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Molecular-dynamics study of long-lived structures in a fragile glass-forming liquid
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We present molecular-dynamics results for a two-component, two-dimensional Lennard-Jones supercooled
liquid near the glass transition. We find that the supercooled liquid is spatially heterogeneous and that there are
long-lived clusters whose size distribution satisfies a scaling relation up to a cutoff. The similarity of several
properties of the supercooled liquid to those of a mean-field glass-forming fluid near the spinodal suggests that
the glass transition in the supercooled liquid is associated with an underlying thermodynamic instability.
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I. INTRODUCTION

=1) [3]. Although the singularity is well defined only in the
mean-field limit, simulations must be done for finik

The characterization of supercooled liquids near the glasklonte Carlo simulations foR= 3 with p=1.95 yield aS(k)

transition is an active area of reseafdd. Outstanding un-

which has a maximum &+ 0 that increases rapidly asis

solved problems include the possible existence of an undegecreased untilT~0.75, below which the peak ceases to
lying thermodynamic glass transition, the history dependenc#crease a3 is lowered[3,6]. This behavior is characteristic
of the glass properties, and the mechanisms responsible f6f & pseudospinodar].

the large increase in relaxation times as the glass transition is One way of understanding the simulation results3k)
approached. In this article we discuss our molecularis o interpret the spinodal as a singularity of the free energy
dynamics simulations of a two-component, two-dimensionaPS @ function ofT,p. If the interaction range is finite, the
(d=2) Lennard-Jones supercooled liquid. A summary ofsingularity is in the four-dimensional compleX (o) plane

some of our results has been published eafgr

To help the reader understand our interpretation of th
molecular-dynamics data and the questions we pose, we fir%?
review the behavior of a mean-field model of a structural

glass transition3]. In the mean-field model, particles inter-
act via a repulsive, two-body potential of the fofd] V(r)
=y9¢(yr), wherer is the interparticle distance antlis the
spatial dimension. The range of the interactioRis 1. In
the limit R— oo, the static properties of the uniform fluid are
described exactly by mean-field theddj]. The equilibrium
structure functior5(k) can be shown to satisfy the Ornstein-

Zernicke form,S(k)=1/[1+Bpg%(k)], wherep is the par-

ticle density, 3 '=kgT, and ¢(k) is the Fourier transform
of ¢(x). We choose the step potentiab(x)=1 for x<1
and ¢(x) =0 for x>1. The Fourier transforn®(k) is nega-
tive for various values ok. This property ofé(k) implies
that in the mean-field limitS(k) becomes negative in some
range ofk for sufficiently largeBp. Hence for fixedp, the
system has a spinodal singularif§] at a temperaturd
=T, which is defined by the condition-48p (ko) =0,
where k, is the location of the minimum ofp(k). At T
=T, S(k) diverges atkgy; for T>Tg, S(ky) diverges as
(T—Tg) ™7 with the mean-field exponent=1. Note that the
spinodal is the limit of thermodynamic stability of the uni-
form phase and is a critical poiffior a given density. How-

as has been found in transfer matrix studies of long-range

éerromagnetic Ising mode[8]. The singularity moves closer

the real axis as the range of interaction increases. We refer
0 the complex singularity in finite-range systems as a pseu-
dospinodal. The physical effects of the pseudospinodal de-
pend on how far it is from the real axis. ASincreases, the
pseudospinodal better approximates a true singularity and
has measurable effectsi is sufficiently large.

The fact that the mean-field model has a spinodal is un-
ambiguous. We now discuss the reasons why we can associ-
ate the spinodal with a thermodynamic glass transition. In
the Monte Carlo simulation for fixegp we equilibrate the
system at a higii > T where the uniform phase is stable and
then quench it td <Tg where the uniform phase is unstable.
After the quench the particles immediately form clumps with
order pR® particles in each clump6]. That is, the system
breaks up into regions of high particle density surrounded by
regions of low particle density. The arrangement of the
clumps is noncrystalline and their number depends on the
qguench history{3,6]. The free energy has been calculated
numerically in the mean-field limit and has many minima
corresponding to different numbers of clumf®9]. For T
<Ts, the system remains trapped in a local free energy
minimum. The minimum the system chooses appears to de-
pend on the quench history.

The multiminima free energy and the quench history de-
pendence suggest that the mean-field model has a metastable

ever, unlike the usual critical point, the structure functionglass phase fof <T,. However, the properties of a glass are

diverges at a nonzero value kf
For d=3 andp=1.95, the spinodal is al;=0.705 Kg
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associated more with its dynamical properties. As we will
discuss, the glassy dynamics of the mean-field model is as-
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sociated with the behavior of thdumps the particlesare  the number of clumps does not change with time and the
not localized in the metastable glass phase. That is, the dynean numbers of particles exiting and entering a clump are
namical properties associated with single particle behavioequal. From the central limit theorem, the relative fluctua-
do not show the usual signature of the approach to a glass. #lons of these quantities go to zero Bsand ng—«. We
simple argument based on the fact that all potential barriersonclude thaDy<D/\ng, and henceD,=0 in the mean-

in the mean-field model are finif@] implies that the self- field limit. Our simulations oD, for finite R are consistent
diffusion coefficientD is nonzero for allf>0. Hence, if the  with this prediction, and also indicate that the clumps are not
observation time is sufficiently long, the mean square disaffected by the same local environment, that is, they have
placement of the particles increases indefinitely. The arguelifferent numbers of nearest neighbor clumps. This differ-
ment proceeds as follows. Because the separation betweence in the local environment persistsRis:« because the
the clumps is ordeR, the interaction of the particles in a clumps do not diffuse and cannot sample different local en-
particular clump with the particles in neighboring clumps isvironments. Hence, the system is nonergodic on a clump
minimized. Inside a clump, a particle undergoes a restrictegmass-RY) scale forT<T, in the mean-field limit.

