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Magnetotransport in the two-dimensional Lorentz gas
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We consider the two-dimensional Lorentz gas with Poisson-distributed hard-disk scatterers and a constant
magnetic field perpendicular to the plane of motion. The velocity autocorrelation is computed numerically over
the full range of densities and magnetic fields with particular attention to the percolation threshold between
hopping transport and pure edge currents. The corresponding Ohmic and Hall conductances are compared with
(i) an exact expression in the percolating regirtie, mode-coupling theory, andii) a recent generalized
kinetic equation valid for low densities and small fields. We argue that the long-time taif gsersists for a
nonzero magnetic field S1063-651X98)10705-3

PACS numbg(s): 05.60+w, 05.20.Dd, 73.50.Jt

I. INTRODUCTION ternal magnetic fiel@.,. Thus a single particle travels along
a circle and is elastically reflected upon collision with a scat-

Two-dimensional electron films can be manufactured withterer. We denote the velocity of the particle at titigy u(t).
high perfection in GaAs heterostructures. At low tempera-Clearly, |u(t)| is conserved and we set it equal to the Fermi
tures a mean free path of over*10m is reached and to a velocity v, since at low temperatures contributions to the
very good approximation the electrons may be considered asansport only come from the Fermi surface. The radius of
noninteracting. To have some interesting physics one nanayration is therR,=vgm*/eB,,.
structures the probe by lithographic or other techniques. We are interested in the magnetotransport that relates the
Thereby a strongly repulsive potential is imposed on thesteady-state curreftto an in-plane uniform electric field&
electrons with a maximum above the Fermi engigyantum by
antidots. If the imprinted structure is on a scale larger than

the Fermi wavelength, adjustable to be of the order of 50 nm, j=cE (1.7
one hopes to capture the transport properties already in the
classical approximation. for small E and want to understand how depends orBgy

So far, the most popular geometry has been a reguleand ng. 011 and o5, are the Ohmic conductivities. In our
array of antidots that corresponds classically to the Sinai bilcaseo ;= 05, by isotropy.o1,= — 054 is the Hall conductiv-
lard and should result quantum mechanically in the Hofsdity. The magnetotransport will be studied in linear response.
tadter butterfly. The magnetotransport of this periodic strucThis means that the dynamics is the one just expla{zetb
ture has been studied in great detail, both experimentallglectric field and the transport coefficients are given in terms
[1-4] and theoretically{5-8]. In our paper we investigate of the time-integrated velocity autocorrelation functions.
randomly placed antidots. To our knowledge, the so far besPhysically, one has to average over all of the phase space.
experimental realization has been achieved bjering [9]. For a large sample, this is equivalent to fixing the initial
We compare our results with his measurements in Sec. V. position and averaging over the scatterer distribution. It is

In kinetic theory randomly distributed scatterers arethis prescription that we will use both theoretically and in the
known as the Lorentz gas, which has proved to be an impomumerics. Before spelling out the details we introduce di-
tant testing ground. In particular, one can understand premensionless quantities.
cisely the assumptions for the validity of tiiknear Boltz- Space is measured in units of the disk radiusnd veloc-
mann equatiorf10] and check on the accuracy of the low- ity in units of the Fermi velocityy. The scatterers have
density expansion and its nonanalytic charadtet-16. then radius 1 and their dimensionless densityisnsa?.
Also the long-time tails in the velocity autocorrelation func- The dimensionless radius of gyration RB=R./a and the
tion are seen most convincingly in the Lorentz §&g]. In  corresponding magnetic field B=1/R=eaB,,/v.m*. Let
distinction from the work mentioned, we investigate here they(t) =u(t)/vg be the velocity of the particle at tintestarting
dynamics in the presence of a magnetic field perpendicular tat the origin. Clearlyv(t)|=1.v(t) depends on(0) and the
the plane of motion. particular configuration of the scatterers.

