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Magnetotransport in the two-dimensional Lorentz gas

A. Kuzmany* and H. Spohn†

Theoretische Physik, Ludwig-Maximilians-Universita¨t, Theresienstrasse 37, D-80333 Mu¨nchen, Germany
~Received 3 October 1997!

We consider the two-dimensional Lorentz gas with Poisson-distributed hard-disk scatterers and a constant
magnetic field perpendicular to the plane of motion. The velocity autocorrelation is computed numerically over
the full range of densities and magnetic fields with particular attention to the percolation threshold between
hopping transport and pure edge currents. The corresponding Ohmic and Hall conductances are compared with
~i! an exact expression in the percolating regime,~ii ! mode-coupling theory, and~iii ! a recent generalized
kinetic equation valid for low densities and small fields. We argue that the long-time tail ast22 persists for a
nonzero magnetic field.@S1063-651X~98!10705-5#

PACS number~s!: 05.60.1w, 05.20.Dd, 73.50.Jt
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I. INTRODUCTION

Two-dimensional electron films can be manufactured w
high perfection in GaAs heterostructures. At low tempe
tures a mean free path of over 104 nm is reached and to
very good approximation the electrons may be considere
noninteracting. To have some interesting physics one na
structures the probe by lithographic or other techniqu
Thereby a strongly repulsive potential is imposed on
electrons with a maximum above the Fermi energy~quantum
antidots!. If the imprinted structure is on a scale larger th
the Fermi wavelength, adjustable to be of the order of 50
one hopes to capture the transport properties already in
classical approximation.

So far, the most popular geometry has been a reg
array of antidots that corresponds classically to the Sinai
lard and should result quantum mechanically in the Ho
tadter butterfly. The magnetotransport of this periodic str
ture has been studied in great detail, both experiment
@1–4# and theoretically@5–8#. In our paper we investigate
randomly placed antidots. To our knowledge, the so far b
experimental realization has been achieved by Lu¨tjering @9#.
We compare our results with his measurements in Sec.

In kinetic theory randomly distributed scatterers a
known as the Lorentz gas, which has proved to be an imp
tant testing ground. In particular, one can understand
cisely the assumptions for the validity of the~linear! Boltz-
mann equation@10# and check on the accuracy of the low
density expansion and its nonanalytic character@11–16#.
Also the long-time tails in the velocity autocorrelation fun
tion are seen most convincingly in the Lorentz gas@17#. In
distinction from the work mentioned, we investigate here
dynamics in the presence of a magnetic field perpendicula
the plane of motion.

The model has a strong geometric quality. One pla
randomly disks~the scatterers! of radius a in the plane at
densityns . The disks may overlap. In the region outside t
disks we have independent point particles with densityne .
They have massm* , chargee, and move in a uniform ex-
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ternal magnetic fieldBex . Thus a single particle travels alon
a circle and is elastically reflected upon collision with a sc
terer. We denote the velocity of the particle at timet by u(t).
Clearly, uu(t)u is conserved and we set it equal to the Fer
velocity vF , since at low temperatures contributions to t
transport only come from the Fermi surface. The radius
gyration is thenRe5vFm* /eBex .

We are interested in the magnetotransport that relates
steady-state currentj to an in-plane uniform electric fieldE
by

j5sE ~1.1!

for small E and want to understand hows depends onBex
and ns . s11 and s22 are the Ohmic conductivities. In ou
cases115s22 by isotropy.s1252s21 is the Hall conductiv-
ity. The magnetotransport will be studied in linear respon
This means that the dynamics is the one just explained~zero
electric field! and the transport coefficients are given in term
of the time-integrated velocity autocorrelation function
Physically, one has to average over all of the phase sp
For a large sample, this is equivalent to fixing the init
position and averaging over the scatterer distribution. It
this prescription that we will use both theoretically and in t
numerics. Before spelling out the details we introduce
mensionless quantities.

Space is measured in units of the disk radiusa and veloc-
ity in units of the Fermi velocityvF . The scatterers have
then radius 1 and their dimensionless density isr5nsa

2.
The dimensionless radius of gyration isR5Re /a and the
corresponding magnetic field isB51/R5eaBex /vFm* . Let
v(t)5u(t)/vF be the velocity of the particle at timet starting
at the origin. Clearlyuv(t)u51. v(t) depends onv(0) and the
particular configuration of the scatterers.