random walk. A particle that attempts to leave a clump ex- In summary, the static properties of the mean-field glass
periences a potential barrier due to the proximity of otherphase are dominated by localized, long-lived structures
clumps. Such a particle must interact with particles in the(clumpg for T<T,, even though particles move from clump
same clump and with particles in at least one other clump &o clump. The time scale for the motion of the clumps di-
some time during its possible escape. The upper bound of therges in the mean-field limit, and the spinodal-glass transi-
potential barrier iy'R?, where the constant depends on  tion is seen dynamically only on a clump scale. However, we
d. (Recall thaty" is the strength of the interaction aRf is  observe arpparentkinetic transition that is associated with
proportional to the number of particles in a clump such thathe slow diffusion of the particles and the finite duration of
yIR%=1.) The probability of leaving a clump in a Monte our runs. The temperature of this apparent transition is less

Carlo simulation is bounded from below B~ %8 for all  thanT, and depends on the observation time.
R and hencd >0. Similar arguments hold for a molecular-  The well characterized behavior of the mean-field glass
dynamics simulation of the same system. model motivates us to ask if similar behavior occurs in sys-

The same argument implies that the mean-field model isems with more realistic interactions. In Sec. Il we discuss
ergodic for allT>0 if single particle properties are probed. the static properties of a two-component, two-dimensional
The ergodic behavior can be characterized by several flusystem of Lennard-Jones particles and find that the system
tuation metrics[10]. The single particle energy fluctuation exhibits the usual properties associated with other simula-
metric Q) (t) is given by[10] tions of glassy systems. In Sec. lll we compute the static

structure functiorS(k) and find evidence for a weak diver-

1N — gence in the height of the diffraction peak &ds lowered.
QD=7 Zl [ei(t)—(e(t)]?, (1 This divergence is interpreted as evidence for the influence
- of a pseudospinodal. In Sec. IV we propose a criterion for
clusters of solidlike particles and find evidence of cluster
scaling and an ergodic to nonergodic transition in the dynam-
o 1 [t ics of the clusters. In Sec. V we discuss the interpretation of
€(t)= —f €(t") dt’ 2) our molecular-dynamics results in terms of a mean-field per-
tJo spective.

where

is the energy of particlé averaged over the time intervgl
and (e(t))=(1/N)=]N | €(t). The single particle energy,
of particlei includes its kinetic energy and one-half of the  Because it is easier to identify geometrical structures in
potential energy of its interaction with other particles in thetwo dimensions than in three, we consider a two-dimensional
system. If the system is ergodi@,.(t) ~ 1/ for t sufficiently  system. We also specify that the particles interact via a
large[10]. We find thatQ) (t) exhibits ergodic behavior at Lennard-Jones potential because of the extensive simulations
T=0.4, avalue off<T4. However, forT=<0.15, 100 (t) is  of supercooled Lennard-Jones liquids. However, a single-
not proportional tot during our longest runs, and the mea- component, two-dimensional Lennard-Jones system quickly
suredD is indistinguishable from zero dt=0.15. Given our nucleates to a solid and is unlikely to form a glasslike state.
theoretical argument th@ is nonzero for alllT>0, the ob- We follow Wong and Chestdd 1], who have done a Monte
served behavior of @ (t) for T<0.15 implies only that the Carlo study of the quenched states of two-component, two-
time for a particle to leave a clump is much longer than ourdimensional Lennard-Jones systems with the goal of choos-
observation time. We interpret this change from ergodic tdng the density and the size of the minority component so
nonergodic behavior as an apparent kinetic transition. that it inhibits nucleation of the majority component to a
How can we reconcile th& dependence dd and () (t) solid.
with our identification ofT as the spinodal-glass transition?  We designate by, the interaction between a particle
The answer lies in the dynamical properties of themps  belonging to speciea and a particle belonging to species
For example, the diffusion coefficient of the center of massand write V,,=4€[ (07a,/1) >~ (045/1)®]. We follow Ref.
of the clumpsD,, is zero forT<T, in the mean-field limit. [11] and chooseo.,=0, opp=30/2, and o,=3(0aa
To understand this behavior, note timgt, the mean number + o) =50/4. The energy parameterand the mass are
of particles in a clump, diverges & asR— . In this limit,  the same for both species. The Lennard-Jones potential is cut

II. LENNARD-JONES MODEL
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TABLE I. Values of the mean temperatufe the mean pressure 6T T T T T
P, the height of the first peak of the radial distribution function
g(r), and the heighy(ky) and widthw(k,) of the diffraction peak
of the static structure functioB(k) averaged over runs of 100 090
each. The mean pressure was computed from the virial. The width
of the first peak ofy(r) does not appear to change wittand is not 47

listed. The density is fixed atp=0.952. As stated in the text, the %

lowest temperature run is probably not in complete thermal equilib- s b ]

rium.

T P (" max) x(ko) w(ko) 2f 1

5.5 91.1 4.30 2.59 1.11

4.6 85.3 4.54 2.70 0.95 E

3.7 77.8 491 2.87 0.87 [

33 74.9 5.15 3.10 0.76 0 2 4 6 8 o

3.1 72.9 5.33 3.49 0.63 r

2.1 69.0 5.68 4.28 045 FIG. 1. Plot of the radial distribution functiog(r) versusr at

2.5 67.3 5.86 3.94 0.55 T=2.7. Note the split second peak, a possible signature of a glassy

2.25 65.0 6.07 3.54 0.54 state. Only the small, majority particles were included. The dimen-
sionless quantity is measured in terms of the Lennard-Jones pa-
rametero.

off at r = 2.50;, and shifted so that the potential is to zero at
the cutoff. We choose units such that lengths are measured g‘nd is equivalent to runs of approximatel20-7 s for
terms of o, energies in terms of, and the time in terms of IS equiv u pproxi W

7=(ma?/€)*2. For example, the reduced number density is/iauid argon. o _
p*:paz_ In the following, we will omit the asterisk and We first compute the radial distribution functigiir) and

quote all results in reduced units. Because the time can H&€ Self-diffusion coefficienD and show that they exhibit

expressed either in terms of the number of time steps or ipehavior similar to that found in other simulations of super-
terms of 7, we will explicitly specify the units of time. cooled liquids. All of the following results are for the major-

