible
the lowest temperature run has not reached thermal equ
rium.

Because our results are for constant density rather
constant pressure, the values of various quantities to be
cussed here will differ slightly from our earlier results cite
in Ref. @2# which were for a pressure ofP'70 and different
densities. The initial configuration of each run at a particu
temperature was the final configuration obtained previou
@2,13#. In some cases the positions had to be rescale
obtain the desired density. Unless otherwise stated, the
tem was allowed to equilibrate for at least 50 000t and then
data were collected for 100 000t. This duration is one to two
orders of magnitude longer than reported previously@2#

TABLE I. Values of the mean temperatureT, the mean pressure
P, the height of the first peak of the radial distribution functio
g(r ), and the heightx(k0) and widthw(k0) of the diffraction peak
of the static structure functionS(k) averaged over runs of 100 000t
each. The mean pressure was computed from the virial. The w
of the first peak ofg(r ) does not appear to change withT and is not
listed. The densityr is fixed atr50.952. As stated in the text, th
lowest temperature run is probably not in complete thermal equ
rium.

T P g(r max) x(k0) w(k0)

5.5 91.1 4.30 2.59 1.11
4.6 85.3 4.54 2.70 0.95
3.7 77.8 4.91 2.87 0.87
3.3 74.9 5.15 3.10 0.76
3.1 72.9 5.33 3.49 0.63
2.7 69.0 5.68 4.28 0.45
2.5 67.3 5.86 3.94 0.55
2.25 65.0 6.07 3.54 0.54
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and is equivalent to runs of approximately 231027 s for
liquid argon.

We first compute the radial distribution functiong(r ) and
the self-diffusion coefficientD and show that they exhibi
behavior similar to that found in other simulations of sup
cooled liquids. All of the following results are for the majo
ity particles only unless otherwise noted. The positions of
particles were saved every 5t andg(r ) was computed in a
separate program. In Fig. 1 we showg(r ) for T52.7. Note
the split second peak, a possible signature of a glassy s
@11#; the split second peak ofg(r ) is not observed forT
.3.1. The increase in the height of the first peak ofg(r ) as
the temperature is lowered~see Table I! indicates the growth
of short-range order. We discuss the temperature depend
of the enthalpy and the constant pressure heat capacity in
Appendix.

The single particle self-diffusion coefficientD is related
to the mean square displacementR2(t) by limt→`R2(t)
52dDt. An alternative way of determiningD is from the
velocity fluctuation metricVv(t) defined as@10#

Vv~ t !5
1

N (
i 51

N
1

d (
a51

d

@ v̄ i ,a~ t !2^v̄a~ t !&#2, ~3!

wherev i ,a is thea component of the velocityvi of particlei .
The time average,v̄ i ,a(t), of v i ,a is defined as in Eq.~2! and
the quantity^v̄a(t)& is the average ofv̄ i ,a(t) over all par-
ticles. In our simulations the total momentum of the syst
is equal to zero, and hencê v̄a(t)&50. Because
*0

t vi(t8) dt85r i(t)2r i(0), we canexpressVv(t) as

Vv~ t !5R2~ t !/2t2. ~4!

If the particles are undergoing diffusion, we have

Vv~ t !→
2D

t
. ~5!

th

-

FIG. 1. Plot of the radial distribution functiong(r ) versusr at
T52.7. Note the split second peak, a possible signature of a gl
state. Only the small, majority particles were included. The dim
sionless quantityr is measured in terms of the Lennard-Jones
rameters.
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The relation~5! was also used to determineD.
For each value ofT, the quantityur i(t1t0)2r i(t0)u2 was

computed in a separate program by grouping the part
coordinate data into blocks of duration 500t and averaging
over all possible choices of the origint0 and combinations of
time differencest<250 for a particular block. The result
were then averaged over the 200 blocks. The velocity me
was computed at each time step in the main molecu
dynamics program and the results also were averaged
200 time origins. The typical time dependence
Vv(0)/Vv(t) is shown in Fig. 2 forT52.25. Note that at
this temperature 1/Vv(t) is not linear fort,200t, but be-
comes linear for longer observation times.

Our results forD obtained fromR2(t) and 1/Vv(t) are
summarized in Table II. The difference in the values ofD
determined by the two methods is a measure of the erro
the determination ofD. In the similar three-dimensional sys
tem studied in Ref.@9#, D(T) was fit to the Vogel-Fulcher
form

D~T!5A e2B/~T2T0!, ~6!

and we look for similar behavior. From the semilog plot ofD
versus 1/T shown in Fig. 3, it is easy to verify that the be

FIG. 2. Plot ofVv(0)/Vv(t), the reciprocal of the velocity fluc-
tuation metric, atT52.25. Note that 1/Vv(t) is not linear for t
,250t, but becomes approximately linear for longer times. T
temperatureT is dimensionless~see text!.

