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Linear and weakly nonlinear analysis of doubly diffusive vertical slot convection
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We consider vertical slot convection in the doubly diffusive case over the full range of thermal and solute
Rayleigh numbers. We quantitatively categorize the various instability regimes in the linear analyses. In the
weakly nonlinear analyses, we derive the amplitude equations using the method of normal forms and study the
stability of the finite-amplitude solutions. We discuss in some detail the physics of the various instabilities
found in our analyse§S1063-651X98)11905-(

PACS numbd(s): 47.20.Bp

[. INTRODUCTION in vertical slot convectiorf2,9]. For solute Rayleigh num-
bers between these two extremes, instabilities are oscillatory
Laterally driven diffusive convection, often referred to asin nature(Hopf bifurcationg, and destabilization is induced
“slot convection,” has been the subject of considerable in-by the balance between the background shear flow and the
terest over the year§1—7] and references thergjimand is a  buoyancy oscillations of the fluicr]. In this regime of solute
problem of interest in realms as distinct as convection inRayleigh numbers, the weakly nonlinear analysis of this sys-
stellar magnetic flux tubes and heat transport within insulatiem becomes quite complicated and has not as yet been un-
ing double-paned glass windows. Results from linear analydertaken. In this paper we remedy this omission, and perform
ses provide a partial understanding of the experimgh8, both linear and weakly nonlinear analyses for multiply dif-
such as the critical Rayleigh numbers and the width of layefusive slot convection over a wide range of solute Rayleigh
formed. However, linear analysis is incapable of explaininghumbers and diffusivity ratios. One of our goals is to provide
more complex features of the phenomenology. For exampléd complete understanding of the physics underlying multiply
the existence of an equilibrium state at supercriticality carfliffusive slot convection over the full range of physically
easily be explained by means of weakly nonlinear analysiglausible conditions. Among the twalternative, but re-
[2,5], via the existence of a stable finite-amplitude solution,/ated analytical methods for the derivation of the amplitude
and the fact that the circulation of adjacent convection cellgduations in weakly nonlinear analysamplitude expansion
observed in slot convection has the same sign, as pointed ogfid method of normal formsthe method of normal forms is
in [1], cannot be explained in linear analysis, but can benore straightforward when more than two scales are in-
understood eas”y by Superposing the ﬁnite_amp"tude So|uV0|Ved in the eXpanSionS; for this reason, we use the method
tion with the unperturbed background fieJd]. However, of normal forms to analyze the weakly nonlinear behavior
finite amplitude analysis in the multiply diffusive case hasnear the critical points.
only been carried out in the asymptotic regime of large sol- The structure of this paper is as follows: In Sec. Il we
ute Rayleigh numberEs]. The purpose of this paper is to formulate the problem, describe the methods used in both
remedy this limitation, and to provide a more complete pic-linear and nonlinear analyses, and present the amplitude
ture of multiply diffusive slot convection from both linear equations derived via the method of normal forms. In Sec. Ill
and weakly nonlinear studies of the system. we present an exploration of the control parameter space
We consider a vertical slot that is characterized by arfdefined by the solute Rayleigh number#Ve discuss our
imposed horizontal temperature difference and filled with aesults and compare them with earlier work for thermohaline
solution vertically stratified by addition of a diffusive con- convection[10] in Sec. IV, and provide our conclusions in
taminant. At the outset of the analyi8,6,7, a vertical S€c. V.
shear flow is required to maintain the background steady
state, and the constant vertical solute gradient is rendered Il. FORMULATIONS AND METHODS
stabilizing. For large solute Rayleigh numbd5], thin
boundary layers develop near the sidewalls, and the fluid
remains static in the interior; hence the initially unperturbed We consider an infinitely tall two-dimensionéD) chan-
state can be well approximated by a quasistatic state, and tiel of widthd, as shown in Fig. 1, which we assume to be
instability is double diffusive in nature. HgB] investigated filled by an incompressible fluitthe horizontal and vertical
the stability of the amplitude equations within the quasistaticvelocity components can be related to a stream funafion
approximation in this large solute Rayleigh number regimeu=d,i; w= —d, i, respectively; and impose a temperature
and found the properties of the critical states as a function oflifference across the channel, of amplitudd. Further-
the solute Rayleigh number for given vertical wave numbersmore, the fluid is initially characterized by a uniform vertical
For small solute Rayleigh numbers, the vertical solute gradisolute concentration gradientd,Sy|. We shall allow for
ent has no stabilizing effect as far as the background sheduoyancy effects, so that we work within the Boussinesq
flow is concerned, and instabilities set in at the same criticahpproximatior{ 11]. The Boussinesq equations we shall work
thermal Rayleigh number and vertical wave number as thoswith are nondimensionalized by scaling all velocities by

A. Linear stability analysis
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The unperturbed background fields, i.e., solutions
(Sy,To, 1), satisfying Egs(2.4—(2.6) are found in3,6,7].
The linearized perturbed equations are then

5 ) ) 16 Grg
WV oP— 0yhgd,Vip+ 0,V ipgd, i+ Gr T —— 0yS

B . Gr
i=0 Z =0
g 16 _,
X \ TR 2.7
S,=0 S:=0 161
B 9:50(w,2) <0 T = oxthod T+ Todph— 5.5 V?T=0, (2.8
z=—d/f2 z = +d/2 16 1
T=T +AT/2 T=T,-4T/2 (9tS— ax¢0azs+ axsoaz¢_ &zsoaxlﬂ_ a’ﬁ v#s=o0.
S
FIG. 1. Sketch of the vertical slot filled with stably stratified (2.9

solute: 8d,S,= cons&O.