The majoritya component is taken to be 80% of the total ity particles only unless otherwise noted. The positiong of the
number of particledl. All but one of the simulations are for Particles were saved everyrfandg(r) was computed in a
N=500. This relatively small number of particles was cho-S€Parate program. In Fig. 1 we shayr) for T=2.7. Note
sen so that long runs could be made. The duration of the ruff'€ SPIit second peak, a possible signature of a glassy state

for each temperature was 100 GOGnless otherwise noted. L11l: the split second peak dj(r) is not observed foil
The molecular-dynamics simulations were performed with™ 3-1- The increase in the height of the first pealg(f) as

periodic boundary conditions at constant energy and volum€ temperature is lowerddee Table)lindicates the growth
[12] at a density ofp=0.952, corresponding th = 22.92 of short-range order. We discuss the temperature dependence
whereL is the linear dimension of the simulation cell. we ©f the enthalpy and the constant pressure heat capacity in the

used the velocity form of the Verlet algorithfd2] with a  APPendix. _ o o

time step ofAt=0.005r for all temperatures except fof The single particle sglf-dlffusmn coefﬁmeﬂ_il is relgted
5.5 for which we choosét=0.0025 to achieve reason- 1©_the mean square displacemeR€(t) by lim,_.R(t)
able energy conservation. The mean temperatures and pres2dDt- An alternative way of determinin is from the
sures of our eight different runs are shown in Table I. As avelocity fluctuation metricd, (t) defined ag10]

typical example of the statistical accuracy of these mean val-
ues, we note that the run at=3.1 corresponds to a mean
temperature of 3.15 over the first 50 G0&nd 3.13 over the
second 50 002 However forT=2.25, the mean tempera-
tures were 2.21 and 2.29, respectively, and it is possible th&Wherevi'a is thea component of the velocity; of particlei.

:hemlowest temperature run has not reached thermal equilibrpe time averageg_i,a(t), of v; , is defined as in E¢2) and
ium. L= . —

Because our results are for constant density rather th We quantlty(vq(t)> IS the average ob; ,(t) over all par-
constant pressure, the values of various quantities to be di_'-Cles' In our simulations the total momentum of the system
cussed here will differ slightly from our earlier results cited ' equal to zero, and hence,(t))=0. Because

in Ref.[2] which were for a pressure &~70 and different  JoVi(t") dt’=r;(t)—r;(0), we canexpress(),(t) as

densities. The initial configuration of each run at a particular

temperature was the final configuration obtained previously Q,(t)=R%(t)/2t%. 4
[2,13]. In some cases the positions had to be rescaled to ] ) o

obtain the desired density. Unless otherwise stated, the sy-the particles are undergoing diffusion, we have

tem was allowed to equilibrate for at least 50 @@Mhd then

data were collected for 100 080This duration is one to two Q,(H)— 2_D (5)
orders of magnitude longer than reported previousy v t

d
C;l[v_i,a(t>—<v_a(t>>]2, &)

[oN N

2

Z| -

Q, ()=
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FIG. 2. Plot 0f2,(0)/9,(t), the reciprocal of the velocity fluc- FIG. 3. Semilog plot of thédimensionlessself-diffusion coef-

tuation metric, aff=2.25. Note that X2,(t) is not linear fort ficientD versus 1T. The data pointsfilled circles are taken from
<2507, but becomes approximately linear for longer times. Thene second column in Table II. The solid line represents the best fit

temperaturel is dimensionlesgsee text to the results forD in the interval 2.25T<5.5 extracted from
i . R%(t) to the Vogel-Fulcher formD(T)=Ae ®(-To with A
The relation(5) was also used to determiri. =0.16,B=4.7, andT,=1.82.

For each value of, the quantity|r;(t+to) —ri(to)|? was

computed in a separate program by grouping the particlgits are forT,>0. The best fit for all eight temperatures in
coordinate data into blocks of duration 508nd averaging Taple Il occurs forTo~1.8 andT,~1.7 using the values of
over all possible choices of the origip and combinations of p gptained fromR?(t) and 10, (t), respectively. However,
time differencest=<250 for a particular block. The results 55 shown in Table IV the results fdi, are sensitive to the
were then averaged over the 200 blocks. The velocity metrigumber of data points which are included in the least squares
was computed at each time step in the main molecularfits. The range of reasonable fits illustrates the difficulty of
dynamics program and the results also were averaged ov@btaining meaningful values of,. We conclude that the
200 time origins. The typical time dependence oftemperature dependence &f(T) is consistent with the
0,(0)/Q,(t) is shown in Fig. 2 forT=2.25. Note that at \/ogel-Fulcher form withT, in the range &T,<2. Note
this temperature &I,(t) is not linear fort<200r, but be-  that the Vogel-Fulcher form db(T) implies that the system
comes linear for longer observation times. loses ergodicity aT=T,,.

Our results forD obtained fromR?(t) and 1£1,(t) are We also calculate the single particle energy fluctuation

summarized in Table Il. The difference in the valuesDof  metric() (t) [see Eq(1)] to see if it exhibits ergodic behav-
determined by the two methods is a measure of the error ifyr_ |f the system is ergodic, we expect tHao]

the determination oD . In the similar three-dimensional sys-
tem studied in Ref[9], D(T) was fit to the Vogel-Fulcher Q. (t)—27.It. @

form
We interpretr, as the energy mixing time. The energy fluc-

D(T)=A e B/(T-To), (6)  tuation metric was computed “on the fly” in the same way
o ) ) as(,(t), but for a duration of 50 00frather than 100 0G0
and we look for sw_mla( behaypr. From the s_emllog plo®f \ve observed that @ (t) becomes approximately linear
versus IT shown in Fig. 3, it is easy to verify that the best g en at the lowest temperatufe=2.25, indicating that the
system is ergodic according to this measure. Our results for
the T dependence of (T) based on Eq(7) are summarized
in Table 1l and are plotted in Fig. 4. Note that the largest
mixing time is order 10 00f For comparison, we also show

