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We consider a motionless Newtonian and incompressible shallow liquid layer bounded below by a bottom
plate where temperature is held fixed and above with a free deformable surface whose tension is linearly
temperature dependent and on which the heat flux is fixed. When the dimensionless surface tension gradient,
measured by a Marangoni number, slightly exceeds its critical value, radially symmetric, long-wavelength
excitations obey a dissipative cylindrical Korteweg—de ViBXKdV) equation. A dissipative cylindrical
Kadomtsev-PetviashviliDCKP) equation is also derived for nearly radially symmetric disturbances. Exact
solitary wave solutions of the DCKP equation are found and the solitary wave solutions of the DCKdV
equation are also discussed. Finally the head-on collision between two concentric cylindrical solitary waves is
considered and its solitonic character is display&d.063-651X98)10304-3

PACS numbd(s): 47.20.Ky, 47.35+i

[. INTRODUCTION possibility of cylindrical solitons excited indriven-
dissipativesystems.

Solitons in physical systems without dissipation and ef- In recent years, attention has been paid to oscillatory in-
fects of geometrical distortion have been intensively studiedstabilities in fluid layers. One of the interesting examples is
It was shown that the evolution of weakly nonlinear, longBenard-Marangoni convectiofl1-18. When heating an
shallow water waves satisfies the Korteweg—de V{iedV) open horizontal liquid layer from the air side, as a first insta-
equation[1] or the Kadomtsev-PetviashvilKP) equation bility one expects oscillatory Marangoni-Bard convection
[2]. When the effects of geometrical distortion on propagatwhile in the opposite case we expect a stationary convective
ing gravity waves, capillary waves, or gravity-capillary pattern(Benard cell$ [13—17. The excitations generated by
waves are comparable with those of amplitude nonlinearitysuch an instability may be capillary-gravity waves with long
and phase dispersion, it is not uncommon to find that itavavelength sustained by the Marangoni thermocapillary ef-
mathematical description can be reduced to some form dect[15]. In Cartesian geometry, it has been shown that the
variable-coefficient KdV equatiof8]. For radially propagat- nonlinear evolution of the surface waves in shallow liquid
ing waves, a cylindrical Korteweg—de Vrig€KdV) equa- layers obeys a dissipative KdV equation when the Ma-
tion was derived by Maxon and Viece[W] for ion-acoustic  rangoni number of the system slightly exceeds the instability
waves in collisionless plasma and by MilgS] for free-  threshold[16—1§. These studies predicted the existence of
surface gravity waves in an ideal, viscous-free fluid. Cylin-KdV-like solitary waves in driven-dissipative systems and
drical solitons of the CKdV type have been realized in aalready have promising qualitative agreement with experi-
number of collisionless plasma and water wave experimentsnental result§19—27. Figure 1 is an illustration of the time
and the agreement with theory is generally gg6di The evolution of a cylindrical solitary wave in a Bard-
cylindrical Kadomtsev-Petviashvil[CKP) and its higher- Marangoni geometry23]. The wave is obtained by adsorb-
order generalization also have been obtained in R&§] ing and subsequently absorbing pentane vapor on a shallow
for inviscid surface waves in shallow water. An internal- toluene liquid layer. The experimental setup for observing
wave CKdV equation for an ideal, density-stratified fluid hassuch a wave can be found in RE22]. Unfortunately there is
also been derived recent]@]. Cylindrical solitons of KdV  not enough quantitative analysis to allow comparison with
type in the vortex dynamics of an ultraclean type-Il super-theory. As experiments are under way, in this paper we shall
conductor have also been defindd]. Here we explore the address theoretical questions about cylindrical solitary wave
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mation; T is temperature and is the normal outward unit
vector to the upper surface. We assume thiatsmall, which
means that we haveshallowliquid layer, hence the possible
motion at the open air-liquid surface is dominated by the
surface tension gradief¥arangoni effegt Thus we neglect
buoyancy but not gravity kept at the air-liquid interface and
take all material properties of the liquid, like its densjty
viscosity u, and thermal diffusivityy as constant$Bouss-
inesq approximation except for the surface tensianwhich
(b) linearly varies with the temperaturer= oo+ y(T—Ty) (v
<0).

We start with a motionless conducting base state0,
Ts(2)=To+ B(z—d), andpy(z) =po—pg(z—d), whereT,
andp, are reference values of the temperature and pressure,
respectively. We introduce dimensionless quantities using
suitable scaledd for length, x/d for velocity, d?/ y for time,
wx/d? for pressure, angd for temperature. Then in cylin-
drical coordinates the equations of motion governing distur-
bances upon the base state are

1d(rv,) 1dvy, g

(¢) r o T &¢+ az 2 @
FIG. 1. Surface tension gradient-drivéidarangoni stregscy- 2
lindrical solitary wave traveling inward in a ‘Bard layer where i &_ Vg | _ 5_p+A _ 2 M_ Ur 2
pentane vapor is absorbed on liquid toluene. The white aneg) Pr\ ot r/ o UrT 2 dd r2 )
represents the amplitude pe#surface deformation and pentane
concentratiop of the solitary wave on the surface of the toluene 1 A 1 1 dp 2 v, vy
layer. The time difference between the images fr@nto (c) is Briat TrUe)T T 9 Vot 2 76 T2 3
0.25 s. Pictures obtained by shadowgraph method shining light
from below. 1 oo, p
5 or =" 5, T Av,, 4
in Benard-Marangoni convection that hopefully would be ad- Pr ot 9z
dressed by the experiments in the near future.
We extend the analysis used in Reff4,8] to a driven- £=AT—UZ (5)

dissipative system to investigate the radially or nearly radi- at
ally propagating capillary-gravity waves in the Marangoni- ) ) )
Benard convection. In Sec. Il we give the formulation of the Wherev=(v,,v4,v;) represents the dimensionless fluid ve-
problem, including the basic equations and the boundar{PCity- Expecting no confusion in the reader, we have used
conditions in cylindrical coordinates. In Sec. Il we introduce the same notations for the scaled dimensionless variables.
an asymptotic expansion for long-wavelength excitations and "€ boundary conditions on the open surfage-1
derive a dissipative cylindrical Korteweg—de Vries Th(r.¢.t) are
(DCKdV) and a dissipative cylindrical Kadomtsev-