Without loss of generality, we choosgT,=—1, 8>0, and
gaATd?/8v (which is the magnitude of the background 9-So=—1, and use the spectral methfiP] to solve Egs.
shear flow speadall lengths byd/2, temperatures b T/2, (2.7—(2.9: An eM deper_ldence is assumed for all varlable_s
the solute concentration by the vertical concentration differ2nd we expand the spatial terms in Fourier-Chebychev series
enceAS/2=(d/2)|4,S,|, and time by 4/gaATd (which is (Cheb_ychev inx qnd Fourler inz). We make use of the
the circulation time for the background shear flow for a cellfollowing convolution relatior{12];
of sized/2); the resulting governing equations are then given

—~ 1 . -
by f-9)=> fo Qg+ fo-Q 2.1
(f-g 2(k§+q 0ot & forle| (210
16 _,| , 16 I ) R
g Erv v Y| T =G S = V7Y), (where{f;} and{g;} are the expansion coefficients bfx)

(2.2 andg(x) in the Chebychev spectral spade write the prod-
uct of two functions as a product of a square matrix with a

16 1 vector in the Chebychev spectral space:
(at———Vz)T=J(¢,T), (2.2
GrPr r 7 " O]
Yo Y0
16 1 V2|S=J(¢,S 2.3 .
at_ErP_rS - ('#, ) ( ) =F. . , (211)
Here J(f,g)=d\fd,9— d,fd,g is the Jacobian; Gr is the T'\ N
thermal Grashof numbegaATd®/v?; Gr, is the solute L '9n. L On]

Grashof numbegBASd/v?; Pr is the thermal Prandtl num-
ber v/ k;, and Pg the solute Prandtl number k. (the ther-
mal Rayleigh number and the solute Rayleigh number ar
then defined by the expressions=RgaATd%/ vk,=GrxPr
and Ra=984,S,d* vks= — GrsxX Pr,<0, respectively. The
dimensional constants are the thermal expansion coefficie
a, the solute volumetric expansion coefficigdtthe thermal
diffusivity «, the solute diffusivityxs, the kinematic vis- M-V=\L-V, (2.12
cosity v, and the gravitational acceleratign The boundary
conditions at the vertical walls are assumed to correspond twhere M and £ are matrixes obtained from Eq&.7)—(2.9).
impenetrable, no-slip walls fixed at constant temperaturerhe vectorV=(,T,S) and the matrixM are functions of
(Fig. 1). We also assume the background statsnoted by D the set of control parameters (Gr®r,Pr,Pg) [or, alterna-
to be steady and independentaf tively, (Ra,Ra,Pr,Pr)]. Boundary conditionsy=d,y=T
=9,5,=0|4,—+, are incorporated into Eq2.12 using the
tau approximatiorf12]. Analytically one can show that the
system is always stable to zero vertical wave number pertur-
bations. For nonzero vertical wave numbers, we numerically
2T =0 (2.5 solve this equatioriwith the solver from theApPACK pack-
x0T age in the parameter space to find neutral stability curves.
Our numerical solutions exhibit good resolution when we
161 , _ i h ber of modése., th t h
—  92Sy— dyiho=0. (2.6) increase the number of mo ése., the spectrum shows
GrPrg power-law decay and remains flat at the higher mode number

whereF is a square matrix whose elements are linear com-
binations of the{f;}. [Note that Eq(2.11) corrects the rela-
tion (3.1.28 in Ref. [12]]. Hence in Egs(2.7—(2.9 the
functions and derivative operators in front of the variables
IWJ T, andS) can be written as square matrixes in the spec-
tral space, and a generalized eigenvalue equation is obtained,

4 Gry
axl//O_‘;xTO_"a xSp=0, (2.9
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end of the spectrum In our calculation we fix the Prandtl Equations(2.19 and(2.20 are the eigenvalue equations in
number Pe=7 (for water at room temperaturand vary the the linear theory, i.e., Eq$2.7)—(2.9) plus the complex con-
solute Prandtl number Prfrom 7x10' to 7x10°. For jugates of these three equations. To second order, we have
|Ra|=0(10% the convergence is satisfactory when we use

as few as 32 modes for all solute Prandtl numbers in the 95=05=05= (2.21)
range{7x 10'<Pr,<7x1(P}. For |Ra|<0O(10°) we need 0 0 0
to increase the number of modes to 48 to obtain good con- (299L— M)VI=N3=N(V,VY), (2.22
vergence for solute Prandtl numbers,P7x 10!, 7x 107, 0 1o 100 0
and 7x 10°. (29: L= M)V3=Nz=N(V1,V]) +N(Vi,Vy),
(2.23
B. Weakly nonlinear analysis 0p_ 2_N2— 141
(29: L= M)V5=N3=N(V1,V7). (2.24

The method of normal formgL3] is used to investigate
the behavior of finite amplitude solutions in the neighbor-T0 the third order, we have
hood of critical points obtained from the linear theory. We
rewrite Egs.(2.1)—(2.3) in the following general form: 93 93 93 (2.29

(a.L— M)V=N(V,V), 2.13 (399L— M)VI=NI=N(V3, V) +N(V,V)),

(2.26
whereV=(4,T,S) and M and £ are the same as in Eq. 0 L 10 e
(2.12; N is the nonlinear term on the right-hand side of Egs. (391£—M)V3+03LV1=N3, (2.27

2.1)—(2.3), defined explicitly as follows: )
@1)-23 plcity plus the complex conjugates of Eq42.26) and(2.27). At the

(1, V24,) stationary bifurcation points\ﬁ:O and from the solvability
N(Vy,Vo)=| I(y,T2) (2.14  condition of Eq.(2.27) we can determingg by demanding
1:V2 1,12 . . . . 0
J(¢y,S,) the projection of Eq(2.27) along the eigenvector; to van-
ish. We take the inner product of E(.27) with the vector
The matrixM is intrinsically complex and non-Hermitian in Y [which is an eigenvector of the adjoint operator gf
our system. In the case of stationary bifurcations, we use- M): (g9L— M), Y=—MY=0 at the critical point}

