PHYSICAL REVIEW E VOLUME 57, NUMBER 5 MAY 1998

Observability of the bulk Casimir effect:
Can the dynamical Casimir effect be relevant to sonoluminescence?
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The experimental observation of intense light emission by acoustically driven, periodically collapsing
bubbles of air in watefsonoluminescengehas yet to receive an adequate explanation. One of the most
intriguing ideas is that the conversion of acoustic energy into photons occurs quantum mechanically, through
a dynamical version of the Casimir effect. We have argued elsewhere that in the adiabatic approximation,
which should be reliable here, Casimir or zero-point energies cannot possibly be large enough to be relevant.
(About 10 MeV of energy is released per collapstowever, there are sufficient subtleties involved that others
have come to opposite conclusions. In particular, it has been suggested that bulk energy, that is, simply the
naive sum ofs%w, which is proportional to the volume, could be relevant. We show that this cannot be the
case, based on general principles as well as specific calculations. In the process we further illuminate some of
the divergence difficulties that plague Casimir calculations, with an example relevant to the bag model of
hadrons[S1063-651X98)02705-§

PACS numbg(s): 78.60.Mq, 42.50.Lc, 12.20.Ds, 03.7k

I. INTRODUCTION plete the program. Instead, he proposed a rather naive ap-
proximation of subtracting the zero-point energ¥% w of
One of the most intriguing phenomena in physics today ighe medium from that of the vacuum, leading, for a spherical
sonoluminescencgl—3]. In the experiment, a smaltadius  bubble of radius in a medium with index of refraction, to
~10"2 cm) bubble of air or other gas is injected into water, & Casimir energy proportional to the volume of the bubble
and subjected to an intense acoustic fi@derpressure-1
atm, frequency~2x 10* Hz). If the parameters are carefully
chosen, the repetitively collapsing bubble emits an intense
flash of light at minimum radiugsomething like a million o . ) i .
optical photons are emitted per flasket the process is suf- Of course,_thls is quartically dlv_ergent. If one puts in a suit-
ficiently noncatastrophic that a single bubble may continuéP!€ ultraviolet cutoff, one can indeed obta_ln the neede(_j 10
to undergo collapse and emission 20 000 times a second fQf€Y Per flash. On the other hand, one might have serious

many minutes, if not months. Many curious properties havér:ﬁlr;/atlons about the physical meaning of such a divergent

been observed, such as sensitivity to small impurities, strong In an earlier paper, we reconsidered the Casimir effect

temperature dependence, necessity of small amounts %ﬁ(planation of sonoluminescen{#3,14. We argued there

noble gases, ppssub le strong Isotope eff_ect, etc. ) that the leading ternil.1) was to be removed by subtracting
No convincing theoretical explanation of the light- y,e contribution the formalism would make if either medium
emission process has yet been put for_ward. This is certainlyjoq 5| space. Doing so still left us with a cubically diver-
not for want of interesting theoretical idepg|. One of the  gent Casimir energy; but we argued further that this cubic
most intriguing suggestions was put forward by Schwingergivergence could plausibly be removed as a contribution to
[5], based on a reanalysis of the Casimir effgjt Specifi-  the surface energy. The remaining finite energy, in the pre-

cally, he proposed that the Casimir effect, first considered bgumably accurate uniform asymptotic approximation,
Casimir as the force between parallel conducting plates due

to zero-point fluctuations in the fieldig,8], be generalized to (n—1)2
the spherical volume defined by the bubfe-11], and with Ee~— 64a ' 1.2
the static boundary conditions appropriately removed. He
called this idea the dynamical Casimir effect. Unfortunately,is at least ten orders of magnitude too small to be relevant to
although Schwinger began the general reformulation of th&onoluminescence.
static problem in Ref[6] (most of which had been, unbe- The reader might object at once that all this is in the static
knownst to him, given earligrl2]), he did not live to com-  approximation, and the rapidly collapsing bubbles involved
in sonoluminescence are anything but static. However, the
time scales seem favorable for a simple adiabatic approxima-
*Electronic address: milton@mail.nhn.ou.edu tion to be accurate. Optical photons correspond to a time
Electronic address: ng@physics.unc.edu scale~10 '® s, while the flash duration is-10 ' s. That
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is, the bubble changes very little during one period of thewherel is the Green’s dyadic for Maxwell's equatiofl].

light emitted. Of course, there may be processes here occufhe result for the Casimir energy is

ring on much smaller time scales, so it would be highly

desirable to remove this adiabatic approximation, which we 1 (= iy - d

hope to accomplish in a subsequent publication. E=—1a _xdy e 21 2+ 1)Xd_X|”SI , (22
Eberlein[15] also proposed a version of the dynamical

Casimir mechanisrperhaps more properly called the Unruh \yhere

[16] mechanismas an explanation of the observed radiation.

