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Thermoconvective instability of paramagnetic fluids in a nonuniform magnetic field
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The effect of a static, nonuniform magnetic field on a laterally unbounded nonconducting paramagnetic fluid
layer heated from below or above is studied using a linear stability analysis of the Navier-Stokes equations
supplemented by Maxwell's equations and the appropriate magnetic body force. Buoyancy-driven convection
can be controlled by subjecting the layer to a nonuniform magnetic field. Theoretical predictions agree with
experimental observationgS1063-651X98)12505-9

PACS numbdrs): 47.20.Bp, 47.27.Te, 47.62q

I. INTRODUCTION fluid [Eq. (34.3 in Ref.[3] converted to Sl unifs
Recent experimentkl,2] show that a strong inhomoge- 1 , [Im H?2 ]
neous static magnetic field can induce magnetothermal con- =~ VPo™ 3 VI Hp| 5 17z VutuixH, (1)

vection and can enhance or suppress buoyancy-driven con-

vection in electrically nonconducting paramagnetic fluids,yhere P, is the pressure in the absence of the figithe
depending on the relative orientat_ion of the field and t‘?mﬁensity of the fluid.T the temperaturey the magnetic per-
perature gradients. In these experiments, a paramagnetic Sgrability of the fluid, and the electric current density in the
lution of gadolinium nitrate is placed in a cylindrical cell fjyid. In this paper, we limit our consideration to electrically
closed with two horizontal plates that are maintained at d'f'insulating fluids, i.e.j=0 and, accordingly, the last term
ferent temperatures. The cell is placed in a nonuniform magyanishes. We also limit our consideration to paramagnetic

pable of providigg a maximum field-field gradient product forces that occur in colloidal ferrofluidd] are negligible. As
|BoB/dz|=250 T/m, whereB is the magnitude of the mag- =, (1+ y), M= yH, andVxH=0, we can rewrite Eq.

netic induction and the vertical coordinate. The nonuniform (1) a5
field exerts a magnetic body force on this electrically non-
conducting solution. These experiments observe the follow- f=—Vp+uoM-VH, 2)
ing phenomenaa) when the cell is heated from abowem-
perature differenceAT<0) and the magnetic force is where p=py+ uoH[ d(xv)/dv]+/2 is the modified pres-
upward, the measured Nusselt number remains unity fosure,u, the permeability of free space=1/p the specific
|BdB/dz|<5 T%m for |AT| up to 32 °C, indicating no con- volume, y the volumetric susceptibility of the fluid, arid
vection. However, whenBadB/dz|=6 T4m, the Nusselt the magnetizatiorithe magnetic moment per unit voluimne
number begins to increase fOAT|>2 °C, indicating the The modified pressure gradient term in E8) does not in-
onset of magnetothermal convection. For givAf, the  duce convection because it is irrotational. The last term in
larger the productBdB/dz|, the larger the Nusselt number, Eg.(2) is the Kelvin body forcg5] f,= uo(M - V)H, which
indicating enhanced convectiof) when the cell is heated arises from the interaction between the local magnetic field
from below and the magnetic force is downward, the NusselH within the fluid and the molecular magnetic moments.
number increases with increasihBdB/dz| for given AT, This force tends to move paramagnetic fluids toward regions
indicating the enhancement of the buoyancy-driven convecef higher magnetic field. For typical paramagnetic fluids, the
tion; and (c) when the cell is heated from below and the magnetic susceptibility satisfies Curie’s |1d@] x=Cp /T,
magnetic force is upward, for givelT, the Nusselt number where C is a constant characteristic of the fluid. When a
decreases with increasingdB/dz| for |BdB/dz|]<5T4m,  horizontal paramagnetic fluid layer heated from below or
indicating the partial suppression of the convection. Wherabove is placed in a uniform oblique magnetic field, the im-
|BoB/9z|=6 T?/m, the Nusselt number remains unity for posed vertical thermal gradient induces a vertical gradient in
AT up to 5 °C, indicating that the convection is completely the magnetic susceptibility, yielding a spatially nonuniform
suppressed forAT<5°C. When BiB/dz=15T4m, the  Kelvin body force. This thermal gradient induced magnetic
Nusselt number remains unity f&T up to 30 °C. These body force tends to destabilize the layer. Our previous study
experiments reveal that convection in paramagnetic fluidg7] shows that longitudinal rolls with axes parallel to the
can be controlled by external inhomogeneous magnetiborizontal component of the field are the rolls most unstable
fields. to convection. The corresponding critical Rayleigh number
When a pure fluid is placed in a static magnetic field  and critical wavelength for the onset of such rolls are less
Landau and Lifshit43] calculate the volume forces on the than the well-known Rayleigh-Berd values in the absence
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of magnetic fields. Vertical fields maximize these deviations, For an incompressible fluid, the equation of continuity
which vanish for horizontal fields. Horizontal fields increasereduces to

