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Transport of turbulent vorticity increments
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Starting with the Navier-Stokes equations, a transport equation is written for the sum of the squared vorticity
increments in homogeneous isotropic turbulence. This equation is compared with that for the sum of the
squared velocity increments; whereas the latter equation exhibits a linear dependence on separation, the former
does not. In the limit of a negligibly small separation, the new equation expresses a balance between the
production and dissipation of the mean square vorticity gradient. All terms in the equation have been measured
using a three-component vorticity probe in the self-preserving region of a low Reynolds number turbulent
wake.[S1063-651X98)10904-3

PACS numbds): 47.27.Gs, 47.27.Nz, 47.27.Vf

[. INTRODUCTION of (6w;)? or just one of its components. The derivation of
the equation foréwi2 is presented in Sec. Il; both the equa-
tion and its limiting form(whenr,;—0) are discussed by
comparison to the 4u;)? equation. Measurements of all
three components of the fluctuatiiag vorticity vector were

An important equation in the context of isotropic turbu-
lence is that written by Kolmogoropl] using the Kaman-
Howarth equatioi2] as a point of departure. This equation

describes the transport oB(y)?, where suy=uy(x,+r1) made in a turbulent wake with a new vorticity prop@).

—Uuy(xy) is the longitudinal velocity incremerix, andry  petails of the experiment are given in Sec. Ill. Results for
represent the longitudinal coordinate and separation, respefioments of{(8w;)2) and for all the terms in the transport
tively) and has received reasonably good experimental SURsquation for pw;)? are presented in Sec. IV.

port. Recently, the equation fow(@,)? was generalize@3]

to an equation for §u;)?, with repeated subscripts implying
summation. We inquire here into the form of the equation
that describes the transport ofd;)?, wherew; is the vor- The transport equation for the instantaneous vorticity
ticity fluctuation. Information on the vorticity field is desir- fluctuationw; at pointx; may be written a$7,8]

able for a number of reasons, not the least of which is the 5

connection between the internal dynamics of turbulence and W+ Uy 0= 0,0 ,Ui + v i, (1)

the self-amplifying characteristic of vorticif#,5]. While the

characteristics of the velocity increment have been extenwhere the notation is such that=4/dt, J,=dldx,, and
sively studied, especially in connection with the effect of 2=d% dx3. By subtracting Eq(1) from the corresponding
small scale intermittency, little is known about the statisticsvorticity equation at poink;"=x;+r;, the difference is

Il. TRANSPORT EQUATION FOR (éw,)?

Oe(6wi) + 6uad (6w;) + ua(0F + 0a)dw; = w} BT (§u;) + wala(bus) + v(8F2 + 92)6w;
e s’ - ~~ ~~

v

1 2 3 4
’ @
|
where dw;(=w;” — w;) is the vorticity incrementgu;(=u;" 2(8wiUy(9) +d,) 6wy =7 (Uy(8w)?)+ 3 (U Swi)?),
—u;) is the velocity increment, and the superscript™ (30
refers to quantities at” . We used the fact that coordinates
x; and x;” are independent, i.e.d()*/dx,=0 and
a( )/ ax:=0. After multiplying Eq.(2) by 26w; and averag- 2(Swiw?l 3 (8Uj))+2(Swiw,4d,(U;))
ing (angular brackets denote ensemble averggiegns 1-5
in Eq. (2) become J
:4<wiwa&aui>_zx <wiw;rui+>
2(8wid(8wy))=dr((5w;)?), (3a) @
+ 4 J +
2<5wi5uaaa(5wi)>=y<5ua(5wi)2>, (3b) +2o— (0] 0gU), (3d)
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20( 80,0} (8w)))+21( 80,92 Sw)))
= (" (8w)2) + w72 5wi)?) — 2([ 7 (5wi) 1?)

—21([do( i) ]%)
2

d
=20 = ((5)) = 4(e,). 3

Equation (30) is zero since, due to the definition=x;"
—Xi,

+ J J
7000= 5 () and a,()=— 2= ().

