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Observability of the bulk Casimir effect:
Can the dynamical Casimir effect be relevant to sonoluminescence?

Kimball A. Milton*
Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019

Y. Jack Ng†

Department of Physics and Astronomy, Institute of Field Physics, University of North Carolina, Chapel Hill, North Carolina 27
~Received 14 July 1997!

The experimental observation of intense light emission by acoustically driven, periodically collapsing
bubbles of air in water~sonoluminescence! has yet to receive an adequate explanation. One of the most
intriguing ideas is that the conversion of acoustic energy into photons occurs quantum mechanically, through
a dynamical version of the Casimir effect. We have argued elsewhere that in the adiabatic approximation,
which should be reliable here, Casimir or zero-point energies cannot possibly be large enough to be relevant.
~About 10 MeV of energy is released per collapse.! However, there are sufficient subtleties involved that others
have come to opposite conclusions. In particular, it has been suggested that bulk energy, that is, simply the
naive sum of12 \v, which is proportional to the volume, could be relevant. We show that this cannot be the
case, based on general principles as well as specific calculations. In the process we further illuminate some of
the divergence difficulties that plague Casimir calculations, with an example relevant to the bag model of
hadrons.@S1063-651X~98!02705-6#

PACS number~s!: 78.60.Mq, 42.50.Lc, 12.20.Ds, 03.70.1k
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I. INTRODUCTION

One of the most intriguing phenomena in physics toda
sonoluminescence@1–3#. In the experiment, a small~radius
;1023 cm! bubble of air or other gas is injected into wate
and subjected to an intense acoustic field~overpressure;1
atm, frequency;23104 Hz!. If the parameters are carefull
chosen, the repetitively collapsing bubble emits an inte
flash of light at minimum radius~something like a million
optical photons are emitted per flash!, yet the process is suf
ficiently noncatastrophic that a single bubble may contin
to undergo collapse and emission 20 000 times a second
many minutes, if not months. Many curious properties ha
been observed, such as sensitivity to small impurities, str
temperature dependence, necessity of small amount
noble gases, possible strong isotope effect, etc.

No convincing theoretical explanation of the ligh
emission process has yet been put forward. This is certa
not for want of interesting theoretical ideas@4#. One of the
most intriguing suggestions was put forward by Schwin
@5#, based on a reanalysis of the Casimir effect@6#. Specifi-
cally, he proposed that the Casimir effect, first considered
Casimir as the force between parallel conducting plates
to zero-point fluctuations in the fields@7,8#, be generalized to
the spherical volume defined by the bubble@9–11#, and with
the static boundary conditions appropriately removed.
called this idea the dynamical Casimir effect. Unfortunate
although Schwinger began the general reformulation of
static problem in Ref.@6# ~most of which had been, unbe
knownst to him, given earlier@12#!, he did not live to com-
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†Electronic address: ng@physics.unc.edu
571063-651X/98/57~5!/5504~7!/$15.00
s

e

e
for
e
g
of

ly

r

y
e

e
,
e

plete the program. Instead, he proposed a rather naive
proximation of subtracting the zero-point energy1

2 (\v of
the medium from that of the vacuum, leading, for a spheri
bubble of radiusa in a medium with index of refractionn, to
a Casimir energy proportional to the volume of the bubb

Ebulk5
4pa3

3 E ~dk!

~2p!3

1

2
kS 12

1

nD . ~1.1!

Of course, this is quartically divergent. If one puts in a su
able ultraviolet cutoff, one can indeed obtain the needed
MeV per flash. On the other hand, one might have seri
reservations about the physical meaning of such a diverg
result.

In an earlier paper, we reconsidered the Casimir eff
explanation of sonoluminescence@13,14#. We argued there
that the leading term~1.1! was to be removed by subtractin
the contribution the formalism would make if either mediu
filled all space. Doing so still left us with a cubically dive
gent Casimir energy; but we argued further that this cu
divergence could plausibly be removed as a contribution
the surface energy. The remaining finite energy, in the p
sumably accurate uniform asymptotic approximation,

Ec;2
~n21!2

64a
, ~1.2!

is at least ten orders of magnitude too small to be relevan
sonoluminescence.

