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We consider a motionless Newtonian and incompressible shallow liquid layer bounded below by a bottom
plate where temperature is held fixed and above with a free deformable surface whose tension is linearly
temperature dependent and on which the heat flux is fixed. When the dimensionless surface tension gradient,
measured by a Marangoni number, slightly exceeds its critical value, radially symmetric, long-wavelength
excitations obey a dissipative cylindrical Korteweg–de Vries~DCKdV! equation. A dissipative cylindrical
Kadomtsev-Petviashvili~DCKP! equation is also derived for nearly radially symmetric disturbances. Exact
solitary wave solutions of the DCKP equation are found and the solitary wave solutions of the DCKdV
equation are also discussed. Finally the head-on collision between two concentric cylindrical solitary waves is
considered and its solitonic character is displayed.@S1063-651X~98!10304-5#

PACS number~s!: 47.20.Ky, 47.35.1i
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I. INTRODUCTION

Solitons in physical systems without dissipation and
fects of geometrical distortion have been intensively stud
It was shown that the evolution of weakly nonlinear, lo
shallow water waves satisfies the Korteweg–de Vries~KdV!
equation@1# or the Kadomtsev-Petviashvili~KP! equation
@2#. When the effects of geometrical distortion on propag
ing gravity waves, capillary waves, or gravity-capilla
waves are comparable with those of amplitude nonlinea
and phase dispersion, it is not uncommon to find that
mathematical description can be reduced to some form
variable-coefficient KdV equation@3#. For radially propagat-
ing waves, a cylindrical Korteweg–de Vries~CKdV! equa-
tion was derived by Maxon and Viecelli@4# for ion-acoustic
waves in collisionless plasma and by Miles@5# for free-
surface gravity waves in an ideal, viscous-free fluid. Cyl
drical solitons of the CKdV type have been realized in
number of collisionless plasma and water wave experime
and the agreement with theory is generally good@6#. The
cylindrical Kadomtsev-Petviashvili~CKP! and its higher-
order generalization also have been obtained in Refs.@7,8#
for inviscid surface waves in shallow water. An interna
wave CKdV equation for an ideal, density-stratified fluid h
also been derived recently@9#. Cylindrical solitons of KdV
type in the vortex dynamics of an ultraclean type-II sup
conductor have also been defined@10#. Here we explore the
571063-651X/98/57~5!/5473~10!/$15.00
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possibility of cylindrical solitons excited indriven-
dissipativesystems.

In recent years, attention has been paid to oscillatory
stabilities in fluid layers. One of the interesting examples
Bénard-Marangoni convection@11–18#. When heating an
open horizontal liquid layer from the air side, as a first ins
bility one expects oscillatory Marangoni-Be´nard convection
while in the opposite case we expect a stationary convec
pattern~Bénard cells! @13–17#. The excitations generated b
such an instability may be capillary-gravity waves with lon
wavelength sustained by the Marangoni thermocapillary
fect @15#. In Cartesian geometry, it has been shown that
nonlinear evolution of the surface waves in shallow liqu
layers obeys a dissipative KdV equation when the M
rangoni number of the system slightly exceeds the instab
threshold@16–18#. These studies predicted the existence
KdV-like solitary waves in driven-dissipative systems a
already have promising qualitative agreement with exp
mental results@19–22#. Figure 1 is an illustration of the time
evolution of a cylindrical solitary wave in a Be´nard-
Marangoni geometry@23#. The wave is obtained by adsorb
ing and subsequently absorbing pentane vapor on a sha
toluene liquid layer. The experimental setup for observ
such a wave can be found in Ref.@22#. Unfortunately there is
not enough quantitative analysis to allow comparison w
theory. As experiments are under way, in this paper we s
address theoretical questions about cylindrical solitary w
5473 © 1998 The American Physical Society
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5474 57HUANG, VELARDE, AND KURDYUMOV
in Bénard-Marangoni convection that hopefully would be a
dressed by the experiments in the near future.

We extend the analysis used in Refs.@4,8# to a driven-
dissipative system to investigate the radially or nearly ra
ally propagating capillary-gravity waves in the Marango
Bénard convection. In Sec. II we give the formulation of t
problem, including the basic equations and the bound
conditions in cylindrical coordinates. In Sec. III we introdu
an asymptotic expansion for long-wavelength excitations
derive a dissipative cylindrical Korteweg–de Vrie
~DCKdV! and a dissipative cylindrical Kadomtsev
Petviashvili~DCKP! equation for cylindrical and nearly cy
lindrical symmetric disturbances, respectively. In Sec. IV
give some exact solitary wave solutions of the DCKP eq
tion and the qualitative feature of solitary wave solutions
the DCKdV equation is also discussed. In Sec. V we stu
the head-on collision of two concentric cylindrical solita
waves. Finally, in the last section a summary of our res
and a discussion of their relevance to experiment is provid

II. FORMULATION OF THE PROBLEM

Let us consider an infinitely extended horizontal layer o
Newtonian incompressible liquid open to air in a cylindric
geometry. The bottom of the layer (z50) is flat while its
upper surface@z5d1h(r ,f,t)# is deformable and is sub
jected to a constant heat flux, i.e., (n•“)T5b5const on the
surface. Herez, r , f, and t are vertical, radial, polar angle
and time coordinates, respectively;d is the depth of the liq-
uid at rest;h is the time- and space-dependent surface de

FIG. 1. Surface tension gradient-driven~Marangoni stress! cy-
lindrical solitary wave traveling inward in a Be´nard layer where
pentane vapor is absorbed on liquid toluene. The white area~ring!
represents the amplitude peak~surface deformation and pentan
concentration! of the solitary wave on the surface of the tolue
layer. The time difference between the images from~a! to ~c! is
0.25 s. Pictures obtained by shadowgraph method shining
from below.
-
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mation; T is temperature andn is the normal outward unit
vector to the upper surface. We assume thatd is small, which
means that we have ashallowliquid layer, hence the possibl
motion at the open air-liquid surface is dominated by t
surface tension gradient~Marangoni effect!. Thus we neglect
buoyancy but not gravity kept at the air-liquid interface a
take all material properties of the liquid, like its densityr,
viscosity m, and thermal diffusivityx as constants~Bouss-
inesq approximation!, except for the surface tensions which
linearly varies with the temperature:s5s01g(T2T0)(g
,0).