We have notedl13] technical difficulties associated with her S=[si(x")ef(x)—s/ (X" )& (x)]2— & s/(x")e/ (X)
work, especially those related to the use of ultrarelativistic o 5
velocities. See also RdfL7]. If, in fact, reasonable numbers +s/(x")e(x)]%, 2.3

are used in her result, the energies involved are too small by,
18 orders of magnitude, and even if her ultrarelativistic ve-Wlth
locities are used, only I MeV is available. So, qualita- -
tively, her results are not inconsistent with ours. A /E_'“_l
However, recently there has been a proposal that, indeed, en'
the bulk energy result of Schwinger is relevéis result, of = —F——, (2.4
course, is correg{18]. These authors make an issue of the /6—M+1
subtraction of the uniform medium contribution, implying, it eu'
would seem, that we were in error. Since this is a serious
issue with experimental consequences, and since, admittediyhich is expressed in terms of modified Bessel functions
there are subtle issues of principle involved here, in this pa-

per we wish to return to this point and provide further evi- §1(X) = VX1 4 17(X), (2.53
dence for our resul(1.2). In Sec. II, we will explain more
fully why this subtraction was made, indicate that it has a e(x)= &KHUZ(X). (2.5b

rather long history in Casimir effect calculations, and was in _ ) ) )

fact made by Schwinger ifi6] before he abandoned that The expression for the energy is regulated by the insertion of
effort. Then, in Sec. 11, we recall the old connection between@ Euclidean time-splitting paramete= (x,—x,)/a, and the

the Casimir effect and van der Waals forces, and show, iivariables are

fact, that a finite energy of the same magnitude as the Ca- , —

simir energy(1.2) can be obtained from the latter. Finally, x=ly|Veu, X' =|ylNe'n'. (2.6

motivated by recent work on regulating Casimir energies by It is completely manifest that Eq2.2) does not have a

continuing in the number of space dimensi¢h9], we ex- ll-defined limit whens-s O—it | dically di ¢
amine, in the Appendix, whether dimensional continuation\'v‘fj ) gl_r:e_ imi ,:N ehn — _F|2 I?B qduar Ic?hyt ﬂ:vergent_.
can be used to give an unambiguously finite value for thén eed, it is easy to show, as REL8] does, that the quarti-

Casimir energy for a bubble in a dielectric, for example. TheCally divergent term here corresponds precisely to the

H [ r_ —
negative answer to the latter question shows that the quartéChV\”_nger result(_l.l) whene'=p'=1 an_d,u_—l. How-
and cubic divergences found there are real. Again, approprE“e" itis also quite clear t_hat the calculation is not yet done
: hen we have reached this point. As we stated in R,

ate physicalarguments must be used to show that they ar . P
phy 9 y ‘We must remove the term which would be present if either

not relevantto the situation at hand. . X :
medium filled all spacdthe same was done in the case of
parallel dielectrics Ref{21]).” When we look at the latter
II. DEFINITION OF THE CASIMIR ENERGY reference, we see immediately the point. Again to quote, this
time from Ref.[21]: “These termgto be subtractefdcorre-
In Ref.[13], we derived a formula for the Casimir energy spond to the electromagnetic energy required to replace me-
due to electromagnetic field fluctuations in a space dividediium 1 by medium 2 in the displacement voluni®ince this
into two parts by a spherical surface of radausThe interior  term in the energy is already phenomenologically described,
regionr <a, the inside of the bubble, has permittivigy and it must be cancelled by an appropriate contact tgr/hat
permeabilityu”, while the exterior regiom>a, the outside we were saying there, in the present context, is that the term
of the bubble, has permittivite and permeabilityw. We  in the energy corresponding to the boundary-condition-

initially ignore dispersion(Although it can be includefR0],  independent Green’s function

dispersion turns out not to affect our conclusi¢ts8].) We

calculate vacuum expectation values of field products in Fi9=ikji(kro)h{Y(kr-), 2.7
terms of Green's dyadics for the corresponding classical

electrodynamics problem must be removed, because it contributagormally infinite

amounj to the bulk energy of the material, which is already

phenomenologically described in terms of its bulk properties.
EEr"))=T(r,r'), (213 Infact, we are not creating material, e.g., water, we are sim-
ply displacing it when we insert the bubble, and force the
bubble to expand and contract. The energy per unit element
of medium is therefore not changedhe density of the air