The model has a strong geometric quality. One places We define the dimensionless velocity autocorrelation
randomly disks(the scatterejsof radiusa in the plane at function by
densityng. The disks may overlap. In the region outside the
disks we have independent point particles with densijty Cij()=(vi(O)v;(1)), i,j=1,2. 1.2
They have mass*, chargee, and move in a uniform ex-

Here( ) is a double average. First there is an average over

scatterers. The centers of the disks are distributed according
*Electronic address: kuzmany@stat.physik.uni-muenchen.de  to a Poisson process with uniform densityconditioned on
"Electronic address: spohn@stat.physik.uni-muenchen.de the set{x||x|<1} being free of centers. Second we average
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over the initial velocityv(0)= (cose,sin ¢) uniformly in ¢. current settles at a plateau over a time span the longer the
(By rotational invariance this second average could be omitsmallerE, whose value equalsE with o of Eq. (1.3).
ted, but it is of advantage numericallyThe conductivity A brief outline of the paper is as follows. In Sec. Il we
tensor is then discuss the dependence®»fon p,B with particular attention
to the two percolation thresholds. We also compare our nu-
Nee’ % merics with the mode-coupling theory of "Ge and
- Dij, Djj= fo dt (vi(0)vj(1)). (1.3 LeutheyBer[18], which seems to be the only theoretical pre-
diction at intermediate densities. Recently, Bobylkeval.
D depends orp and B. Also of interest is the frequency- [19] derivgq a generalizeq transport equation_ for low s_cat-
dependent conductivity defined by ter(_ar.densmes anq ;mall f|eIc_is. In the appropriate domain of
validity their predictions are in fact very accurgteec. Il
€2 o and clearly improve on the phenomenological Boltzmann
oij(w)= — Dij(w), Dij(w)=f dt e""t<vi(0)vj(t)). equation with magnetic field. One of the famous results on
m 0 the Lorentz gas aB=0 is the slow decay of the velocity
(1.4 autocorrelation function as-t~2 for larget in two dimen-
_ RN — /o s - : sions[20]. For densitiep<0.25 such a power law has been
\;\r/]% ?gtjot)r:) a;tétv)';g)f'<(l;[)lzo)<vl}2’((92{l))>'(: _t)<>v Zb()é)it?(t,lt()); atr)l;y well established numericalfi7]. At larger derlliities there is
time reversal. Therefore, D;,=—D,, and D, a preasymptotic d.ecay approximately ag™ a}nd, with
= (1/4) [*..dt (v(0)-V(t)). reasonable numerical effort, the true asymptotics cannot be
As shown in Eq.(1.3), the conductivity is ill defined. seen anymore. In Sec. IV we argue that alsoBof0 the

- . 72
There is always a nonzero probability that the particle Wi"v:elgcny aSutocc\)/rreI_art]lon decays: as fqrhlarr]get. W? con- f
not be scattered at all. If s¢y1(0)v(t))=(1/2)cosBt) and clude in e%. .\a"t a comparison with the experiments o
(v1(0)v,(t)) = (1/2)sin@1) and the time integral in EqL.3 ~ -UUerng and with some comments.
needs a reinterpretation. Physically, there will always be a

O-ij:

weak elastic scattering by impurities, i.e., once in a while the Il. STATIC CONDUCTIVITY
velocity direction is randomized. In approximation, the ve-
locity autocorrelation function is then modified to To discusD in its dependence op,B at zero frequency
it is useful to consider first the limiting cases. As explained
e ""(v;(0)v;(1)) (1.5 Dy4(0B)=0 and D;,(0B)=1/2B at p=0. On the other
o hand, forB=0 we haveD,(p,0)=0. D;4(p,0) has been
and the proper definition reads studied numerically16,17. For p—0 one obtains the Bolt-

" zmann valueD 14(p) =3/16p. Thus, close to4,B)=0,D is

Djj(w)=lim J dt e Y7y, (0)v;(1)).  (1.6) ~ somewhat singular and roughly of the forpr(- B?) "2 Its
70 0 precise functional dependence will be discussed in Sec. lll.
As the density is increased the disks percolate. This

At zero density, no scattering, E€L.6) results in means that fop>p., p.=0.36, with probability one the
origin is contained in a finite domain bounded by scatterers.
D)= —i ® D)= B 1 For p<p. the origin is connected to infinity by a path not
1 2 B2—p2’ ¢ 2 B2— 2’ intersecting the scatterers. Closeptonumerically one finds
(1.7 Du(p.0)=|p—pcl*> p=<pc, With no theoretical explanation
yet.

as is well known from the Drude theory of the Hall effect. In |n fact, the Lorentz gas has a second percolation thresh-

particular, ato=0 both the Ohmic conductivity and the old. Let us fixp<p. and increasé. Above some critical

Ohmic resistance vanish. valueB., the trajectory will either be a circle or skip along