In Eq. (38), (€,)=v{(d,w;)?) is the destruction rate of
the mean square vorticity. For stationary turbulence at a su

ficiently large Reynolds numb¢®]

<wiwaaaui>:<6w>’ (4)
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<5U1(5wi)2>_2’/ _0f ((5wi)2>:_2<wiwfui+_‘"i+wlui>-
1
(8)

This equation differs in an important way from the transport
equation for{ (8u;)?) [3],

(Sur(0u)D—2v - (supD=—4(Sr1,  (©

where (e) is the average turbulent energy dissipation rate.
Whereas( 8u,(8u;)?) increases linearly with, in the iner-
tial range(IR), (Su,(dw;)?) is likely to decrease over this
region if the two-point correlations on the right of E®)
become negligible. Such a behavior would be qualitatively

]gonsistent with the observation by Antorgéa al. [10] that

two-point vorticity correlations should decreaserq‘é‘”‘ in

the IR. These authors not¢ti0] that((Sw;)?) is unlikely to
exhibit a power-law behavior in the IR: Faf1] also noted
the absence of a power-law behavior in the spectruraof

viz. (e,) balances the generation @b?) due to the interac- The absence of a dependence on over the IR, for
tion between the instantaneous turbulent strain rate and vot-du,(dw;)?) would contrast with the existence of such a

ticity fluctuations. After combining Eq93a—(3¢), the re-
sulting equation is
J 5 J 5
E<(5w|) >+E<5Ua(5wi) )—4<wiwa(9aui>
a 2 J ++ +
—2v Fr ((bwy) >+2? (wjw, U — o] oyU;)
+4(e,)=0. (5)

behavior for two-dimensional turbulen¢&2,13.

The limiting behavior of Eq(8) whenr;—0 can be in-
ferred from a Taylor series expansion of E8). aboutr ;=0.
Retaining terms up to order, the left side of Eq(8) re-
duces to

(Suy(Sw;)2y=(d1us(d101)%)r3 (109

and

0
An order of magnitude argument suggests that the first term —2v — ((w;)2) = — 41{(91w;)>)r 1 — 2v((I3w;)?)r3

of Eq. (5) should be negligible when the Reynolds number is
sufficiently large. With this term ignored, and making use of

Eq. (4), Eqg. (5) can be simplified to

J ) 92 )
E<5ua(5wi) )—2v a2 ((wi)?)

J
:_2ﬁ7<wiwzui+_wi+waui>- (6)

Only homogeneity has been used to obtain &j. If isot-
ropy is introduced, Eq(6) can be projected onto thg di-
rection, viz.,

2 9 , 2 9\ 9 ,
HJFE (6us(bwi)*)—2v E+m m((&vi) )

2 14
_J’__

——2
M &rl

(wio] U — o o1u;). (7)

Using an argument similar to that by Kaan and Howarth
[2] (see alsd8]) the only solution of the equation

2 0 ; —0
EJFm (ry)=0,

which has no singularity at;=0, is f(r,)=0. The solution
of Eq. (7) is therefore given by

arq

v 3 3
3 (dLwid1wi)ry. (10b)

The term on the right of Eq8) can be rewritten as follows:
—2Awio] U — o 01u)=2((0] — o Jujwy)  (11)
since

(0iU 07 )=(0; Ujoy)

by virtue of homogeneitythe superscript =" refers to lo-
cationx,—r,). Using Taylor series expansions fef and
w; aboutr,;=0, we can show that, to ordet,

2<(wi+_wi_)uiwl>:4<uiw1‘91wi>rl+%<uiw1‘ﬁwi>ri(- )
12

Using homogeneity and the isotropic form of the fourth-
order tenso(u; ;d,wy), it can be shown thasee Appendix
—(Ujw1d10;) = (w011 U;). (13

Further, Eq.(4) and the isotropic form ofd;w;d,wy) allow
the right side of Eq(13) to be written as

(wjw101U;) = ¥{(I10;)?). (14
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As a consequence of Egd.3) and (14), ther, term in Eq.