We start with a motionless conducting base statevs50,
Ts(z)5T01b(z2d), andps(z)5p02rg(z2d), whereT0
andp0 are reference values of the temperature and press
respectively. We introduce dimensionless quantities us
suitable scales:d for length,x/d for velocity, d2/x for time,
mx/d2 for pressure, andbd for temperature. Then in cylin-
drical coordinates the equations of motion governing dist
bances upon the base state are

1

r

]~rv r !

]r
1

1

r

]vf

]f
1

]vz

]z
50, ~1!

1

Pr S ]v r

]t
2

vf
2

r D 52
]p

]r
1Dv r2

2

r 2

]vf

]f
2

v r

r 2 , ~2!

1

Pr S ]vf

]t
1

1

r
v rvfD52

1

r

]p

]f
1Dvf1

2

r 2

]v r

]f
2

vf

r 2 , ~3!

1

Pr

]vz

]t
52

]p

]z
1Dvz , ~4!

]T

]t
5DT2vz , ~5!

wherev5(v r ,vf ,vz) represents the dimensionless fluid v
locity. Expecting no confusion in the reader, we have us
the same notations for the scaled dimensionless variab
The boundary conditions on the open surfacez51
1h(r,f,t) are

]h

]t
1v r

]h

]r
1

vf

r

]h

]f
5vz , ~6!

]h

]r

]T

]r
1

1

r 2

]h

]f

]T

]f
2

]T

]z
512N, ~7!

p5Gh1
2

N2 F S ]h

]r D 2 ]v r

]r
1

1

r 2 S ]h

]f D 2S 1

r

]vf

]f
1

v r

r D1
]vz

]z

1
1

r

]h

]r

]h

]f S 1

r

]v r

]f
1

]vf

]r
2

vf

r D
2

1

r

]h

]f S ]vf

]z
1

1

r

]vz

]f D2
]h

]r S ]vz

]r
1

]v r

]z D G
2@K212M ~T1h!#F ]

]r S ]N

]~]h/]r ! D1
]

]f S ]N

]~]h/]f! D
1

1

r

]N

]~]h/]r !G , ~8!
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2
]h

]r S ]vz

]z
2

]v r

]r D2
1

r

]h

]f S 1

r

]v r

]f
1

]vf

]r
2

vf

r D
2

1

r

]h

]r

]h

]f S ]vf

]z
1

1

r

]vz

]f D1F12S ]h

]r D 2G S ]vz

]r
1

]v r

]z D
1MNS ]T

]r
1

]T

]z

]h

]r
1

]h

]r D50, ~9!

2

r

]h

]f S ]vz

]z
2

1

r

]vf

]f
2

v r

r D2
]h

]r S 1

r

]v r

]f
1

]vf

]r
2

vf

r D
2

1

r

]h

]r

]h

]f S ]vz

]r
1

]v r

]z D1F12
1

r 2 S ]h

]r D 2G
3S ]vf

]z
1

1

r

]vz

]f D1MN
1

r S ]T

]f
1

]T

]z

]h

]f
1

]h

]f D50,

~10!

whereN5@11(]h/]r )21(1/r 2)(]h/]f)2#1/2.
The lower boundary is taken as a good conducting s

support where temperature is held fixed and, for simplic
stress-free for the liquid. Thus onz50 we have

vz50,
]v r

]z
50,

]vf

]z
50, T50. ~11!

From Eqs.~1!–~11! we see that there are four dimensio
less parameters involved in the problem. They are
Prandtl number Pr5n/x, the Galileo numberG5gd3/nx,
the capillary numberK5mx/s0d, and the Marangoni num
ber M52gbd2/mx. Note that the choice in the sign ofb
coupled to2g or simply to ugu leads to the consideration o
positiveMarangoni numbers when heating~cooling! the fluid
layer from above~below!.

III. ASYMPTOTIC EXPANSION, DISSIPATIVE CKdV
AND CKP EQUATIONS

The linear stability analysis@13,14,16,17# shows that the
motionless base state is unstable to long-wavelength sur
oscillations if M.M (0) whereM (0) depends on the bound
ary condition~B.C.!. In order to obtain the nonlinear evolu
tion of the wave excitations, first we consider a disturban
with a radial symmetry, i.e., we let]/]f50, andvf50. We
introduce the multiple-scale variablesj5e(r 2ct) and r 3
5e3r , and the following scalings:

v r5e2~u~0!1eu~1!1¯ !, vz5e3~w~0!1ew~1!1¯ !,

p5e2~p~0!1ep~1!1¯ !, T5e3~u~0!1eu~1!1¯ !,

h5e2~h~0!1eh~1!1¯ !, c5c~0!1e2c~2!1¯ ,

M5M ~0!1e2M ~2!1¯ ,

wheree is a small, ordering parameter that later on we sh
identify with the deviation ofM from its critical valueM (0).
With these expansions, Eqs.~1!–~11! can then be solved
order by order ine. The leading order@O(1) order# gives
d
,

e

ce

e

ll

u~0!5c~0!h~0!~j,r 3!, w~0!52c~0!hj
~0!z, ~12!

p~0!5Gh~0!, u~0!52c~0!hj
~0!T0~z!, ~13!

whereh(0)(j,r 3) is a function to be determined in a highe
order. The subscripts now represent partial derivatives.
definition of the functionsTj (z) and Pj (z) ( j 50,1,2, . . . )
appearing in this and the next orders~see below! has been
given in Appendix A.

