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Structure of a hard-sphere fluid near a rough surface: A density-functional approach

D. Hendersor},S. Sokotowskit? and D. Wasah
!Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
2Department for the Modelling of Physico-Chemical Processes, Faculty of Chemistry, Maria Cloto®kka University, 20031 Lublin,
Poland
SDepartment of Chemical Engineering, lllinois Institute of Technology, Chicago, lllinois 60616
(Received 14 October 1997

The density-functional theory of Evafis Fundamentals of Inhomogeneous Flyiddited by D. Henderson
(Dekker, New York, 1999 and Tarazon@Phys. Rev. A31, 2672(1985] is used to study an inhomogeneous
fluid near a rough surface or pore composed of grooves consisting of a periodic array of saw-toothed wedges.
This involves a two-dimensional formulation of this approach, in contrast to the one-dimensional formulations
that generally have been used previously. The agreement with the simulations of Schoen and [Pieyisch
Rev. E56, 499 (1997] is good.[S1063-651X%98)09305-2

PACS numbegps): 61.20.Ne, 68.45:v

I. INTRODUCTION Il. THEORY

N . The model that we use is identical to that studied by
n recgnt years S|gn|f|ca_nt progress has been made in U%choen and Dietrich; however, we employ a slightly differ-
derstanding f'EJ'd, behavior in pores of d|ffer_ent geomélry ent system of coordinates. The sketch of the system is given
4]. In the majority of the theoretical studies, the substratg, rig 1. The unit cell consists of two oppositely placed hard
walls have been modeled by potentials that vary only in th"?‘/vedges of dihedral anglgin the OXZ plane. The corner of

direction perpendicular to the surface and are translationally,o wedge is ak=0 and two tips are at=s,/2 and—s,/2.

invariant in lateral directions. Obviously, even for perfecttha |ower and upper tips are separated tx)y the distxagce
crystals this is a simplification because of the atomic COIMUThe system is periodically extended in thelirection and is
gation of the substrats]. Moreover, real surfaces are Usu- iyginjte in they direction (perpendicular to the figure plane

ally rough, so the fluid is exposed to a geometrically heteroryg f,id particles interact via the hard-sphere potential.
geneous wall.

The effects of geometrical heterogeneity on the adsorp-
tion of fluids have been studied experimentally and theoreti- 0, r<o
cally [6-19. Although most theoretical methods that have u(r)= w, r>g. @
been used are coarse-gained approaches that laterally aver-
age the surface nonuniformity over the local height variation
of the substratf10—13, some studies based on the weightedIf we consider only one-fourth of the cell shown in Fig. 1,
local density theory3] have also been undertakgh6-19.  defined by B<x<s,/2 and 0<z<s,/2+s,/2 tan@/2), then
However, our understanding of the microscopic structure ofhe substrate-fluid potential is given by
a fluid that fills the grooves and covers the tips of a geometri-
cally heterogeneous substrate is far from being satisfactory.

Among the common techniques in liquid state theory z
[20], density-functional theorieg3] have been shown to be
both computationally simple and reliable for the description
of simple liquids in an inhomogeneous phase. In this case,
the most successful density-functional theories are those that
involve a coarse-gained average den$By. In a recently
published paper, Schoen and Dietri@i] have analyzed a S,
hard-sphere fluid exposed to a periodic array of wedges by
using the grand canonical ensemble Monte CE@BEEMO)
simulation technique. In their model, the attractive forces
between the fluid particles and the substrate are absent; thus s
the results obtained illustrate the purely entropic effects of s /2 v/2 s /2
the spatial confinement on the fluid structure. It is interesting
to test the predictions of a version of the density-functional
theory against the Schoen-Dietrich data. The principal aim of
our work is thus to perform such a test and, if successful, to  F|G. 1. Side view of the unit cell of the system consisting of two
justify the application of this approach to more complicatedopposite hard wedges of side lengthand dihedral angle in the
geometries and interactions. Our description is based on thexz plane. The corner of the lower wedge is locatecat0 and
equations developed from the Evans-Tarazona version of=0 and two tips ak= —s,/2 ands,/2 are separated by a distance
density-functional theory3,22]. s,. The system is periodically extended in thalirection.
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wherep(x,2z) is the singlet number densitif] p(x,z)] is the
Helmholtz free energy, and is the chemical potential. The