TABLE II. Summary of results for the self-diffusion coefficien
D as a function of temperatureT at constant densityr50.952. The
second column represents the estimates ofD determined from the
slope ofR2(t), and the third column gives the estimates ofD from
the slope of 1/Vv(t) @see Eq.~ 5!#.

T D @from R2(t)# D @from 1/Vv(t)#

5.5 4.431022 4.831022

4.6 3.031022 3.131022

3.7 1.231022 1.231022

3.3 6.931023 6.831023

3.1 4.131023 4.231023

2.7 1.131023 8.131024

2.5 4.531024 4.231024

2.25 1.131024 6.731025
le
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fits are forT0.0. The best fit for all eight temperatures
Table II occurs forT0'1.8 andT0'1.7 using the values o
D obtained fromR2(t) and 1/Vv(t), respectively. However,
as shown in Table IV the results forT0 are sensitive to the
number of data points which are included in the least squa
fits. The range of reasonable fits illustrates the difficulty
obtaining meaningful values ofT0. We conclude that the
temperature dependence ofD(T) is consistent with the
Vogel-Fulcher form withT0 in the range 1<T0<2. Note
that the Vogel-Fulcher form ofD(T) implies that the system
loses ergodicity atT5T0.

We also calculate the single particle energy fluctuat
metricVe(t) @see Eq.~1!# to see if it exhibits ergodic behav
ior. If the system is ergodic, we expect that@10#

Ve~ t !→2te /t. ~7!

We interprette as the energy mixing time. The energy flu
tuation metric was computed ‘‘on the fly’’ in the same wa
asVv(t), but for a duration of 50 000t rather than 100 000t.
We observed that 1/Ve(t) becomes approximately linea
even at the lowest temperatureT52.25, indicating that the
system is ergodic according to this measure. Our results
theT dependence ofte(T) based on Eq.~7! are summarized
in Table III and are plotted in Fig. 4. Note that the large
mixing time is order 10 000t. For comparison, we also show
in Table III the values oftD5s2/(4D), the mean time it
takes a particle to traverse the distances. As summarized in
Table IV, the fits of te(T) to the Vogel-Fulcher form
te(T)5A e2B/(T2Te) in different temperature intervals als
yields a range of values for the parameterTe . We conclude
that the temperature dependence ofte is consistent with the
Vogel-Fulcher form with a value ofTe consistent with the
value ofT0 determined from the self-diffusion coefficient.

III. EVIDENCE OF PSEUDOSPINODAL BEHAVIOR

Now that we have established that the two-compone
two-dimensional supercooled Lennard-Jones system

FIG. 3. Semilog plot of the~dimensionless! self-diffusion coef-
ficient D versus 1/T. The data points~filled circles! are taken from
the second column in Table II. The solid line represents the bes
to the results forD in the interval 2.25<T<5.5 extracted from
R2(t) to the Vogel-Fulcher formD(T)5Ae2B/(T2T0) with A
50.16,B54.7, andT051.82.
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57 5711MOLECULAR-DYNAMICS STUDY OF LONG-LIVED . . .
properties similar to those observed in other simulations
deeply supercooled systems, we explore how the mean-
interpretation discussed in Sec. I is applicable to the pre
Lennard-Jones system. If the Lennard-Jones system exh
pseudospinodal effects, we should find behavior analog
to that observed in the mean-field glass model@3# and in
Ising models with long-, but finite-range interactions@7#. In
these systems, the static structure functionS(k) appears to
diverge at a nonzero value ofk if its behavior is extrapolated
from high T or small magnetic field, but the extrapolate
singularity is not observed if measurements are made
close to the apparent singularity.

We computeS(k) ~for the majority particles! from the
saved particle positions using the relation

S~k!5
1

NU(i 51

N

eik•r iU2

. ~8!

Angular averages were computed by considering all poss
k vectors. We calculatedS(k) for the same configurations a
were used for obtainingg(r ). The k dependence ofS(k) at
T52.7 is plotted in Fig. 5. Because the number of particle
fixed, we expect thatS(k)→1 ask→0. The important fea-
ture of S(k) is the diffraction peak atk5k0'7.15. We in-
terpret the height of this peak as ak-dependent susceptibility
x(k0 ,T), and the widthw(k0 ,T) as an inverse length pro
portional to the size of the correlated regions in the liqu
These quantities were extracted fromS(k) by fitting the re-
gion aroundk5k0 to the four parameter form,S(k)5a
1b/@(k2k0)21c#.