At order O(e), we find

u~1!5c~0!h~1!2M ~0!hj
~0!@ 1

3 1P0~z!#, ~14!

w~1!5@2c~0!hj
~1!1 1

3 M ~0!hjj
~0!#z1M ~0!hjj

~0!T0~z!, ~15!

p~1!5Gh~1!22c~0!hj
~0! , ~16!

u~1!5~2c~0!hj
~1!1 1

3 M ~0!hjj
~0!!T0~z!

1@M ~0!1~c~0!!2#hjj
~0!T1~z!, ~17!

where h(1)5h(1)(j,r 3) is left undetermined at this order
The solvability conditionuz

(1)(1)5*0
1dz uzz

(1)(z) determines
the critical ~phase! wave velocity

c~0!56APr~G1M ~0!!. ~18!

Clearly, the excitation may propagate outward or inward.
At the O(e2) order, the solvability conditionuz

(2)(1)
5*0

1dz uzz
(2)(z) gives the critical Marangoni numberM (0)

512 which shows the quantitatively drastic limitation of th
stress-free B.C.~11!. The solution in this order is

u~2!5c~0!h~2!1c~2!h~0!2c~0!~h~0!!2

2c~0!E dj~hr 3

~0!1h~0!/r 3!212hj
~1!F1

3
1P0~z!G

2
c~0!

Pr H ~3Pr24!F1

3
1P0~z!G

112F 2

15
2P1~z!G J hjj

~0! , ~19!

w~2!5F2c~0!hj
~2!14hjj

~1!2c~2!hj
~0!12c~0!h~0!hj

~0!

1c~0!S 11
4

15PrDhjjj
~0! Gz

1@12hjj
~1!1c~0!~324Pr21!hjjj

~0! #T0~z!

212c~0!Pr21hjjj
~0! T1~z!, ~20!

p~2!5Gh~2!22c~0!hj
~1!1~82K21!hjj

~0!2Ghjj
~0!P0~z!,

~21!
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u~2!5c~0!h~0!hj
~0!z1F2c~0!hj

~2!14hjj
~1!2c~2!hj

~0!

12c~0!h~0!hj
~0!1c~0!S 11

4

15PrDhjjj
~0! GT0~z!

1@„121~c~0!!2
…hjj

~1!24c~0!Pr21hjjj
~0! #T1~z!

2c~0!S 121~c~0!!21
12

PrDhjjj
~0! T2~z!, ~22!

where h(2)5h(2)(j,r 3) is an undetermined function at th
order.

At the O(e3) order, the solvability conditionuz
(3)(1)

5*0
1dz uzz

(3)(z) yields the equation controlling the evolutio
of the functionh(0)(j,r 3):

]h~0!

]r 3
1

1

2r 3
h~0!1a1h~0!

]h~0!

]j
1a2

]3h~0!

]j3 50, ~23!

with

a15
3~G18!

2~G112!
, ~24!

a25
1

30~G112!
@24PrG15G1288Pr116825K21#. ~25!

Equation ~23! is the well known cylindrical Korteweg–de
Vries equation. The appearance of such an integrable e
tion at the threshold of the instability is due to the fact th
the energy released by the gradient of surface tension~Ma-
rangoni stress! balances exactly the amount of kinetic ener
dissipated by heat and viscosity. The solutions foru(3), w(3),
p(3), andu (3) can be obtained but their concrete expressi
are omitted here.

With the above solutions we can go up toO(e4) order. In
this order, the solvability conditionuz

(4)(1)5*0
1dz uzz

(4)(z)
yields the evolution equation forh(1),

]h~1!

]r 3
1

1

2r 3
h~1!1a1

]

]j
~h~0!h~1!!1a2

]3h~1!

]j3 1a3

]2h~0!

]j2

1a4

]4h~0!

]j4 1a5

]

]j S h~0!
]h~0!

]j D 50, ~26!

with

a35
APrM ~2!

6~G112!
, ~27!

a45
1

105APr~G112!
@268Pr134Pr2G1408Pr2144#,

~28!

a55
4APr

AG112
, ~29!
a-
t

s

anda1 anda2 have been given in Eqs.~24! and~25!. For the
surface displacementh5h(0)1eh(1), by recombining Eqs.
~23! and ~26!, we obtain

]h

]r 3
1

1

2r 3
h1a1h

]h

]j
1a2

]3h

]j3 1eFa3

]2h

]j2 1a4

]4h

]j4

1a5

]

]j S h
]h

]j D G50, ~30!

which is a dissipative cylindrical Korteweg–de Vries equ
tion. It is a combination of the original cylindrical KdV
equation@4,5# and acylindrical Kuramoto-Sivashinsky equa
tion, with the additional term (hhj)j , nonlinear consequenc
of the Marangoni effect@17#.