A(t) for the amplitude of thee™®? mode and its complex and the sum of the inner products should be zero; thus we
conjugateA* (t) for the e '“? mode. In the case of Hopf obtaing} as
bifurcations, we usé\(t) for the amplitude of thes!(kz* <V

mode andB(t) for the e'k*~“Y mode. BecauseM is com- - (Y,N3)
plex and non-HermitianB(t) is not complex conjugate to 93_<y,£\/ﬁl>* (2.28

A(t) and we have to treat these two amplitudes separately.
where N3=N(V3,V1) + N(V3,V) +N(VI, V) +N(VI,V3),
1. Stationary bifurcations and the notatior( , ) refers to the inner product operations.
From[13,14), we write The amplitude equation foA(t) is then the complex
Ginzburg-Landau equation,

Il
M ¢

k
v Vi, V=2, VIAKIAX (2.15 A=gA+glAlAl?, (2.29
1=0

X
I

1
where we have dropped all higher-orde®(|A|°)] terms.
K |kl nx] For stationary bifurcationsg‘f is real in the neighborhood of
, Nic, Nk:,:EO N AT AT, (2.18  the critical points. If the real part gy Re(@})] is negative,
the bifurcation is supercritical, equilibrium solutions exist

T
M ¢

=
Il

_ o and are stable; if Rgﬁ) is positive, the bifurcation is sub-
A=g(A,A*)= D gu(AA*), critical, and equilibrium solutions exist fag}<0 and are
k=1 unstable.

o ksl 2. Hopf bifurcations
(AL A* :2 gl AIA (2.17) _ _

=0 As mentioned before M is a general complex, non-
] ] ] Hermitian matrix and we have two independent amplitudes
With d,=Ada+A*dax, We determineA=g(A,A*) andV  A(t) (modes withe'“**2 dependencdeand B(t) (modes
simultaneously to the third order. To first order, we obtain with e'(-“t*k2 dependencdeplus the complex conjugates

L A*(t)[=D(t)] and B*(t)[=C(t)]. Thus, in this case we
9:=0, (218  have

L~ M)VI=0 (2.19 -
(01 V=2V, V= >  vabedaapdeepd,
= a+btc+d=k

k
(90L— M)Vi= (2.20 ' (2.30
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NS N N S nebedaagheeps po=epp+ RE(B)py+ R B)popl, (240
o K S a=k ’

2.31) O,=— w+Im(By) p2+Im(B2)p2, (2.41)

) where Réa) is the real part and Iga) is the imaginary part
A=g(A,B,C,D)=, g?Pcda2Bbcepd, (2.3  of a. The square of the amplitudes of the asymptotic equi-
librium state, depending on the values of the coefficients in
Egs.(2.38 and(2.40, can be any one of the following four
B=f(A,B,C,D)=2, fabedaagbcepd.  (2.33  combinations:

: : - - —Re(ay) +Re(B1)
As a simple illustration of the notation: 2 _ =_ ,
P IPeol™= = € RefayRel ) — Rel ) Rel ) e
NZOOlE N(V2000,V0001)+N(V1001,V1000) ( . 2
—ReB;) +Re(ay)

+N(VOOL V2000 1 N(V1090,v 1008, Pool”= € RefaRe( By ~ReaoRaB 7

where V2990 and V1901 gre obtained from the second order

equations in the expansio}°® s the eigenfunction from |paol?= — =——,
linear stability analysis witre'®* dependencey®® is the Re(ay) (2.43
eigenfunction withe™'“! dependencey®®! is the complex ) '
conjugate ofvV1%% and V%0 is the complex conjugate of |Pbol*=0,
V0100 Following the procedures in the previous subsection, )
we obtain the amplitude equations faft) andB(t): pacl*=0, (2.44)

A=(e+iw)A+ a A|AI2+ a,AlB|2, (2.34 ool — =

| Pl = Re(y)”

B=(e—iw)B+ 8,B|B|?+ B,B|A|?, (2.39 puaff=0

Paol =Y,

where € (a small real numbgris the growth rategle=0 at (2.49
criticality, e<0 at subcriticality, and>0 at supercriticality | ppol>=0.

and o’'s and B's are given as follows from the solvability
conditions [Y, and Y,, respectively, satisfy ipl  The standing wave solution in EqR.42 exists only if y,
—M)a¥a=0 and (iwL—M),4Y,=0, bothY, andY, andvy, are of the same sign. i, and y, are both negative,

havee 'k* dependence the bifurcations are supercritical, and oscillatory solutions
exist fore>0. If v, andy,, are both positive, the bifurcations
(Y4, N200% (Yq,NH19 are subcritical, and oscillatory solutions exist fex0. If

al:—<Ya, L£\/T000) aZ:—<Ya, L1000, (2.36 Re(a;) and Ref;) are both negativépositive), then the two
supercritical (subcritica) traveling waves with amplitudes
(Y, ,NO219 (Y, ,N10Y given by Egs(2.43—(2.44) coexist fore>0 (e<0). If Re(a)

IBl:—O_O_C;l ; Bz:—o—o-cgl . (239 and Rep) are of opposite signs, subcritical traveling waves
(Yo, LV Yo, £V exist and the amplitudes are given by E(@.43 for