We define the dimensionless velocity autocorrelat
function by

Ci j ~ t !5^v i~0!v j~ t !&, i , j 51,2. ~1.2!

Here ^ & is a double average. First there is an average o
scatterers. The centers of the disks are distributed accor
to a Poisson process with uniform densityr conditioned on
the set$xuuxu<1% being free of centers. Second we avera
5544 © 1998 The American Physical Society
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57 5545MAGNETOTRANSPORT IN THE TWO-DIMENSIONAL LORENTZ GAS
over the initial velocityv(0)5(cosw,sinw) uniformly in w.
~By rotational invariance this second average could be om
ted, but it is of advantage numerically.! The conductivity
tensor is then

s i j 5
nee

2

m*
Di j , Di j 5E

0

`

dt ^v i~0!v j~ t !&. ~1.3!

D depends onr and B. Also of interest is the frequency
dependent conductivity defined by

s i j ~v!5
nee

2

m*
Di j ~v!, Di j ~v!5E

0

`

dt eivt^v i~0!v j~ t !&.

~1.4!

We note that^v i(0)v j (t)&5^v j (0)v i(2t)& by stationarity
and ^v1(0)v2(t)&52^v1(0)v2(2t)&52^v2(0)v1(t)& by
time reversal. Therefore, D1252D21 and Dii

5(1/4) *2`
` dt ^v(0)•v(t)&.

As shown in Eq.~1.3!, the conductivity is ill defined.
There is always a nonzero probability that the particle w
not be scattered at all. If so,^v1(0)v1(t)&5(1/2)cos(Bt) and
^v1(0)v2(t)&5(1/2)sin(Bt) and the time integral in Eq.~1.3!
needs a reinterpretation. Physically, there will always b
weak elastic scattering by impurities, i.e., once in a while
velocity direction is randomized. In approximation, the v
locity autocorrelation function is then modified to

e2t/t^v i~0!v j~ t !& ~1.5!

and the proper definition reads

Di j ~v!5 lim
t→`

E
0

`

dt e2t/teivt^v i~0!v j~ t !&. ~1.6!

At zero density, no scattering, Eq.~1.6! results in

D11~v!52 i
v

2

1

B22v2
, D12~v!5

B

2

1

B22v2
,

~1.7!

as is well known from the Drude theory of the Hall effect.
particular, atv50 both the Ohmic conductivity and th
Ohmic resistance vanish.

It is instructive to return for a moment to the case of
in-plane electric fieldE. One finds that for freely moving
particles the average current approaches

j5
1

2B
~2E2 ,E1! ~1.8!

as t→`, in accordance with Eq.~1.7! at v50. In fact, one
would expect that scattering cannot make things wo
Thus, for the Lorentz gas there should be a well-defin
steady-state currentj for BÞ0. We did not find a genera
argument to establish its existence. The situation atB50 is
very different. Then the particle is accelerated along the
rection ofE. Since only the velocity direction is randomize
by collisions, the energy input from the electric field cann
be dissipated and no meaningful steady-state curren
reached ast→`. However, for smallE the time-dependen
t-

l

a
e
-

e.
d

i-

t
is

current settles at a plateau over a time span the longer
smallerE, whose value equalssE with s of Eq. ~1.3!.

A brief outline of the paper is as follows. In Sec. II w
discuss the dependence ofD on r,B with particular attention
to the two percolation thresholds. We also compare our
merics with the mode-coupling theory of Go¨tze and
Leutheuber @18#, which seems to be the only theoretical pr
diction at intermediate densities. Recently, Bobylevet al.
@19# derived a generalized transport equation for low sc
terer densities and small fields. In the appropriate domain
validity their predictions are in fact very accurate~Sec. III!
and clearly improve on the phenomenological Boltzma
equation with magnetic field. One of the famous results
the Lorentz gas atB50 is the slow decay of the velocity
autocorrelation function as2t22 for large t in two dimen-
sions@20#. For densitiesr,0.25 such a power law has bee
well established numerically@17#. At larger densities there is
a preasymptotic decay approximately as2t21.4 and, with
reasonable numerical effort, the true asymptotics canno
seen anymore. In Sec. IV we argue that also forBÞ0 the
velocity autocorrelation decays ast22 for large t. We con-
clude in Sec. V with a comparison with the experiments
Lütjering and with some comments.