If we look for excitations with a nearly cylindrical sym
metry, we can choose the multiple-scale variables aj
5e(r 2ct), r 35e3r , and f5F0F with F051/e. The di-
mensionless azimuthal velocity can be expanded asvf

5e3(v (0)1ev (1)1¯). Then up toO(e4), for the surface
displacementh we have

]

]j H ]h

]r 3
1

1

2r 3
h1a1h

]h

]j
1a2

]3h

]j3 1eFa3

]2h

]j2 1a4

]4h

]j4

1a5

]

]j S h
]h

]j D G J 1
c~0!

2r 3
2

]2h

]F2 50, ~31!

wherea j ( j 51,2,3,4,5) are the same as in Eq.~30!. Equa-
tion ~31! is a dissipative cylindrical Kadomtsev-Petviashv
equation@18#. Whene50, i.e., at the threshold of instability
Eq. ~31! reduces to the cylindrical Kadomtsev-Petviashv
equation given by Johnson for an ideal, viscous-free fl
@7#.

In the ~j,t! version, Eq.~31! takes the form

]

]j H ]h

]t
1

1

2t
h1c~0!a1h

]h

]j
1c~0!a2

]3h

]j3 1eFc~0!a3

]2h

]j2

1c~0!a4

]4h

]j4 1c~0!a5

]

]j S h
]h

]j D G J 1
1

2t2

]2h

]F2 50.

~32!

When deriving Eqs.~30!–~32! we have assumed a stres
free boundary condition for the velocity field on the botto
z50 @see Eq.~11!#. One can replace the stress-free conditi
on z50 by

vz50,
]v r

]z
5dv r ,

]v0

]z
5dvu . ~33!

Equation ~33! yields a no-slip condition ford5` and a
stress-free condition ford50 @24#. In some cases we can us
a slightly perturbed stress-free boundary condition by ass
ing dÞ0, but much smaller than unity. This kind of assum
tion is still for simplicity in theory. However, besides unde
standing of relevant qualitative features, even quantita
comparison with an experiment may be possible@24#.

When takingd5d(e)5e4b with b5O(1), for the sur-
face displacementh we obtain
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]

]j H ]h

]t
1

1

2t
h1c~0!a1h

]h

]j
1c~0!a2

]3h

]j3 1eFc~0!a3

]2h

]j2

1c~0!a4

]4h

]j4 1c~0!a5

]

]j S h
]h

]j D1c~0!a6hG J
1

1

2t2

]2h

]F2 50, ~34!

with a65bAPr/@2(G112)#, i.e., a new termec(0)a6]h/]j
is added into Eq.~32!.

IV. SOLITARY WAVE SOLUTIONS OF THE DCKP
AND THE DCKdV EQUATIONS

The CKdV and the CKP equations in dissipation-free s
tems admit exact solitary wave solutions and they are sh
to be completely integrable in the sense that there is a tr
formation ~e.g., inverse scattering transform! which would
convert them to an uncoupled set of ordinary differen
equations for the amplitudes and phases of normal mo
Naturally, one can pose the problem of existence of solit
~or nonlinear coherent structures! for the DCKdV equation
~30! and the DCKP equation~32! or ~34! in order to look for
a possible relevance to experiment@22,23#. Unfortunately,
solving these equations analytically is exceedingly diffic
because they involve nonlinearity, dissipation, dispersi
and variable coefficients. Although we have been unable
obtain an exact solution for Eqs.~30! and ~34!, we have,
however, been able to find exact solitary wave solutions
the DCKP equation~32! by using a variable transformatio
and the tanh-function ansatz developed in Ref.@25#.

In Eq. ~32! there are two terms with a variable coefficien
hj /(2t) andhff /(2t2). We seek a variable transformatio
which can make these terms cancel each other. This beco
possible if we assume~see Appendix B for the derivation!

z5j2 1
2 F2t, h5h~z,t!. ~35!

Then the DCKP equation~32! is transformed to

]h

]t
1c~0!a1h

]h

]z
1c~0!a2

]3h

]z3 1eFc~0!a3

]2h

]z2 1c~0!a4

]4h

]z4

1c~0!a5

]

]z S h
]h

]z D G50. ~36!

Equation~36! is just the dissipative KdV equation@17,18#.
The transformation~35! is similar to that used by Johnso
for inviscid fluids @7#. The exact solitary wave solutions o
Eq. ~36! can be obtained by using the tanh-function meth
~see Appendix B for details!. Thus we get the exact solitar
wave solutions of the DCKP equation~32! as follows.

(i) The casea2a5Þa1a4 . We have

h5A01A1 tanh@kj1~v2 1
2 kF2!t#

1A2 tanh2@kj1~v2 1
2 kF2!t#, ~37!

with
-
n
s-

l
s.
s

t
,

to

r

es

d

A052
a3

a5
1

1

25e2a4a5
3 ~a2a52a1a4!~26a1a42a2a5!,

~38!

A156
6~a2a52a1a4!2

25e2a4a5
3 , ~39!

A252
6~a2a52a1a4!2

5e2a4a5
3 , ~40!

k56
a2a52a1a4

10ea4a5
, ~41!

v56
a1~a2a52a1a4!

40e3c~0!a4a5
4

3F4a31e
~c~0!!2

5a4
~a2a52a1a4!~2a2a5215a1a4!G .

~42!