Our results forx(k0 ,T) andw(k0 ,T) are listed in Table I
and plotted in Fig. 6. Note thatx(k0 ,T) increases by a facto
of approximately 1.6 andw(k0 ,T) decreases by a factor o
approximately 2.0 asT is lowered from 5.5 to 2.5. Becaus
this range ofT is limited, we can fitx(k0 ,T) andw(k0 ,T) to
a variety of functional forms. Given the divergent behav
of the first peak ofS(k) in the mean-field model discussed
Sec. I, we look for fits to the functional forms,x(k0 ,T)
;(T2Ts)

2g and w(k0 ,T);(T2Ts)
n, whereTs , g, andn

are fit parameters. We find that the best fit to the assum
power-law form is x(k0 ,T);(T22.6)20.16 and w(k0 ,T)
;(T22.6)0.29 if results in the interval 2.7<T<4.6 are in-

TABLE III. Summary of characteristic times. The cluster mi
ing time tcl is computed as in Eq.~7! from the cluster metricVcl .
The single particle timetD5s2/(4D), the mean time it takes a
particle to diffuse a distances, and the energy mixing timete from
Eq. ~7! are shown for comparison.~The values oftD are obtained
from the second column in Table II.!

T tcl tD te

5.5 53102 5.7 16
4.6 13103 8.4 28
3.7 53103 20 69
3.3 23104 36 140
3.1 53104 60 260
2.7 53105 230 1 100
2.5 53105 560 1 400
2.25 2300 11 000
f
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cluded. A least squares fit in the interval 3.1<T<5.5 yields
x(k0 ,T);(T23.0)20.08 and w(k0 ,T);(T23.0)0.19. Given
the limited range ofT, these power-laws fits are justifiedonly
in the context of our rigorous results forS(k) in the mean-
field model@3# for which x(k0 ,T);(T2Ts)

21. The power-
law fits suggest that the increase of the height and the
crease in the width of the first peak ofS(k) are influenced by
a weak singularity atT5Ts with Ts in the range 2.6<Ts
<3.0. As expected, no evidence of a singularity is found
we fit the results forx(k0 ,T) in the interval 2.25<T<5.5.

IV. CLUSTER SCALING AND LIFETIME

Given the preliminary pseudospinodal interpretation t
we presented in Sec. III, we seek other evidence for
existence of a pseudospinodal and mean-field behavior.
temperatures near the pseudospinodal the system sh
show signs of an instability and the system should partia
phase separate. That is, we should see regions where
majority particles dominate and locally order. For this reas
we look for long-lived structures whose constituent partic
remain in close proximity to each other over extended tim
at sufficiently low T. Because of the strong repulsiv
Lennard-Jones interaction near the origin, these struct
will not be identical to the clumps found in the mean-fie
model, but instead should be caused by a cage effec
visual examination of the configurations shows evidence o
partial phase separation in which a significant fraction of
majority particles form clusters of triangularlike structur
which become better defined as the temperature is decrea
Qualitatively, the lifetime of these visual clusters in th
range of temperatures of interest appears to be much lo
than the period of oscillation of the particles about th
mean position in the clusters.

To find these structures we seek to define a ‘‘solidlik
particle such that clusters of these particles have the ab
qualitative properties. However, unlike the Ising model ne
the critical point@14# and near the spinodal@15#, there is no
theoretical definition of clusters in a dense liquid, and

FIG. 4. Semilog plot of the~dimensionless! energy mixing time
te defined in Eq.~7! versus 1/T. The data points~filled circles! are
taken from Table III. The solid line represents the best fit to
Vogel-Fulcher formte5AeB/(T2Te) with A51.24,B59.8, andTe

51.25 for the six temperatures in the interval 2.7<T<5.5.
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have to rely on our physical intuition to define them. We w
assume that a cluster consists of a group of solidlike parti
and that if two solidlike particles are near neighbors, th
belong to the same cluster. Ideally, we would like to intr
duce a physical property that exhibits bimodal behavior w
one peak corresponding to solidlike particles. However,
of the physical quantities we measured exhibit a single pe
and hence we will need to introduce a cutoff to distingu
solidlike and nonsolidlike particles. Nevertheless, we w
find that the properties of the resultant clusters do not dep
strongly on the choice of cutoff.

Because we are interested in the local environment of
particles, it is natural to do a Voronoi construction@16# and
determine the Voronoi polygon of each particle and
Voronoi neighbors. Quantities associated with the Voro
construction include the distribution of the number of edg
of the Voronoi polygons, the distribution of the area of t
polygons, and the distribution of the length of the sides.
our two-dimensional system, the mean number of edge
the Voronoi polygons is six and the distribution of the nu
ber of edges is temperature independent. This independ
is expected because the Voronoi construction in two dim
sions is insensitive to thermal fluctuations@13#.