The reader might object at once that all this is in the sta
approximation, and the rapidly collapsing bubbles involv
in sonoluminescence are anything but static. However,
time scales seem favorable for a simple adiabatic approxi
tion to be accurate. Optical photons correspond to a t
scale;10215 s, while the flash duration is;10211 s. That
5504 © 1998 The American Physical Society
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57 5505OBSERVABILITY OF THE BULK CASIMIR EFFECT: . . .
is, the bubble changes very little during one period of
light emitted. Of course, there may be processes here oc
ring on much smaller time scales, so it would be high
desirable to remove this adiabatic approximation, which
hope to accomplish in a subsequent publication.

Eberlein @15# also proposed a version of the dynamic
Casimir mechanism~perhaps more properly called the Unru
@16# mechanism! as an explanation of the observed radiatio
We have noted@13# technical difficulties associated with he
work, especially those related to the use of ultrarelativis
velocities. See also Ref.@17#. If, in fact, reasonable number
are used in her result, the energies involved are too sma
18 orders of magnitude, and even if her ultrarelativistic v
locities are used, only 1023 MeV is available. So, qualita
tively, her results are not inconsistent with ours.

However, recently there has been a proposal that, ind
the bulk energy result of Schwinger is relevant~his result, of
course, is correct! @18#. These authors make an issue of t
subtraction of the uniform medium contribution, implying,
would seem, that we were in error. Since this is a seri
issue with experimental consequences, and since, admitt
there are subtle issues of principle involved here, in this
per we wish to return to this point and provide further e
dence for our result~1.2!. In Sec. II, we will explain more
fully why this subtraction was made, indicate that it has
rather long history in Casimir effect calculations, and was
fact made by Schwinger in@6# before he abandoned tha
effort. Then, in Sec. III, we recall the old connection betwe
the Casimir effect and van der Waals forces, and show
fact, that a finite energy of the same magnitude as the
simir energy~1.2! can be obtained from the latter. Finall
motivated by recent work on regulating Casimir energies
continuing in the number of space dimensions@19#, we ex-
amine, in the Appendix, whether dimensional continuat
can be used to give an unambiguously finite value for
Casimir energy for a bubble in a dielectric, for example. T
negative answer to the latter question shows that the qu
and cubic divergences found there are real. Again, appro
ate physicalarguments must be used to show that they
not relevantto the situation at hand.

II. DEFINITION OF THE CASIMIR ENERGY

In Ref. @13#, we derived a formula for the Casimir energ
due to electromagnetic field fluctuations in a space divid
into two parts by a spherical surface of radiusa. The interior
regionr ,a, the inside of the bubble, has permittivitye8 and
permeabilitym8, while the exterior regionr .a, the outside
of the bubble, has permittivitye and permeabilitym. We
initially ignore dispersion.~Although it can be included@20#,
dispersion turns out not to affect our conclusions@13#.! We
calculate vacuum expectation values of field products
terms of Green’s dyadics for the corresponding class
electrodynamics problem

i ^E„r …E„r 8!&5G~r ,r 8!, ~2.1a!

i ^B„r !B„r 8)&52
1

v2¹3G~r ,r 8!3¹ª 8, ~2.1b!
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whereG is the Green’s dyadic for Maxwell’s equations@21#.
The result for the Casimir energy is

E52
1

4paE2`

`

dy eiyd(
l 51

`

~2l 11!x
d

dx
lnSl , ~2.2!

where

Sl5@sl~x8!el8~x!2sl8~x8!el~x!#22j2@sl~x8!el8~x!

1sl8~x8!el~x!#2, ~2.3!

with

j5

Ae8m

em8
21

Ae8m

em8
11

, ~2.4!

which is expressed in terms of modified Bessel functions

sl~x!5AxIl 11/2~x!, ~2.5a!

el~x!5AxKl 11/2~x!. ~2.5b!

The expression for the energy is regulated by the insertio
a Euclidean time-splitting parameter,d5(x42x48)/a, and the
variables are

x5uyuAem, x85uyuAe8m8. ~2.6!