TABLE II. Summary of results for the self-diffusion coefficient
D as a function of temperatuie at constant density=0.952. The
second column represents the estimateb afetermined from the
slope ofR?(t), and the third column gives the estimatesDofrom

the slope of 10, (t) [see Eq( 5)]. in Table 1l lthe values of7D=az((4D), the mean Fime _it
takes a particle to traverse the distamceAs summarized in

T D [from R2(t)] D [from 1/Q,(t)] Table 1V, the fits of r.(T) to the Vogel-Fulcher form
7(T)=A e B(T-Td in different temperature intervals also

5.5 4.4¢10°2 4.8X10°2 yields a range of values for the paramefer. We conclude

4.6 3.0¢10°2 3.1x10°2 that the temperature dependencergis consistent with the

3.7 1.2¢1072 1.2x10°? Vogel-Fulcher form with a value of . consistent with the

33 6.9<10°° 6.8x10°° value of T, determined from the self-diffusion coefficient.

3.1 4.1x10°3 42x10°3

2.1 1.1x10°3 8.1x10°* lll. EVIDENCE OF PSEUDOSPINODAL BEHAVIOR

25 45<10°4 42x10°4

2.25 1.1x10°4 6.7X10°5° Now that we have established that the two-component,

two-dimensional supercooled Lennard-Jones system has
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TABLE IIl. Summary of characteristic times. The cluster mix- cluded. A least squares fit in the interval 8T<5.5 yields
ing time 7, is computed as in Eq7) from the cluster metri€),, . x(Ko, T)~(T—3.0)" %% and w(ky,T)~(T—3.0)°%°. Given
The single particle timerp=0?/(4D), the mean time it takes a the |imited range off, these power-laws fits are justifiedly
particle to diffuse a distance, and the energy mixing time, from in the context of our rigorous results f&k) in the mean-
Eq. (7) are shown for comparisoriThe values ofrp are obtained field model[3] for which X(ko,T)~(T—Ts)7l. The power-

from the second column in Table . law fits suggest that the increase of the height and the de-
crease in the width of the first peak 8fk) are influenced by

T el o Te a weak singularity aff =T with T in the range 2.& T,

55 5x 102 5.7 16 =<3.0. As expected, no evidence of a singularity is found if
4.6 1X 103 8.4 28 we fit the results fory(kq,T) in the interval 2.25T<5.5.

37 5% 10° 20 69

3.3 2x 10 36 140 IV. CLUSTER SCALING AND LIFETIME

3.1 5x10* 60 260 , . _ _ .

27 5x 10P 230 1100 Given the preliminary pseudospinodal interpretation that
55 5% 10 560 1 400 we presented in Sec. I, we seek other evidence for the
295 2300 11 000 existence of a pseudospinodal and mean-field behavior. For

temperatures near the pseudospinodal the system should
show signs of an instability and the system should partially

properties similar to those observed in other simulations oPhase separate. That is, we should see regions where the
deeply supercooled systems, we explore how the mean-fielajority particles _domlnate and locally order. For this reason
interpretation discussed in Sec. | is applicable to the presedY€ 100k for long-lived structures whose constituent particles
Lennard-Jones system. If the Lennard-Jones system exhibf§Main in close proximity to each other over extended times

pseudospinodal effects, we should find behavior analogou@t Sufficiently low T. Because of the strong repulsive
to that observed in the mean-field glass mof@land in Lennard-Jones interaction near the origin, these structures

Ising models with long-, but finite-range interactidif. In will not be identical to the clumps found in the mean-field

these systems, the static structure functBfk) appears to 'Model, but instead should be caused by a cage effect. A
diverge at a nonzero value kfif its behavior is extrapolated ViSU@l éxamination of the configurations shows evidence of a
from high T or small magnetic field, but the extrapolated partial phase separation in which a significant fraction of the

singularity is not observed if measurements are made to[pa_jority particles form qlusters of triangularlike .structures
close to the apparent singularity. which become better defined as the temperature is decreased.

We computeS(k) (for the majority particles from the Qualitatively, the lifetime of these visual clusters in the
saved particle positions using the relation range of temperatures of interest appears to be much longer

than the period of oscillation of the particles about their

1| N 2 mean position in the clusters.
S(k)=—| >, elkri (8) To find these structures we seek to define a “solidlike”
N|i=1 particle such that clusters of these particles have the above

qualitative properties. However, unlike the Ising model near
Angular averages were computed by considering all possiblthe critical point{14] and near the spinodfl5], there is no
k vectors. We calculatef(k) for the same configurations as theoretical definition of clusters in a dense liquid, and we
were used for obtaining(r). The k dependence oB(k) at
T=2.7 is plotted in Fig. 5. Because the number of particlesis  10° T T T T T
fixed, we expect thaB(k) -1 ask— 0. The important fea-
ture of S(k) is the diffraction peak ak=ky~7.15. We in-
terpret the height of this peak akalependent susceptibility
x(Kg,T), and the widthw(ky,T) as an inverse length pro- ¢
portional to the size of the correlated regions in the liquid. 10
These quantities were extracted fr@tk) by fitting the re-
gion aroundk=kq to the four parameter formS(k)=a
+b/[(k—kg)2+c]. 10?

Our results fory(kq,T) andw(kq,T) are listed in Table |

and plotted in Fig. 6. Note that(ky,T) increases by a factor 10
of approximately 1.6 anav(ky,T) decreases by a factor of
approximately 2.0 a3 is lowered from 5.5 to 2.5. Because
this range ofT is limited, we can fity(ky,T) andw(ky,T) to 10°
a variety of functional forms. Given the divergent behavior o1 020 03 030 03 040 045
of the first peak oB(k) in the mean-field model discussed in T
Sec. |, we look for fits to the functional forms(ko,T) FIG. 4. Semilog plot of thédimensionlessenergy mixing time
~(T=Ts) 7 andw(ko,T)~(T—Ts)", whereTs, y, andv  :_defined in Eq(7) versus IT. The data pointsfilled circles are
are fit parameters. We find that the best fit to the assumegken from Table Ill. The solid line represents the best fit to the
power-law form is x(kKo,T)~(T—2.6)"%® and w(k,,T)  Vogel-Fulcher formr.=Ae®(T-T with A=1.24,B=9.8, andT,
~(T—2.6)>%if results in the interval 2ZT<4.6 are in- =1.25 for the six temperatures in the interval 2 7<5.5.
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TABLE IV. Range of fits for the temperature paramelgrfrom gons. AtT=5.5, the Voronoi polygons are irregular, giving

least squares fits of the self-diffusion coefficiéntthe energy mix-  rise to a high percentage of particles with>0.1. At T

ing time 7., and the cluster mixing tim& to the Vogel-Fulcher

form (6).