It is instructive to return for a moment to the case of ana, possibly large, cluster of a finite number of disks. The bulk

in-plane electric fieldE. One finds that for freely moving current forB<B is reduced to a pure edge current. Since

particles the average current approaches the particle cannot leave a cluster, the mean-square displace-
ment is bounded, which implies th&,,(p,B)=0 for B

(1.8 >Bc by the Einstein relation 11=Iimtﬂoo(r2(t)_)/2t. A
hopping of the particle from cluster to cluster is possible

. ) only if disks with radius X R percolate, which means, in
ast—e, in accordance with E¢1.7) at w=0. In fact, one ¢ ynits, thatp(1+R)2=p,, i.e.,

would expect that scattering cannot make things worse.
Thus, for the Lorentz gas there should be a well-defined

1
J:ﬁ(_EZIEl)

steady-state currentfor B#0. We did not find a general B 1
argument to establish its existence. The situatioBa0 is Be= Foido—1’ 2.1
Pclp

very different. Then the particle is accelerated along the di-

rection ofE. Since only the velocity direction is randomized

by collisions, the energy input from the electric field cannotStrictly speaking, th&, of Eq. (2.1 is only an upper bound
be dissipated and no meaningful steady-state current ign the trueB.. One could imagine that already for a slightly
reached as— . However, for smalE the time-dependent smaller B hopping is suppressed. Numerically, we see a
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FIG. 1. Percolation thresholds for the Lorentz gas.

(a) B

smooth variation througB. and such a fine point cannot be
decided. In Fig. 1 we plot the two domains in which the

Ohmic conductivity vanishes. o oaf -
The theoretical discussion db,, above criticality re- L
quires more effort. We defer it to the Appendix, where we o2k i
show that I ]
0.0l s .
= > .
D1,=0, p>pc (2.2 o ; ) 5
and (b) B
FIG. 3. (8 Ohmic conductivityD,; and (b) Hall conductivity
D =ie”P < B>B (2.3 D, as functions oB for p=0.15 in dimensionless units.
1275 v P~Pc» c: .

For 0> 0. the ed ¢ itel h ‘ ing in a small external electric field= (E,0). Forp>p. the
or p=p. the edge currents move oppositely, whereas Orparticle moves in a domain bounded by scatterers and there-
p<p. andB>B, the edge currents move along the current

. ; o . - . fore cannot maintain a Hall current. On the other hand, for
of a particle without collisions. While this gives the right

: ) : . <pc andB>B,, the particle circles several times around a
tendency it does not explain the exact cancellations in Eq{ Pe ¢ P

- luster of scatterers until it escapes. It then moves with speed
(2.2) and(2.3). They can be understood qualitatively by add- E/B perpendicular td until it hits the next cluster. Thus the

Hall current is proportional to . To us it came as a sur-

0.40F ' ' prise that beyond percolatioB,, can still be presented in
s ] closed form.
0.30F E To have a more complete picture Bf we simulate the
: ] Lorentz gas numerically. For give® and scatterer configu-
T 0.20F E ration we compute;(t) up to 60 collision times. The system
[a] ’ F 4 . . J t .
: size is chosen so large that) = [,dsv(s) never hits the
E boundary. To speed up the simulation we use a hierarchical
0.10F . L
search for the next point of collision. For each scatterer con-
figuration we average over 100 randomly chosen initial ve-
0.00 ' locity directions. ForC;;(t) to be sufficiently smooth typi-
0.5 1.0 1.5 2.0 2.5 j S
(@) B cally one has to average then over’1€ample paths. To
determine the conductivity we integrate the velocity autocor-
1.0 ‘ ' ' ] relation once to givgv;(0)x;(t)) sincex;(0)=0. Further-
i ] more, it is convenient to separate off the contribution of
0'8:_ circle orbits. According to the Poisson distribution, their
sk 1 probability is exp—mp«(R)], with k(R)=R(R+2) for R
~ <1 and«(R)=4R—1 for R=1. Then
© oaf 1
L H R —mpk(R)
02__ 1 D”:t||m<l)|(o)xj(t)>l+(l_5”)§e P ’ (24)
0.0 : : 2'0 2—5 where ( ), is the average over only those trajectories that
b) 0.5 10 B1.5 ‘ ' have at least one collision. The normalization(k);=1

—exd—mpk(R)]. In most of the parameter space

FIG. 2. (@ Ohmic conductivityD,; and (b) Hall conductivity ~ (vi(0)x;(t)) has not yet reached its asymptotic value, which
D, as functions oB for p=0.1 in dimensionless units. reflects the slow decay of the velocity autocorrelation func-
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FIG. 4. () Ohmic conductivityD,; and (b) Hall conductivity
D, as functions oB for p=0.2 in dimensionless units. FIG. 6. (8 Ohmic conductivityD,; according to the mode-
coupling theory of 18] for various densitiegb) Simulation data of
tions. We essentially extrapolate “by hand” te+o, which  the Ohmic conductivityD; for the same densities and in the same
results in a slight overestimate whenever there is an indepefmits as in(a).
dent check.