It is completely manifest that Eq.~2.2! does not have a
well-defined limit whend→0—it is quartically divergent.
Indeed, it is easy to show, as Ref.@18# does, that the quarti-
cally divergent term here corresponds precisely to
Schwinger result~1.1! when e85m851 and m51. How-
ever, it is also quite clear that the calculation is not yet do
when we have reached this point. As we stated in Ref.@13#,
‘‘We must remove the term which would be present if eith
medium filled all space~the same was done in the case
parallel dielectrics Ref.@21#!.’’ When we look at the latter
reference, we see immediately the point. Again to quote,
time from Ref.@21#: ‘‘These terms@to be subtracted# corre-
spond to the electromagnetic energy required to replace
dium 1 by medium 2 in the displacement volume.~Since this
term in the energy is already phenomenologically describ
it must be cancelled by an appropriate contact term.!’’ What
we were saying there, in the present context, is that the t
in the energy corresponding to the boundary-conditio
independent Green’s function

Fl
~0!5 ik j l~kr,!hl

~1!~kr.!, ~2.7!

must be removed, because it contributes~a formally infinite
amount! to the bulk energy of the material, which is alread
phenomenologically described in terms of its bulk properti
In fact, we are not creating material, e.g., water, we are s
ply displacing it when we insert the bubble, and force t
bubble to expand and contract. The energy per unit elem
of medium is therefore not changed.~The density of the air
in the bubble of course changes greatly, but the zero-p
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energy of that relatively dilute medium is certainly insigni
cant becausen'1. In any case, the effect of this densi
change is also included in the phenomenological desc
tion.! Indeed, the spectacular agreement between the the
shitz theory of parallel dielectrics@22#, rederived in Ref.
@21#, and the experiment of Sabisky and Anderson@23#
seems strong vindication of this subtraction procedure.

Further evidence that we are on the right track is provid
by Schwinger himself. In the third article cited in Ref.@6#,
where he rederived the result for parallel dielectrics, he
plicitly removed volume and surface energies: ‘‘ . . . one
finds contributions toE that, for example, are proportiona
. . . to the volume enclosed between the slabs. The imp
constant energy density—independent of the separatio
the slabs—violates the normalization of the vacuum ene
density to zero. Accordingly, the additive constant has
piece that maintains the vacuum energy normalization. Th
is also a contribution toE that is proportional to@the area#,
energy associated with individual slabs. The normalization
zero of the energy for an isolated slab is maintained by
other part of the additive constant.’’ Admittedly, the situ
tion is more clear cut in the parallel-plate geometry. Ho
ever, in the following paper~the last reference in Ref.@6#!,
where Schwinger began to set up the problem for the sph
cal geometry~but left the details to Harold@24#!, a close
reading shows that a similar subtraction is implicit. Unfort
nately, when Schwinger went on to apply Casimir energy
sonoluminescence in Ref.@5#, he did not make use of th
general analysis in Ref.@6#. Instead, needing an immedia
result to confront the phenomenology, Schwinger sim
jumped to the unsubtracted, unregulated result~1.1!—see the
second reference in Ref.@5#.

But enough of argumentation. Let us turn to detailed c
culations that support our contention.

III. DERIVATION OF CASIMIR EFFECT
FROM VAN DER WAALS FORCES

It is familiar that the van der Waals forces between pol
izable molecules—the Casimir-Polder forces@25#—can be
derived from the Casimir forces between dielectric bodi
We interpret this as meaning that the Casimir effect is me
a local field form of the action-at-a-distance summation
the forces between the molecules that make up the mat
bodies.

Let us begin with a variation of the argument given
Ref. @21#. Consider a dielectric slab bounded by planesz
50 and z5a, having a dielectric constante; outside this
region there is vacuum,e51. According to the Lifshitz for-
mula @21,22#, the force per area between the surfaces is

f 52E
0

` dz

2pE0

`dk2

2p
k3H F S k31k1

k3 2k1
D 2

e2k3a21G21

1F S k381k18

k382k18
D 2

e2k3a21G21J , ~3.1!

where, in thei th medium~we denote the region of the sla
by 3, that the outside regions by 1!,
p-
if-

d

-

d
of
y
a
re

o
-

-

ri-

-
o

y

l-

-

.
ly
f
ial

k i
25k21e iz

2, k i85
k

e i
. ~3.2!