Temperature interval

To [from R%(1)]

To [from 1/Q,(t)]

= 2.7, the most probable value bfis ath=0.014, and many
more particles have regular Voronoi polygons.

In the following, we define a majority particle to be sol-
idlike if it has six Voronoi neighbors and if the conditidn
=<0.1 is satisfied. The choice of the cutoff parameter is not

2.25<T=<5b5 1.82 1.67
27<T<55 1.83 1.21 crucial and the qualitative properties of the clustersiade-
2 2E<T<4.6 0.97 1.30 pendentof t'he cu'toffs over a wide range .of valu{a”sg]. A
27<T<4.6 0.94 1.30 'g/plcal configuration of the system &t= 3.3 is shown in Fig.
T, Given our criteria for solidlike particles and our definition
P ———— o fit of clusters, we can detgrmine the prop.erties of thg clusters. A
2'7<T<55' 105 separate program using a Voronoi construction and a
eI : Hoshen-Kopelman cluster labeling algorithm was used to de-
2.7<T=<456 1.25 termine the clusters. Because the height of the maximum of
3.1=T<55 1.68 S(k) increases and the width of the peak decreaseE s
3.1=T<4.6 1.95 lowered, we expect that the mean size of the clusters grows
T, asT is lowered until their growth becomes “frustrated” by
the presence of the larger minority component and by the
2.25<T<55 no fit different orientations of the other cluster@he size of a
2.7<T<55 1.58 cluster is its number of particlesThe behavior of the cluster
2.7<T<4.6 1.57 size distributionng as a function of the sizs is plotted in
3.1s<sT=5.5 1.58 Fig. 9 for T=3.3 andN=500. The cluster distribution is

normalized by the number diajority) particles so than, is
the probability that a particle belongs to a cluster of size
have to rely on our physical intuition to define them. We will The results fomg are averaged over 100 080We expect
assume that a cluster consists of a group of solidlike particleghat the presence of a pseudospinodal leads to power-law
and that if two solidlike particles are near neighbors, theyscaling of the clusters iT is close, but not too close to the
belong to the same cluster. Ideally, we would like to intro-pseudospinodal, that is, we expeti~s * for a range of
duce a physical property that exhibits bimodal behavior withvalues ofs. The lack of a true spinodal should lead to a
one peak corresponding to solidlike particles. However, alcutoff or lack of scaling for large clusters or for temperatures
of the physical quantities we measured exhibit a single peakar from the pseudospinodal. From the log-log plot rof
and hence we will need to introduce a cutoff to distinguishyersuss in Fig. 9 we see that the dependence ohg is
solidlike and nonsolidlike particles. Nevertheless, we will consistent with a power-law dependence with an exponent of
find that the properties of the resultant clusters do not depeng 1.8 over approximately one decadesof
strongly on the choice of cutoff. The behavior of, for lower temperatures is qualitatively
Because we are interested in the local environment of thgifferent. For example, compare the behaviongfveraged
particles, it is natural to do a Voronoi constructid®] and  gver the first 50 000 of the run atT=3.1 to the plot ofng
determi.ne .the Voronoi pp!ygon of gach p_article and itsaveraged over the second 50 @Qff the run(see Fig. 10
Voronoi neighbors. Quantities associated with the Voronoirhe gifference in the cluster size distribution for larger val-

construction include the distribution of the number of edges,es ofs indicates that the lifetime of the clustersTat 3.1 is
of the Voronoi polygons, the distribution of the area of the

polygons, and the distribution of the length of the sides. For s T T T T T
our two-dimensional system, the mean number of edges of
the Voronoi polygons is six and the distribution of the num-
ber of edges is temperature independent. This independencg *
is expected because the Voronoi construction in two dimen-*
sions is insensitive to thermal fluctuatiofis3].

To quantify the temperature-dependent changes in the dis
tribution of lengths of the sides of the Voronoi polygons with
six sides, we introduce the standard deviatonof the edge
length of a particular particle 447]

aL=(/—(/)?, (9)

where (f(/))=(1/6)2%_,f(/,) and /, is the length of
edge o of the hexagon of interest. If a particle were in a

perfect triangular environment, than,=0. In Fig. 7 we
show the estimated probability dens®(h) of the quantity

FIG. 5. Plot of the static structure functi®{k) at T=2.7 as a
function ofk. The height of the first diffraction maximum increases

h= 03/(/}2, a measure of the “hexagonality” of the poly- and its width decreases asis lowered fromT=5.5 (see Table)l
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the same order of magnitude as the duration of our runs. The
fact that larger clusters require a longer time to reach equi-

02 librium than smaller clusters has been found previously in
2.0 25 3.0 35 4.0 45 50 55