II. STATIC CONDUCTIVITY

To discussD in its dependence onr,B at zero frequency
it is useful to consider first the limiting cases. As explain
D11(0,B)50 and D12(0,B)51/2B at r50. On the other
hand, for B50 we haveD12(r,0)50. D11(r,0) has been
studied numerically@16,17#. For r→0 one obtains the Bolt-
zmann valueD11(r)53/16r. Thus, close to (r,B)50, D is
somewhat singular and roughly of the form (r21B2)21/2. Its
precise functional dependence will be discussed in Sec.

As the density is increased the disks percolate. T
means that forr.rc , rc>0.36, with probability one the
origin is contained in a finite domain bounded by scattere
For r,rc the origin is connected to infinity by a path no
intersecting the scatterers. Close torc numerically one finds
D11(r,0)>ur2rcu1.5, r<rc , with no theoretical explanation
yet.

In fact, the Lorentz gas has a second percolation thre
old. Let us fix r,rc and increaseB. Above some critical
valueBc , the trajectory will either be a circle or skip alon
a, possibly large, cluster of a finite number of disks. The b
current forB,Bc is reduced to a pure edge current. Sin
the particle cannot leave a cluster, the mean-square disp
ment is bounded, which implies thatD11(r,B)50 for B
.Bc by the Einstein relation 2D115 limt→`^r2(t)&/2t. A
hopping of the particle from cluster to cluster is possib
only if disks with radius 11R percolate, which means, in
our units, thatr(11R)2>rc , i.e.,

Bc5
1

Arc /r21
. ~2.1!

Strictly speaking, theBc of Eq. ~2.1! is only an upper bound
on the trueBc . One could imagine that already for a slight
smaller B hopping is suppressed. Numerically, we see
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5546 57A. KUZMANY AND H. SPOHN
smooth variation throughBc and such a fine point cannot b
decided. In Fig. 1 we plot the two domains in which t
Ohmic conductivity vanishes.

The theoretical discussion ofD12 above criticality re-
quires more effort. We defer it to the Appendix, where w
show that

D1250, r.rc ~2.2!

and

D125
1

2B
epr, r,rc , B.Bc . ~2.3!

For r.rc the edge currents move oppositely, whereas
r,rc andB.Bc the edge currents move along the curre
of a particle without collisions. While this gives the righ
tendency it does not explain the exact cancellations in E
~2.2! and~2.3!. They can be understood qualitatively by ad

FIG. 1. Percolation thresholds for the Lorentz gas.

FIG. 2. ~a! Ohmic conductivityD11 and ~b! Hall conductivity
D12 as functions ofB for r50.1 in dimensionless units.
r
t

s.
-

ing in a small external electric fieldE5(E,0). Forr.rc the
particle moves in a domain bounded by scatterers and th
fore cannot maintain a Hall current. On the other hand,
r,rc andB.Bc , the particle circles several times around
cluster of scatterers until it escapes. It then moves with sp
E/B perpendicular toE until it hits the next cluster. Thus the
Hall current is proportional to 1/B. To us it came as a sur
prise that beyond percolationD12 can still be presented in
closed form.

To have a more complete picture ofD we simulate the
Lorentz gas numerically. For givenB and scatterer configu
ration we computev j (t) up to 60 collision times. The system
size is chosen so large thatx(t)5*0

t dsv(s) never hits the
boundary. To speed up the simulation we use a hierarch
search for the next point of collision. For each scatterer c
figuration we average over 100 randomly chosen initial
locity directions. ForCi j (t) to be sufficiently smooth typi-
cally one has to average then over 106 sample paths. To
determine the conductivity we integrate the velocity autoc
relation once to givêv i(0)xj (t)& sincexj (0)50. Further-
more, it is convenient to separate off the contribution
circle orbits. According to the Poisson distribution, the
probability is exp@2prk(R)#, with k(R)5R(R12) for R
,1 andk(R)54R21 for R>1. Then

Di j 5 lim
t→`

^v i~0!xj~ t !&11~12d i j !
R

2
e2prk~R!, ~2.4!

where ^ &1 is the average over only those trajectories th
have at least one collision. The normalization is^1&151
2exp@2prk(R)#. In most of the parameter spac
^v i(0)xj (t)& has not yet reached its asymptotic value, whi
reflects the slow decay of the velocity autocorrelation fun

FIG. 3. ~a! Ohmic conductivityD11 and ~b! Hall conductivity
D12 as functions ofB for r50.15 in dimensionless units.
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57 5547MAGNETOTRANSPORT IN THE TWO-DIMENSIONAL LORENTZ GAS
tions. We essentially extrapolate ‘‘by hand’’ tot→`, which
results in a slight overestimate whenever there is an inde
dent check.