To quantify the temperature-dependent changes in the
tribution of lengths of the sides of the Voronoi polygons w
six sides, we introduce the standard deviations l of the edge
length of a particular particle as@17#

s l
2 5^l 2&2^l &2, ~9!

where ^ f (l )&5(1/6)(a51
6 f (l a) and l a is the length of

edgea of the hexagon of interest. If a particle were in
perfect triangular environment, thens l 50. In Fig. 7 we
show the estimated probability densityP(h) of the quantity
h5s l

2 /^l &2, a measure of the ‘‘hexagonality’’ of the poly

TABLE IV. Range of fits for the temperature parameterT0 from
least squares fits of the self-diffusion coefficientD, the energy mix-
ing time te , and the cluster mixing timeTcl to the Vogel-Fulcher
form ~6!.

Temperature interval T0 @from R2(t)# T0 @from 1/Vv(t)#

2.25<T<5.5 1.82 1.67
2.7<T<5.5 1.83 1.21
2.25<T<4.6 0.97 1.30
2.7<T<4.6 0.94 1.30

Te

2.25<T<5.5 no fit
2.7<T<5.5 1.25
2.7<T<4.6 1.25
3.1<T<5.5 1.68
3.1<T<4.6 1.95

Tcl

2.25<T<5.5 no fit
2.7<T<5.5 1.58
2.7<T<4.6 1.57
3.1<T<5.5 1.58
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gons. AtT55.5, the Voronoi polygons are irregular, givin
rise to a high percentage of particles withh.0.1. At T
52.7, the most probable value ofh is ath50.014, and many
more particles have regular Voronoi polygons.

In the following, we define a majority particle to be so
idlike if it has six Voronoi neighbors and if the conditionh
<0.1 is satisfied. The choice of the cutoff parameter is
crucial and the qualitative properties of the clusters areinde-
pendentof the cutoffs over a wide range of values@13#. A
typical configuration of the system atT53.3 is shown in Fig.
8.

Given our criteria for solidlike particles and our definitio
of clusters, we can determine the properties of the cluster
separate program using a Voronoi construction and
Hoshen-Kopelman cluster labeling algorithm was used to
termine the clusters. Because the height of the maximum
S(k) increases and the width of the peak decreases asT is
lowered, we expect that the mean size of the clusters gr
asT is lowered until their growth becomes ‘‘frustrated’’ b
the presence of the larger minority component and by
different orientations of the other clusters.~The size of a
cluster is its number of particles.! The behavior of the cluste
size distributionns as a function of the sizes is plotted in
Fig. 9 for T53.3 andN5500. The cluster distribution is
normalized by the number of~majority! particles so thatns is
the probability that a particle belongs to a cluster of sizes.
The results forns are averaged over 100 000t. We expect
that the presence of a pseudospinodal leads to power
scaling of the clusters ifT is close, but not too close to th
pseudospinodal, that is, we expectns;s2x for a range of
values ofs. The lack of a true spinodal should lead to
cutoff or lack of scaling for large clusters or for temperatur
far from the pseudospinodal. From the log-log plot ofns
versuss in Fig. 9 we see that thes dependence ofns is
consistent with a power-law dependence with an exponen
x'1.8 over approximately one decade ofs.

The behavior ofns for lower temperatures is qualitativel
different. For example, compare the behavior ofns averaged
over the first 50 000t of the run atT53.1 to the plot ofns
averaged over the second 50 000t of the run ~see Fig. 10!.
The difference in the cluster size distribution for larger v
ues ofs indicates that the lifetime of the clusters atT53.1 is

FIG. 5. Plot of the static structure functionS(k) at T52.7 as a
function ofk. The height of the first diffraction maximum increase
and its width decreases asT is lowered fromT55.5 ~see Table I!.
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FIG. 6. ~a! The temperature dependence ofx(k0 ,T), the height
of the diffraction peak ofS(k), at k5k0'7.15. The solid line rep-
resents the best fit in the range 2.7<T<5.5 and has the form (T
22.6)20.16. ~b! The temperature dependence ofw(k0 ,T), the width
of the diffraction peak ofS(k). The solid line represents the best
in the range 2.7<T<5.5 and has the form (T22.6)0.29.

FIG. 7. Plot ofP(h), the estimated probability density ofh, the
relative variance of the edge length of the Voronoi polygons, aT
55.5 ~solid line! andT52.7 ~dotted line!. The data points are no
shown to avoid confusion. Regular hexagons and hence lower
ues ofh are much more likely at low temperatures. Note thatP(h)
is not bimodal at any temperature. The shoulder inP(h) at h
'0.25 appears to be real rather than statistical error.
the same order of magnitude as the duration of our runs.
fact that larger clusters require a longer time to reach eq
librium than smaller clusters has been found previously
temperature quenches of Ising models near the spinodal@18#.
Our simulation results forns for lower values ofT show
similar behavior. We will discuss other estimates of the li
time of the clusters in the following.

