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Improved multifractal box-counting algorithm, virtual phase transitions, and negative dimensions
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Most algorithms for numerical multifractal analysis rely on some evaluation of related scaling laws. We
present a self-consistent way to obtain from a partition Sy(h) the spectrum of singularitie§ ) and its
confidence intervals. With this tool we gain insights into the intricacies of fixed-size algorithms and propose
consequent improvements. We give a numerical analysis of {flmmattractor which displays theoretical
predictions of a phase transitiof81063-651X98)01005-9

PACS numbeps): 47.53+n, 05.45+b, 47.10+9g

Following the seminal paper of Halsey al. [1] on mul-  n; are integers. We then calculate ity moment(or parti-
tifractals, a continuing surge of interest in multifractals hastion  function Sy(l;) of u for several le”l
arisen. In the course of this development a substantial num={l,,l,, ... |} andge 9={q4,95, - .. ,gn} by
ber of algorithms for the numerical analysis of both physical
and artificial multifractal objects have been invented, and
partially acquired a widespread popularity despite a number Sq(li):m%‘zio [m(B)]9=(u9). 2
of open questions as to accuracy and reliability.

Most algorithms in use today are based on the thermodyBrackets( ) indicate sample averages as usual.
namically inspired formulation of multifractals, and it is for ~ The generalized dimensions () (for g#1) and the
those that the ideas outlined in this paper apply. For thecaling functionr(q) are defined by
purpose of demonstrating the capabilities of our methods we

deliberately pick one class of algorithms which is deemed to _ . logSy(l)
be particularly flawed and demonstrate that it can be im- r(q)—D(q)(q—l)—IIm logl &)
proved up to, and exceeding, the standard of other algo-
rithms: fixed-size box countingsee Ref[2]). In practice one might hope th&, scales withi:
Some work has been done to demonstrate that the perfor-
mance of fixed-size, or box-counting, algorithfBCAs) is logS,(1i)=r(q)log(l;) +c+e (4)

far from perfect[3], several natural limitations have often
been pointed ouf14,5-7, and many improvements have and so obtainr(q) via a least squares line fit to the plot of
been proposefB-13|. logS,(l;) against log for all suitablel; with the statistical
In this paper, we demonstrate that correcting the ubiquideviatione.
tous double-logarithmic plots of some sampled quantity for Frequently, the Legendre transformation «§fy) is con-
lacunarity effects rids the computations of the dominatingsidered[1]:
source of systematic errofg], and our self-consistent way
of achieving this yields a considerable qualitative improve- ar
ment of the results. We point out again that in principle T aq f=qa—r, ®
similar gains in reliability should be possible also with other
sampling procedure@uch as correlation integrdl20], box-  which shall not be the main subject hda].
counting derivate$15], or fixed mass algorithmflé]). On Apart from obvious questions of how the resolution and
the basis of these findings we can quantify the malperforfiniteness of the sample and the presence of noise affect the
mance of box counting, and subsequently propose amenéigorithm, one finds a number of flaws with the procedure
ments. itself. Any fixed-size approach compensates for the lack of
Let u be a probability measure defined on(@ossibly  knowledge about the fine structure of a fractal or about its
fracta) supportE CRY. We are interested in the spectrum of generating process by taking the limit of infinitesimal length

singularitiesf(«) of local Hdder exponent: scales, Eqs(1),(3). Without any measure for the accuracy or
convergence rate of the scaling behavior of a single average
. logu(B(1,x)) on a chosen range of length scale$Eq. (4)], and thus of
a(x)=1im ) ) 7(q) for a givenq, the interpretation of results becomes

logl .
1-0 g rather elusive.

In essence, the systematical errors of any fixed-size count-
where B(l,x) is the ball centered axe E with radius | ing procedure are not quantifiable. Note that these errors are
[1,2,17,18. In many casesf(«) can be interpreted as the quite distinct from those arising from a lack of statistical
Hausdorff dimension of the set ofe E with local Hdder  resolution of the sample, although both kinds of errors are
exponenta. To these ends we cové&r with a grid of boxes naturally scale dependefif] and hence notoriously difficult
(hypercube)sB(I)=H?:1(njl ,(nj+1)1) of sizel, where the to disentangle. Although proposals for statistical corrections
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have been mad@4], they have to be based on estimates m

about the distribution of the measure already obtained by X2= >, > >

some instance of a sampling procedure, and hence in turn 4eQ g>q'cq i=1

must reflect the deficiencies in resolution of the latter. N | l0aS...(| 2
One example of these inevitable finite-size problems are X [7(a")10gS,(1i) ~ 7(q)10gSq (1) +Cq— Cq ] _

the well known lacunarity effects. However, there are less (ga—q9")w(q)w(q’)

obvious effects, too, equally difficult to treat, and we will 9
demonstrate some on the example of thenéteattractor.