the critical Rayleigh number and the critical wavelength for

all rolls except longitudinal rolls. We emphasize that these V-v=0. (5)
Kelvin force effects differ from the always-stabilizing effects _ _ _ )

of the jx B force on a layer of electrically conducting fluid ~ For an electrically nonconducting fluid, we write the

[8]. Maxwell's equations
The goal of this paper is to develop a theory of magneto-
thermal convection for nonconducting paramagnetic fluids in V-B=0, (6a)
a realistic nonuniform magnetic field. We consider a hori-
zontal paramagnetic fluid layer heated from above or below VXH=0, (6b)

in the presence of an inhomogeneous magnetic field. In ad-
dition to the thermal gradient induced magnetic body forcevhereB= u(M +H) is the magnetic induction.
described above, the imposed field gradient directly yields a The density equation of state is linearized about an aver-
Kelvin body force on the fluid. The imposed thermal gradi-age temperaturé,
ent renders the curl of this force nonzero through the
temperature-dependent magnetic susceptibility. It is this ro- p=pal—a(T=Ty)], (7)
tational body force that is responsible for the phenomena . . o
observed in the experiments mentioned above. This force caffhere « is the thermal expansion coefficient. We also em-
be utilized to balance the gravitational body force within theP!0y the Boussinesq approximation by allowing the density
fluid layer, and to enhance or to suppress the buoyancym chan_ge only in the Iarg_e gravitational body fo_rce term.
driven convection. It can also be utilized to promote convec- N this paper, the coordinate system of the horizontal layer
tion when the layer is heated from above, where gravity stais defined byz|<d/2 with z up. We consider the fluid layer
bilizes the layer. placed_ in an ex_ternal nonuniform magnetic field with a con-
In this paper, a linear stability analysis of a horizontalStant field gradient,

layer of pure paramagnetic fluid heated from below or above
in the presence of a nonuniform magnetic field shows that H®=Hgy+(x- V)H®,  or H™=Hg+Hyx
oscillatory instability cannot occur and that convection in
this layer can be controlled by the nonuniform field. In Sec. (i,] =X,Y,2), (8)
II, we outline the basic equations and boundary conditions,
and present the static state solution. In Sec. I, we summaA/hereHlianH?x‘/axj are assumed constantsh;=3,a;b;
rize the governing equations for the convective flow. In Sec=a,b,+ayby+a,b,, and x=xx+yy+zz is the position
IV, we study the linear stability analysis of the layer in the vector. The vectoH, is the magnetic field at the origin(
presence of an inhomogeneous magnetic field, and outline 0). Equationg6a and(6b) require that the tens& H*'is
the numerical method used to solve the marginal equationsymmetric and traceless. This assumed field may be thought
We summarize the main results and draw conclusions in Seof as the leading terms in a Taylor series expansion of a more
V. general field. In any event, it provides a good approximation

of the applied magnetic field in the region of the convection

Il. EQUATIONS OF MOTION cell in the experiments reported ff,2].
The magnetic equation of state is linearized about the
For an incompressible, pure, paramagnetic fluid in theemperatureT, and an average magnetic field,=H X

presence of a static, nonuniform magnetic field, the Navier-+ Hay9+ H,.,Z, to become
Stokes equation subject to E@) takes the form