In Figs. 2–5 we display our results at densitiesr
50.1, 0.15, 0.2, and 0.3. The percolation threshold is in
cated by a vertical line. Note that forr50.1 the B scale

FIG. 4. ~a! Ohmic conductivityD11 and ~b! Hall conductivity
D12 as functions ofB for r50.2 in dimensionless units.

FIG. 5. ~a! Ohmic conductivityD11 and ~b! Hall conductivity
D12 as functions ofB for r50.3 in dimensionless units.
n-

i-
starts atB50.5. Our data show a fairly smooth interpolatio
of the asymptotics atB50 andB5`. The most surprising
feature is an initial increase of the Ohmic conductivity wi
B at intermediate densities. Apparently, the curved traject
can bend itself more easily through the dense ‘‘labyrinth’’
scatterers. The Hall conductivity rises steeply to its ma
mum and then levels off. The maximum is shifted to smal
B as the density decreases. ForB.Bc the agreement with
Eq. ~2.3! is excellent and within numerical error bars, exce
at the highest density of 0.3, where the numerical values
25% below the theoretical prediction.

To our knowledge, the only attempt to derive the magn
toconductivity at intermediate densities is the mode-coupl
theory of Götze and Leutheuber @18#. In Fig. 6 we compare
their prediction with our simulation data; note the particu
choice of units. For the lowest densityr50.032, we find
good agreement. Essentially the same behavior is obta
from the generalized Boltzmann equation, to be discusse
the following section. However, the kinetic theory fails
densityr50.13, whereas mode coupling is still a reasona
approximation. The next higher densityr50.25 can no
longer be accounted for.

III. LOW DENSITY, SMALL FIELDS

For B50 the linear Boltzmann equation is exact at lo
density. More precisely, forr→0 collisions of the particle
with the same scatterer become unlikely and the density
particles in phase space on the scale of the mean free pa
governed by the Boltzmann equation. In particular, t

FIG. 6. ~a! Ohmic conductivityD11 according to the mode-
coupling theory of@18# for various densities.~b! Simulation data of
the Ohmic conductivityD11 for the same densities and in the sam
units as in~a!.
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5548 57A. KUZMANY AND H. SPOHN
yieldsD11(r,0)53/16r asr→0. With an external magnetic
field B one generalizes in the obvious way to

] t f ~x,w,t !5~2cosw]12sin w]22B]w! f ~x,w,t !

12rE
2p

p

dw8
1

4
sinUw8

2 U@ f ~x,w2w8,t !

2 f ~x,w,t !#. ~3.1!

Here f is the distribution function atx, v5(cosw,sinw), and
t. On the basis of Eq.~3.1! one obtains

D11
0 5

1

2

8r/3

~8r/3!21B2
, D12

0 5
1

2

B

~8r/3!21B2
, ~3.2!

which we rewrite in a scaling form as

D11
0 5

1

Ar21B2
g11

0 ~r/B!,

D12
0 5

1

Ar21B2
g12

0 ~r/B!,

g11
0 ~y!5

1

2
A11y2

8y/3

~8y/3!211
,

g12
0 ~y!5

1

2
A11y2

1

~8y/3!211
. ~3.3!

For a rigorous derivation the radius of gyration must be
the order of the mean free path. ThusB must vanish linearly
with r. As observed by Bobylevet al. @19#, even in the limit
r→0 some recollisions survive. This is most easily seen
circle orbits with no collisions at all. According to the Bol
zmann equation~3.1!, even after several turns the partic
still has some probability to be scattered. However, for
mechanical Lorentz gas after one completed revolution
annulus is surely free of disks and no scattering events
occur. In @19# the circling orbits and the recollisions ar
properly taken into account forr→0 and a generalized ki
netic equation with memory term is derived. On this ba
the velocity autocorrelations are computed. The conducti
is still of the scaling form~3.3!,

D11* 5
1

Ar21B2
g11* ~r/B!,

D12* 5
1

Ar21B2
g12* ~r/B!, ~3.4!

which is just a consequence ofB/r5const asr→0. How-
ever, the scaling functions are now modified to

g11* ~y!5
1

2
A11y2

1

@2yg~x!#211
~12x2!2yg~x!,

~3.5!
f

r

e
e

an

s
y

g12* ~y!5
1

2
A11y2

1

@2yg~x!#211
$11x2@2yg~x!#2%,

~3.6!

x5e22py, ~3.7!

g~x!512
12x2

2x2 S 12x2

2x
ln

11x

12x
21D . ~3.8!