The behavior ofns for T55.5 is shown in Fig. 11. No
evidence for simple power-law behavior is observed, but
s dependence ofns is consistent with a fit to the assume
form, ns}s2xe2s/ms with x51.1, andms513. Similar fits
can be made forT54.7 with x51.2, andms521, andT
53.7 with x51.4, andms542. We note that the effective
value of the power-law exponentx and the cutoff paramete
ms increases as the temperature is decreased, suggestin

l-

FIG. 8. A typical configuration atT53.3 showing the Voronoi
polygon for each particle and the clusters of the majority sm
particles~shaded hexagons!.

FIG. 9. Log-log plot ofns , the cluster size distribution, versu
size s at T53.3 for N5500 particles. The solid line with slopex
51.85 is the best fit in the range 6<s<61.
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5714 57JOHNSON, MEL’CUK, GOULD, KLEIN, AND MOUNTAIN
a weak singularity is being approached.
Because our results forns for N5500 might be affected

by finite size effects, we did a run forN520 000 particles at
T52.7 for a time of 30 000t. The system was run fo
15 000t before data were collected. A log-log plot ofns
versuss is shown in Fig. 12. It is clear that the values ofns
for largers are not in equilibrium. However, a power-law fi
of ns in the range 4<s<61 yields a slope ofx51.75, a
value of x consistent with the value estimated from our r
sults forN5500 atT53.3.

We expect that if the clusters are important near the g
transition, their lifetime should increase as the glass tra
tion is approached. As indicated in Fig. 10, we know qua
tatively that the lifetime of the larger clusters becomes v
long as the temperature is reduced. We introduce a mea
of the cluster lifetime by measuring the time dependence
metric associated with the solidlike particles. We divide t
simulation cell into boxes and compute the number of so

FIG. 10. Log-log plot ofns versuss at T53.1 for N5500
particles. The results for the first 50 000t ~open circles! and the
second 50 000t ~open squares! are shown separately. The syste
was run for 50 000t before data were taken. Note the difference
the size distribution of clusters for larger values ofs.

FIG. 11. Log-log plot ofns versuss at T55.5 for N5500
particles. The plot shows curvature indicating that there is no
simple scaling regime. The solid line is a fit to the formns

5As2xe2s/ms with A50.038,x51.1, andms513.
-
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like particles in each box. The idea is to find if the tim
averaged number of solidlike particles in each box becom
the same when the timet@1. We takena to be the number
of solidlike particles in boxa and compute the cluster fluc
tuation metricVcl(t) defined as

Vcl~ t !5
1

Nb
(
a51

Nb

@ n̄a~ t !2^n̄~ t !&#2. ~10!

In Eq. ~10! n̄a(t) is the mean number of solidlike particles
box a at timet, and^n̄(t)& is the mean occupancy average
over all Nb boxes. For our runs we divided the system in
535 boxes. A linear increase in 1/Vcl(t) defines the cluster
mixing time tcl as in Eq.~7!.

At T55.5, Vcl(t) exhibits ergodic behavior with
tcl'500t @see Fig. 13~a!#. Our estimates fortcl for our runs
are summarized in Table III. Note that forT53.1 @see Fig.
13~b!#, tcl is order 53104 t, a time which is comparable to
the duration of runs. ForT,3.1, our estimates oftcl are
longer than the duration of our runs and are not meaning
We interpret the timetcl as an estimate of the lifetime of th
clusters. Note that atT53.1, the times associated with th
cluster lifetime and the motion of single particles differ by
factor of 103. TheT dependence oftcl is best approximated
by a Vogel-Fulcher formtcl;eC/(T2Tcl), where Tcl is the
extrapolated temperature at which the cluster lifetime wo
become infinite. Although our estimates fortcl are only
qualitative, the estimated value ofTcl found by considering
the values oftcl in the range 3.1<T<5.5 yields a reasonable
fit with Tcl'1.6 ~see Fig. 14!. This estimate ofTcl does not
vary much if the results atT53.3 andT53.7 are omitted
~see Table IV!.

Another single particle decorrelation time can be e
tracted fromnb(t), the number of unbroken Voronoi bond
remaining after a timet. At t50, only Voronoi bonds be-
tween small particles that have exactly six small neighb
are counted. If at a timet later, there is no longer a bon
which joins the same pair of particles, the number of bon
is reduced, and we do not consider this pair of partic
again. We find that̂nb(t)nb(0)&;e2t/tb. Because a bond is
broken every time a particle changes neighbors, we exp

a

FIG. 12. Log-log plot ofns versuss at T52.7 for N520 000
particles. The linear fit was done for 5<s<61 and yields a slope o
x51.75.
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that tb;tD . We computedtb for only a few temperatures
and found thattb is comparable totD .