In this case we see that, on the one hand,the amplitude and
wave velocity of the kink-type solitary wave (37) a
uniquely determined by the parameters of the system. The
solitary waves excited in integrable systems have the am
tude ~and velocity! solely depending on initial conditions
Here, however, as a nonequilibrium driven system althou
there is no energy conservation yet there is a balance in
energy input-output at a steady state. Energy enters in
long-wave range thus helping create the solitary wave,
leaks out by viscous and heat dissipation in the short-w
range@18#. On the other hand, the solitary wave~37! is e
dependent withA0;e22, A1;e22, A2;e22, k;e21, and
v;e23. Thus thesolitary wave solutions obtained here ar
nonperturbative. Furthermore, from Eq.~37! we see that the
phase velocity of the solitary wave is angle dependent in
phase. This means that the cylindrical wave will slightly d
form as time goes on.

(ii) The casea2a55a1a4 . We get

h5A01A2 tanh2@kj1~v2 1
2 kF2!t#

5A01A22A2 sech2@kj1~v2 1
2 kF2!t#, ~43!

with

A052
1

a5
~a328a4k2!, ~44!

A252
12

a5
a4k252

12

a1
a2k2, ~45!

v5
c0a2a3

a4
, ~46!

wherek is an arbitrary constant. In this case we have abell-
type, hump solitary wave. The solitary wave solution~43!
provides a possible explanation of the cylindrical solita
wave observed in experiment~Fig. 1!. We see from Fig. 1
that the shape of the cylindrical solitary wave is sligh
angle dependent. The exact conoidal wave solutions of
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DCKP equation~32! can also be obtained by using th
Weiss-Tabor-Carnevale method@26#, but we shall not do it
here.

For Eq.~34! we can also use the same transformation~35!
to transfer it into

]h

]t
1c~0!a1h

]h

]z
1c~0!a2

]3h

]z3 1eFc~0!a3

]2h

]z2 1c~0!a4

]4h

]z4

1c~0!a5

]

]z S h
]h

]z D1c~0!a6hG50. ~47!

It is just the dissipative KdV equation found by Redniko
et al. from a Bénard-Marangoni convection for Cartesian g
ometry in the case of a slightly perturbed stress-free bou
ary condition on the bottom@24,27#. Although we have been
unable to obtain an exact solution of Eq.~47! yet, there exist
several numerical studies for its solitary wave solutions@27#.
The results show that the slightly perturbed stress-free c
dition ~i.e.,a6Þ0! although it helps appearing periodic wav
trains does not destroy the solitary wave solutions. Thus
can safely conclude that a cylindrical solitary wave exi
whena6Þ0.

Now we turn our discussion to the solitary wave solutio
of the DCKdV equation~30!. Using a suitable Galilean
transformation and taking appropriate scales for coordin
and time variables, Eq.~30! can be written in the form

]h

]t
1h

]h

]x
1

]3h

]x3 1
1

2t
h1eF]2h

]x2 1
]4h

]x4 1D
]2~h2!

]x2 G50,

~48!

which is the DCKdV equation in the (x,t) version. Since an
exact solution of Eq.~48! has also been found, we turn to
qualitative discussion of its solitary wave solutions.

Consider the time evolution of a solitary wave fromt5
2` to 0. Thus the cylindrical solitary wave moves inwa
towards the center. Whenutu@1, the termh/(2t) in Eq. ~48!
can be neglected. Thus in this case the time evolution of
solitary wave can be depicted by the planar dissipati
modified KdV equation for which some results on solita
wave solutions are already known@18,25–27#. Such flat, sta-
tionary solitary waves have the unique amplitudeAs which is
related to the parameterD as

As5
21

~5224D !
. ~49!

Stationary solitary waves exist only ifD, 5
24 . When utu

;O(1), thecylindrical term in Eq.~48! begins to be essen
tial and makes the amplitude of the solitary waves increa
As the amplitude increases, the velocity of the solitary wa
also increases due to the termh]h/]x. The expected behav
ior has been confirmed by our numerical simulation. At va
ance with the solitary waves of the standard, dissipation-
CKdV equation, the amplitude, and corresponding veloc
and width, of the solitary waves of the DCKdV equation~48!
are selected by the fixed physical parameters, and the en
input-output balance in the system.
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V. HEAD-ON COLLISION BETWEEN TWO DISSIPATIVE
CONCENTRIC CYLINDRICAL SOLITARY WAVES

In conservative systems, one of the striking properties
solitons is their asymptotic preservation of form following
collision as first remarked by Zabusky and Kruskal@28#.
This led them to the coinage of soliton. Two distinct types
one-dimensional interaction have been studied. One is
overtakingcollision and the other one is thehead-oncolli-
sion @29,30#. For two-dimensional water waves, the obliqu
interaction of two Cartesian KdV solitary waves has a
been investigated by Miles@31#. The interaction of the Car-
tesian solitary waves in oscillatory Be´nard convection has
been recently considered@18,32#. In this section we employ
an extended Poincare´-Lighthill-Kuo ~PLK! method @32,33#
to investigate the head-on collision between two concen
cylindrical surface tension gradient-driven solitary waves

We consider that two concentric cylindrical solita
waves, of small but finite amplitudes,R and L, have been
excited when the Marangoni number of the system sligh
exceeds its critical value. The solitary waveR(L) is traveling
outward~inward! from the initial point of the coordinate sys
tem. The initial position~at time t50! of the solitary wave
R(L) is at r 5r R(r L) with r L@r R . After some time they
interact, following ahead-oncollision, and then separat
away. We expect that thehead-oncollision will result in
phase shifts in their postcollision trajectories. Hence we
troduce the following transformation of wave-frame coord
nates with the phase functions:

j5e~r 2cRt2r R!1e2Q~0!~h,r 3!1e3Q~1!~j,h,r 3!1¯ ,
~50!

h5e~r 1cLt2r L!1e2C~0!~j,r 3!1e3C~1!~j,h,r 3!1¯ ,
~51!

wherer 35e3r , andcR andcL are constants.Q ( j ) andC ( j )

( j 50,1,2, . . . ) arefunctions yet to be determined. Thus fo
the spatial and temporal derivatives we have

]

]r
5eS ]

]j
1

]

]h D1e3F ]

]r 3
1Qh

~0!
]

]j
1Cj

~0!
]

]h G1¯ ,

~52!