Equations (2.34—(2.35 are the same as the complex R€@)>0 or Eq.(2.49 for Re(8)>0. As we varye from
coupled Ginzburg-Landa{CCGL) equations derived ifl5] negfa'tlvg to positive values, the amplitudes qf the as_ymptopc
for a binary fluid, and are the spatially uniform CCGL equa_equmbrlum state change from the asymptotic amplitudes in
tions in [16] for the nonresonant cases in the thermallyEd: (2:43 for Re(a)>0[Eq. (2.44 for Re(3,)>0] to those
coupled two layer problem. Although in this case the twoi" Ed- (244 [Eq.(2.43]. The stability analysis for the equi-
amplitudes are strongly temporally couplésee[17] and librium states is straightforward: we ert%=pa9-+ 6_pa and

[18] and references thersithe spatial symmetry in our sys- Pb=PboT b, Wherep,o and pyo are the equilibrium am-
tem has reduced all the additional coupling terms to zero anflitides, and substitute these expressions into @38 and

the form of the CCGL is a reflection of the symmetry in the (2-40. To first order in5,, and &, we obtain

system[15]. .
d Spa=[ e+ 3 Rey)pZo+ Rel @) plo] 5pa
C. Analysis of the coupled amplitude equations +2 Re @) p20Pb0SPb » (2.49
Writing A(t) = pa(t)e'%® and B(t) = py(t)e' ", where . 5 5
pa(t), 6,(1) and py(t), 6,(t) are all real functions, Egs. Spp=[e+3 Re&B1)ppo+ RE(B2)paol opy

(2.34 and(2.39 give us

ba: €pat Rqal)Pi"' Re(az)Papgv (2.38

+2 RE B2) paoPbodpa - (2.47

Assuminge™' dependence for bothp, and 5p,,, the stabil-
) 5 5 ity analysis for the equilibrium state then boils down to solv-
0= w+Im(ay)ps+Im(az)pg, (239 ing the following eigenvalue equation:
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_M> .

The equilibrium state is a stable fixed po{®F) if the real ity ratios H>1 in this regime of|Ray/.) Dotted lines and
parts of the two eigenvalues are both negative; if the reafzshed lines on the plane are the hypothetical dividing lines
parts are both positive, the equilibrium state is unstablgeparating supercritical bifurcatiofgi<0 above the divid-
(UN); the equilibrium is a saddle poiK§P) if the real parts ing line in our casg from subcritical bifurcations(gl>0

Of the two eigenvalues are of opposite si_gn_s. We note that iEelow the dividing line in our cages in Fig. 3 in[5].3For
e!ther one Ofpqo an(_jpbo Is zero, the matrix in Ezq(2.48) IS H=10 the hypothetical dividing line intersects the solid
diagonal and the eigenvalues are real. pfy=p2,=0, the curve near [Ral,2k;)~(107,20) and Regl) drops from

: N 2 2 2 _
two eigenvalues aré\;=\,=¢; for pz=0 and ppo= " poitive to negative values 4Ra| increases. The dividing
—e/Re(B;), the two eigenvalues are \;=¢[1

€+3Re (a1)pio+ Relas)phy 2 RE(@2) pagPio
2 RE 82) PaoPho €+3 Re 1) ppo+ Re( B2) o

opa
opp

=0. (2.48

—Re(@)/Re(B)], \,=—2¢; for p2,=—e/Re(;) and p3, 1010 , , , . . ,
=0, the two eigenvalues aren;=-2¢, MN,=¢[1l L (a)
—Re(By)/Re(@;)]. For a more complete analysis on the 108

coupled amplitude equations, we refer the readefd &h

lll. RESULTS

In this section we summarize the results of our anaIyses.&’”
We identify two principal regime&case | and case)llwhich
differ in the nature of the unperturbed equilibrium. In case |
(the double-diffusively-driven regimethe stratification ratio
is large[ BAS/aAT=Gr,/Gr=0(1)] and the unperturbed
equilibrium is a static state in the interior with thin boundary
layers sustaining the zero solute flux at the walls. In case |l
(the shear-induced regimethe stratification ratio is small
[BASIaAT=Gr,/Gr<0O(1)] and the unperturbed equilib-
rium is a steady shear flow throughout the slot.

A. Double-diffusively-driven instability:
BAS/aAT=GCGrg/Gr=0(1)

In Fig. 2@ we show the critical Rayleigh numbers (Ra ‘ )
=gaAT.d% vk,=Gr.X Pr) versus the solute Rayleigh num- [ il

o H=10%%%%¢
bers (Ra|=0/]d,So|d*/ vks=GrxPr) for six different 1ook i iy

2 [
values of the diffusivity ratioH(=Pr,/Pr=k/«g). In this & E I:‘,I

regime, results from our numerical calculations show that L H 1
bifurcations are stationary, and the computed neutral curves o.10f i 4
are in satisfactory agreement with results presentd®,ifi. g il 3
We also plot the critical wave numberK2 as a function of i il 1
|Ra|, and as shown in Fig.(B), our results are in good 0.01k ; J
agreement with the asymptotic approximatifh3,5 for : | 3
|Ra|=10". I TS TS
In our computation, we find that the bifurcations are all IRa,|

subcritical forH=10® in this doubly diffusive solute Ray- . o
leigh number regime. Exceptions to Hart's conclugishare _FIG. 2. Pane(_a) Neutral curve fo_r Six valut_e_s of the dlffu_slwty
found forH =10 andH = 1%, as shown in Fig. @): Hart[5] ratio H(= ./ k) in the doubl_y diffusive instabilitycase ) regime
concluded bifurcations are subcritical K> (— Ras)l/e and [BAS/IaAT=0(1)]. The solid dots are from our calculations; the

supercritical ifH<(—Ra)%. In contrast, we find that for solid u Ii1512es T e the ~analytical results from [5].
H=10 there are subcritical bifurcations fét<(—Ray)/ Ra=2"%6"4Ra|™Y()*¥(H - 1). Thus, the solid lines amot fits