Helmholtz free-energy functional is broken into an ideal and
an excess part

Flp(x,2)]=Fidl p(X,2) ]+ Fel p(X,2)]. 4

The ideal part is known exactly,

Fid[P(Xuz)]:ka drip(x,2)[In A%p(x,2)—=1], (5)

0 1 It 1 n I 1
08 1 15 .2 28 3 whereA is the usual de Broglie wavelength. The excess free
energy is obtained using the weighted density approximation
FIG. 2. Cut through the density distributigifx,z) by the plane  [22]

x=0.36 as a function of* =z/¢ for y= /2. The solid line de-
notes the density-functional result, whereas points are the GCEMC

data[21]. The calculations have been performegt=0.7016. Fex[P(X,Z)]:J p(x,2)felp(x,2)]dr. (6)

0, z>x/tan(y/2)

)= @) In the abovef . is the excesgover ideal gasfree energy per
V(ZX)=) 0 < xitan(y12).

particle and the weighted densipfx,z) is given by

The fluid is inhomogeneous in both thendx directions;

the grand potential can be written & E(X*Z):J p(z" .y )W(|r=r"|)dr", @)

Q[p(X,Z)]=F[p(X,Z)]+J p(X,2)[v(X,2) —u]dx dy dz

with W(r) being the Tarazona weighting function given in
Ref. [23].

€)) At equilibrium, §Q[ p(x,2) ]/ 8p(x,2z) =0; thus we obtain
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FIG. 3. Dependence of the cuts through the density distribyi{ernz) by the planex=0 on the distance for (a) and(b) y=#/2, (c)
v=l3, and(d) y=2m/6. There are two panels ifb) and (c) with the corresponding left- and right-hand side descriptions of the local

density axis. The curves from bottom to top(a have been calculated a;=0.1, 0.3, and 0.5, respectively. {h)—(d) the solid lines are
at p,=0.7, whereas the dashed lines ar@at 0.8.
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p(x,2)=exp{—[KT In pppex—v(X,2) —D(x,2)]/kT},
()

wherepy, is the density of a bulKreference fluid that is in
equilibrium with the confined fluidsu, is its excess chemi-

N oW kA OO N O

cal potential, and E
D(x,2)=Tfed p(x,2)] =
_,_f 55()(,’2,) - fl ~cyl o dr’
——p(X',z x",z")]dr’.
9 0
In the abovef,, is the derivative off ., with respect to the
density. 25 . . . . .
If the Carnahan-Starling equation of std@4] is used, b
then :
2t
fedp)=2/(1— )+ 1(1—7)*-3 (10)
—~ 15}
and ;
=
4p—379° 1+p+n°—7° 1}
Mex= (1_ 77)2 + (1_ 7])3 ’ (ll)
0.5
wheren= 7a°p/6 is the packing fraction. Of course, expres-
sions(10) and(11) can be simplified. However, it was con- 0
venient to use this form in our computer program. 0

The method of solution of the density profile equati{@pn
was based upon a standard iterational procedure. In the ma- £ic 4. curves from left to right are the cuts of the density
jority of the calculations that we performed, we used a meshyofije for y= /2 and pE=0.7 by the planex=0, 0.15, 0.2,
size of 0.025 along each axis; also some of the calculationsg 3, and 0.4r, respectively(b) Cuts of the density profiles foy
were made with a smaller grid size equal to @0Zhe sys-  —27/3 (dotted line, 7/2 (dashed ling and /3 (solid line) by the
tem size is the same as in the work of Schoen and Dietrichjanex=0.4¢. The bulk density ipE=0.6.

[21], namely, s,=120 and s'= \/sX2+ 5222100' (for the
meaning of the symbols see Fig. All the calculations have the dihedral angle causes a substantial increase of the local
been carried out on the BYU Silicon Graphics Power Chaldensity at contact. Indeed, af =0.7 we havep* (x=0,z

lenge computer with eight processors. =0)=p(x=0,2z=0)c°=7.06 for y=27/3 and p* (x=0,z
=0)=19.04 fory= /3. This behavior is not suprising. The
Ill. RESULTS AND DISCUSSION two walls forming the wedge squeeze the hard spheres into