Now suppose the medium is tenuous, so that the dielec
constant differs only slightly from unity,

e21!1. ~3.3!

Then, with a simple change of variable,

k5zp, ~3.4!

we can recast the Lifshitz formula~3.1! into the form

f '2
1

32p2E
0

`

dz z3E
1

`dp

p2 @e~z!21#2

3@~2p221!211#e22zpa. ~3.5!

If the separation of the surfaces is large compared to
characteristic wavelength characterizinge, azc@1, we can
disregard the frequency dependence of the dielectric c
stant, and we find

f '2
23~e21!2

640p2a4 . ~3.6!

For short distancesazc!1, the approximation is

f '2
1

32p2

1

a3E
0

`

dz@e~z!21#2. ~3.7!

These formulas are identical with the well-known forc
found for the complementary geometry in Ref.@21#.

Now we wish to derive these results from the sum of v
der Waals forces, derivable from a potential of the form

V52
B

r g . ~3.8!

We do this by computing the energy (N is the density of
molecules!

E52
1

2
BN2E

0

a

dzE
0

a

dz8E ~dr'!

3~dr'8 !
1

@~r'2r'8 !21~z2z8!2#g/2
. ~3.9!

If we disregard the infinite self-interaction terms~see below!,
we obtain

f 52
]

]a

E

A
52

2pBN2

~22g!~32g!

1

ag23
. ~3.10!

So then, upon comparison with Eq.~3.6!, we setg57, and,
in terms of the polarizability,

a5
e21

4pN
, ~3.11!

we find
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B5
23

4p
a2, ~3.12!

or, equivalently, we recover the retarded dispersion poten

V52
23

4p

a2

r 7 , ~3.13!

whereas for short distances we recover the London pote

V52
3

p

1

r 6E
0

`

dz a~z!2. ~3.14!

Our intention is to carry out the same simple calculat
for a dielectric sphere. The first couple of steps are una
biguous (u is the angle betweenr and r 8):

E52
1

2
BN2E ~dr !~dr 8!

1

~r 21r 8222rr 8cosu!g/2

52
4p2BN2

22g E
0

a

drE
0

a

dr8rr 8F 1

~r 1r 8!g22
2

1

ur 2r 8ug22G .

~3.15!

Now, however, there are divergences of two types, ‘‘v
ume’’ (r 8→r ) and ‘‘surface’’ (r→a). The former is of a
universal character. If we regulate it by a naive point se
ration, r 8→r 1d andd→0, we find the most divergent pa
to be

Evol52
pBN2

10

1

d4 V, V5
4pa3

3
, ~3.16!

which is identical to the corresponding~omitted! divergent
term in the parallel dielectric calculation, whereV5aA. This
is obviously the self-energy divergence that would be pres
if the medium filled all space, and makes no reference to
interface, and is therefore quite unobservable. This is
analog~although thee dependence is different! of the vol-
ume divergence in the Casimir effect@Eq. ~1.1!#.

If, once again, the divergent terms are simply omitted,
may be weakly justified by continuing in the exponentg
from g,3, we obtain a positive energy,

EvdW5
23

1536pa
~e21!2. ~3.17!

This may be more rigorously justified by continuing in d
mension, a procedure which has proved useful and illumin
ing in Casimir calculations@19#. Thus we replace the previ
ous expression for the energy by

E52
1

2
BN2E dDr dDr 8

1

ur2r 8ug
, ~3.18!

where, in terms of the last angle inD-dimensional polar
coordinates,
al

ial

-

-

-

nt
e
e

s

t-

E dDr 5
2p~D21!/2

GS D21

2 D E0

a

dr r D21E
0

p

du sinD22u.

~3.19!