In Fig. 7 we plotg11* ,g12* . Note that in terms of the pola
angle in ther-B plane the scale is highly compressed at t
left. In Fig. 8 we plot the correction to the Boltzmann valu
~3.3!.

Of course,D* reproduces the correct limiting behavio
for r→0 andB→0. According to Eq.~2.1!, the percolation
boundary behaves asBc>1.66Ar for small r. Since for the
validity of Eq. ~3.4! B is scaled proportionally tor, D*
cannot ‘‘see’’ this threshold.

In Figs. 9 and 10 we compare our numerical results w
D* . We also includeD0. As expected,D* is a considerable
improvement. Note that the agreement is not uniform
AB21r2. This reflects that atB50 the Boltzmann equation
has a restricted range of validity, e.g.,D11(r,0)/D11

0 (r)
50.65 atr50.1.

IV. VELOCITY AUTOCORRELATIONS

On the level of the linear Boltzmann equation~3.1! one
obtains an exponential decay for the velocity autocorre
tions. Explicitly,

FIG. 7. Scaling functions~a! g11* and ~b! g12* as functions ofx
5e22pr/B.
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57 5549MAGNETOTRANSPORT IN THE TWO-DIMENSIONAL LORENTZ GAS
FIG. 8. Ratios~a! D11* /D11
0 and ~b! D12* /D12

0 as functions ofx
5e22pr/B.

FIG. 9. ~a! Inverse Ohmic conductivity 1/D11 and ~b! inverse
Hall conductivity 1/D12 as functions of (B21r2)1/2 for the fixed
ratio r/B50.025. - - - is theBoltzmann theory, —– is the improve
Boltzmann theory, andL are the simulation data.
C11
0 ~ t !5

1

2
e2utu/t0cos~Bt!, C12

0 ~ t !5
1

2
e2utu/t0sin~Bt!,

~4.1!

with t05(8r/3)21. The correct low-density, small-field be
havior has a more interesting structure. To state the resu
is convenient to introduce the Laplace transforms

F~z!5E
0

`

dt e2zt2@C11~ t !1 iC12~ t !# ~4.2!

for Re(z).0. In the same approximation as that leading
Eq. ~3.4! one obtains

F~z!5
12e2~z1n!T

z2 iv1nE
2p

p

dc g~c!
12eic

12e~z1n!T1 ic

1
e2~z1n!T

z2 iv
.

~4.3!

We find it convenient to compare the Fourier transforms

Ĉi j ~v!5E
2`

`

dt e2 ivtCi j ~ t ! ~4.4!

with the simulation data. SinceC11(t) is even andC12(t) is
odd, we haveĈ11(v)5Re@F( iv)1F(2 iv)# and Ĉ12(v)
5 i Re@2F( iv)1F(2 iv)#. The circle orbits yieldd peaks
atv561/R with weight exp(24prR). In Fig. 11 we plot the
prediction from Eq.~4.3! and compare it with the numerics
Note that thed peaks are out of scale. As anticipated, t

FIG. 10. ~a! Inverse Ohmic conductivity 1/D11 and ~b! inverse
Hall conductivity 1/D12 as functions of (B21r2)1/2 for the fixed
ratio r/B50.1. - - - is theBoltzmann theory, —– is the improved
Boltzmann theory, andL are the simulation data.
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5550 57A. KUZMANY AND H. SPOHN
agreement is excellent, in fact, over the whole low-dens
small-field regime. We plotĈ12(v), which turns out to be
negative~Fig. 12!. As the ratior/B is increased, the charac
teristic double peak merges into a single peak, which t
shifts tov50.

FIG. 11. Real part ofĈ11(v) with r/B50.025 and (B2

1r2)1/250.105 from ~a! the improved Boltzmann theory and~b!
the simulation data.