XaHai
Ta

v Mi(H;, T)=Mgi+ xa(Hi—Hai) —

(T_Ta)

(i=xy,2), 9)
wheret is time, V the fluid velocity,d/dt=d/dt+V-V the
material derivativeg the acceleration of gravity, andthe =~ Wherex,=Cp,/T, andMy;= xaHa; -
kinematic viscosity. We assume the viscosity is isotropic and Equations(6a and (6b) require that the normal compo-

independent of the magnetic field. nent of magnetic induction and the tangential component of
Conservation of energy yields the temperature equatiomagnetic field are continuous across the top and bottom
for an incompressible paramagnetic flidd boundaries,

[2.B]"=0 and [zxH] =0 at z==d/2.
dT dH 5
PCon g MM+ g =KV T+, (4 (103
Here,[q]-=1lim _o(al,==a2+ e = Alz==ar2- o) S the differ-
wherec, y is the specific heat capacity at constant pressurence between the values of a quantjtgbove and below the
and magnetic fieldg the thermal conductivityassumed con- boundaries. Rigid boundary conditions require a vanishing
stan}, and® the viscous dissipation. velocity
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V=0 at z==d/2, (10b) V.v=0. (17)

and the temperature is assumed constant on each boundatp these equations, the variables ¢, and h represent the
dimensionless perturbations. Hegg, is a reduced pressure

To at z=d/2 including magnetic contributionsfiy=Hg/H, is the unit
T= T, at z=-d/2. (100 yector in the direction oMy, H{=H®YH,, ¢ the angle
betweenH, and the horizontal, and’ the dimensionless
To find the pure thermal conduction state, we write viscous dissipation.
Equation(14) involves four dimensionless parameters: the
V=0 and T.=T,—pBz (11 Prandtl number Pr, the Rayleigh numtigrthe Kelvin num-

berK, and the vector control parametey,:
The boundary conditions on the temperature Bfl0 re-

quire T,=(Ty+T4)/2, the average temperature of the layer, Pr_ v R agdBAT B wox2AT2d?H3
ande(Tl—To)/dzAT/d,_the temperature gradlent._ Note r= Dy’ " Dy - (1+Xa)PaT§VDT,
thatAT>0 when the layer is heated from below. To find the (189
static state for the magnetic field, we write
. M0X3d3AT ext

Hsi=Hai+vijx;  (1,j=Xy,2), (12 Rm_m Ho- VH™. (18b

tions on the field and induction E¢L0a require :MOXgH(Z)/(1+Xa)TaPan,H! and L,=(1+ y,)sin ¢=<(1
+X.). Here, we use the values pf, andc, , for water to
XaHozB estimate the typical value for the geometry-independent pa-

Ha=Ho, and y=Hy;— 920 (1]=x.y.2), rameterL,. A typical value for the magnetic susceptibility

(13 of paramagnetic fluids ig,~10" 3. For a magnetic induc-
tion B,=10T, we have_;~10 ’<1 at room temperature.
where §;; is the delta function(d;;=1 fori=j, and§;=0  We also have_;~10 * for gaseous oxygen at room tem-
for i#j). In obtaining these results, we have used the facperature. Accordingly, the term involvirg, in Eq. (15) will
that the typical value of magnetic susceptibility for paramag-be neglected.

Ta

netic fluids isy<10~°. BecauseHy;; and §;,6;, are sym- In the presence of a uniform oblique magnetic fiékd
metric, so is the tensoy;; . #0, butR,=0), our linear stability analysif7] shows that
longitudinal rolls with axes parallel to the horizontal compo-
ll. EQUATIONS FOR CONVECTIVE STATES nent of the field are the rolls most unstable to convection,