If we take, say,r 8 to lie along thez axis, so thatu is again
the angle betweenr and r 8, we find

E52
1

2
BN2

2pD/2

GS D

2 D
2p~D21!/2

GS D21

2 D E0

a

dr8 r 8D21E
0

a

dr r D21

3E
21

1

d cosu~12cos2u!~D23!/2

3~r 21r 8222rr 8cosu!2g/2. ~3.20!

The angular integration can be given in terms of an ass
ated Legrendre functionPb

a(z),

E
21

1

dt~12t2!~D23!/2~r 21r 8222rr 8t !2g/25ApGS D21

2 D
3~rr 8!12D/2ur 22r 82u~D2g22!/2P~g2D !/2

12D/2 S r 21r 82

ur 22r 82u
D .

~3.21!

Now let us substitute this into the expression for the ener
and change variables fromr , r 8 to

x5r 21r 82, y5
r 21r 82

ur 22r 82u
. ~3.22!

The x integral is then trivially done, leaving us with

E52
BN2pD

2D/2G~D/2!

1

D2g/2E1

`

dyS 2a2

y11D D2g/2

3~y221!~D22!/4P~g2D !/2
12D/2 ~y!, ~3.23!

valid for D.g/2. Integrals of this type are given in@26#:

E
1

`

dy~y21!2a/2~y11!b1a/221Pb
a~y!

52b
G~22b!

G~12b2a!G~12b!
, ~3.24!

valid for Rea,1, Reb,0. Then we have, using the du
plication formula for theG function,

E52BN2

pD21/22D2gGS D2g11

2 D
G~D/2!G~D2g/211!~D2g!

. ~3.25!

The resulting formula is regular whenD andg are both odd
integers, so we can analytically continue fromD.g to D
53 for g57. Doing so gives us, using Eq.~3.12!,
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E5BN2
p2

24

1

a
5

23

24

~e21!2

64pa
, ~3.26!

exactly the same as Eq.~3.17!. Note that the magnitude o
this result is nearly the same as that found in Ref.@13#, and
stated in Eq.~1.2!, differing only by the factor

23

24

4

p
51.22, ~3.27!

which is a plausible difference in that the previous calcu
tion was only in the leading asymptotic approximation, b
the sign is opposite. We offer as evidence for the validity
this methodology the fact that formula~3.25! gives the cor-
rect Coulomb energy of a uniform ball of charge, for whi
g51.

Evidently, we have reached the frontier of our und
standing of the Casimir effect and its connection with v
der Waals forces. The subtraction procedure may well
ambiguous, although the volume and surface divergences
unambiguous. That these divergences are real is further
forced by the considerations of the Appendix, which sho
that the technique of dimensional continuation fails for t
case. But these divergences are notrelevantto the light emis-
sion process, although they would be to a first-princip
calculation of the energy density and surface tension of
medium @21#. However, our qualitative conclusion, tha
quantum vacuum energies are completely irrelevant
sonoluminescence, is dependent only on the order of ma
tude of the finite remainder, given by either Eq.~1.2! or
~3.17!.

IV. CONCLUSIONS

Our conclusions here are threefold.
~i! The divergences that occur when interior and exte

modes are mismatched, whether by exclusion of one se
by changing the speed of light in the two media, are real,
cannot be circumvented by a mathematical trick.

~ii ! Volume divergences are not physically meaningf
since they reflect self-energy effects, and serve to define
intrinsic properties of the material. They are naturally ca
celed out by the introduction of a suitable contact term. W
is left is a surface divergence, which presumably is phy
cally meaningful, yet should be absorbed into a renormal
tion of physical parameters, such as the surface tension

~iii ! The magnitude of the finite remainder, of order 1/a,
apparently may be extracted unambiguously. Whatever
sign, it is far too small to be relevant to sonoluminescen
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APPENDIX: DIMENSIONAL CONTINUATION
OF THE CASIMIR EFFECT

The fact that the above dimensional regularization of
van der Waals energy gave a finite result suggests tha
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re-examine the Casimir calculation to see if possibly an
ambiguous finite result could thereby be obtained. We w
not be surprised to find a negative answer to this quest
since the perfect cancellation between interior and exte
modes cannot hold true with different speeds of light in t
two media@27#.