FIG. 12. Negative imaginary part ofĈ12(v) with r/B50.025
and (B21r2)1/250.105 from ~a! the improved Boltzmann theory
and ~b! the simulation data.
,

n
Away from low density and small fields we have n

theory to compare with. ForB50, C11(t) has the long-time
tail of the formC11(t)52at22, with a.0. We refer to@21#
for a detailed discussion. The heuristic explanation is as
lows. At long times the main contribution ofC11(t) comes
from paths returning to the origin at timet. Let v(0)
5(1,0). Then the particle will be more likely to return from
the right, which yields a negative correlation in the veloci
For the excursion away from the origin we use a rando
walk approximation. If at some intermediate time the parti
arrives at the linex50, then it will return to the origin
equally likely from right and left and the contribution t
C11(t) vanishes. Therefore, the tail can be computed from
return to the origin at timet of a random walkerwithoutever
hitting the linex50. This probability decays ast22 in two
dimensions. Clearly, in our argument we only used that
motion before returning to the origin is diffusive. This re
mains valid for nonzeroB. Thus C11(t) and C12(t) should
have a decay ast22 for t→`. For B50 the long-time tail is
most clearly seen atr50.15 @17#. We increaseB to 0.2 and
average over 33107 sample paths. The effective expone
for both correlations is 1.9 with a negative prefactor~Fig.
13!. However, the prefactor ofC11(t) becomes positive in
the rangeB50.520.8 and ofC12(t) in the rangeB50.6
23. Thus, when the particle returns to the origin it picks
more complicated velocity correlations than in the caseB
50. As one example of such a sign reversal in the 1,2 c
relation we display the data forr50.2 andB52.3 ~Fig. 14!.
The effective exponents are approximately 1.4.

FIG. 13. Integrated velocity autocorrelation functions~a!
^v1(0)x1(t)& and ~b! ^v1(0)x2(t)& with r50.15 andB50.2 as
functions of (t/t)0.9.
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57 5551MAGNETOTRANSPORT IN THE TWO-DIMENSIONAL LORENTZ GAS
V. DISCUSSION

We studied transport in the two-dimensional Lorentz g
with a constant magnetic field perpendicular to the plane
motion. The theory of Bobylevet al. is in fair agreement
with our simulation data for both the transport coefficien
and the velocity autocorrelations. Away from low dens
and small magnetic fields there is little theory to comp
with. The qualitative properties of the magnetotransport
be guessed from the well-understood limiting casesB→0
andB→`. The most unexpected feature is an increase in
Ohmic conductivity with increasingB at intermediate densi
ties. Such a behavior has also been found experimentally@9#.

In these measurements antidots are imprinted at ran
locations with densities 1/(1000 nm)2, 1/(600 nm)2,
1/(400 nm)2, 1/(300 nm)2, and 1/(240 nm)2, respectively.
The electrons ‘‘feel’’ a screened potential. For the perio
case this is usually modeled by V(x1 ,x2)
5V0usin (px1 /a) sin (px2 /a)ub, with b ranging from 2 to 4.
For a random distribution the true potential is more comp
cated, in particular, when there is strong overlap. Thus
cannot expect quantitative agreement between our hard-
model potential and the experiment@9#. There the reduced
density roughly ranges from 0.01 to 0.25 in our units. T
dimensionless magnetic field varies from 0 to 3. Quali
tively, the conductivitiesD11,D12 in dependence onB fol-
low our curves. However, the measuredD12 is smaller by
approximately a factor 1/2. At the largest density a disti
increase inD11 with B close toB50 is observed. As in our
numerical studies, the percolation thresholdBc is hardly seen

FIG. 14. Integrated velocity autocorrelation functions~a!
^v1(0)x1(t)& and~b! ^v1(0)x2(t)& with r50.2 andB52.2 as func-
tions of (t/t)0.4.
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in the Hall conductance. The Ohmic conductivity is small f
B.Bc , but the transition region is fairly broad.

The velocity autocorrelations have a slow decay over
full range of parameters. Presumably it is governed byt22,
which is, however, severely masked by an even slow
preasymptotic decay. The definite sign of the prefactor aB
50 is not retained.
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APPENDIX: HALL CONDUCTIVITY BEYOND
PERCOLATION

If either r.rc or B.Bc , then the positionx(t) of the
particle remains uniformly bounded in the course of tim
We exploit this property in the computation ofD12, but first
present a general argument valid for any Hamiltonian s
tem.

Let f ,g be bounded functions on phase space and let^ &0
be some finite phase-space average that is stationary,
^ f (t)&05^ f (0)&0 for all t and functionsf . Note that no mix-
ing of ^ &0 or the like is required. Then

lim
t→`

E
0

`

dt e2t/t^ ḟ ~ t !ġ~ t !&052^ f ~0!ġ~0!&05^ ḟ ~0!g~0!&0 .