(b) T tempe_rature_quenches of Ising models near the spirit8al
Our simulation results fong for lower values of T show
FIG. 6. (a) The temperature dependencexdko,T), the height  similar behavior. We will discuss other estimates of the life-
of the diffraction peak of5(k), atk=ky~7.15. The solid line rep-  time of the clusters in the following.
resents the best fit in the range 7<5.5 and has the formT( The behavior ofng for T=5.5 is shown in Fig. 11. No
—2.6)"°"® (b) The temperature dependencendko, T), the width  evidence for simple power-law behavior is observed, but the
of the diffraction peak oB(k). The solid line represents the best fit g dependence of is consistent with a fit to the assumed

in the range 2.%T=<5.5 and has the formT(— 2.6)*?°. form, necs *e~ ™ with x=1.1, andm,=13. Similar fits
can be made fof=4.7 with x=1.2, andm;=21, andT
L R A R A =3.7 with x=1.4, andms,=42. We note that the effective

value of the power-law exponertand the cutoff parameter
m, increases as the temperature is decreased, suggesting that
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FIG. 7. Plot ofP(h), the estimated probability density bf the
relative variance of the edge length of the Voronoi polygongl, at 107 — —
=5.5(solid line) and T=2.7 (dotted lind. The data points are not 1 10 S 100
shown to avoid confusion. Regular hexagons and hence lower val-
ues ofh are much more likely at low temperatures. Note théh) FIG. 9. Log-log plot ofng, the cluster size distribution, versus

is not bimodal at any temperature. The shoulderPith) at h sizes at T=3.3 for N=500 particles. The solid line with slope
~0.25 appears to be real rather than statistical error. =1.85 is the best fit in the rangets<61.
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s particles. The linear fit was done fosts<61 and yields a slope of

FIG. 10. Log-log plot ofng versuss at T=3.1 for N=500 Xx=1.75.
particles. The results for the first 50 00Qopen circleg and the
second 50 00P (open squargsare shown separately. The system Jike particles in each box. The idea is to find if the time
was run for 50 000 before data were taken. Note the difference in averaged number of solidlike particles in each box becomes

the size distribution of clusters for larger valuessof the same when the time>1. We taken,, to be the number
) o . of solidlike particles in boxa and compute the cluster fluc-
a weak singularity is being approached. tuation metricQ 4(t) defined as

Because our results farg for N=500 might be affected
by finite size effects, we did a run foé=20 000 particles at 1M
T=2.7 for a time of 3000@ The system was run for O (t)= — N0 =12 10
15 000- before data were collected. A log-log plot of ollt) Np azl[ (O =(n()I (10
versuss is shown in Fig. 12. It is clear that the valuesraf

for largers are not in equilibrium. However, a power-law fit — - . .
of n in the range 4s=61 yields a slope ok=1.75, a In Eq. (10) n,(t) is the mean number of solidlike particles in

value ofx consistent with the value estimated from our re-P0X « at timet, and(n(t)) is the mean occupancy averaged
sults forN=500 atT=3.3. over all N, boxes. For our runs we divided the system into
We expect that if the clusters are important near the glas3< > boxes. A linear increase inQ{,(t) defines the cluster
transition, their lifetime should increase as the glass transiixing time 7¢ as in Eq.(7). _ . _
tion is approached. As indicated in Fig. 10, we know quali- At T=55, Q¢(t) exhibits ergodic behavior with
tatively that the lifetime of the larger clusters becomes very7c~500r [see Fig. 18)]. Our estimates for for our runs
long as the temperature is reduced. We introduce a measufée Summarized in Table IIl. Note that fdr=3.1 [see Fig.
of the cluster lifetime by measuring the time dependence of 43(0)], 7 is order 5<10* r, a time which is comparable to
metric associated with the solidlike particles. We divide thethe duration of runs. Fom<3.1, our estimates of are

simulation cell into boxes and compute the number of solidlonger than the duration of our runs and are not meaningful.
We interpret the time, as an estimate of the lifetime of the

10 g . r clusters. Note that at=3.1, the times associated with the

: cluster lifetime and the motion of single particles differ by a
factor of 1¢. The T dependence of, is best approximated
by a Vogel-Fulcher formrgy~e®(T~Te) where T, is the
extrapolated temperature at which the cluster lifetime would
become infinite. Although our estimates fag are only
qualitative, the estimated value ®f, found by considering
3 the values ofr, in the range 3.£T=<5.5 yields a reasonable
fit with Ty~ 1.6 (see Fig. 14 This estimate off; does not
. vary much if the results af=3.3 andT=3.7 are omitted
(see Table IV.

Another single particle decorrelation time can be ex-
tracted fromny(t), the number of unbroken Voronoi bonds

! , remaining after a time. At t=0, only Voronoi bonds be-
o 1o 00 tween small particles that have exactly six small neighbors
are counted. If at a time later, there is no longer a bond

FIG. 11. Log-log plot ofng versuss at T=5.5 for N=500  Which joins the same pair of particles, the number of bonds
particles. The plot shows curvature indicating that there is not d4S reduced, and we do not consider this pair of particles
simple scaling regime. The solid line is a fit to the fon3 ~ again. We find thatn,(t)n,(0))~e Y™, Because a bond is
=As *e”¥™s with A=0.038,x=1.1, andm,=13. broken every time a particle changes neighbors, we expect
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FIG. 14. Plot of the cluster mixing time, (solid circleg versus
T, wherer is extracted from the linear time dependence 611/
The solid line represents the best fit to the Vogel-Fulcher form
7o(T)=Ae”T~Ta) with A=19.8,C=11.8, andT4=1.58 in the
interval 3.:T=<5.5.

Q1(0)/Qc)(1)

which is close, but not too close, to our estimateTof At
T~3.1, the lifetime of our clusters is already comparable to
the duration of our runs. Nevertheless, if we extrapolate the
cluster lifetime to lower temperatures by fitting the cluster
lifetime to a Vogel-Fulcher form, we find that the cluster
lifetime becomes infinite aT~1.6, a temperature consis-
tent with our estimate of .

Given the small size of our system for all but one of our
runs and the limited number of temperatures available, it is
difficult to make quantitative conclusions in spite of the rela-
tively long duration of our runs. Moreover, as we have em-
phasized, our interpretation of our molecular-dynamics data
is justified only in the context of our rigorous results for the

mean-field model of a structural glass discussed in Sec. I.
that r,~ 7p . We computedr, for only a few temperatures

and found thatr, is comparable tap .