. . . to our computed results. In this regime the critical points are all
and for H=10? there are supercritical bifurcations fét P g P

16 . . .. Stationary. We note that as far as the critical thermal Rayleigh num-
>(—Ra)™ We propose a possible explanation for the dif- bers are concerned, the asymptotic approximation works quite well

ferent variation ofgz as a function of|Ra| for different  eyen for solute Rayleigh numbéRa,| as small as 10 Panel(b)
diffusivity ratio H in Fig. 3(b), where we plot the critical ~cCritical wave numbef= 2k, ; we scale distances l¥/2) vs solute
wave number (R.) as a function of solute Rayleigh number Rayleigh number for the same cases displayed in péelThe
on the|Ray|-2k plane.(Note that from our definition ofRa| analytical result froni5] deviates significantly from our computed
this curve on théRay|-2k plane is the same for all diffusiv- results agRa| decreases below 10°.
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FIG. 4. Critical curves in the shear-induced regime; 97 modes

are used for these calculations. PafaICritical thermal Rayleigh
numbers Raas functions of solute Rayleigh numbl&a,| for H
=10, 1¢, and 1§ in the transition regime; Pr7 (for watep. On
each curve, solid dots indicate the Hopf bifurcation cases for which
the coefficients in the amplitude equations are calculated. Phanel
Critical curves forH=10, Pr=7 in the shear-induced regime. The
left vertical axis is the critical thermal Rayleigh number.R&he

FIG. 3. Real part of the coefficieg@ in Eq.(2.29 as a function
of solute Rayleigh number for various values of diffusivity ratio
in the double diffusively driven regime. Pane) Re@:) for H
=10, 1¢, 10° and 1d. Open circles are for positive Rgj (sub-

critical bifurcation, and solid circles are for negative super- . _ " A
0 9 @é( P right y axis is the critical wave numberk2. The solid lines repre-

critical bifurcation. The solid line isH=(—Ra,)*, above which . . - . .
bifurcations are subcritical, and below which bifurcations are super-Sent stationary instability, while the dashed lines represent oversta-

i . . bility. The diamonds placed on the solid lines indicate subcritical
critical [5]. Panel(b) Explanatory diagram for Rgf) as a function . . . L " . - )
. e . . el o bifurcations; asterisks indicate supercritical bifurcations; solid dots
of |Ray for different diffusivity ratios. The solid line is the critical

wave number for given solute Rayleigh numbers on|Ra]-2k (on the dashed lingsndicate points where the coefficients in the
plane for all diffusivity ratios in the double-diffusively-driven re- gmplitude equations are calculatébe secondary stabili.ty. Is listed

gime. The dotted line is the hypothetical dividing line fdr= 10, irF]{T?—bliog. '?IS:(Ur?ﬁ'—diggeﬁzssbaellow i?g%cgesaeCh;Semr:]n:]mn:mmat.s
the dashed line is foH=10 and the dash-dotted line is fof 35_‘31 s inl7]) Careful inv {. Wti " nedia = 103' 'h “W !

=10°. In accordance withi5], the range in th¢Ray|-2k plane over &=oL, as ) Laretu estigation neaf<a| = shows

- O . . 2 . . that the stationary branch remains the lowest branch (iRa]|
which the finite amplitude instability is possible increasesHas . .
increases P y P decreases below 500, at which point the overstable branch becomes

the most unstable branch. We further note that the transition from

L . . overstability to stationary instability occurs @aj|~ 200, and the
line intersects the curve again [®aj| slightly greater than threshold solute Rayleigh numbédefined in Sec. IV |Ra |

10" and Regé) jumps discontinuously to positive values. _gg
This then explains the variation of Rg) as a function of '
Ra| for H=10 near|Ra|=10". For H=10?, the dividing _ . .
Iine |may intersect th|e SO||id curve fRa|~3% 10 and that B. Shear-induced instability: BAS/@AT =Grg/Gr<0O(1)

is why the discontinuity occurs nedRa|=3x10° for H Here we present results of calculations for three diffusiv-
=10?. For higher diffusivity ratios, the hypothetical dividing ity ratios:H = «,/x<=10, 1¢, and 16 (Figs. 4 and & In the

line may not intersect the solid curve for“9|Ra|<10° thermohaline slot convection case, the critical thermal Ray-
and thus there is no supercritical bifurcation and all bifurcadeigh number and the critical wave number for solute Ray-
tions are subcritical in this double-diffusively-driven regime. leigh number 18<|Ra|<10® in our computatioFig. 4(a)]
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FIG. 6. Neutral curves for salty wateH = 10?, Pr=7) for
a density stratification ratio in the rangex40 5<Gr,/Gr
2k ] =BAS/aAT<4X10 % All instabilities are overstablddashed
| lines). The density stratification ratio for curve 1 BAS/aAT=
, 4x10—-4 and the solute Rayleigh number at critical pointfRa|
, =477.14. Curve 2:8AS/aAT=10%, |Ra|=292.45. Curve 3:
5 ] BASIaAT=4x10"5 |Ra|=210.48. Curve 4: BAS/aAT=
* Ny M‘ﬂ ] 3.5x107°, |Ra|=203.44. Curve 58AS/aAT=3X10"5 |Ra|

Ra
N
L
o

L] =196.53. Curve 6:8AS/aAT=2x10"° |Ra|=155.03. For

kY curves 2, 3, and 4, we note that the minima at the larger wave
number(2k~2.8 for all three curveshave slightly larger critical
o thermal Rayleigh numbers than those at smaller wave numbers. It is
likely that in [7] these minima are used instead, and thus have a
constant critical wave number3 [7] in the corresponding range of
solute Rayleigh number@n [7] this range is 2|R4<5.)