(12) cancels the; term in relation(10b). This leaves bal- 10°
ance(in the limit r;—0) between therf terms in relations

(10a, (10b), and(12), viz.,

(8e)

(91us(d107)%) = 20((Fw))?) - % (1w 03w))

€10
vk
2 3 .
=% (oo, 15 -
The viscous terms can be combined since 102l nd
10 10 10
3 2 ry
(drwidiw) = —((F1w)?), '

FIG. 1. Second-order moments of vorticity increments in a self-
preserving wakeO: ((Sw})?); [: ((w3)?); V: ((6wk)?); @:
*\2\ __. i *\2 *\2 H
%V(((ﬁwi)z): %(uiwlﬁfwﬁ—(&1u1((91wi)2). (16) ((bwi")?). —: calculation of (w3 )*) or ((dw3)) using Eq.(19).

because of homogeneity. Equatitb) becomes

The limiting form (whenr;—0) of Eq. (9) is self-preserving region of a wake at least at small Reynolds
numberg and partly because the small turbulence intensity
20((97u)?) = —{((91u1)(3,u)?). (17)  level in the wakg<3% on the centre line The latter factor

should allow the use of Taylor's hypothesis. This hypothesis
While Eq. (17) expresses a balance between production andvas used for converting temporal incremefi$ u; or w4)
dissipation of the mean square vorticity in isotropic turbu-into spatial increments or temporal correlations into spatial
lence, Eq(16) can be interpreted as representing the equalitycorrelations.
between the generation and destruction of the mean square
vorticity gradient, also for isotropic turbulence. Equation IV. RESULTS
(17) has been written, e.g.14], in terms ofu; .

Equation(8) can be nondimensionalized by multiplication

Ill. EXPERIMENTAL DETAILS with »?/Ug, viz., ;
The three components ob; were measured simulta- (5u?‘(5w§k)2>—2a—*((5w?‘)2)
neously with a vorticity probe comprising folr wires (i.e., ——— "1
a total of eight hot wires: a sketch of this probe was given in 1 1
Zhu and Antonig 6]). Two X wires are in thex;-x, plane
and are separated by a distance inxgeirection of 2.8 mm. =—Uofor ult — ¥t ofu¥)
The other two are in thg;-x; plane with a separation in the
X, direction of 2.5 mm. The lateral separation between in- iy (18)

clined wires in eackX probe was about 1 mm. The included

angle for eactX wire was about 100°. The 2,6m diameter ~ Where the asterisk denotes normalization by the Kolmogorov

wires were operated at an overheat ratio of 0.5 in constarficalesn and/orUy . All terms in Eq.(18) have been mea-

temperature circuits. Output voltages from the circuits weresured over the ranges3r; <50.

passed through buck and gain circuits and low-pass filtered Distributions of{(dw})?) and its components are shown

at a cutoff frequency of 800 Hz. Sampling was carried out ain Fig. 1. Note that{(dw3)?) and ((dw%)?) are approxi-

a frequency of 2000 Hz using a 12-bit analog to digital con-mately equal and become constant at a smaller value of

verter. The record duration was about 120 sec. r¥ (=15) than{(dw?)?). The approximate equality of the
Measurements were made on the center line of the wakgariances of the transverse vorticity increments is consistent

generated by a circular cylindediameterd=6.35mm ata  with local isotropy. It follows from the solenoidality ab;

distance of 240 downstream of the cylinder. With a free that ((sw%)2) [or ((sw%)?)] is related to((Sw?)?) in the

stream velocityU Qf 3.6 m/s, the wake half-width at the ¢5me way a$(su?)?) [or ((6u2)?)]is related to{ (su?)?),

measurement location was 26 mm. The Reynolds nurmper viz.,

based on the longitudinal Taylor microscalex

=(u$)¥(uf ¥ was equal to 40 and the Kolmogorov

length scalen=v3¥(eisx)"'* was 0.64 mm(note that the ((8w3)?)=((sw})*)=

characteristicx, or X3 dimension of the probe is abouiyt

The full value of{e), which includes 12 components, can be

inferred from the velocity derivatives that are measured withwhen local isotropy is assumed. The valueg @fw3)?) or

the probe. This value, which was 7% smaller than,, ((dw3)?) calculated with Eq(19) exceed the measured val-