We will content ourselves by examining the extreme ca
of e→` in the exterior region, that is, a bag with perfect
conducting boundary conditions on the surface. Since i
necessary to continue the individual modes, we will exam
the TE mode as representative.~As we will see, the sublead
ing divergences cancel between the TE and TM modes.! In
three dimensions the interior modes alone give@28#

Ein
TE52

1

2pa(
n51

`

~2n11!E
0

`

dx x
sn8~x!

sn~x!
, ~A1!

where the generalized modified Ricatti-Bessel functions

sn~x!5xD/221I n~x!, en~x!5xD/221Kn~x!, ~A2!

wheren5n1D/221 (5n11/2 here!. The generalization of
this result toD space dimensions is@19#

Ein
TE52

1

2pa

1

G~D21! (n51

`

w~n,D !E
0

`

dx x
sn8~x!

sn~x!
,

~A3!

where the weight function is

w~n,D !5
2nG~n1D22!

n!
. ~A4!

Again, as elsewhere, in Ref.@28# the ‘‘vacuum energy’’
term was subtracted.~As noted in the text, the justification
was only partly that it removed the most divergent term!
This was obtained from the free Green’s function, which
D space dimensions is

Gv
0 ~r ,r 8,u!5 i(

n

2nGS D

2
21D

8~prr 8!D/221
Cn

~D/221!

3~cosu!Jn~kr,!Hn
~1!~kr.!, ~A5!

in terms of the ultraspherical or Gegenbauer polynomial. T
stress on the sphere is obtained by applying the approp
differential operator corresponding to the stress tensor,

Trr 5
i

2
~¹ r¹ r 81v22¹'•¹'8!Gv

0

→
i

2S r D22] r r
22Dr 8D22] r 8r 822D1v2

2
n~n1D22!

r 2 DGv
0 . ~A6!

Subtracting this from the previous result gives



ur
e.
g
ffi
ov

he
ce

h-

n-

sel

e
o-
e a
er-
ling
d-

57 5509OBSERVABILITY OF THE BULK CASIMIR EFFECT: . . .
Ein
TE52

1

2pa

1

G~D21! (n51

`

w~n,D !

3E
0

`

dx xH sn8~x!

sn~x!
1x32DFsn8~x!en8~x!

2S 11
n~n1D22!

x2 D sn~x!en~x!G J . ~A7!

The question now is whether the continuation proced
described in Ref.@19# can be successfully applied her
There, we first made the integrals convergent by addin
suitable term to the summand which sums to zero for su
ciently small dimension. Here this suggests that in the ab
integral we replace

sn8~x!

sn~x!
5

d

dx
lnxD/221I n~x!→

d

dx
lnA2pxIn~x!, ~A8!

for then the largex behavior of this term is 11(4n2

21)/(8x2)1•••. The vacuum subtraction term cancels t
leading term here, leaving for the leading term in the bra
in Eq. ~A7!:

~D23!~D22!

4x2 1O~x24!. ~A9!

So, not surprisingly, the integral is still, in general, logarit
mically divergent,although for D53 or 2 it does converge.
J.
.

J

.

.

i,

i
er
e

a
-
e

s

Therefore, it appears that we cannot meaningfully co
tinue off the integers. So we are forced to retreat back toD
53. There we have

Ein
D53,TE52

1

2pa(
n51

`

~2n11!Qn , ~A10!

whereQn is the convergent integral,

Qn5E
0

`

dx xH d

dx
lnA2pxIn~x!1c.t.J . ~A11!

If we use the uniform asymptotic expansions for the Bes
functions, we easily find

Qn;n2E
0

`

dz zF t2

8nz
2

t3~2t213!

4n2z G; np

16
1O~n0!,

~n→`!, ~A12!

wheret5(11z2)21/2. The leading term here is precisely th
negative of that found in the TM mode; that is, for electr
dynamics, or linearized QCD, the interior modes contribut
quadratically divergent sum, rather than the cubically div
gent one due to each mode. Practical methods of dea
with this divergent Casimir energy, which is relevant in ha
ronic physics, were suggested in Ref.@29#.
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