1 n L n sl
10.0
[RaJ

100.0

FIG. 5. Panel(a): Critical curves for salty watefH=10?, Pr
=7) in the shear-driven regime. The leftaxis is the critical ther-
mal Rayleigh number Raand the righty axis is the critical wave
number X%.. For 1¢<|Ra|<1C® the critical thermal Rayleigh
number increases less steeply thaf#hand reaches a local maxi-
mum near|Ra|=10%; asymptotically it reaches the value of 5.5 X . ;
X 10%, the critical thermal Rayleigh number in vertical slot convec- corresponding range of solute Rayleigh number( i is
tion [10]. The critical wave number decreases first as the soluté'5$R5$4'8' For Gg/Gr=

-5 -5 -5 i
Rayleigh number decreases from*1@eaches a local minimum at 4x10 ! 3.5<10°>, and 3.0¢10 FV_VO local minima are
IRa|~ 107, and climbs up to a local maximum, and then asymlo_found in the neutral curves. The critical wave numbers are,

totically reaches the value 0f<21.38, the critical wave number in respectively, R.=0.82, 0.76, and 0.68. The other minima
vertical slot convectiori10]. The transition from overstable insta- for_the;e three curves occur .at the wave number-2.92,
bility to stationary instability occurs arounfRa|~ 200, and the which is the same as the Cr_'tlcal wave numbe[_‘ﬂﬂjfo_r the
threshold solute Rayleigh numbka, | ~3.5. Panelb): The cor- corresponding solute Rayleigh numbers. Thus it is likely that

responding curves fad =10°, Pr=7. The transition from oversta- In [Zj] '_[he Ioc(:jal Imlrgjl.ma at Ig_rf?er vertlcallwa;/e number_s Wﬁ.s
bility to stationary instability occurs arounidRa]~200, and the used Instead, leading to different results from ours in this

threshold solute Rayleigh numbRa, ;| ~0.08. par.ticular range of.solute Rayleigh number for the thermo-
’ haline slot convection.

Table | summarizes the secondary stabilities for the solid
points on the oscillatory bifurcation branches of the critical

stratification ratio Gy/Gr and then calculate the solute Ray-
leigh number |[Ra| on the neutral curve from|Ray
=Gr,/GrxXGr,XH. The range of solute Rayleigh humbers
at critical points for these curves is 155Ra| <480, and the

are different from those ifi7] for the corresponding solute
Rayleigh number %£|R¢/=<10 (the solute Rayleigh number curves in Figs. ) and 5(dashed lines For fixed|Ra in

defined in[7] is R=gBAd% kiv=Ra/H). We carefully e range of~ 10 the neutral curves on the Raplane are

checked both convergence and resolution in our numerics byary flat near the critical point§7], and references thergin
increasing the number of modes, and found that the neutrgh, 3| giffusivity ratios in our calculations, so that it is dif-

curves using 64 modes are indistinguishable from those okt to determine the critical wave number precisely from
tained with 48 modes for all three values ldfeverywhere  the cajculations. Hence we did not calculate the coefficients
except near/Ra]|~200, where=96 modes are required. i, the amplitude equations for this range of,Rén the next

Thus we can rule out distortion of the neutral curves due tQgction we discuss why the critical wave numbers are not
the lack of convergence or sufficient resolutipdl. (97 pique for|Ra~ 1C8.

modes are used in all of our calculations in this regjriibe
discrepancies for the salty water case may be understood as
follows. In Fig. 6 we show the neutral curves for several
density stratification ratios foH =10?. In our calculations,
we calculate the critical Grashof number .Gor a fixed

IV. SUMMARY AND DISCUSSIONS

The instabilities are categorized into two cases. Case | is
the double-diffusively-driven regim¢BAS/aAT=0(1)],
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TABLE I. Summary of the stabilities for marked points on the oscillatory branches of the critical curves in Figs. 4—6. For each solute
Rayleigh number, the upper bra¢esub” in the front) describes the stabilities or existence of the four fixed points4® and the lower
one(“sup” in the front) is for e>0. In each braceX means the fixed point does not exist, “SF” stands for stable fixed point, UN is for
unstable, and SP is for saddle point. For example,(XylJN, SP, SF means fore<0 (sub the equilibrium state with amplitudes given in
Eq. (2.42 does not existX), the state described in E(R.43 is an unstable nod@JN), the state with amplitudes in E(R.44) is a saddle

point (SP, and the trivial equilibrium state in Eq2.49 is a stable fixed pointSP.

H=10 H=10¢ H=10

|Ra|=330.137 subX,SP X, SF) |Ra|=362.817 suflUN,SP,SP,SF
sup(X,X,SP,UN) supkK, X, X,UN)

|Ra|=310.725 subX,UN, X, SF) |Ra|=292.451 sutlJN,SP,SP,SF |Ra|=383.746 subX,UN, X, SF)
sup(X,X,SF,UN) supkK, X, X,UN) sup(X,X,SF,UN)

|Ra|=290.863 subX,UN, X, SP) |Ra|=210.425 SsutUN,SP,SP,SF |Ra|=296.400 subX,UN, X, SF)
supX,X,SP,UN) supkK, X, X,UN) sup(X,X,SF,UN)

|Ra|=270.592 subX,UN, X, SF) |Ra|=203.444 sutlJN,SP,SP,SF |Ra|=220.579 sutUN,SP X, SF)
sup(X,X,SF,UN) supkK, X, X,UN) sup(X, X, SF,UN)

|Ra|=229.212 subX,SPX,SF) |Ra|=196.529 sulUN,SP,SP,SF |Ra|=210.806 sutUN,SP X, SF)
sup(X,X,SP,UN) supk, X, X,UN) sup(X, X, SF,UN)