In Figs. 2-5 we display our results at densitips gstarts aB=0.5. Our data show a fairly smooth interpolation
=0.1, 0.15, 0.2, _and _0.3. The percolation threshold is indiyf the asymptotics aB=0 andB=c. The most surprising
cated by a vertical line. Note that fgr=0.1 theB scale  featyre is an initial increase of the Ohmic conductivity with
B at intermediate densities. Apparently, the curved trajectory
can bend itself more easily through the dense “labyrinth” of
scatterers. The Hall conductivity rises steeply to its maxi-
mum and then levels off. The maximum is shifted to smaller
] B as the density decreases. Br B the agreement with
] Eq. (2.3 is excellent and within numerical error bars, except
s ] at the highest density of 0.3, where the numerical values are
0 053_ %_ 25% below the theoretical prediction.

U 1 To our knowledge, the only attempt to derive the magne-

» ] toconductivity at intermediate densities is the mode-coupling

theory of Gdze and LeutheBer [18]. In Fig. 6 we compare
their prediction with our simulation data; note the particular
choice of units. For the lowest densip/~0.032, we find
0.20F ' ‘ ] good agreement. Essentially the same behavior is obtained
i ] from the generalized Boltzmann equation, to be discussed in
the following section. However, the kinetic theory fails at
densityp=0.13, whereas mode coupling is still a reasonable
approximation. The next higher densify=0.25 can no
longer be accounted for.

T T

0.20[

Ill. LOW DENSITY, SMALL FIELDS

For B=0 the linear Boltzmann equation is exact at low
density. More precisely, fop—0 collisions of the particle
with the same scatterer become unlikely and the density of

FIG. 5. (8 Ohmic conductivityD,; and (b) Hall conductivity ~ particles in phase space on the scale of the mean free path is
D, as functions oB for p=0.3 in dimensionless units. governed by the Boltzmann equation. In particular, this
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yields D 14(p,0)=3/16p asp— 0. With an external magnetic

field B one generalizes in the obvious way to

(?’[f(X,QD,t) = ( - COS(P(?]__ Sln (P(92_ Ba(p)f(XI(Pvt)

@
2

m 1
+2Pf de’ 7 sin—|[f(x¢—¢",1)
—f(x,e,0)].

Heref is the distribution function at, v=(cos¢,sin ¢), and
t. On the basis of Eq3.1) one obtains

(3.2

1 8p/3 1

DY=5 — B @2
2 (8p/3)2+B?

0 —_——_—
12 (8p/3)2+B2’

which we rewrite in a scaling form as

0 _
Dll_

1
ﬁ 931(p/B),

1
DY,=——=— 934p/B),

12 \/mgu(l? )

8y/3
(8y/3)2+1’

1
ghi(y) = 5V1+y?

1
99Ay) = 5V1+y? 3.3

Y (8y/3)2+1
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(b) X

FIG. 7. Scaling functionga) g3; and (b) g7, as functions ofx
— e*Zﬂ'p/B.

For a rigorous derivation the radius of gyration must be of
the order of the mean free path. THBiSnust vanish linearly
with p. As observed by Bobylegt al.[19], even in the limit
p—0 some recollisions survive. This is most easily seen for
circle orbits with no collisions at all. According to the Bolt-
zmann equatior(3.1), even after several turns the particle
still has some probability to be scattered. However, for the
mechanical Lorentz gas after one completed revolution the