) ) ) ) reflecting the broken rotational symmetry of the layer about
To derive the governing equations for convective statésihe vertical due to the presence of the nonzero horizontal
we add perturbations to the static state and substitute th@omponent of the field.
perturbed state into Eq$3)—(6) to yield the equations gov- In the presence of an inhomogeneous magnetic fi€ld
erning these perturbations. To write these equations in dig gnq R,#0), the vector parameteR,, in Eq. (14) mea-
mensionless form, we choosd, d?/Dr, AT, and Hy  syres the strength of the magnetic body force due to the
=XaATHo/(1+xa)Ta as the scales for length, time, tem- appjied field gradient. The combination of the vertical com-
perature, and magnetic field, respectively. Hefy  ponent ofR,, with R in Eq. (14) shows that the gravitational
=«/poCp,n is the thermal diffusivity. Finally, we write the gffect on the convective flow can be balanced by this com-
dimensionless governing equations for the convective stateponent ofR,,. Therefore, convection in nonconducting para-
magnetic fluids can be controlled by an inhomogeneous

1 [ov ) magnetic field.

el g TV V)= —Vp'+ROZ+K(sirfe) 62

at

IV. LINEAR STABILITY ANALYSIS

_ —0H.. 2
Rmf+K(z=0)Ho- Vh+ V7, To investigate the magnetothermal convective instability,

(14 we assume that the amplitudeswf, andh are infinitesimal
so that all cross terms in Egdl4) and(15) can be neglected.
In this paper, we consider the nonuniform magnetic field
H®=H,z—H,;xX—H,yy+ 2H,zz, where the two param-
etersH, andH; are constant{The superconducting electric
oh coil used in the experimen{d,2] produces this field in the
—+V-V(h+H®YH,) —L,z-v|=V?0+d’, central area near the ends of the gaflhis field yields the
Jt vector parameteR,,= R,z, where

§0+ V-7
ot V- yARY)

—L;Hy-

(19
(19

m

V-h—H, V6=0, (16) palavDr

 poxad®AT ( aH)eXt
 palarDr | 0z
x=0
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Taking thez component of the curl of the linearized Eq4)
yields

19¢

— % _ w2
Pr ot Vi, (20

whereZ/=z-(V X V) is thez component of the vorticity. Tak-
ing thez component of the curl curl of Eq14), we have

19 V2w=V*W+(R—R,+K)V2§—KV?
Pr gt m L L

Ip

5z (21)

wherew is the z component of velocitw and V2= g%/ x?
+ 0%/ 9y?. Equations(15) and (16) yield

- = 20 22
t V +w, ( )
52 - J =0 23
w 0z ' ( )

Equations(20), (21), (22), and(23) govern the linearized

convective flow. The unboundedness in the horizontal direc-
tion allows the perturbation wavelength to be chosen freely

in this direction, whence
{={(2)expligx+igqyy+ot),
w=w(z)expig,x+ig,y+at),

0= 0(z)exp(igx+iqyy+ot), (29

b= p(2)expigx+igyy+at),

¥ =wv(z)expig,x+igq,y+at),

where g, is the x component of the dimensionless wave
number,q=q,X+ qy§/, of these perturbations, its y com-
ponent, andr the growth rate. Here represents the per-
turbations of the magnetic field outside the fluid layer in-
duced by the convective motion of the fluid and satisfie
Laplace’s equationV?¥=0. These perturbations should
vanish far away from the layer. Substituting E84) into the
Laplace’s equation yield¥ (z)=V . exp(—q2 for z>1/2
and¥(z)=V _ exp@2 for z<1/2, where¥ , andV¥ _ are
two undetermined constants ager \/qX2+ qy2 is the magni-
tude of the wave numbar.