the corner and, obviously, this effect is more pronounced for

To check the reliability of the computational scheme thatsmaller values ofy. The simulation contact density obtained
has been used we have calculated the density profile for tHgom the GCEMC simulations of Schoen and Dietrich for
system withy=, i.e., for a flat wall. The density profiles y=w/2 and atp} =0.7016 is 14.34. Our result for the same
have been compared with both the Monte Carlo data opointis 14.42, which is only slightly higher. Thus the agree-
Schoen and Dietricfi21] at pf = p,0>=0.7016 and the re- ment of the simulation and theoretical results is excellent,
sults of the corresponding one-dimensional densitymuch better than we expected at the beginning of this study.
functional program. To save space we do not show these The distance between the first and the second density
plots here, but only note that the density profile evaluated byeaks depends on the angye For y= /2 this distance is
us agrees rather well with the one given in ReX1] their  slightly higher tharv2 o, which suggests that four particles
Fig. 2, although the height of the first maximum is slightly form a square at the corner of the wedge, even though intu-
overestimatedwe obtained 4.298, whereas the simulateditively we would expect a more closely packed structure. For
value is 3.97721)). v= /3, this distance is greater than 2. Again, this suggests a

Figure 2 compares the cut by the plaxet=x/c=0.36 looser structure than one might expect, possibly resulting
through the local densities evaluated from the present theorffom entropic effects. At the highest density there exists a
and from the GCEMC simulation for the system with  small maximum in the middle of the first minimum.
= /2 atpy =0.7016. The agreement between the theoretical Figure 4 gives further insight into the local density
and simulational data is good. changes in the systems with differept Figure 4a) shows

Examples of the local densitigg(x=0,z), evaluated at the cuts by the planeg=0, 0.1, 0.2s, 0.3, and 0.4r
different bulk densities and for the systems with differentthrough the density profile foy==/2 and atp; =0.7. We
anglesy= w/3, w/2, and 27/3, are displayed in Fig. 3. Simi- see here that with increasing the subsequent maxima are
larly to the case of the GCEMC simulations, a decrease ofonverted into minima and vice versa. Figui®)4llustrates
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FIG. 5. (a) Three-dimensional profilg(x,z) and(b)—(d) the contour plots for three selected dihedral angé&snd (b) y= /2, (c) y
=x/3, and(d) y=2=/3. All calculations are fopy =0.7.

the variation of the cuts of the density profile by the planeby two minima. However, fory=27/3 a typical configura-
x=0.40 with y andpf =0.6. tion at the wedge is distinct. Two minima framing the second

A more detailed structure of a hard-sphere fluid in a hardnaximum have vanished and the contour lines are almost
wedge emerges if one displays three-dimensional plots gbarallel to the solid walls.
p(x,z) and makes contour map plots of these profilese
Fig. 5. Comparing the contour maps fer= /2 and 27/3
[Figs. 5b) and 8d)] with the corresponding plots of Schoen IV. CONCLUSIONS
and Dietrich, we can conclude that the structure of the fluid
predicted by the density-functional approach is at least quali- Most previous applications of density-functional theory to
tatively the same as the results from the GCEMC simulainhomogeneous fluids have been to systems with one-
tions. Fory=7/2, a second maximum gf(x,z) is at a dis- dimensional symmetry. In this study, we show that this ap-
tance close to/2¢ from the point at which the fluid is in proach is also successful for more complex geometries. We
contact with the wall along the ling=0. This plot shows have obtained pleasing agreement with the recent simula-
also that the first minimum, centeredat 0, appears half- tions of Schoen and Dietrich. We hope to apply our multidi-
way between the point of the fluid-wall contact and the secmensional density-functional algorithm to a wide variety of
ond maximum, as expected from geometrical considerationsnhomogeneous fluids near heterogeneous surfaces and in
In the x direction, the second maxima are framed by twocomplex pores.
minima [because of the symmetry, only one of them is dis-
played in Fig. %b)], separated from the first maximum by a
distance approximately equal to 6-5

The fluid structure evaluated far= 7/3 exhibits the ex-
istence of a second maximum along the like 0 at the This work was supported in part by the National Science
distance greater thanv2rom the contact fluid-corner point. Foundation (Grants Nos. CTS94-023584 and CHE96-
This maximum is separated from the first by a widespread1971. Also, an acknowledgement is made to the donors of
minimum and surrounded from both sides<0 andx>0)  The Petroleum Research Fund, administrated by ACS for
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