* :1 2 2 2
gidy)=5V1ty [2yy(X)]2+1{1+X [2yy(x)]7
(3.6)
x=e 2™, (3.7
1—x2/1—x2 1+x
y(x)=1- 2 | 2x nT— 1| (3.9

annulus is surely free of disks and no scattering events cal Fig. 7 we plotgy;,g7,. Note that in terms of the polar
occur. In[19] the circling orbits and the recollisions are angle in thep-B plane the scale is highly compressed at the

properly taken into account fgg— 0 and a generalized ki-

left. In Fig. 8 we plot the correction to the Boltzmann value

netic equation with memory term is derived. On this basis(3.3). o .
the velocity autocorrelations are computed. The conductivity Of course,D* reproduces the correct limiting behavior

is still of the scaling form(3.3),

1
D} =——— 9%(p/B),

117 )2+ B2

* 1 *
=——= 07/p/B),

D*.=
12 )2+ B2

which is just a consequence Bf p=const asp—0. How-
ever, the scaling functions are now modified to

(3.9

1
g7(y) = 5V1+y?

(12
[2yy(x)]2+1(1 X2)2yy(x),

(3.5

for p—0 andB—0. According to Eq(2.1), the percolation
boundary behaves &.=1.66\p for small p. Since for the
validity of Eq. (3.4 B is scaled proportionally te, D*
cannot “see” this threshold.

In Figs. 9 and 10 we compare our numerical results with
D*. We also includeD®. As expectedD* is a considerable
improvement. Note that the agreement is not uniform in
JBZ+ p?. This reflects that aB=0 the Boltzmann equation
has a restricted range of validity, e.g:),ll(p,O)/D(l)l(p)
=0.65 atp=0.1.

IV. VELOCITY AUTOCORRELATIONS

On the level of the linear Boltzmann equati®1) one
obtains an exponential decay for the velocity autocorrela-
tions. Explicitly,
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FIG. 9. (a) Inverse Ohmic conductivity I';; and (b) inverse
Hall conductivity 1D, as functions of B2+ p2)Y? for the fixed
ratio p/B=0.025 - - - is theBoltzmann theory, —— is the improved
Boltzmann theory, and> are the simulation data.
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Q 0.20F .
1.02 - -
1.015 0.10F .
1.01 :
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FIG. 10. (a) Inverse Ohmic conductivity I;; and (b) inverse
Hall conductivity 1D, as functions of B2+ p2)¥? for the fixed
ratio p/B=0.1. - - - is theBoltzmann theory, —— is the improved
Boltzmann theory, and> are the simulation data.

1 1
Chi(t)=5e ["ocogBY),  CHt)=5e [V 7osin(BY),
4.0)

with 7o=(8p/3) L. The correct low-density, small-field be-
havior has a more interesting structure. To state the result it
is convenient to introduce the Laplace transforms

F(Z)Zfoxdt e Z2[Cyy(t) +iCqy(t)] 4.2

for Re(z)>0. In the same approximation as that leading to
Eq. (3.4) one obtains

1— e*(z+ v)T e*(z+ v)T
F(z)=

) T 1_eii// * Z—iw
Z—lw+ Vf_wdl/f g(l/l)m
4.3

We find it convenient to compare the Fourier transforms

éij(w):fldt e 1°Cyj(t) (4.4

with the simulation data. Sincg,4(t) is even andC,(t) is
odd, we haveC;y(w)=RdF(iw)+F(—iw)] and C; w)

=i R —F(iw)+F(—iw)]. The circle orbits yields peaks
atw = *+ 1/R with weight exp4mpR). In Fig. 11 we plot the
prediction from Eq(4.3) and compare it with the numerics.
Note that thes peaks are out of scale. As anticipated, the
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FIG. 11. Real part ofCyy(w) with p/B=0.025 and B
+p?)¥2=0.105 from(a) the improved Boltzmann theory ar®) 0.00 0.05 0.1 f))g 0.15 0.20
the simulation data. (b) (=)™

agreement is excellent, in fact, over the whole Iow-densityKvll(:(l)ilé;' alr?(;e(%;a?z(j(ov)ilzo(?)t;’ Waixtuhto;irg.allastlc;r:] dgicct)'gm?s

small-field regime. We plo€,®), which turns out to be  fynctions of (/1) 0.
negative(Fig. 12. As the ratiop/B is increased, the charac-
teristic double peak merges into a single peak, which then

shifts tow=0.