In practice, much would be gained if error estimates be- Of course, this functional may be supplied with additional
trayed the presence of hidden systematic errors, and weterms assuring compliance with constraints such as the con-
based on more profound assumptions about the distributiogavity of the 7(q) function in the manner of maximum en-
of the statistical errok in Eq. (4). It has been pointed out tropy methods. Since this method is predominantly intended
[3,5] that the(standard Gaussiarerror obtained from the to be a qualitative means of evaluating an assumed multifrac-

least-squares fit grossly underestimates the error present. V&, with the small number of) this additional term might
propose a robust method based on a Monte Carlo bootstragell be dropped.

approach which helps to overcome this problem. . We advance by minimizingt' 2 with respect tor(q),
In order to treat the aforementioned effects, we introducereating thec, as independent constants. For easier and more
a scale-dependent intercept into E4): stable computation we changed the nonlinear equ&8pto
a linear form and introduced an arbitrary weight function
logSqy(11) = 7(a)logl; + C(1;,q). (6) w(q), which is intended to amplify the proportion of a mo-

ment S, according to the standard variation of its scaling
) function 7(q), thus giving little weight to smallq|. Esti-
The functionC(l; ,q) was termed by Cutlei5,6] thewan-  mpates for the confidence intervals of the fitted parameters are
dering intercept Our development depends on two assump-ptained by the bootstrap method as describel®8) with
tions about the wandering intercefit: for fixed |, C(1.q) is  the necessary parameters chosen 424

a slowly varying function ofg; (i) for “most” q we find The greatest advantage of this method is that we fit the
entire functionr(q) to all the available information in one
c(,9)=F(1)G(q). (7)  step, thereby also reducing lacunarity effects. Also, in esti-

mating the confidence intervals in this comprehensive way,
we take into account for atj the systematic errors that stem

_ These assumptions amount to saying that each MOMefl,y, the hox-counting procedure but become expressed only
knows” about the corresponding deviations from the ideal |5 qer|q|. The increase in confidence intervals for small
§callng .Of moments for nearby. The idea is to use this q| is a symptom of poor statistical resolution which is com-
information to compensate for the adverse effects of thes%letely ignored by the customary least-squares fit. We exploit
deviations on the fitting procedufsymmetric scaling-error

) ¢ ) . be sh . the interconnection of small and lar¢gg| in the SSC fit to
compensationSSQ). O course, it remains to be shown in jntegrate this information into the calculation of the confi-
each case that these assumptions hold. As we will see, it Bence intervals.

often the case that a violation of these assumptions warrants Note that the coefficient matrix derived from E(@) is

dispensing with the multifractal analysis of a data set bygjngjar with one free constant and requires further informa-
Sta”dafd means as a whole. . ) tion, which can be obtained by taking as referen¢@) or
|n§p|red by a (elated mgth_od introduced by Beetal. the entirer(q) as obtained from the standard method. The
[21] in the gtat|st|cal description of fully developed turbu- accuracy of SSC is limited by the systematic and statistical
I_ence, by using Eqg6) and(7) we express lo§, as a func- errors of the chosen reference, and thus although SSC is
tion of logSy instead of log likely to give qualitatively better results, the overall accuracy
need not improve.

7(a) 7q) To demonstrate the potential of SSC, we examine the fol-
logSy(lj) = ——-1ogSy (1j) +F(lj)| G(a)— ——-G(q') | . lowing seemingly simple example: the sample consists'6f 2
7(q") 7(q’) equally spaced values from a self-similar deterministic “bi-

®) nomial” measure orR generated with the transformations
wy and with splitting factorg, :
We can now proceed to fit a line to E@) to obtain the
quotient7(q)/7(q"). Although we still cannot assume that w1 =0.4,  p;=0.7,
the error distribution is normal, in the absence of at least _ 1 —
some of the systematic errors this deserves more credence Wp=0.3x+1), pp=1-p,=03. (10
than the standard procedure. To make best use of the mutuBhe measure was subsequently “smeared out” by convolu-
information contained in all moments, it is desirable to plottion with a Gaussian function with width equal to the reso-
logS; as a function of as many I&y as possible. We choose lution of the support of 2°.
gi€ ©,0:<0s<- - <Omax Such thatr(q;)/7(q;.41) is ap- As can be seen from Fig. 1 the standard BCA calculation
proximately constant for all. We thus arrive at a global does not compare well with the analytical solutih25].
linearizedX? merit function, which in fact is a functional of Note the considerable improvement by SSC for positive
7(q): As a referencer(0) from standard BCA was chosen.
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g>0, the range of suitable length scales becomes smaller.
We interpret this effect as a sign of depletion of the data set,
and conclude that the correspondiggy(l) and 7(q) no
longer take into account the rare events in the sample. In the
example(10), this happens fog at around 5. Interestingly,
we find a sharp increase in the confidence intervals-(q)

for g>5.