Given the very long lifetime of the clusters forT<3.1, it
is difficult to make estimates of the errors associated w
various quantities. For example, even though we made l
runs at low temperatures, we found only one statistica
independent configuration as far as the clusters are
cerned. For this reason, quantities which are measures o
structure of the system, such asS(k), are probably not ad-
equately sampled forT<3.1. And although our measures
single particle properties such as the velocity metric sh
the system to be ergodic at this level, the values ofD at low
T might also be inadequately sampled because the motio
the particles is influenced by the presence of the long-li
clusters.

It is not clear from our results and various fits whether
can identify one or two temperatures which can be associ
with a glass transition. Our estimates for the temperatureT0
at which the self-diffusion coefficient vanishes and measu
of the single particle properties become nonergodic are in
range 1<T0<2. In comparison, our estimates for the tem
peratureTs at which thek-dependent susceptibilityx(k0)
and the inverse widthw21(k0 ,T) would diverge if a spin-
odal were present are in the range 2.6<Ts<3.0. The cluster
distribution exhibits power-law scaling at a temperatu

FIG. 13. The time dependence ofVcl(0)/Vcl(t), whereVcl(t) is
the cluster fluctuation metric defined in Eq.~10! at ~a! T55.5 and
~b! T53.1. Note the very different vertical scales in~a! and~b!. The
time t is given in terms oft defined in the text.
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which is close, but not too close, to our estimate ofTs . At
T'3.1, the lifetime of our clusters is already comparable
the duration of our runs. Nevertheless, if we extrapolate
cluster lifetime to lower temperatures by fitting the clus
lifetime to a Vogel-Fulcher form, we find that the clust
lifetime becomes infinite atTcl'1.6, a temperature consis
tent with our estimate ofT0.

Given the small size of our system for all but one of o
runs and the limited number of temperatures available, i
difficult to make quantitative conclusions in spite of the re
tively long duration of our runs. Moreover, as we have e
phasized, our interpretation of our molecular-dynamics d
is justified only in the context of our rigorous results for th
mean-field model of a structural glass discussed in Sec.

V. MEAN-FIELD INTERPRETATION AND SUMMARY

On the basis of our molecular-dynamics simulations,
can conclude that the deeply supercooled, two-compon
two-dimensional Lennard-Jones system is heterogene
The heterogeneity can be characterized both dynamically
statically, that is, there are long-lived spatially correlated
gions of all sizes up to a cutoff. This qualitative conclusion
consistent with the results of rotational diffusion experime
on probe molecules in supercooledo-terphenyl@19#, which
indicate that the dynamics in supercooledo-terphenyl is spa-
tially heterogeneous, and with the results of other simu
tions @20#.

An important question is the appropriate theoretical u
derstanding of the origin of the spatial heterogeneity. In
future we plan to give a mean-field argument for the orig
of the scaling behavior of the cluster size distribution
terms of an arrested nucleation picture@21#.

We have found indirect evidence for mean-field behav
and the influence of a pseudospinodal. As discussed in
II, the height of the diffraction peak of the static structu
function S(k) for the mean-field structural glass model e
hibits a true divergence@5# in the limit R→`. For finite-
rangeR, the peak ofS(k) appears to diverge if it is measure

FIG. 14. Plot of the cluster mixing timetcl ~solid circles! versus
T, wheretcl is extracted from the linear time dependence of 1/Vcl .
The solid line represents the best fit to the Vogel-Fulcher fo
tcl(T)5AeC/(T2Tcl) with A519.8, C511.8, andTcl51.58 in the
interval 3.1<T<5.5.



p

t

n
na
gh

o
u-

et
se
nc
th
s

he
e

ve

e
a
li
a

in
te
a
th
na
n

g
s

as
te
n

us

w
fi
n
t

ha

er
lt

io
n

s

f
n

ti

-
ve
een
es
ese
on.
eld

ions

n-
ms
ri-

be-
to
ur

gel
f a

ture
ge
ffi-
is-
can
tem
eld
d
gy
the
d-

in-
ster
der
of

but
es.
er
at

po-
ass

su-
us-
-
med
se
is-
dal
m-

is
e

nce

sso-
d. In
the
di-
his
gth
ob-
t,

5716 57JOHNSON, MEL’CUK, GOULD, KLEIN, AND MOUNTAIN
for values of the temperatureT which are close, but not too
close, to the apparent singularity and the data are extra
lated to lowerT. However, a singularity in the peak ofS(k)
is not observed if measurements are made too close to
apparent singularity. This behavior ofS(k) is characteristic
of a pseudospinodal. Is there a spinodal in the Lennard-Jo
system? The answer is no, because the range of the Len
Jones potential is finite. However, we found that the hei
and the inverse width of the diffraction peak ofS(k) exhibit
a weak power-law divergence if their behavior is extrap
lated from highT. This behavior is consistent with a pse
dospinodal interpretation.