|Ra|=205.215 subX,UN,X, SF) |Ra|=200.988 subX,UN, X, SF)
sup(X, X, SF,UN) supk, X, SF,UN)

|Ra|=199.080 subX,UN,X, SF) |Ra|=181.273 SubUN, SPX, SF)
supX, X, SF,UN) supK,X,SP,UN)

|Ra|=194.311 subX,UN, X, SF)

sup(X,X,SF,UN)

where the unperturbed shear flow is significant only near theffect of different diffusivities is well illustrated by the de-
vertical boundaries. The virtually static, unperturbed equilib-pendence of the threshold solute Rayleigh number on the
rium is sustained by the imposing solute stratification in bothdiffusivity ratio. For large solute diffusivitiesH—1), the
vertical and horizontal directions. Fet>1 this equilibrium  solute stratification |Ray) must be large enough to change
can become unstable due to doubly diffusive instabilitiesthe characteristics of the instability because the solute dif-
even though it remains stable to perturbation in Hhe:1  fuses almost as efficiently as heat, while for small solute
limit [3,5]. Case Il is the shear-induced regi@AS/aAT  diffusivities (H>1), a comparatively smaller solute stratifi-
<0(1)], where the backgrond equilibrium is a shear flow cation(smaller|Ray|) is enough to change the bifurcation to
throughout the slot. In thel=1 limit the system reduces to subcritical because the solute diffuses much less efficiently
the vertical slot convection and the shear flow loses stabilitghan heaf10]. Hence, the smaller the solute diffusivity, the
when the thermal Rayleigh number exceeds the critical valusmaller the threshold solute Rayleigh number. The transition
Ra.=5.5x10%. For diffusivity ratio H>1 the critical ther-  from supercritical stationary to subcritical stationary bifurca-
mal Rayleigh number Ralepends on the value {Ra|. Ra,  tion suggests that we should go to a higher order to investi-
is independent oH for |Ra| smaller than 1) because the gate the finite-amplitude stability and the possibility for
solute has no effect on the instability. FiRa|=10? the steady state equilibriurfi.3,10.

stabilizing vertical solute gradient has significantly decreased We now explain why there is no preferred length scale
the amplitude of the shear flojFig. 7(b)], hence Rade-  for solute Rayleigh numbgiRa|~10* with the help of the
pends orH and the instability is replaced by overstable in- vertical background density flux, defined in our case
stability. From Figs. 4 and 5 we find that as the solute Ray{d,T¢=0) as[10,19 F,=po[ — a(WoTo— k9, To) + B(WoSp
leigh number|Ra,| decreases below 10, both the critical — xs9,Sp) 1= pol — aWoTo+ B(WeSy— ks9,S)]. This flux
thermal Rayleigh number and the critical wave number ascan be written in the nondimensionalized form

ymptotically approach those in the vertical slot convection,
where Ra=5.5x 10* andk,=1.38[2,9]. Though the critical
states are all stationary fRa|~ 10 for the three diffusivity
ratios in Figs. 4 and 5, the bifurcation remains supercritical
for H=10 and turns subcritical fdd = 10? andH=10°. For  This density flux/Eq. (4.1)] is a combination of convective
zero solute Rayleigh numbdvertical slot convectionthe  fluxes(the first two terms on the right-hand sjdend a dif-
critical state is stationary and supercritifal. As the solute fusive flux (the last term, which is a constant sinéss, is
Rayleigh number increases above zero, the critical statfixed in our analysis the flux is upward if positive and
changes from supercritical stationary bifurcation to subcriti-downward if negative. Figure(& shows the vertical density
cal stationary bifurcation at some solute Rayleigh numbeflux as a function ofx for solute Rayleigh numbertRa|
(we define this value as the threshold solute Rayleigh num>102 for salty water(H=10? and Pr=7). Figure 7b) is for
ber Ra ). From Figs. 4 and 5|Ra, 4 ~50 for H=10, solute Rayleigh numbéRa|<10®. In Fig. 7(a), the flux for
|Ra, | ~3.5 for H=10? and|Ra /~0.1 for H=10°. The  solute Rayleigh numbejRa|>10 is almost zero and the

Grg 1 16Grg

FZ(X):_WOTO+ Gr Wo +ﬁR—aa (41)
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X FIG. 8. The dependence of the growth réxe of a disturbance
on the wave number (@ and on the solute diffusivityd at super-
0.010¢ ' ' ' ' '(b) i critical thermal Rayleigh number R&8.1 for H=10, Ra=0.31 for
2 ] H=10% and Ra=0.031 for H=10® for a given solute Rayleigh
~0.000 1+ | Ro,l=8.44x10% number|Ra|=1.3x 10°. \ is measured in units of the circulation
f2: | Ra [=5.01x10" 3 time (defined in Sec. )land lengths are scaled 2. 33 modes are
3 | Ra|=1.97x10° 3 used in the calculations.

-0.010 H
E 4: | Ra [=3.83x10' .
upwards near the center and spreading out downwards along

the boundaries, with a restoring force due to the horizontal

] solute gradient playing the role of surface tension. Hence one
E would expect the instability for solute Rayleigh number
|Ra|~10° to be similar to Rayleigh-Taylor instability with