= 15v(ui]>, was used for estimating. ues at smalt} (=8). It is unlikely that this disagreement
The flow choice was dictated partly by the need to have aseflects a departure from local isotropy; it is more likely to be

large a value ofp as possibleg(this can be realized in the due to the imperfect spatial resolution of the probe. The at-

r
1+ —
2

*\2
art ((bw?)*) (19
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FIG. 2. Comparison of second-order moments of spanwise vor- FIG. 3. Mean values of the products of the longitudinal velocity
ticity increment with second- and third-order moments of the |On_|ncr;emen*t g‘“d the vommiy |ncierzr1ents, l.e., TeIm | n gﬂﬁ)- Or
gitudinal velocity increment.V: ((sw3)2); O: ((su*)?); O:  (dui(dwi)?); O: (dui(dw3)%); V: (ouj(dw3)’); @:
((8u)3); —: ((8u*)2y=2r* 23 — — —: ((8u*)3)=4r*/5. (8u} (Sw?)?). The solid squares denote values{(@u;} (Sw})?)

obtained for a different choice af; .
tenuation at smalty (or high wave numbejss significant . .
and is more important foi, (or ws) thanw, [15]. No cor- 1N circles hasf‘ main peak af =10 an*d a s:nglllgr second-
rections were applied here for this attenuation. The magni@fy Peak neary=35. The values of 5u7 (dw{)*) in Fig. 3
tude of ((3w¥)?) attains a constant value of about 1.5 at@'® base_d ona _partlculag signal, obtqlr_]ed from one of_ the
ri =20. This constancy reflects the small scale nature of vor‘fohur X valreshwhlﬁh.makfe up tr:]: v_ort|c||t¥."prgl;>e, the figure
ticity and the relatively rapid decline of the magnitude of theﬁ ows tI att ec 0|cfef of anot hf Sdlgna'lb( rreain squqreJ,s
correlation{w;(x1) wj(x,+r1)) asr, increases. When this as only a minor effect on the distribution, especially at

correlation becomes negligible, smallry. _ _ _
The variation of term 11l in Eq(18) and its components is
<(5wi)z>:2<wi2>_ (20) shown in Fig. 4. A possible physical meaning of this term is
given by Novikov[4] who identifies it with the self-induced
In homogeneous turbulence, generation of vorticity correlations due to combined convec-
tion and stretching effects. The differenda’ w} "u*™*
. (€ —wf Twiu¥) is of opposite sign foi=1 than for either
()= W (21 =2 or 3 at small values of? . The latter two distributions

follow each other closely. The sum of the three differences
Multiplying Eq. (20) by 7,2/U§ and using Eq(21) leads to  (filled in circles exhibits a positive peak at; =5 and a
((dw¥)?)=2. The measuredconstank value of ((Sw*)?) smaller negative peak af =20. Note that a totally different
(r¥=20) is 25% smaller. This difference reflects the factchoice ofuy, u,, andus signals(solid squaresyielded es-
that Eq.(21) is only approximately satisfied and possibly Sentially the same distribution for IlFig. 4). .
also the need to correct for the imperfect spatial resolution of The three terms in Eq18) are shown in Fig. 5. Term Il is
numbers. It is of interest to compare thg dependence of

{(6w;)?) with the more established behavior of the velocity 04 . ' '

structure functions. A comparison is shown in Fig. 2 between sk " )
((8w%)?) and((Su})?); also included in the figure are the “la a

measured values of(su})®). Although the present Rey- _ ook |
nolds number is too small for an inertial range to occur, the E =

increased magnitudes ¢four)?) and((éu3)®) intherange & & o1l . |
10=r} =30 seem consistent with the expectdd® andr} Sl eteg

behaviors for these quantities in the rangest@<30. It is 0.0 _ial/'ﬁ o °%60600 is L1
evident, however, that the measured values lie well below ' iy’ "@mpE 3 H ﬁ ﬁ % V

the generally accepted value of 32’ for ((Su%)?) and the o1 0,s" |
theoretical(isotropig value of 4 /5 for {(du3)3). The con- "0 20 40 60
stancy of((Sw%)?) for r} =15 contrasts markedly with the r

: *\2 *\3
behaV|or_ Of<.(5u.1) ) and((é_ul) )- . - FIG. 4. Velocity-vorticity two-point correlations featured in
The distribution of term in Eqg. (18) is shown in Fig. 3; ) * ok Kk .