Equations(103a), (10b), and (100 yield the dimensionless
boundary conditions

{=w=dw/dz=0=0 at z==*1/2, (25a
d¢ [—aqy, z=12
(1+Xa) E_ q1//, z=—1/2. (25b)

The general solution of Eq.20) subject to Egs(253

INSTABILITY OF . .. 5567

To study the oscillatory instability of these perturbations,
we substitute Eq(24) into Egs.(21), (22), and(23) to yield

a set of ordinary differential equations, which can be solved
by the Galerkin method. We expamdaccording to

W(2)=2, AnFm(2), (26)

where the function$-,, are a complete set of orthonormal
solutions of

d*Fm

a7 =M

satisfying F,(z)=dF,,/dz=0 at z==*1/2. The functions
F ., are divided into two classes: even functidbg and odd
functionsS;,, defined by

(27)

_ CoshiNnz)  cogNn2)
Cm(2)= coshAp/2) CO\/2)

and

_ sinh( um,z) _ sin( umz)
sinh(u/2)  sin(um/2)
These functions and their numerical eigenvalNgsand u,

have been tabulatd®]. We also expand and ¢ in a series
of F,,(2). A one-term approximation yields

Sm(2)

A10'2+A20'+A3:0, (28)
where
A1=(g*+Cyy)/Pr,
A;=\1+2C10%+q*+ Ay (9% +Cyy),
As=PrA;(\1+2C110°+q*) — (R— Ry +K)g?
+K0?Gy1/(Si+9?).

§-|ere,

\,=4.730 040 74,

1/2

C11=—(C4|C])=—JY4,,C1(2)[d*Cy(2)/dZ?]dz

=12.302 616 19,

G1,=(C4|S})=3.342 015 57,

and

S,=—(S,|S])=46.050 122 36.

The onset of neutral oscillatory instability requires an imagi-

nary growth rater=iw. Since the functiong;, A,, andAs

shows that any perturbation in the vertical component of theare all real, Eq(28) can be satisfied for=iw only if A,

vorticity must decay in time. Thus, we sé&t0 in the insta-
bility analysis without loss of generality.

=0. SinceA,>0 for all values ofg, an oscillatory instabil-
ity cannot occur in the one-term approximation. By setting
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=0,K=0, andR,,=0, Eq.(28) yields an approximate mar- Mﬁq
ginal stateRy(qg) in the absence of magnetic fields, which vm:W
has a minimum valu®,.=1887 located agy.=3.21. A q 4'<)
numerical calculation involving 360 terms yieldRg. _ _
=1708 andqy.=3.12, which agree with the well-known Mﬁzkgﬁg“, Nm=Ap—0", /‘L%Elfﬁw_"'q41 Pm=pm— 0",
critical valuesRy,=1707.762 andjy.=3.117 for the onset ¥Ym=An/ApnCOShG/2), 6= pup/upy sinh@2), and D
of convectior[8]. In the absence of magnetic fields, the criti- =d/dz. In obtaining these results, we made use of the fact
cal Rayleigh numbeR,, for the rigid boundary conditions is that xa<<1 for paramagnetic fluids. _
larger than the critical Rayleigh numbRg=277%/4 for the Substituting the general solutions E§03 into Eq. (21),
free boundary conditiong], indicating that the rigid bound- Mmultiplying by C,,(z), and integrating ovelr—1/2,1/2 yield
ary conditions tend to stabilize the layer compared with the
free boundary conditions. Since our one-term analysis of in-
stabilities of Eqs(21), (22), and(23) for the rigid boundary > Apbpe=0, n=123... (319
conditions is qualitatively equivalent to the analysis of insta- m
bilities of these equations for the free boundary conditions in |
which C,(2) is replaced by cosf), we conclude that an With
oscillatory instability cannot occur in this system. Thus we
limit our consideration to a stationary instability.

For the marginal state, the perturbations neither grow nor bBmn= ( A+
decay with time. Setting/dt=0 in Egs.(21), (22), and(23)
yields the governing equations for this state. We adopt the ( R, 29°K

0
o+ 204+ 4q3 ucoth % - 7’“ ,

q'Rr a*AK
Ao (N2

algorithm of Stiles and Kaga[®] to solve these equations 2— )\—14' (N2
numerically. Comparing with the previous algorithm of ex- m m
panding all variablesv, 6, and ¢ in series ofF(z), this qz)\ran
algorithm yields more rapid convergence for successive ap- + W
proximations. First, we still expand according to Eq(26). m
We then write

)CIZ(CnIDsz)

A
A +2g*+ 4N 03 tanh7m)