: ’ 1 ’ vii
{B(NB()=~ FVXF(” )XV (2.1 in the bubble of course changes greatly, but the zero-point
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energy of that relatively dilute medium is certainly insignifi- K

cant becaus@~1. In any case, the effect of this density ki=k?+ €2, Ki':;- (3.2

change is also included in the phenomenological descrip- !

tion.) Indeed, the spectacular agreement between the the LilNow suppose the medium is tenuous, so that the dielectric

shitz theory of parallel dielectricg22], rederived in Ref. constant differs only slightly from unity,

[21], and the experiment of Sabisky and Anderd@3]

seems strong vindication of this subtraction procedure. e—1<1. (3.3
Further evidence that we are on the right track is provided ) ) _

by Schwinger himself. In the third article cited in Rg6], ~ Then, with a simple change of variable,

where he rederived the result for parallel dielectrics, he ex- _

plicitly removed volume and surface energies:.! one K={p, 34

finds contributions tcE that, for example, are proportional e can recast the Lifshitz formui@.1) into the form
... to the volume enclosed between the slabs. The implied

constant energy density—independent of the separation of 1 (= »dp

the slabs—violates the normalization of the vacuum energy f~— 32772f d¢ §3f —le(f)—17?

density to zero. Accordingly, the additive constant has a 0 1P

piece that maintains the vacuum energy normalization. There X[(2p2—1)2+1]e~2P2, (3.5

is also a contribution td& that is proportional tgthe are3

energy associated with individual slabs. The normalization tdf the separation of the surfaces is large compared to the
zero of the energy for an isolated slab is maintained by aneharacteristic wavelength characteriziagal.>1, we can
other part of the additive constant.” Admittedly, the situa- disregard the frequency dependence of the dielectric con-
tion is more clear cut in the parallel-plate geometry. How-stant, and we find

ever, in the following pape(the last reference in Ref6]), 5

where Schwinger began to set up the problem for the spheri- fo 23(e—1)

cal geometry(but left the details to Harold24]), a close 6402t

reading shows that a similar subtraction is implicit. Unfortu-

nately, when Schwinger went on to apply Casimir energy td=or short distancea/ <1, the approximation is
sonoluminescence in Reff5], he did not make use of the

general analysis in Ref6]. Instead, needing an immediate e — Lifxdg[e(g)—l]z 3.7)
result to confront the phenomenology, Schwinger simply 327% a ), ' '
jumped to the unsubtracted, unregulated redul)—see the

(3.6

second reference in Rb]. These formulas are identical with the well-known forces
But enough of argumentation. Let us turn to detailed calfound for the complementary geometry in REgf1].
culations that support our contention. Now we wish to derive these results from the sum of van
der Waals forces, derivable from a potential of the form
Ill. DERIVATION OF CASIMIR EFFECT _ B
FROM VAN DER WAALS FORCES V=-17. (3.8

It is familiar that the van der Waals forces between poIarWe do this by computing the ener is the density of
izable molecules—the Casimir-Polder fordgb]—can be molecule$ y puting g ( y

derived from the Casimir forces between dielectric bodies.
We interpret this as meaning that the Casimir effect is merely 1 a a
a local field form of the action-at-a-distance summation of E=—- EBNZJ de dZ'f (dry)
the forces between the molecules that make up the material 0 0
bodies. 1

Let us begin with a variation of the argument given in X(dr}) )
Ref. [21]. Consider a dielectric slab bounded by plazes [(ri=r]))?+(z—2)*]"
=0 andz=a, having a dielectric constart; outside this ) o ) )
region there is vacuume= 1. According to the Lifshitz for- If we disregard the infinite self-interaction terrifsee belowy;

mula[21,27, the force per area between the surfaces is e obtain

(3.9

. J E 2mBN? 1 (3.10
o0 o0 2 2 -1 = T = . .
f:_f % %KB K3t K1 e2k3a_ 1| da A (2=y)(3—7y) a7~ 3
02m)o 2 K3 — K1
5 L So then, upon comparison with E@.6), we sety=7, and,
K/+KI - . . e
n ? } 2x5a_ 1 ] (3.) in terms of the polarizability,
K3_K1 6_1
a= m, (3.1])

where, in theith medium(we denote the region of the slab
by 3, that the outside regions by, 1 we find
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23 D 1)/2
B=—a? (3.12 J dDr— f dr rP- 1f de sinP~2¢.
41 ( )
or, equivalently, we recover the retarded dispersion potential (3.19
23 a? If we take, sayy’ to lie along thez axis, so thatd is again
V=- A 17 G133  the angle between andr’, we find