]

]t
5eS 2cR

]

]j
1cL

]

]h D1e3FcLQh
~0!

]

]j
2cRCj

~0!
]

]hG
1¯ . ~53!

Introducing the asymptotic expansionv r5e2(u(0)1eu(1)

1¯), vz5e3(w(0)1ew(1)1¯), p5e2(p(0)1ep(1)1¯),
T5e3(u (0)1eu (1)1¯), h5e2(h(0)1eh(1)1¯), M
5M (0)1e2M (2)1¯ , and

cR5c~0!~11e2R~2!1¯ !, ~54!

cL5c~0!~11e2L ~2!1¯ !, ~55!

whereR( j ) andL ( j ) ( j 52,3, . . . ) areconstants to be deter
mined in the next orders. With these expansions Eqs.~1!–
~11! with ]/]f50 andvf50 yield a hierarchy of equation
by equating the powers ofe. To the first-order approximation
@O(1)# we obtain the solution
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u~0!5c~0!@H1
~0!~j,r 3!2H2

~0!~h,r 3!#, ~56!

w~0!52c~0!~H1,j
~0!2H2,h

~0! !T21~z!, ~57!

p~0!5G~H1
~0!1H2

~0!!, ~58!

u~0!52c0~H1,j
~0!2H2,h

~0! !T0~z!, ~59!

h~0!5H1
~0!1H2

~0! , ~60!

whereH1
(0) andH2

(0) are two functions to be determined in
higher-order approximation. Thus in the leading order
have two cylindrical waves, one of which,H1

(0)(j,r 3), is
traveling outward, and the other one,H2

(0)(h,r 3), is traveling
inward.

To the second order, we find

u~1!5c~0!~]j1]h!21~]j2]h!h~1!2M ~0!~H1,j
~0!1H2,h

~0! !

3@ 1
3 1P0~z!#, ~61!

w~1!52c~0!~]j2]h!h~1!T21~z!1M ~0!~H1,jj
~0! 1H2,hh

~0! !

3@ 1
3 T21~z!1T0~z!#, ~62!

p~1!5Gh~1!22c~0!~H1,j
~0!2H2,h

~0! !, ~63!

u~1!52c~0!~]j2]h!h~1!T0~z!1~H1,jj
~0! 1H2,hh

~0! !

3$ 1
3 M ~0!T0~z!1@M ~0!1~c~0!!2#T1~z!%, ~64!

where (]j1]h)21 is the inverse operator of (]j1]h) and
h(1)(j,h,r 3) is an undetermined function. The solvabili
conditionuz

(1)(1)5*0
1dz uzz

(1)(z) yieldsc(0)5APr(G1M (0))
~critical wave speed!.

At order O(e2), by solving the corresponding approx
mate equations we obtainu(2), w(2), andp(2). The solvabil-
ity condition uz

(2)(1)5*0
1dz uzz

(2)(z) yields

h~1!5
~122M ~0!!Pr

12c~0! E djE dh~H1,jjj
~0! 2H2,hhh

~0! !

1H1
~1!~j,r 3!1H2

~1!~h,r 3!, ~65!

whereH1
(1) and H2

(1) are undetermined functions at this o
der. From Eq.~65! we see that ifh(1) is not to be divergent
we must setM (0)512 as expected for stress-free B.C.~11!.
Then we have

h~1!5H1
~1!~j,r 3!1H2

~1!~h,r 3!. ~66!

To order O(e3), the solvability condition uz
(3)(1)

5*0
1dz uzz

(3)(z) results in

S ]

]r 3
1

1

2r 3
D1a1H1

~0!
]

]j
H1

~0!1a2

]3

]j3 H1
~0!50, ~67!

S ]

]r 3
1

1

2r 3
D1a1H2

~0!
]

]j
H2

~0!1a2

]3

]j3 H2
~0!50, ~68!
e

]

]h
Q~0!5

1

4 F12
Pr

~c~0!!2 S 302
7

2
M ~0!D GH2

~0!~h,r 3!,

~69!

]

]j
C~0!5

1

4 F12
Pr

~c~0!!2 S 302
7

2
M ~0!D GH1

~0!~j,r 3!,

~70!

R~2!5L ~2!5
PrM ~2!

2~c~0!!2 , ~71!

wherea1 and a2 are the same as Eqs.~24! and ~25!. The
function h(2) is given by

h~2!5
Pr

2~c~0!!2 S G1
9

2
230DH1

~0!~j,r 3!H2
~0!~h,r 3!

1H1
~2!~j,r 3!1H2

~2!~h,r 3!, ~72!

whereH1
(2) andH2

(2) are two functions yet to be determine
in higher-order approximations.

In order to obtain a clear physical picture of the collisio
we use the asymptotic solutions of the CKdV equations~67!
and ~68!, rather than their exact solutions which involve th
Airy functions. For larger 3 we obtain the quasisolitary wav
solutions of Eqs.~67! and ~68! @6#,

H1
~0!5ARS r 3R

r 3
D 2/3

sech2H S a1AR

12a2
D 1/2S r 3R

r 3
D 1/3

3Fj2a1ARS r 3R

r 3
D 2/3

r 3G J , ~73!