Although SSC cannot serve to eliminate a lack of statis-
tics, it clearly reveals its influence on the analysis and is a
valuable aid in assessing the outcome. The question may be
raised if information which fails to be resolved at the stage of
computing the partition function can possibly be retrieved at

a later stage at all.
At first sight, the situation is hopeless with negatiye
-20.0 However, the sharp kink ir(q) at q=q, and its abnormal
-10.0 0.0 10.0 behavior forg<0 can both serve as a model case for a phase
q transition between measures and give some information
about the structure of the original measure. From the corre-
FIG. 1. Ther(q) curves of the binomial measu20). The solid |ation plots of C(I;,q) againstC(l;,q’) we find that all co-
line is the analytical solution. Squares were obtained by standarfierence is lost foq only a little smaller than 0, see Fig(i3
BCA; the error is smaller than the size of the squares. Crosses wetgd reestablished for even smalter .. We interpret these
obtained by simple box counting followed by SSC. Typical 95% incoherent fluctuations as a “phase transition” between the
confidence inter_val; are in_d_icatgd. The dashed line is the asym_pto&enuine measurg and avirtual measurev generated by
z/c;rll?e: ;f?(.al;l.otlce its positive intercept which relates to negative c!ipping errors at .“temperature’qc. AIthqugh it is impos-
sible to define neither the measurenor its support in the
limit | —0, there are clearly more almost empty boxes at a
The devastating failure of standard box counting for negafinite length scale than there ought to be. In the limit of
tive g stems from a set of boxes with spuriously small massnfinite resolution this measure vanishes, hence the term
which we will call clipping errors. When raised to a negative “virtual.” We support this view with the following findings.
power in the partition sum, these boxes become dominating Despite its artificial nature, the virtual measure shares
and hence obliterate all information about the original measome of the features which are commonly held to be peculiar
sure([3,14,13. to fractal measures: it displays a scaling behavior and can
Selecting the appropriate scaling interVal[| i, ,Imax] IS thus be assigned a dimensionlike quantity, and it ligtes-
greatly facilitated by using correlation plots of wanderingtatively) on a support which is the subset of a fractal. In fact,
interceptsC(l; ,q) againstC(l;,q"). These plots often show the slope ofr(q<(q,) corresponds to the density of the mea-
single points off the line which signals correlation in the sure on the clipping boxes and is thus directly related not
C(ly,q) [such as in Fig. @]. These points correspond to only to the multifractal measure itself, but also to issues such
length scale$; affected by transitory behavior at large length as noise and statistical and spatial resolution of the data.
scales, and noise or statistical resolution problems at smaiecondly, the intercept of the asymptote shows how the
scales. Quite frequently we find that, especially for largemoundary of thd-parallel body ofE= supp(u) scales with
I. Quite obviously this interpretation is only meaningful if
we bear in mind that we do not treat a multifractal in its
mathematical sense, but only a very limited approximation of
s ' it. In these termsf (a(q= —=)) is a measure of how much
the experimental is concentrated on its apparent support,
] and hence the degree of apparent fractality of the sample.
+ The smallerf(a(q=—=)), the smaller the resemblance of
# 3 1 the experimental fractal to its idealized image.
We find increased and incoherent fluctuation<€if; ,q)
for g in a small interval around. as well as a kink inr(q)
atq.. The assumptions for SSC do not hold. These signs are
L usually read as the signature of a phase transition. It is im-
possible to distinguish this virtual phase transition from a
+ real one by the mere information provided by the algorithm.
As Mandelbrof 26] pointed out, for measures such as the
+ virtual measure in this case negative valueg (@f) can oc-
cur naturally as a consequence of their randomness. This can
be attributed to the fact that for a virtual measure the limit
FIG. 2. Wandering intercepts for the hien attractor plotted |—0 of the expected valueg,(l) =(u“) need not converge
against each otherfa) Good coherence foC(l;,10.0) against to the expected value of the limit, which in this case is zero.
C(l;,9.0), (b) no coherence at the “plateau” faZ(l;,1.5) against In example(10) there are indeed negative values for), as
C(l;,0.0). can be read from the positive intercept with the vertical axis

a) b)