1

X {Cplcoshqz) —| 2R, + > (2+q)K

‘9:2 Ambn and ‘//:2 Amtm- (29) ><qz')’m<cn|COSth>_{—qs'ymK<Cn|Z sinhqz),
m

(329
We substitute Eqs(24), (26), and (29) into Egs.(22) and
(23), and then solve these equations individually to obtainwhereR,=R—R,. Similarly, substituting the general solu-
the general solutions fof,, and . We use the boundary tions Eq.(30b) into Eq.(21), multiplying by S,(z), and in-
conditions, Eqs(25), to determine the coefficients involved tegrating ovef —1/2,1/2 yield
in these general solutions. Finally, we have

Brn= 2 ymCOShQZ— (D24 G2 Co( 2N % Anbin=0, n=123... (31b)
Ym=Umsinh qz+ yynz coshqz with
(N +2¢2D2 -2 _
(A} +20?D2)DCp(2)/(\ ;)2 for Fpp=Chp, o +Jrq“Rr_q“unﬁK [, R, 24K
(03 Pmn= A ) O T (a)?
and quK
X q%(S,|D? +—m_( 4+ 2q*
q <Sﬂ| Sm> eX[XC]/Z)(,um)Z Mm q
0m=28,sinhqz— (D?+9%) Sn(2)/ ity s
+4Mmq3coth%)<sn|sinhqz>
YUm=vmcoshqz+ 6,z sinhqz
_ 1
—(m*29°D*)DSy(2)/(um)® for Frn=Sy, —[ZRrJrz(2+q)K}q25m<31|sinhqz>
(30b)
+036,K(S,|z coshqz). (32b)

where
Equations(319 and (329 govern the marginal state for the
N onset of convection with an even parity ferand 6, whereas
M +20%+ 403\ ptanh—- | — ﬁ, Egs. (31b and (32b) govern the state with an odd solution
2 2 for w and 6.

2
)\m

I g exp(ai2) (A )2
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4000 [T TABLE I. Summary of results.
(9 ext
3000 (H _) Kelvin
Case AT 2]y force Ry Result
c 2000 | a 1 1+ + 1 + Rayleigh-Bmard convection
1 is inhibited
x b 2 + - l — Rayleigh-Baard convection
1000 ¢ ] is promoted
¢ 3 - - ! +  no convection
0.000 |- p ] 4 - + 7 — magnetothermal convection
is possible
-1000 2 1
f implies that only the even solution is permitted whBn
T <17 610. Therefore, we limit our consideration to the mar-
-2000 ginal state governed by Eq&1a and (323.
00 10 20 30 40 50 60 7.0 Equations(318 and (328 govern the generalized mar-
q ginal condition for the onset of convection of a horizontal

layer of paramagnetic fluid in the presence of a nonuniform
magnetic field. The Kelvin numbét in these equations rep-
resents the uniform vertical field effect on convection, and
9|§m the effect due to the field gradient. Our numerical calcu-
lation yields these marginal conditions for the reduced Ray-
leigh numberR, as a function of the wave numbeyr for
given Kelvin numberk=0, 1000, 2000, 3000, 4000, and
V. RESULTS AND CONCLUSIONS 5000(see Fig. 1 In the presence of a uniform vertical mag-
netic field(K>0 andR,,=0), Fig. 1 shows that the critical
A nontrivial solution for the even case requires a vanish-Rayleigh numbelR, for the onset of convection is smaller
ing determinant of the coefficient matrix in E@1a, yield-  than the classical nonmagnetic critical Rayleigh number
ing th_e generalized marginal conditior! relating the reducechOC:1707‘762, indicating the enhancing effect of the field
Rayleigh numbeR,=R—R,, the Kelvin numberk, and  on convection. Figure 1 also shows that the larger the Kelvin
the dimensionless wave numbgr To obtain this condition  nymberK, the smaller the critical Rayleigh numbRg, in-
numerically, we truncate the infinite series in E81a to a  gjcating the stronger the enhancing effect of the field on
finite numberN of terms. For given values 4, g, andK,  conyection. Sinc& =0, uniform vertical magnetic fields al-
we adjustR, numerically until the determinant vanishes. ways promote convection, consistent with our previous
This procedure yields the marginal state for the reduced Raygnalysis[7] and in contrast to the result for electrically con-
leigh numberR,=R,(q,K), which can be minimized with qucting fluids[8]. In the absence of gravityR=0), mag-
respect tog to obtain the critical condition foR, for given  npetic convection sets in whel =K .= 2568.476 for uni-
K. _ . _ form vertical fields.
For the classical, nonmagnetic case with-0 and R, In the presence of a nonuniform magnetic fighd>0 and
=0 this procedure yields the known marginal Rayleigh num-R - 0), Fig. 1 shows that the effect on convection due to the
berR=Ry(q) in the absence of magnetic fields. Minimizing field gradient depends on the sign of the magnetic control
Ro(q) with respect toq for N=5, 10, and 15 yields the parameteR,,. A negativeR,, will promote convection, and