We expect that the Lennard-Jones system would be b
described by mean-field theory as the density is increa
because the number of interactions each particle experie
increases. At present, we do not know how to calculate
effects of the pseudospinodal in dense Lennard-Jones
tems@22#, and we need to rely on simulations. Several ot
measurements suggest that the deeply supercooled, d
Lennard-Jones liquid can be described at least qualitati
by a mean-field picture. Glaser and Clark@23# found cluster
scaling in a simulation of a two-dimensional Lennard-Jon
system near the freezing transition. On the basis of a me
field theory, it has been predicted that near the liquid-so
spinodal, the nucleating droplets are fractal-like rather th
compact objects@24,25#. This effect has been observed
simulations of a three-dimensional Lennard-Jones sys
@26#. A third result consistent with a mean-field interpret
tion is that the measured value of the fractal dimension of
structures formed in a single-component two-dimensio
Lennard-Jones system undergoing spinodal decompositio
consistent with that predicted by mean-field theory@15,27#.
These results, together with the results reported here, sug
that a mean-field interpretation is applicable to den
Lennard-Jones systems under the proper conditions.

We note that although the clumps in the mean-field gl
model and the solidlike clusters in the Lennard-Jones sys
have some properties in common, for example, their lo
lifetime, the clumps are not directly analogous to the cl
ters. As discussed in Ref.@28#, the clump size distribution is
a Gaussian in contrast to the power-law distribution that
found for the solidlike clusters. Although a theoretical de
nition of the clusters in the mean-field glass model does
exist, we can follow a similar approach and assume tha
cluster in the latter system is a group of clumps such t
each clump is in a triangular environment~in two dimen-
sions!. A preliminary investigation@28# of such a criterion
for a cluster of clumps yields clusters which have a pow
law distribution near the spinodal consistent with our resu
for the Lennard-Jones system.

Our argument for the association of the glass transit
with an underlying thermodynamic transition is consiste
with the recent interpretation by Nagel and co-workers@29#
of the frequency dependence ofe9(v), the imaginary part of
the dielectric susceptibility, in organic glass-forming liquid
Nagel and co-workers@29# have fittede9(v) to a single scal-
ing curve over 13 decades of frequency for a wide range oT
and for many glass formers. If the temperature depende
of the high frequency, power-law behavior ofe9(v) is ex-
trapolated to lower frequencies, it is found that the sta
susceptibility diverges at a temperatureTs with the corre-
o-
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sponding mean-field exponent@30#. The magnetic suscepti
bility in dipolar-coupled Ising spin glasses is found to ha
similar behavior. Given that these experiments have b
done on fragile glass-forming liquids with long molecul
and on dipolar magnets, a mean-field interpretation of th
results is consistent with our picture of the glass transiti
That is, these systems are well approximated by mean-fi
models due to the large number of simultaneous interact
which each molecule has with its neighbors@31#.

Our interpretation of our simulations in terms of an u
derlying thermodynamic transition in Lennard-Jones syste
is consistent with the results of recent laboratory expe
ments. However, the interpretation of the single particle
havior in terms of a distinct kinetic transition is more open
question. Although such an interpretation is rigorous for o
mean-field model of a structural glass, Menon and Na
@30# have interpreted their experimental results in terms o
single glass transition temperature. That is, the tempera
Ts at which the static susceptibility is extrapolated to diver
is the same temperature at which the self-diffusion coe
cient is extrapolated to vanish. In contrast, we find two d
tinct temperatures in the mean-field glass model and also
interpret our simulation results of the Lennard-Jones sys
in terms of two temperatures. We note that in the mean-fi
limit the number of particles in each clump is infinite, an
the system would remain indefinitely in a local free ener
minimum as determined by the number and location of
clumps. The duration of our simulations of the Lennar
Jones system is sufficiently short ('1027 s) that at low tem-
peratures the clusters do not diffuse and particles in the
terior of the clusters are trapped. Moreover, the mean clu
lifetime near the glass transition is estimated to be an or
of magnitude longer than our longest runs. This picture
static clusters is consistent with the mean-field model,
might not be appropriate for experimental time scal
Hence, it is possible that if we were able to run for long
times, we would find that the extrapolated temperature
which the self-diffusion coefficient vanishes and the extra
lated temperature of the underlying thermodynamic gl
transition would approach each other.