~A1!

The proof uses twice partial integration

E
0

`

dt e2t/t
d

dt
^ f ~ t !ġ~0!&0

52^ f ~0!ġ~0!&01t21E
0

`

dt e2t/t^ f ~0!ġ~2t !&0

52^ f ~0!ġ~0!&01t21^ f ~0!g~0!&0

2t22E
0

`

dt e2t/t^ f ~ t !g~0!&0, ~A2!

where we used stationarity in the second step. Sincef ,g are
bounded, the limitt→` yields Eq.~A1!.

We first apply Eq.~A1! to the caser.rc . We assume
that the particle moves in some domain, sayL, bounded by
scatterers. As a stationary measure^ &0 we choose
xL(x) d2x dw, with xL(x)51 if xPL and xL(x)50 oth-
erwise.

By Eq. ~A1!

D12
0 5 lim

t→`
E

0

`

dt e2t/t^v2~ t !v1~0!&052^x2cosw&050.

~A3!

To determineD12 we have to compute the double average^ &
in Eq. ~1.2!. The particle starts at 0 and we assume that
scatterers bound its motion to some finite domainL. We
average now over all translates of this configuration such
0 is still contained in the translate ofL. Under the Poisson
distribution every translate has the same weight. Theref
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this partial average coincides witĥ&0 and D12
0 50 by Eq.

~A3!. Sincer.rc , with probability onê & decomposes into
averages of the form̂ &0 and we conclude thatD1250.

Second we apply Eq.~A1! to the caser,rc and B
.Bc . Let yj , j 51, . . . ,N, be the centers ofN scatterers.
We choose an arbitrary domainL such that

L.$xuux2yj u<R11, j 51, . . . ,N% ~A4!

and define

Le5$xuux2yj u>1, j 51, . . . ,N%,

L i5$xuux2yj u<1, j 51, . . . ,N%.

As the invariant phase-space density^ &N we choose

h~x,w!5
1

2p
xLe

~x!xL~x12R sin w,x21R cosw!.

~A5!

To check the stationarity we note that at a collisionh(x,w)
51/2p. In particular,h takes the same value for the incom
ing and outgoing velocities. Away from collisions and ou
side the scatterersxLe

51 and h is of the general form

f (x12R sinw,x21Rcosw), which does not change unde
the circling motion.

For given (x,w) the center of gyration is (x1
2R sinw,x21Rcosw). Thus, in Eq.~A5! xL selects the ini-
tial conditions for which the center of gyration is inL,
whereasxLe

makes sure that the initial condition does n
overlap with a scatterer.

The normalization ofh is easily determined as

1

2pE dwE d2x xLe
~x!xL~x12R sin w,x21R cosw!

5
1

2pE dwE d2x xLe
1~x12R sin w,x21R cosw!

3~x!xL~x!5uL\L i u ~A6!

since L i1R(2sinw,cosw),L for every w. uLu denotes
here the area of the setL.
ev
t

By Eq. ~A1! we need the average

2
1

2pE dwE d2x xLe
~x!xL~x12R sin w,x21R cosw!

3~x2cosw!

5
1

2pE dwE d2x xL~x12R sin w,x21R cosw!

3~x2cosw!2
1

2pE dwE d2x xL i
~x!

3xL~x12R sin w,x21R cosw!~x2cosw!. ~A7!

The second term is just the interior problem, for which t
integral vanishes as in Eq.~A3!. The first term equals

1

2pE dwE d2x xL~x!~R cosw2x2!cosw5uLu
1

2
R.

~A8!

Thus we conclude that for the normalized average

D12
L 5 lim

t→`
E

0

`

dt e2t/t^v2~ t !v1~0!&L5
RuLu

2uL\L i u
. ~A9!

To determineD12 we have to compute the double avera
in Eq. ~1.2!. With probability one we can choose a larg
domain L ~depending on the scatterer configuration! such
that if the center of gyration is inL, the particle does no
collide with a scatterer outsideL. As before, we shift the
configuration in such a way that the center of gyration
(0,w) is still inside L. This generates the average^ &L and
we conclude from Eq.~A9! that this partial average equa
RuLu/2uL\L i u. If L is large, then for most configurations

uL\L i u>uLue2pr ~A10!

and therefore

D125
1

2
Repr. ~A11!
s
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