Given the very long lifetime of the clusters for<3.1, it
is difficult to make estimates of the errors associated with On the basis of our molecular-dynamics simulations, we
various quantities. For example, even though we made longan conclude that the deeply supercooled, two-component,
runs at low temperatures, we found only one statisticallytwo-dimensional Lennard-Jones system is heterogeneous.
independent configuration as far as the clusters are corFhe heterogeneity can be characterized both dynamically and
cerned. For this reason, quantities which are measures of ttgtatically, that is, there are long-lived spatially correlated re-
structure of the system, such 86k), are probably not ad- gions of all sizes up to a cutoff. This qualitative conclusion is
equately sampled fof<3.1. And although our measures of consistent with the results of rotational diffusion experiments
single particle properties such as the velocity metric showon probe molecules in supercooleeterphenyl[19], which
the system to be ergodic at this level, the valueBadt low indicate that the dynamics in supercoolederphenyl is spa-

T might also be inadequately sampled because the motion dfally heterogeneous, and with the results of other simula-
the particles is influenced by the presence of the long-livedions[20].
clusters. An important question is the appropriate theoretical un-

It is not clear from our results and various fits whether wederstanding of the origin of the spatial heterogeneity. In the
can identify one or two temperatures which can be associatefdture we plan to give a mean-field argument for the origin
with a glass transition. Our estimates for the temperafyre of the scaling behavior of the cluster size distribution in
at which the self-diffusion coefficient vanishes and measureterms of an arrested nucleation pictdigd].
of the single particle properties become nonergodic are in the We have found indirect evidence for mean-field behavior
range E=Ty<2. In comparison, our estimates for the tem-and the influence of a pseudospinodal. As discussed in Sec.

1000
(b) t

1500 2000

FIG. 13. The time dependence @f,(0)/Q(t), whereQ(t) is
the cluster fluctuation metric defined in E4.0) at () T=5.5 and
(b) T=3.1. Note the very different vertical scales(@ and(b). The
timet is given in terms ofr defined in the text.

V. MEAN-FIELD INTERPRETATION AND SUMMARY

peratureTg at which thek-dependent susceptibility (ko)
and the inverse widtlw ™ 1(ko,T) would diverge if a spin-
odal were present are in the range25;<3.0. The cluster

I, the height of the diffraction peak of the static structure
function S(k) for the mean-field structural glass model ex-
hibits a true divergencg5] in the limit R—c. For finite-

distribution exhibits power-law scaling at a temperaturerangeR, the peak o5(k) appears to diverge if it is measured
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for values of the temperatufe which are close, but not too sponding mean-field exponefR0]. The magnetic suscepti-
close, to the apparent singularity and the data are extrapdyility in dipolar-coupled Ising spin glasses is found to have
lated to lowerT. However, a singularity in the peak &{k) similar behavior. Given that these experiments have been
is not observed if measurements are made too close to thdone on fragile glass-forming liquids with long molecules
apparent singularity. This behavior 8{k) is characteristic and on dipolar magnets, a mean-field interpretation of these
of a pseudospinodal. Is there a spinodal in the Lennard-Jongesults is consistent with our picture of the glass transition.
system? The answer is no, because the range of the LennarBhat is, these systems are well approximated by mean-field
Jones potential is finite. However, we found that the heightmodels due to the large number of simultaneous interactions
and the inverse width of the diffraction peak $fk) exhibit  which each molecule has with its neighb$gd].
a weak power-law divergence if their behavior is extrapo- Our interpretation of our simulations in terms of an un-
lated from highT. This behavior is consistent with a pseu- derlying thermodynamic transition in Lennard-Jones systems
dospinodal interpretation. is consistent with the results of recent laboratory experi-
We expect that the Lennard-Jones system would be bettenents. However, the interpretation of the single particle be-
described by mean-field theory as the density is increasedhavior in terms of a distinct kinetic transition is more open to
because the number of interactions each particle experiencgsestion. Although such an interpretation is rigorous for our
increases. At present, we do not know how to calculate thenean-field model of a structural glass, Menon and Nagel
effects of the pseudospinodal in dense Lennard-Jones syg30] have interpreted their experimental results in terms of a
tems[22], and we need to rely on simulations. Several othersingle glass transition temperature. That is, the temperature
measurements suggest that the deeply supercooled, derBgat which the static susceptibility is extrapolated to diverge
Lennard-Jones liquid can be described at least qualitativelis the same temperature at which the self-diffusion coeffi-
by a mean-field picture. Glaser and Cl&@3] found cluster  cient is extrapolated to vanish. In contrast, we find two dis-
scaling in a simulation of a two-dimensional Lennard-Joneginct temperatures in the mean-field glass model and also can
system near the freezing transition. On the basis of a mearnterpret our simulation results of the Lennard-Jones system
field theory, it has been predicted that near the liquid-solidn terms of two temperatures. We note that in the mean-field
spinodal, the nucleating droplets are fractal-like rather thatimit the number of particles in each clump is infinite, and
compact object$24,25. This effect has been observed in the system would remain indefinitely in a local free energy
simulations of a three-dimensional Lennard-Jones systemninimum as determined by the number and location of the
[26]. A third result consistent with a mean-field interpreta- clumps. The duration of our simulations of the Lennard-
tion is that the measured value of the fractal dimension of thddones system is sufficiently short (0™’ s) that at low tem-
structures formed in a single-component two-dimensionaperatures the clusters do not diffuse and particles in the in-
Lennard-Jones system undergoing spinodal decomposition terior of the clusters are trapped. Moreover, the mean cluster
consistent with that predicted by mean-field thefit$,27. lifetime near the glass transition is estimated to be an order
These results, together with the results reported here, suggesit magnitude longer than our longest runs. This picture of
that a mean-field interpretation is applicable to densestatic clusters is consistent with the mean-field model, but
Lennard-Jones systems under the proper conditions. might not be appropriate for experimental time scales.
We note that although the clumps in the mean-field glas$ience, it is possible that if we were able to run for longer
model and the solidlike clusters in the Lennard-Jones systemimes, we would find that the extrapolated temperature at
have some properties in common, for example, their longvhich the self-diffusion coefficient vanishes and the extrapo-
lifetime, the clumps are not directly analogous to the clusdated temperature of the underlying thermodynamic glass
ters. As discussed in Rdf28], the clump size distribution is transition would approach each other.
a Gaussian in contrast to the power-law distribution that we Other workers have also interpreted the behavior of su-
found for the solidlike clusters. Although a theoretical defi- percooled liquids near the glass transition in terms of clus-
nition of the clusters in the mean-field glass model does noters. Kivelson and co-workef82] have proposed a thermo-
exist, we can follow a similar approach and assume that @ynamic theory of supercooled liquids based on the assumed
cluster in the latter system is a group of clumps such thaéxistence of a “narrowly avoided” thermodynamic phase
each clump is in a triangular environmetih two dimen- transition. The avoided transition is attributed to the exis-
siong. A preliminary investigatior{28] of such a criterion tence of strain. In contrast to this transition, the spinodal
for a cluster of clumps yields clusters which have a powertransition always occurs below the first-order transition tem-
law distribution near the spinodal consistent with our resultgerature. The reason that the spinodal transition is
for the Lennard-Jones system. “avoided” in our interpretation is due to the fact that the
Our argument for the association of the glass transitiorsystem is not really mean field.
with an underlying thermodynamic transition is consistent On the basis of our results for the temperature dependence
with the recent interpretation by Nagel and co-worke&8]  of w(k,T), the width of the first peak oB(k), we can con-
of the frequency dependence df w), the imaginary part of clude that there is an increasing length scale which is asso-
the dielectric susceptibility, in organic glass-forming liquids. ciated with the clusters as the temperature is decreased. In
Nagel and co-worker29] have fittede”(w) to a single scal- our interpretation this increasing length scale is due to the
ing curve over 13 decades of frequency for a wide rande of effects of the pseudospinodal. This length scale would di-
and for many glass formers. If the temperature dependenoeerge if a spinodal were really present. The relation of this
of the high frequency, power-law behavior &f(w) is ex-  increasing length scale to the increasing maximum length
trapolated to lower frequencies, it is found that the staticscale for propagating transverse current correlations ob-
susceptibility diverges at a temperatufe with the corre- served by Mountaifi33] requires further study. In contrast,
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though the pseudospinodal has measurable effects including
increasing length and time scales as the pseudospinodal is
approached. In addition to this glass-pseudospinodal transi-
tion, there is a temperatufor fixed density which can be
interpreted as a kinetic transition below which the self-
diffusion coefficient is not measurable during our observa-
tion time.