. . D/2 D-1)/2
whereas for short distances we recover the London potential E=— } 2T 2m 277( f dr’ r'D- 1f dr rP-1

2
vz__r—ef d¢ a(0)2. (3.14 2
7T J)o

1
><J d cos 6(1—cog )P~

Our intention is to carry out the same simple calculation -1
for a dielectric sphere. The first couple of steps are unam-

2 12 __ ' —yl2
biguous @ is the angle betweenandr’): X 2rr’cosg) (3.20

The angular integration can be given in terms of an associ-
1 1 P~
E=— _BNzJ' (dr)(dr") ated Legrendre functioRy(z),
2 (r24r1'2—2rr'cos) "2

D-1
4m®BN2 fa  [a 1 1 J dt(1—t3) P32 r 2= 2rr ') 2= ol | — )
=——f drf dr'rr’ - i
2y Jo o [y fropp? 24102
re+r
11— 12|(D—y— 1-DI2

(3-15) X(rr )1 D/2|r2_r 2|(D 7 2)IZP(V*D)/Z |r2_r12| .

Now, however, there are divergences of two types, “vol- (3.21)

ume” (r’'—r) and “surface” (r—a). The former is of a
universal character. If we regulate it by a naive point sepaNow let us substitute this into the expression for the energy,
ration,r’ —r+ & and §—0, we find the most divergent part and change variables from r’ to
to be
r2+r’?

mBN? 1 Arad X=r2+r'2, y=——0u. (3.22
[r2—r"?|

EVO|=— TFV, V= 3 y (316)

The x integral is then trivially done, leaving us with
which is identical to the correspondiri@mitted divergent

term in the parallel dielectric calculation, wheve=aA. This BN2 7P 1 © [ 2g2\D-72

is obviously the self-energy divergence that would be present E=-—0n — f Y| ——

if the medium filled all space, and makes no reference to the 2°2r(Di2) D=v/2)1 y+1

interface, and is therefore quite unobservable. This is the X (y2—1)(®- 2)/4P1 D/)/z(y) (3.23

analog(although thee dependence is differenof the vol-
ume divergence in the Casimir effdé&q. (1.1)].

If, once again, the divergent terms are simply omitted, as
may be weakly justified by continuing in the exponent

valid for D> y/2. Integrals of this type are given [26]:

from y<3, we obtain a positive energy, f dy(y—1) 32(y+1)PT2-1p2(y)
1
23 I'(—2b)
E ——(e—1)2. (3.17 _ob
vIW™ 1 E36ma 2 F1=b—a)T(1=b)" (3.29

This may be more rigorously justified by continuing in di- yalid for Rea<1, Reb<0. Then we have, using the du-
mension, a procedure which has proved useful and illuminatpjication formula for thel” function,
ing in Casimir calculation§19]. Thus we replace the previ-

ous expression for the energy by D—vy+1
7_rt>—1/22D—yr< Y

: (3.18 Ez_BNZF(D/Z)F(D—y/2+1)(D_y)' (3.29

Ez—EBNZJ dPr d®r’
2 |r_r’|7

The resulting formula is regular whdh and y are both odd
where, in terms of the last angle iD-dimensional polar integers, so we can analytically continue frax> vy to D
coordinates, =3 for y=7. Doing so gives us, using E(B.12,
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) w1 23(e—1)? re-examine the Casimir calculation to see if possibly an un-
571 55 , (3.2  ambiguous finite result could thereby be obtained. We will
24a 24 64wa . ) - . )

not be surprised to find a negative answer to this question,
exactly the same as E¢3.17). Note that the magnitude of Ssince the perfect cancellation between interior and exterior
this result is nearly the same as that found in R&8], and ~Modes cannot hold true with different speeds of light in the

E=BN

stated in Eq(1.2), differing only by the factor two media[27].
We will content ourselves by examining the extreme case
234 of e—< in the exterior region, that is, a bag with perfectly
2_4;:1'22' (3.27) conducting boundary conditions on the surface. Since it is

necessary to continue the individual modes, we will examine

which is a plausible difference in that the previous calculathe TE mode as representativés we will see, the sublead-
tion was only in the leading asymptotic approximation, buting divergences cancel between the TE and TM mogdas.
the sign is opposite. We offer as evidence for the validity ofthree dimensions the interior modes alone dig]
this methodology the fact that formu(&.25 gives the cor-
rect Coulomb energy of a uniform ball of charge, for which 1 = oc SH(X)
7:1_ E;I;]E:—ﬂz (2n+l) dx Xm, (Al)