-C12((o)
R N ! oW n

(@)

Away from low density and small fields we have no
theory to compare with. FdB=0, C44(t) has the long-time
tail of the formCy4(t) = — at 2, with a>0. We refer tq21]
for a detailed discussion. The heuristic explanation is as fol-
lows. At long times the main contribution @&,,(t) comes
from paths returning to the origin at time Let v(0)
=(1,0). Then the particle will be more likely to return from
the right, which yields a negative correlation in the velocity.
For the excursion away from the origin we use a random-
walk approximation. If at some intermediate time the particle
arrives at the linex=0, then it will return to the origin
equally likely from right and left and the contribution to
C4,(t) vanishes. Therefore, the tail can be computed from a
return to the origin at time of a random walkewithoutever
hitting the linex=0. This probability decays as 2 in two

the rangeB=0.5—-0.8 and ofC;,(t) in the rangeB=0.6

2'2; 3 dimensions. Clearly, in our argument we only used that the
B A ] motion before returning to the origin is diffusive. This re-
2~5E‘ % oo E mains valid for nonzerd. Thus C;4(t) and C,4(t) should
3 20F ° ] have a decay as 2 for t—o. ForB=0 the long-time tail is
fiskE %o o E most clearly seen gi=0.15[17]. We increasé to 0.2 and
<(.) o 3 average over 10’ sample paths. The effective exponent
1'0? o © OQ ] for both correlations is 1.9 with a negative prefactbig.
0.5 . OWM 13). However, the prefactor o€,,(t) becomes positive in
0.0 ka . X ]
0.4 0.

0.0 0.2

(b)

FIG. 12. Negative imaginary part (fIlz(w) with p/B=0.025
and B+ p?)Y?=0.105 from(a) the improved Boltzmann theory

and (b) the simulation data.

w

6

—3. Thus, when the particle returns to the origin it picks up
more complicated velocity correlations than in the c8se
=0. As one example of such a sign reversal in the 1,2 cor-
relation we display the data fer=0.2 andB= 2.3 (Fig. 14).

The effective exponents are approximately 1.4.
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0.16 ' in the Hall conductance. The Ohmic conductivity is small for
) B>B., but the transition region is fairly broad.
A The velocity autocorrelations have a slow decay over the
= 0.14 T full range of parameters. Presumably it is governed b¥
x which is, however, severely masked by an even slower
= ] preasymptotic decay. The definite sign of the prefactd® at
g 0.12r . =0 is not retained.
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' . . . APPENDIX: HALL CONDUCTIVITY BEYOND
0.28] PERCOLATION
0.26 | ] If either p>p. or B>B,, then the positiorx(t) of the
é [ particle remains uniformly bounded in the course of time.
< » 1 We exploit this property in the computation bf;,, but first
=) 0.2471 present a general argument valid for any Hamiltonian sys-
" tem.
S
V. 22+t . Let f,g be bounded functions on phase space and Jgt
‘ be some finite phase-space average that is stationary, i.e.,
0.20 , , N e (f(t))o=(f(0)), for all t and functions. Note that no mix-
0.150.20 0.25 0.30 0.35 0.40 ing of { )q or the like is required. Then
lim | dt e THH(1)g(1))o=~(1(0)9(0))o=(F(0)g(0))o.
FIG. 14. Integrated velocity autocorrelation functioria) T (A1)

(v1(0)x4(t)) and(b) (v1(0)x,(t)) with p=0.2 andB= 2.2 as func-

tions of (/)% The proof uses twice partial integration

" d .
V. DISCUSSION fo dt e*“faﬁ(t)g(o))o

We studied transport in the two-dimensional Lorentz gas

with a constant magnetic field perpendicular to the plane of : [ _y :
motion. The theory of Bobylewet al. is in fair agreement =—(f(0)g(0))o+ 7 fo dt e " (f(0)g(—1))o
with our simulation data for both the transport coefficients

and the velocity autocorrelations. Away from low density — —(f(O)g(0)>0+7-*1<f(0)g(0)>0

and small magnetic fields there is little theory to compare
with. The qualitative properties of the magnetotransport can
be guessed from the well-understood limiting caBes0
andB— . The most unexpected feature is an increase in the
Ohmic conductivity with increasing at intermediate densi- where we used stationarity in the second step. Sfiygeare
ties. Such a behavior has also been found experimeritdlly bounded, the limit—— o yields Eq.(Al).