. term Il of Eqg. (18. O: (] wiU] —wiwi uy’);, O
also shown are the three components of this term, s+ s % s+ x—\. . / %+ % _ % %+ x+\. @.
SU* (S0*)2) i . d K * _o0- (03 "oU; —wie] U3 ) Vi (0 oUi-eie] U3 ), @

( Ui( wi)z> 1S ne*gatle ) and peaks atry = 00 2(w!*wuf —wwttur ). The solid squares represent values of
(0u7 (dw3)) and (dui(dw3)<) are positive with a peak 2(w**w*u* — w*w* *u**) obtained for a different choice of

value near?=10. The sum of the three componeffiled (ug,Uy,Ug).
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' ' of R, or large atmospheric valu¢$1] of R, . The constancy
0.4 | Axpn . of {(Sw})?) for scales outside the dissipative range certainly
fo contrasts with the expected power-law behavior for the sec-
ond and higher-order moments 6, (Fig. 2).

o
n

ACKNOWLEDGMENT

Terms I, I1, IIT
in Eqg. (18)

R.A.A. is grateful to the Australian Research Council for
its continued support.

0.0

APPENDIX: DERIVATION OF EQS. (13) AND (14)

0 20 40 60 . .
’ Assuming homogeneity,
FIG. 5. Terms I, I, and Il in Eq.(18). @: Term | — (wj0;u)=0
=(6u} (Swf)?); —: term ll=—29/9r{(Sw’)?); O: term Il ax IRk

=2{w’ Tofuf —wf 0l urT); +: sum of terms | and Il.

and
like terms | and Ill, it should approach zero wheh— 0.
Term Il exhibits qualitatively the same behavior as the sum
of terms | and Il but its magnitude is smaller than that of after contracting ork and!, Eq. (A1) yields
(I1+11) by an almost constant amoufst ry =5, where it is
nearly maximum, the discrepancy is about 20% view of (Ui dwj) = —(Uxw;dyw;). (A2)
the difficulties associated with the measurementsyof it i i i
can be claimed that Fig. 5 provides reasonable support fdPSing the general form of a fourth-order isotropic tensor,
Eq. (18). Although the high wave number attenuationuf e —As " o
caused by the imperfect spatial resolution of the probe can be (Ui; i) =Adi 8B i Syt Cdixdy
corrected 15], the corrections required for terms 1, I, and Ill Settingk=1 and using the solenoidality @y,
are much more involved and have not been attempted. It is
not unlikely that the combination of these errors may cause a 3A+B+C=0. (A3)
systematic error such as that indicated in Fig. 4.

<(1)i(1)j07|uk>=_<Uk(x)i(7|(1)j>_<uk(x)j(7|a)i>. (Al)

Settingi =1 and invertingj andk,

V. CONCLUSIONS A+3B+C=0. (A4)

A transport equation has been derived for the sum of thet follows from Egs.(A3) and(A4) that
squared vorticity increments with the assumption of homo-
geneous and isotropic turbulence. All terms in this equation A=B and C=-4A.
have been measured in the self-preserving region of a cylin-
der wake using a three-component vorticity probe. The meaConsequently,
surements can be regarded as providing reasonable support
for the equation, allowing for the imperfect spatial resolution (Uiwjdwi) = A{Sij G+ Ol Sk — 46 5j1) (A5)
of thg probe. For separations greater than a.bc_)u;, 2be and, using Eq(AL),
magnitude of all measured terms seems negligible, empha-
sizing the small-scale nature of vorticity. According!y, the (wjw;8u ) =A(36k6j — 26 6j+ 36 8i).  (AB)
peak values of the “generation” term Il and the viscous
term Il in Eq.(18) occur at a separation of abouy.5Specu- Forj=1 andl=1, Egs.(A5) and(A6) yield
latively, this may be consistent with the presence of intense

vortex filaments with a diameter in the range 4;-&s has —(Ujw1d10;) =(wjw11U;),
been noted in several simulations, e[d6], and a few ex- .
periments17,18. e, Eq.(13.

Although the Reynolds number is too small for an inertial ~ Eauation(14) follows from Eq.(4), i.e.,

range to be observed in velocity structure functions, the con-
stancy of{ (s} )?) for r¥ =20 indicated in Fig. 1 is likely to
apply at larger values dR, . This would be consistent with and the isotropic form of 9 w; 9 wy), viz.,
previous observations that the vorticity spectrum has no

power-law behavior at either moderate laboratory vajaé (9019 0)=D (88— 7 8ij 81— 7 i1 Sjk) -

<wiwa0’)aui>: V<(O7awi)2>
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