successive  estimatesRy,=1707.784, 1707.763, and g positiveR,, will inhibit convection. In this paper as well as
1707.762, withgo.=3.116 in each case. These rapidly con-jn the experiment$l,2],

verge to the well-known critical valugs] Ry.=1707.762

FIG. 1. Convective stability diagram for a horizontal layer of
paramagnetic fluid in the presence of a nonuniform magnetic field
Shown are the marginal states for the reduced Rayleigh humb
R;(q)=R—R,, for the onset of convection fd¢ =0 (tracea), 1000
(traceb), 2000 (tracec), 3000(traced), 4000 (tracee), and 5000
(tracef ) as a function of the wave numbgr

andqo.=3.117. Figure 1 showRy(q) (tracea in Fig. 1) for dBPAT gH | ext
the 15-term truncation, which is used henceforth. A static m:M( _)
fluid layer in the absence of magnetic fields is stable to con- palavDr 92, o

vective perturbations for Rayleigh numbd®s<R,., above
which gravitational buoyancy destabilizes a band of wave-or paramagnetic fluids, all of the material properties are
numbers centered approximately gg. . positive, so the sign dR,, is determined by the signs &T

For the onset of convection for the odd solution in theand HoH/9z)§". The four possible cases are summarized in
absence of magnetic fields, a numerical calculation of EqsTable I. In cases 1 and 2, the temperature differeh@eis
(31b) and(32b) for the 15-term truncation yields the corre- positive, indicating that the layer is heated from below.
sponding critical valuesRy,=17610.40 andqy.=5.365, Gravity induces a gravitational buoyancy force that tends to
consistent with their true valud8] Ry.=17610.39 andj,.  destabilize the layer. In the absence of magnetic fields,
=5.365. Comparing with the critical Rayleigh numb&y{ Rayleigh-Beard convection sets in f&>R,.. In the pres-
=1707.762) for the onset of convection with an even solu-ence of a nonuniform magnetic field, we see that an upward
tion, the large critical Rayleigh number for the odd solutionKelvin force inhibits convectioricase ], whereas a down-
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2.0 Re K

ey o, 33
Roo " Koo 33

whereRy.=1707.762 anK,.=2568.476 as before. In the
1.5 a. /q 1 presence of a nonuniform magnetic field, E8Q) yields the

e e critical reduced Rayleigh numbé,. for the onset of con-
vection. For G<R;./Rp.<1, this relation conservatively
giveskK to within 1% over the entire parameter rar(gee the

1.0 1 dashed trace in Fig. 2 fdR,./Rq.). This relation reduces to
our previous resulf7] and the result obtained by Finlayson
Rrec/Roc [10] for a uniform vertical field acting on a ferrofluid layer.
Equation(33) provides a general condition for the field-field
0.501 »/ i gradient product to balance the gravitational effect and hence

to control convection in such fluids. Applying E@3) to the
experiments[1,2] yields the required produciBdB/dz]
=5.3 T?/m to offset the effect of gravity in these experi-
ments[11]. This value agrees well with the experimental
measurements in casé and(c) as described in the Intro-
duction. However, we note that the experiments used a ga-
dolinium nitrate solution but our theory assumes a pure para-
FIG. 2. Convective threshold for the rafy. /Ry of the critical  magnetic fluid. Our analysis ignores Soret effects, which we
reduced Rayleigh numb@®;; from our simulationgdark tracgto  cannot estimate due to lack of material properties. The agree-
as a function of the rati&/K, of the Kelvin number to the critical  gffects are negligible.