3 surface tension, where the system can be unstable before too

W —0.020 F| | 5: | Raj=1.11 3

~0.030F

—0.0405
E much energy is dissipated by diffusion or viscosity, and is
—0080E . e ] unstable for disturbances over a range of wave nunilidis
-10 -05 0.0 05 1.0 1.5 2.0 (In our case the system is unstable to perturbations of a finite

range of wave numbers for any thermal Rayleigh number
FIG. 7. Vertical background density flux for salty watéd  above the critical value Raat|Ray~1.3x 10%.) In Figure 8
=10%, Pr=7) as a function of the solute Rayleigh number. The we plot the growth raté\) as a function of wave number
density flux is evaluated at the critical points. Pa@IF,(x) [Eq.  (2k) for |Ra|=1.3x 10° at a supercritical thermal Rayleigh
(4.1)] for solute Rayleigh numbefRa|>10°. Panel(b) F,(x) for  number Ra3.1 for H=10, Ra=0.31 forH=1%, and Ra
solute Rayleigh numberiRa|<10°. For solute Rayleigh number —0.031 forH=10%. (The critical thermal Rayleigh number
|Ra|=1.3x 10° (dashed ling we see that the denser fluid is trans- Ra=2.91 for H=10, Ra=0.291 for H=1C?, and Ra
ported upwards near the center and downwards near the wall. The 0.0291 for H=10® for solute Rayleigh numbetRaS|
restoring force from the lateral solute gradient plays a similar role_ 1.3x 103_) We remark that in vertical slot convection, the

here as the surface tension does in Rayleigh-Taylor instability. Thi§hear flow transports the fluid, and therefore the sign of the
provides another way of understanding the nonuniqueness of th . - L ' . .
critical wave number fofRa= 1.3 16° in our doubly diffusive 3en3|ty flux is only indicative of the direction of transport of

case. fluid, an(_j does not imply that the fluid is top-heavy if the flux
iS negative or vice versa.

We now focus on the comparison between laterally driven
instability is mainly due to dissipation and diffusion. In the double diffusive convection and thermohaline convection in
double-diffusively-driven regime, afRa| decreases from a horizontal layer of fluid heated from belaenceforth, the
10° to 10%, the background flow begins to grow in the inte- “thermohaline Rayleigh-Beard convection” case With no
rior of the channel and thus the critical wave numbers devisolute, the critical states are stationary and supercritical in
ate significantly from those obtained within the asymptoticboth cases. When adding a less diffusive, stably stratified
approximations. The critical length scale increase$Ras| solute into the system, different diffusivities provide chan-
decreases because dissipation due to diffusion takes placels of dissipation of energy on different time scales and thus
over a larger length scale as a result of background sheascillatory instability may set in before the stationary insta-
flow throughout the slot. In Fig.(B) the density flux is nega- bility. In the thermohaline Rayleigh-Bard case, the insta-
tive and approaches the vertical slot convection limit as theility becomes oscillatory and subcritical with solute added
solute Rayleigh number decreases below 10, confirming th&tl0,13. In laterally driven diffusive convection, the instabil-
in this regime the instability is shear induced. A&ta| ity remains stationary and supercritical for solute Rayleigh
=1.3x10°% in Fig. 7(a), the vertical density flux is positive at numbers smaller than the threshold values defined above,
the center, transporting mass upwards. Near the boundargnd as the solute Rayleigh number increases above the
the flux is negative, transporting mass downwards along théhreshold value, the critical states become stationary and sub-
walls. Thus an overturning density flux is developed, movingeritical. As the solute Rayleigh number increases above 10
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(still below 1), the background shear flow decreases sigmations, and have solved it in both linear and weakly non-
nificantly in amplitude[Fig. 7(b)]. The instability becomes linear regimes. The effect of different solute diffusivities in
oscillatory [dashed lines in Figs.(d), 5(@), and gb)]; the  both the shear-induced regime and the double-diffusively-
balance between the shear flow and the diffusion in this redriven regime is investigated by exploring a wide range of
gime can be envisioned as follows. Imagine that a cell ofparameters in our analyses. In the shear-induced regime
fluid near the hot wall rises vertically from the bottom of the [ BAS/aAT<<O(1)], results show that different solute dif-
slot. Since heat diffuses much more efficiently than solutefusivities change the characteristics of instability even
we assume that this cell is in local thermal equilibrium with though the stabilizing force is small compared to the back-
the background temperature field at all times. This cell willground shear flowismall solute Rayleigh numbé&Ray| < 10).
move horizontally to the cold wall due to the horizontal sol- In the double-diffusively-driven regime[ BAS/aAT

ute gradient, and it will sink downwards as it crosses the=0O(1)], results from our linear analyses agree well with
midplane to the other half of the tube. Because the shear flothose from the asymptotic approximations féta|>10°.

is weak, the cell can move significantly towards the hot wallWe also propose an explanation for the discrepancies be-
as soon as this cell is lighter than the ambient fluid at theween results from our weakly nonlinear analyses and those
same horizontal level. As it moves near the hot wall, it will in [5] for H=10 andH=10?. We provide a deeper under-
rise again because now it is heated near the hot wall; thustanding of doubly diffusive convection by comparing our
oscillatory motion is established, and instability sets in agesults for double-diffusive slot convection to those in the
this oscillation is amplified. We further remark that f&a| thermohaline Rayleigh-Berd convection. We point out the
smaller than 1®the shear flow is too strong for the oscilla- possible errors made in the determination of critical thermal
tory mode to set in before the stationary mode. FRa| Rayleigh numbers for solute Rayleigh numbers 2Rs<5
greater than 19 the shear flow is too weak, and the insta-in [7]; and using the vertical background density flux, we
bility sets in as a result of different diffusivities. The larger explain why no preferred length scale is present wiiRa|

the solute diffusivity, the more stable the system is and thus- 10° for all diffusivity ratios by resorting to an analogy with
the higher the critical Rayleigh number, as shown in Fig. 2Rayleigh-Taylor overturning instability in the presence of
No Hopf bifurcations are found for the secondary instability surface tension, where the system is unstable for distur-
listed in Table I. A reasonable flow chart can be constructedances over a limited range of wave numbers.

for each combination of states for the fixed points in the table

as in[18], and we refer readers {d8] for more details. ACKNOWLEDGMENTS
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