Evidently, we have reached the frontier of our under- Tn=1 0 n
standing of the Casimir effect and its connection with van
der Waals forces. The subtraction procedure may well b
ambiguous, although the volume and surface divergences are
unambiguous. That these divergences are real is further rein-
forced by the considerations of the Appendix, which shows L
that the technique of dimensional continuation fails for this"Wneré»=n-+D/2—1 (=n+1/2 here. The generalization of
case. But these divergences aremetévantto the light emis-  thiS result toD space dimensions {49
sion process, although they would be to a first-principles

here the generalized modified Ricatti-Bessel functions are

sn(X)=xP271 (%), e, (x)=xPPTIK (x), (A2)

o0

calculation of the energy density and surface tension of the  _te_ _ 11 S win D)dex XM
medium [21]. However, our qualitative conclusion, that i 27aT(D-1)&4 o Sh(X)’
guantum vacuum energies are completely irrelevant to (A3)
sonoluminescence, is dependent only on the order of magni-
tude of the finite remainder, given by either Ed.2) or where the weight function is
(3.17).
2y (N+D—2)
IV. CONCLUSIONS w(n,D)=——7——. (A4)

Our conclusions here are threefold. : . . .,

(i) The divergences that occur when interior and exterior A9ain, as elsewhere, in Reff28] the “vacuum energy
modes are mismatched, whether by exclusion of one set, ¢f'M was subtractedAs noted in the text, the justification
by changing the speed of light in the two media, are real, an/@S only partly that it removed the most divergent teyms.
cannot be circumvented by a mathematical trick. This was obtained from the free Green’s function, which in

(i) Volume divergences are not physically meaningful,D SPace dimensions is
since they reflect self-energy effects, and serve to define the

intrinsic properties of the material. They are naturally can- 2l E—l
celed out by the introduction of a suitable contact term. What 0 , ] 2 (DI2-1)
is left is a surface divergence, which presumably is physi- Go(r.r,0) =12 \D/2—1°n
. . d n 8(mrr')
cally meaningful, yet should be absorbed into a renormaliza-
tion of physical parameters, such as the surface tension. x(cogg)Jv(kr<)H(Vl)(kr>), (A5)

(iii) The magnitude of the finite remainder, of ordea,l/

apparently may be extracted unambiguously. Whatever it§, terms of the ultraspherical or Gegenbauer polynomial. The
sign, it is far too small to be relevant to sonoluminescence.giress on the sphere is obtained by applying the appropriate

differential operator corresponding to the stress tensor,
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APPENDIX: DIMENSIONAL CONTINUATION n(n+D—2) o
——z)g : (A6)

w

OF THE CASIMIR EFFECT r

The fact that the above dimensional regularization of the
van der Waals energy gave a finite result suggests that w@ubtracting this from the previous result gives
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1 1 * Therefore, it appears that we cannot meaningfully con-
Ejf=— >7a mE w(n,D) tinue off the integers. So we are forced to retreat back to
ma I'( )i=1 =3. There we have
= Sn(X)
xf dx x{"—er?’D s (x)el(X) *
0 Sn(X) meen EP=8TE= _ _—_> (2n+1)Q,, (A10)

27Tan:1
n(n+D—2)
—(1+ T) Sp(X)en(Xx)

]' (A7) whereQ,, is the convergent integral,
The question now is whether the continuation procedure o d
described in Ref[19] can be successfully applied here. anf dx x(d—ln\/walv(x)nLc.t.]. (A11)
There, we first made the integrals convergent by adding a 0 X
suitable term to the summand which sums to zero for suffi- ) . )
ciently small dimension. Here this suggests that in the abové We use the uniform asymptotic expansions for the Bessel

integral we replace functions, we easily find
ssx) d o d . (* t>  t32t?+3)] vw 0
Sn(x)—&lnx |V(X)—>$(|n\/27TX|V(X), (A8) Qn~v jo dz ﬁ——‘h}zz— ~1—6+O(V ),
for then the largex behavior of this term is % (4v?
—1)/(8%?)+ - - -. The vacuum subtraction term cancels the (v—2), (AL2)
leading term here, leaving for the leading term in the braces . ] .
in Eq. (A7): wheret=(1+2z%) "*2 The leading term here is precisely the

negative of that found in the TM mode; that is, for electro-
dynamics, or linearized QCD, the interior modes contribute a
quadratically divergent sum, rather than the cubically diver-
gent one due to each mode. Practical methods of dealing
So, not surprisingly, the integral is still, in general, logarith- with this divergent Casimir energy, which is relevant in had-
mically divergentalthough for D=3 or 2 it does converge. ronic physics, were suggested in RE9].

(D-3)(D-2)

v +0O(x™ 4. (A9)
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