H2
~0!5ALS r 3L

r 3
D 2/3

sech2H S a1AL

12a2
D 1/2S r 3L

r 3
D 1/3

3Fh2a1ALS r 3L

r 3
D 2/3

r 3G J , ~74!

wherer 3R5e3r R and r 3L5e3r L . AR (AL) is the amplitude
of the cylindrical solitary waveR (L) at the initial position
r 5r R (r 5r L). Using Eqs.~69! and~70! we obtain the phase
change of the solitary waves due to the collision:

Q~0!5LE
hut50

h
H2

~0!~h8,r 3!dh8

5LS 12a2AL

a1
D 1/2S r 3L

r 3
D 1/3XtanhH S a1AL

12a2
D 1/2S r 3L

r 3
D 1/3

3Fh2a1ALS r 3L

r 3
D 2/3

r 3G J 2tanhH S a1AL

12a2
D 1/2S r 3L

r 3
D 1/3

3Fhu t502a1ALS r 3L

r 3
D 2/3

r 3G J C, ~75!
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C~0!5LE
hut50

h
H1

~0!~j8,r 3!dj8

5LS 12a2AR

a1
D 1/2S r 3R

r 3
D 1/3XtanhH S a1AR

12a2
D 1/2S r 3R

r 3
D 1/3

3Fj2a1ARS r 3R

r 3
D 2/3

r 3G J 2tanhH S a1AR

12a2
D 1/2S r 3R

r 3
D 1/3

3Fju t502a1ARS r 3R

r 3
D 2/3

r 3G J C, ~76!

whereju t5052hu t505e(r L2r R) and

L5
1

4 F12
Pr

~c~0!!2 S 302
7

2
M ~0!D G . ~77!

From Eqs.~50!, ~51!, ~75!, and~76! we now estimate the
phase shifts in thehead-oncollision process. The phase sh
DR(DL) for solitary waveR(L) is given by

DR52e2LS 12a2AL

a1
D 1/2S r L

r D 1/3XtanhH S a1AL

12a2
D 1/2S r L

r D 1/3

3Fe~2c~0!t1r R2r L!2e3a1ALS r L

r D 2/3

r G J
2tanhH S a1AL

12a2
D 1/2S r L

r D 1/3Fe~r R2r L!

2e3a1ALS r L

r D 2/3

r G J C, ~78!

DL52e2LS 12a2

a1
D 1/2S r R

r D 1/3XtanhH S a1AR

12a2
D 1/2S r R

r D 1/3

3Fe~22c~0!t1r L2r R!2e3a1ARS r R

r D 2/3

r G J
2tanhH S a1AR

12a2
D 1/2S r R

r D 1/3Fe~r L2r R!

2e3a1ARS r R

r D 2/3

r G J C, ~79!

when returning to the original variables.
If the initial distance between the two solitary wavesR

and L is large enough, i.e.,r L2r R@1, and the observation
time t@tC5 1

2 (r L2r R) ~tC is the collision time!, from Eqs.
~78! and ~79! we have

DR52e22LS 12a2AL

a1
D 1/2S r L

r D 1/3

, ~80!

DL5e22LS 12a2AR

a1
D 1/2S r R

r D 1/3

, ~81!

which satisfy

1

AAL
S 1

r L
D 1/3

DR1
1

AAR
S 1

r R
D 1/3

DL50. ~82!
Equations~80! and~81! show that, asymptotically,the phase
shifts of two colliding concentric cylindrical solitary wave
in a head-on collision are proportional to r21/3 and depend
on their initial positions, r R and rL . In the collision process
a phase-conserving relation, Eq.~82!, is preserved. The
higher-order corrections, not considered here, may give s
secondary structures for the wave forms and phase shift

VI. DISCUSSION AND SUMMARY

In this paper we have derived a DCKdV equation and
DCKP equation, describing radial and nearly radial symm
ric, long-wavelength oscillatory disturbances excited a
sustained by Marangoni stresses due to the nonuniform
tribution of surface tension along the open surface of a s
low horizontal Bénard liquid layer heated from the air side
Exact solitary wave solutions of the DCKP equation ha
been found and the solitary wave solutions of the DCK
equation have also been discussed. Furthermore, the hea
collisions between two concentric cylindrical solitary wav
have been considered and their solitonic character is
played.

For a Newtonian, incompressible shallow liquid lay
bounded below by a solid support where temperature is h
constant and above with a free, deformable surface, a lo
wavelength oscillatory instability occurs when the M
rangoni number reaches a critical value. We have shown
radially symmetric, weakly nonlinear excitations satisfy t
CKdV equation. When the Marangoni number of the syst
slightly exceeds its critical value past the instability thres
old, the surface displacement is found to obey the DCK
equation~30!. It is a combination of the CKdV equation an
a cylindrical Burgers-Kuramoto-Sivashinsky equation w
an additional term (hhj)j , nonlinear consequence of the Ma
rangoni effect. Nearly radially symmetric solutions ha
been obtained. These exact solutions aree dependent with
negative powers thus being nonperturbative.

We have considered the head-on collision of two conc
tric cylindrical solitary waves by using an extende
Poincare´-Lighthill-Kuo method. The results show that the
are some new geometric and dynamic effects, given by E
~80!–~82!. The phase shifts of the solitary waves in head-
collisions are shown to be proportional tor 21/3 and also
depend on their initial positions.