C(,, 10.0)
oy
cd, 1.5)

++ f
e+
+

+ ‘ . + .
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x Compound/SSC FIG. 4. The generalized dimensioBgq) for the Henon attrac-
o tor as obtained with fuzzy disc counting.
-20.0 o With this compound algorithm we also made an analysis
-100 0.0 10.0 of the attractor of the standard hien mapping[27] with
q parametersi= 1.4 andb=0.3. The Haon attractor puts any

o algorithm to a serious test because of its nonhyperbolicity,

FIG. 3. Ther(q) curves of example10). The solid line and  \yhich was elaborated on from a theoretical point of view in
opaque squares are as in Fig. 1. Crosses indicate results obtalned[llm,zg,g,q_ With respect to the numerics, the algorithm
fuzzy disc counting followed by SSC. Typical error bars are given.ghguld resolve the transition from the “hyperbolic phase” to

) the “nonhyperbolic phase” atj.~2.24[29], which consti-

of the asymptote ta(q) for negativeq, as well as, to much ytes a problem in itself far from the limit of infinitesimal
greater accuracy, from the ratios ofd;)/7(q,) obtained |ength scales. Furthermore, the distribution of the residence
from SSC. (Note that there existq;<q,<O0 with  measure on the attractor is far from even: while the “turning
7(dq,)/7(d2)>0q,/9, if and only if the intercept of the points” (i.e., the vicinity of the homoclinic tangency points
asymptote is positive. attract the bulk of the iterations and are statistically highly

The final check is to cross check the standard BCA withresolved, very little mass is spread out along the stratified
one of the algorithms specially devised to eliminate clippingparts of the attractdr7]. In effect, the algorithm has to deal
errors as introduced if8,13] and in the following. Although  with poor statistical and spatial resolution even if many it-
the adverse effects of the virtual measure are diminishedirations are taken into account.
SSC nevertheless reveals a phase transition, but typically To demonstrate the performance of our algorithm for an
shifted to smalleq;. experimental setup, we restrict the calculation to 250 000

The best results might be obtained by combining Ssdterations, using 32 displacements for fuzzy disc counting up

with the compound algorithm discussed in detail below, sed0 1/41. Figure 4 shows the spectrum of generalized dimen-

Fig. 3. sions which is in excellent agreement with theoretical pre-
To ameliorate the effect of ill-adapted, i.e., clipping cov- 9ictions given in[29] and numerical findings 14,2816,

ers we propose an algorithm based on balls with a “fuzzy" Remarkably, SSC does not only show signs of a phase tran-

center location. For every length scalewe define a set of >ton forq~2.24, butalso, if thé; are chosen small enough,

displacements|6(lk)j|<|k i=12,...n and define the for the whole hyperbolic phase from 1 to 2. We interpret

ot . . . . this as a sign of the onset of data depletion, and the compet-
mass” of the ball B(x;) with radiusly belonging to the ing measure in this case as a number of isolated points on the

l,-grid pointx; as attractor without statistical significance. For even smdller
- f[his may even lead to a nonde_creasing function of general-
M(X.)zﬂ(lg(x.))n O(w(B(x+5))), (11 ized dimensions. In our analysis, the range of length scales
' R S was chosen from 1/16 to 1/2048 of the diameter of the at-
tractor.

for >0, where®(x) denotes the Heaviside function. For ~ \we should point out that in some cases SSC becomes
q<0 this is modified by taking the geometric mean over allnymerically unstable if too mang are used in the calcula-

displaced balls: tion, i.e., 7(q;)/7(q;+,) becomes too small. However, our
n Un main objective was to provide a reliable qualitative tool, and
(%) = Bix + 6. ’ 12 we have been led to believe that SSC extracts much of the
wx) 11;[1 w(B(xi+ ) 12 information contained in the set &, and quite frequently

_ ) ) reveals deficiencies; e.g., the virtual measures which would
which effectively amounts to taking the average Hoelder exoptherwise be overlooked by standard methods. Together with

ponent ofu over all balls considered. For these algorithmspowerful counting algorithms, the long standing limitations
Sq(17) in Eq. (2) has to be replaced by a normalized version:of BCAs could be overcome.

S5 (1) =S4(1)/(Sy(17))7, (13 M.A. gratefully acknowledges the outstanding support he
enjoyed at St. Andrews, and acknowledges useful discus-
sinceS(l) is no longer constant. sions with K. Falconer and L. Olsen.
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