In these measurements antidots are imprinted at random We first apply Eq.(Al) to the casep>p.. We assume
locations with densities 1/(1000 nfy) 1/(600 nm§,  that the particle moves in some domain, seybounded by
1/(400 nm§, 1/(300 nm§, and 1/(240 nmd, respectively. scatterers. As a stationary measufe), we choose
The electrons “feel” a screened potential. For the periodicy, (x) d?x de, with x,(X)=1 if xe A and y,(x)=0 oth-
case this is usually modeled by V(xq,X5) erwise.
=V,|sin (mx,/a) sin (mx,/a)|?, with 8 ranging from 2 to 4. By Eq. (A1)

For a random distribution the true potential is more compli-
cated, in particular, when there is strong overlap. Thus we o . * ity _ _

cannot expect quantitative agreement between our hard-disk Di2= T'Tl Jo dt &7 (v2(1)v1(0))o=~(x2C08 ¢)o=0.

model potential and the experimef@]. There the reduced (A3)
density roughly ranges from 0.01 to 0.25 in our units. The

dimensionless magnetic field varies from 0 to 3. Qualita-To determineD,, we have to compute the double averdge
tively, the conductivitiesD;,D 4, in dependence oB fol- in Eqg. (1.2). The particle starts at 0 and we assume that the
low our curves. However, the measurBd, is smaller by  scatterers bound its motion to some finite domain We
approximately a factor 1/2. At the largest density a distinctaverage now over all translates of this configuration such that
increase irD ;; with B close toB=0 is observed. As in our 0 is still contained in the translate df. Under the Poisson
numerical studies, the percolation threshB|dis hardly seen distribution every translate has the same weight. Therefore,

_ T—Zdet e Y7(f(1)g(0))o, (A2)
0
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this partial average coincides with), and DJ,=0 by Eq. By Eg. (Al) we need the average
(A3). Sincep>p., with probability oneg( ) decomposes into

averages of the fornj ), and we conclude thdd,=0. 1
Second we apply Eq(Al) to the casep<p. and B - Z_J d(pJ d?x XAe(X)XA(Xl_R sin ¢,X,+ R cos @)
>B¢. Lety;, j=1,... N, be the centers o scatterers. m
We choose an arbitrary domait such that X (X,COS ¢)
. 1
AD{X|[x—y|<R+1, j=1,...N} (A4) :Ef d<pJ A2 (X1~ R Sin ¢.%,+ R ¢0S o)
and define

X (X,C08 @) — if d@f d?X x . (X)

Ae={xX||x—yj|=1, j=1,... N}, 27 '
X xA(X;— R sin ¢,X,+R c0s ¢)(X,€0S ). (A7)

Ai={xl[x—yj|<1, j=1,... N} o S )

The second term is just the interior problem, for which the

As the invariant phase-space densityy we choose integral vanishes as in E¢A3). The first term equals
1 : 1 ) 1
h(X,¢)= 5 X2 0xa(X1~ R sin ¢,x,+ R cos¢). ﬂf dqof d2X xA(X)(R cOS @ —X,)coS @=|A] SR
(A5) (A8)

To check the stationarity we note that at a collishX,¢)  Thys we conclude that for the normalized average
=1/27. In particular,h takes the same value for the incom-

ing and outgoing velocities. Away from collisions and out- RIA|
side the scattererg, =1 and h is of the general form szz ”mJ' dt e—t/r<vz(t)vl(0)>A (A9)

f(x;— R sin ¢,x,+R cose), which does not change under 2| ANA|
the circling motion.

For given {,p) the center of gyration is xj To determineD 1, we have to compute the double average
—R sing,X,+Rcose). Thus, in Eq(A5) x, selects the ini- in Eq. (1.2). With probability one we can choose a large
tial conditions for which the center of gyration is if, domain A (depending on the scatterer configuratiGuch
whereasXA makes sure that the initial condition does notthat if the center of gyration is ir\, the particle does not
overlap W|th a scatterer. collide with a scatterer outsidd. As before, we shift the

The normalization o is easily determined as configuration in such a way that the center of gyration for
(0,¢) is still inside A. This generates the average, and

) ) we conclude from Eq(A9) that this partial average equals
Z.J d@f d™% xa (X xa (X3~ R sin ¢,x;+ R cos ¢) R|A|/2|A\A||. If A is large, then for most configurations
1 _ S
=5 dcpf d?X xa, (X~ R sin ¢, +R cos ¢) |A\Aj|=[Ale (A10)
X(X)x 2 () =| AVA; | (A6) and therefore
since A+ R(—sin¢,cos)CA for every ¢. |A| denotes Dlzlee”P. (A11)

here the area of the sdt.
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