Cylindrical solitons in dissipation-free systems have be
widely studied both theoretically and experimentally. T
CKdV and CKP equations are nonautonomous general
tions of the standard KdV and KP equations and they
also completely integrable. The DCKdV equation~30! as
well as the DCKP equations~32! and ~34! derived in this
paper include nonlinearity, dispersion, effect of geometri
distortion, instability, and dissipation. They are the natu
dissipative generalizations of the CKdV and CKP equatio
incorporating an input-output energy balance, hence diss
tion in the Bénard-Marangoni problem. Our theoretical stud
of the dissipative cylindrical solitary waves and the
head-on interactions given here is promising for guiding n
experimental findings about the solitary waves in drive
dissipative systems. Linde and co-workers@19–23# have ob-
served solitonlike behavior with solitary waves and wa
trains in a Be´nard-Marangoni convecting system with an
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without cylindrical geometry. Unfortunately, there is still n
enough quantitative information in Refs.@22,23# about the
cylindrical case~Fig. 1! to allow comparison with our theo
retical predictions. However, work still in progress@22,23#
supports our findings.
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APPENDIX A

The functionsTj (z) andPj (z) ( j 50,1,2, . . . ) used in the
main text are defined by

Tj~z!5E
0

z

dz1E
1

z1
dz2Tj 21~z2!5E

0

z

dz1Pj~z1!, ~A1!

Pj~z!5E
1

z

dz1Tj 21~z!, ~A2!

T21~z!5z. ~A3!

From Eqs.~A1!–~A3! it follows that

T0~z!5
1

3!
~z323z!, ~A4!

T1~z!5
1

5!
~z5210z3125z!, ~A5!

T2~z!5
1

7!
~z7221z51175z32427z!, ~A6!

...

and

P0~z!5
1

2!
~z221!, ~A7!

P1~z!5
1

4!
~z426z215!, ~A8!

P2~z!5
1

6!
~z6215z4175z2261!, ~A9!

... .
.
-

o

ed

APPENDIX B

For convenience and generalization for our analysis
extend the DCKP equation~32! here to the more genera
form

]

]x F]h

]t
1

1

2t
h1b1h

]h

]x
1b2

]3h

]x3 1b3

]2h

]x2 1b4

]4h

]x4

1b5

]

]x S h
]h

]xD G1
1

2t2

]2h

]y2 50, ~B1!

whereb j ( j 51, . . . ,5) areconstants depending on the co
responding physical system. For traveling-wave solutions
anticipate that the velocity of the waves may have a poss
y dependence due to the last term in Eq.~B1!. Thus we
assume

z5x2 f ~y!t, h5h~z,t !, ~B2!

wheref (y) is a function yet to be determined. Then Eq.~B1!
is transformed to

]

]z F]h

]t
1b1h

]h

]z
1b2

]3h

]z3 1b3

]2h

]z2 1b4

]4h

]z4

1b5

]

]z S h
]h

]zD G2
1

2t S d2f

dy221D ]h

]z

1F1

2 S d f

dyD
2

2 f ~y!G ]2h

]z2 50. ~B3!

In order to eliminate the variable-coefficient terms of E
~B3!, we set

d2f

dy22150,
1

2 S d f

dyD
2

2 f ~y!50. ~B4!

It is easy to get the solution forf (y) as

f ~y!5 1
2 y2. ~B5!

Thus for Eq.~B1! we have

]h

]t
1b1h

]h

]z
1b2

]3h

]z3 1b3

]2h

]z2 1b4

]4h

]z4 1b5

]

]z S h
]h

]zD
50, ~B6!

with z5x2 1
2 y2t. Equation~B6! is just the dissipative KdV

equation@17,18#.
We use the tanh-function ansatz@25# to solve Eq.~B6!.

For the traveling-wave solutionh(z,t)5h(h)5h(kz1vt),
Eq. ~B6! becomes

vh1 1
2 b1kh21b2k3hhh1b3k2hh1b4k4hhhh1b5k2hhh

5C, ~B7!

after integrating once with respect toj, whereC is an inte-
gration constant. Based on the consideration of the bala
between the highest-order derivative and the highest-o
nonlinearity in Eq.~B7!, we make the assumption

h~z,t !5h~h!5A01A1 tanhh1A2 tanh2 h, ~B8!
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with Aj ( j 50,1,2) constants yet to be determined. By su
stituting Eq.~B8! into Eq.~B7! and equating the coefficient
of tanhj h ( j 50,1, . . .,5), weobtain a set of algebraic equa
tions forAj ( j 50,1,2),k, v, andC. Solving these equation
we obtain their solutions in the following.

~i! Whenb2b5Þb1b4 , we have

A052
b3

b5
1

1

25b4b5
3 ~b2b52b1b4!~26b1b42b2b5!,

~B9!

A156
6~b2b52b1b4!2

25b4b5
3 , ~B10!

A252
6~b2b52b1b4!2

5b4b5
3 , ~B11!

k56
b2b52b1b4

10b4b5
, ~B12!
k

ys

ys

ee
-

-
v56

b1~b2b52b1b4!

40b4b5
4 F4b31

1

5b4
~b2b52b1b4!

3~2b2b5215b1b4!G . ~B13!

The expression ofC is not needed and is not given explicitl
here.

~ii ! If b2b55b1b4 , one has

A052
1

b5
~b328b4k2!, ~B14!

A150, ~B15!

A252
12

b5
b4k252

12

b1
b2k2, ~B16!

v5
b2b3

b4
, ~B17!

with k being arbitrary in this case.
s.
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