We are presently simulating much larger Lennard-Jones
systems in two dimensions to obtain better statistics for the
clusters over a wider range of sizes and over a range of
temperatures above the glass transition. If our mean-field in-
terpretation is correct, we should be able to observe similar
behavior in three dimensions where mean-field behavior
should be even more apparent. However, the identification of
the clusters in three dimensions is not straightforward be-
cause of the existence of a variety of possible local symme-
tries which are more affected by thermal fluctuations than in
two dimensions.
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APPENDIX: THE ENTHALPY

Many computer simulations of glasses show that the heat
capacityCp has a maximum in the vicinity of the glass tran-
sition. For example, Wahnstmo[35] has computed the tem-

FIG. 15. The temperature dependence of(d&dimensionless
enthalpyH and(b) the heat capacit€, at P=70. Note thaCp has
a small peak aT~4. As explained in the text, the slope HfT)
was computed at each value ©&=T; and the value ofCp at T
=T, was computed by doing a least squares fit to 15 successivi
slopes in the interval;, ,—T,_5.

perature dependence of the energy of a two-component,
three-dimensional Lennard-Jones system and has found that
the slope changes at a temperature where the dynamical
:émomahes are most pronounced. In the following, we discuss

our measured values of the temperature dependence of the
enthalpyH.

an increasing correlation length was not observed in a simu- We measuredd using constant pressure molecular dy-
lation [34] of the translational and orientational correlation Namics[36] for N=500 particles. The system was equili-
functions of a two-component three-dimensional Lennardbrated atT~10 and a series of measurementstbfwere
Jones system. performed at progressively lower temperatures spaced ap-
The effects of the pseudospinodal and the incipient therproximately 0.02 apart for the higher values Bfand ap-
modynamic glass transition will be more or less apparenproximately 0.01 apart at the lower values Bf At each
depending on the interaction range, the details of the intervalue of T, the system was equilibrated for 258ndH was
action, and the spatial dimensi¢@]. We do not expect to averaged over the following 250These runs are relatively
find spinodal-like effects in all supercooled liquids. Theseshort in comparison to the runs reported in the main text.
considerations suggest that there is a class of materials for Our results aP=70 forH andCp are shown in Fig. 15.
which the observed glass transition is associated with a pseé careful inspection oH(T) shows that its slope changes as
dospinodal and an incipient thermodynamic transition, and function of T. Note thatCp(T) increases a3 is lowered,
other materials for which the observed glass transition mighteaches a maximum at~4, and decreases dsis lowered
not be associated with such effects. further. The slope oH(T) was computed as each value of
Based on our Monte Carlo and theoretical studies of a&/=T; from the numerical derivative, [H(T,;1)
mean-field model and our molecular-dynamics results for a=H(T;)]/[T;+1—T;]. The values ofCp(T=T,;) shown in
two-dimensional Lennard-Jones system, we suggest that tiég. 15 were computed by doing a least squares fit to 15
latter is in the class of systems whose behavior can be attritsuccessive slopes in the intervigl,;,—T;_-. If we consider
uted to an incipient thermodynamic instabilishe pseudo- fewer than 15 points, the results f@p(T) were too noisy.
spinodal. We emphasize that a true thermodynamic glas§he results for more than 15 points tended to smooth the
transition does not exist in the Lennard-Jones system, evagrmeak inCp.
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We note that the spinodal singularity in the mean-fieldthat does not exhibit a true spinodal such as the present
glass model is ak=ky#0, and hence we do not expect Lennard-Jones system, it is possible that the coupling be-
thermodynamic quantities such @g to exhibit a divergence tween thek=k, andk=0 modes might lead to a maximum
at the spinodal in the mean-field limit. However, for a systemin quantities such a€p near the pseudospinodal.
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