Kelvin numberK,.=2568.476 for uniform vertical fields and no An approximate linear relation betweeq./qo. and
. . . C Cc
gravity. Also shown is the threshold for the ratip/qg. of the K/K . also follows from fits to the end points in Fig. 2:
critical wave numbeq, to the classical nonmagnetic critical wave ¢

numberqgy.=3.116 as a function of the ratkd/K,,. Dashed traces q K
give approximate linear results from Ed83) and (34). —£ =1+0.159—, (34)
Uoc Oc

ool— e T
0.0 0.20 0.40 0.60 0.80 1.0

K /Kgq

ward Kelvin force enhances convecti¢rase 2. In cases 3 N ]

and 4, the layer is heated from above, and gravity tends t¥/hereédo.=3.116, the critical wave number in the absence
stabilize the layer. Table | shows that a downward Kelvinof magnetic fields. This relatlor) gives the_crltlcal wave num-
force enhances this stabilitgase 3, and there is no convec- Derdc for the onset of convection to within 0.3% of its true
tion. However, an upward Kelvin force induces a magneticvalue for 0<K/Kq.<1. Equation34) shows that the critical
buoyancy force that tends to destabilize the lajease 4.  Wave numberq.>do. for K>0. Thus, the critical wave-
Magnetothermal convection sets in when the reduced Rayength Ac=2/q. is smaller than the critical wavelength
leigh numberR, >R, which is determined by minimizing Moc=27/0qc in the absence of magnetic fields, indicating
the corresponding margind®,(q,K) for given K with re-  that uniform vertical fields tend to narrow the pattern size of

are consistent with the experimental observatidng]. pendent of the magnetic control paramefgy; and there-
For a given Kelvin numbe, minimizing the corre- fore, itis independent of the field gradient. _
sponding marginal value of the reduced Rayleigh nunfyer In conclusion, our linear stability analysis of a horizontal

with respect to the wave numberyields the critical reduced Paramagnetic fluid layer heated from below or above pre-
Rayleigh numbeR,. and the critical wave numbe, . Fig- dicts that convection in this layer can be controlled by a
ure 2 shows these critical numbeRs, andq_. (solid traces nonumform magnetic field. The grawtat_lonal buoyancy in
versus the Kelvin numbef, scaled respectively by the val- such a fIU|d_ layer due to thermal expansion can be balgnced
ues Roo=1707.762, qoe=3.116, andKy.=2568.476. Al by the Kelvin body force due to the external field gradient.
c .762,qo.=3.116, c A76. ! S
points below the trace dR,. /Ry, are stable to convection, |NUS, nonuniform magnetic fields can be used to enhance or
whereas all points above this trace are unstable. The criticd SUPPress the gravitational effect in terrestrial experiments
reduced Rayleigh numbeR,. for the onset of convection and to control the flow of nonconducting paramagnetic fluids
rc . . i . .

decreases as the Kelvin numbérincreases, indicating the N Microgravity environments. They can also be used to in-
promoting effect of uniform vertical fields on convection. crease the efficiency of he_at-transfer deY'Ces- They might
However, the critical wave numbey, for the onset of con- also be used to_co_ntrpl microstructures in crystal growth
vection increases with increasing Kelvin numiserindicat- from paramagnetic liquids.
ing that uniform vertical magnetic fields tend to narrow the
pattern size of convection.

An approximate linear relation betweeR,./Ry. and This research was supported by NASA under Grant No.
K/Kg. follows from fits to the endpoints in Fig. 2; NAG3-1921.
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