Other workers have also interpreted the behavior of
percooled liquids near the glass transition in terms of cl
ters. Kivelson and co-workers@32# have proposed a thermo
dynamic theory of supercooled liquids based on the assu
existence of a ‘‘narrowly avoided’’ thermodynamic pha
transition. The avoided transition is attributed to the ex
tence of strain. In contrast to this transition, the spino
transition always occurs below the first-order transition te
perature. The reason that the spinodal transition
‘‘avoided’’ in our interpretation is due to the fact that th
system is not really mean field.

On the basis of our results for the temperature depende
of w(k,T), the width of the first peak ofS(k), we can con-
clude that there is an increasing length scale which is a
ciated with the clusters as the temperature is decrease
our interpretation this increasing length scale is due to
effects of the pseudospinodal. This length scale would
verge if a spinodal were really present. The relation of t
increasing length scale to the increasing maximum len
scale for propagating transverse current correlations
served by Mountain@33# requires further study. In contras
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an increasing correlation length was not observed in a si
lation @34# of the translational and orientational correlatio
functions of a two-component three-dimensional Lenna
Jones system.

The effects of the pseudospinodal and the incipient th
modynamic glass transition will be more or less appar
depending on the interaction range, the details of the in
action, and the spatial dimension@7#. We do not expect to
find spinodal-like effects in all supercooled liquids. The
considerations suggest that there is a class of materials
which the observed glass transition is associated with a p
dospinodal and an incipient thermodynamic transition, a
other materials for which the observed glass transition m
not be associated with such effects.

Based on our Monte Carlo and theoretical studies o
mean-field model and our molecular-dynamics results fo
two-dimensional Lennard-Jones system, we suggest tha
latter is in the class of systems whose behavior can be at
uted to an incipient thermodynamic instability~the pseudo-
spinodal!. We emphasize that a true thermodynamic gl
transition does not exist in the Lennard-Jones system, e

FIG. 15. The temperature dependence of the~a! ~dimensionless!
enthalpyH and~b! the heat capacityCP at P570. Note thatCP has
a small peak atT'4. As explained in the text, the slope ofH(T)
was computed at each value ofT5Ti and the value ofCP at T
5Ti was computed by doing a least squares fit to 15 succes
slopes in the intervalTi 172Ti 27.
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though the pseudospinodal has measurable effects inclu
increasing length and time scales as the pseudospinod
approached. In addition to this glass-pseudospinodal tra
tion, there is a temperature~for fixed density! which can be
interpreted as a kinetic transition below which the se
diffusion coefficient is not measurable during our obser
tion time.

We are presently simulating much larger Lennard-Jo
systems in two dimensions to obtain better statistics for
clusters over a wider range of sizes and over a range
temperatures above the glass transition. If our mean-field
terpretation is correct, we should be able to observe sim
behavior in three dimensions where mean-field behav
should be even more apparent. However, the identificatio
the clusters in three dimensions is not straightforward
cause of the existence of a variety of possible local symm
tries which are more affected by thermal fluctuations than
two dimensions.
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APPENDIX: THE ENTHALPY

Many computer simulations of glasses show that the h
capacityCP has a maximum in the vicinity of the glass tra
sition. For example, Wahnstro¨m @35# has computed the tem
perature dependence of the energy of a two-compon
three-dimensional Lennard-Jones system and has found
the slope changes at a temperature where the dynam
anomalies are most pronounced. In the following, we disc
our measured values of the temperature dependence o
enthalpyH.

We measuredH using constant pressure molecular d
namics @36# for N5500 particles. The system was equi
brated atT'10 and a series of measurements ofH were
performed at progressively lower temperatures spaced
proximately 0.02 apart for the higher values ofT and ap-
proximately 0.01 apart at the lower values ofT. At each
value ofT, the system was equilibrated for 250t andH was
averaged over the following 250t. These runs are relatively
short in comparison to the runs reported in the main text

Our results atP570 for H andCP are shown in Fig. 15.
A careful inspection ofH(T) shows that its slope changes
a function ofT. Note thatCP(T) increases asT is lowered,
reaches a maximum atT'4, and decreases asT is lowered
further. The slope ofH(T) was computed as each value
T5Ti from the numerical derivative, @H(Ti 11)
2H(Ti)#/@Ti 112Ti #. The values ofCP(T5Ti) shown in
Fig. 15 were computed by doing a least squares fit to
successive slopes in the intervalTi 172Ti 27. If we consider
fewer than 15 points, the results forCP(T) were too noisy.
The results for more than 15 points tended to smooth
peak inCP .
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We note that the spinodal singularity in the mean-fie
glass model is atk5k0Þ0, and hence we do not expe
thermodynamic quantities such asCP to exhibit a divergence
at the spinodal in the mean-field limit. However, for a syst
n
n
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that does not exhibit a true spinodal such as the pre
Lennard-Jones system, it is possible that the coupling
tween thek5k0 andk50 modes might lead to a maximum
in quantities such asCP near the pseudospinodal.
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