Petviashvili(DCKP) equation for cylindrical and nearly cy- ﬂ dh vy ﬂ_

vy —+ — =Uyg, 6
lindrical symmetric disturbances, respectively. In Sec. IV we gt "o r dp F ©
give some exact solitary wave solutions of the DCKP equa-
tion and the qualitative feature of solitary wave solutions for dhot LohaT g @
the DCKdV equation is also discussed. In Sec. V we study a ar  r2apap dz '
the head-on collision of two concentric cylindrical solitary
waves. Finally, in the last section a summary of our results 2 [[on\2 v, 1 [oh\?[1lavy v\ dv,
and a discussion of their relevance to experiment is provided®=CGh+ iz || 77| -+ 72 96 \T 96 T )Tz

1ohoh (1 &v, &vd, Ud,
Il. FORMULATION OF THE PROBLEM -4 ———
- _ rordep\r d¢p  or r
Letus co_nS|der an |n_f|n|te_ly e_:xtended ho_rlz_ontal Ia_yer_of a 10h (dv, 1av,| oh[ov, av,
Newtonian incompressible liquid open to air in a cylindrical | =22 T
geometry. The bottom of the layez£0) is flat while its rag\odz rdp) dr\dr oz
upper surfacd z=d+h(r,,t)] is deformable and is sub- 1 d N d N
jected to a constant heat flux, i.en-(V) T= 8= const on the —[K™=M(T+h)] ar \ a(aniar) + 96 \ a(aniad)

surface. Here, r, ¢, andt are vertical, radial, polar angle,
and time coordinates, respectivetyis the depth of the lig- E oN ®)
uid at resth is the time- and space-dependent surface defor- r g(ohlar)|’
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oh (dv, dv,\ 1h (1 c?vr+ Wy vy u@=cOhO(&ry), wO=—cOhPz, (12
ar \dz or rogp\r d¢p ar r
1 oh oh av¢+ 1 dv, . oh\2 3vz+f9vr) p®=Gh®), 0(°>=—c<0>h<§0)To(z), (13
rorop\dz rop o) |\ar ez

whereh(®(£,r5) is a function to be determined in a higher

order. The subscripts now represent partial derivatives. The
©  gefinition of the functionsT;(z) andP;(z) (j=0,12...)

appearing in this and the next orddeee below has been

MN dT 9T oh  oh
TMN STz T Y

200 (v, Lovy vr| oh(lov, dvy vy given in Appendix A.
F% 7 Fw T ar F% o T At order O(e), we find
2
o[ Lova) LT T oh b} wH=[-cOhM+ MO 1z+ MO To(2), (15
9zt dd r\agp oz ap )
(10) p=GhM—2cOn?, (16)

WhereN:[1+(5h/(9r)2+(1/r2)(&h/&¢)z]u2. (1) — ¢ — ~(0)n(1) 1 1 na(0)(0)

The lower boundary is taken as a good conducting solid 7= (=ch +sMThee ) To(2)
support where temperature is held fixed and, for simplicity, +[M(°)+(c(o))z]h(g?Tl(z), (17)
stress-free for the liquid. Thus an=0 we have

o, o 4 where h®M=hM)(¢ r) is left undetermined at this order.
—=0, —2=0, T=0. (1))  The solvability conditionu{”(1)=f3dz k')(z) determines
the critical (phas¢ wave velocity

From Egs.(1)—(11) we see that there are four dimension-
less parameters involved in the problem. They are the cO=+PG+M), (18
Prandtl number Pt v/y, the Galileo numbeG=gd*/ vy,
the capillary numbeK = wx/oyd, and the Marangoni num-
ber M= — yBd?/ ux. Note that the choice in the sign ¢
coupled to— vy or simply to|y] leads to the consideration of
positiveMarangoni numbers when heatifpoling the fluid
layer from abovebelow).

vz=0, Jz ' 9z

Clearly, the excitation may propagate outward or inward.
At the O(e?) order, the solvability conditioru{?(1)
=[dzUd?(z) gives the critical Marangoni numbevi(®)
=12 which shows the quantitatively drastic limitation of the
stress-free B.C(11). The solution in this order is

IIl. ASYMPTOTIC EXPANSION, DISSIPATIVE CKdV

2)— o(OR(2) 4 (20 _ a(0)(h(0))2
AND CKP EQUATIONS U=+ ¢ h T = c(hT)

T_he linear stability gnalysiEl3,14,16,1}’ shows that the _C(o>f dé(h'@+ h(°>/r3)—1?h<§1) £+ Po(2)
motionless base state is unstable to long-wavelength surface 3 3
oscillations ifM>M© whereM () depends on the bound- 0)
" - . c 1
ary condition(B.C.). In order to obtain the nonlinear evolu- - {(3pr_ 4)| = +Py(2)
tion of the wave excitations, first we consider a disturbance Pr 3
with a radial symmetry, i.e., we l&f d¢$=0, andv ,=0. We 2
introduce the multiple-scale variablgs=e(r—ct) andrg +12 ——P4(2) ]h(g?, (19)
=¢€%r, and the following scalings: 15
v, =2(UV4+euV+--), v,=EWO+ewV+-..),
w@=| —cOh@)+ 4hD — c@h® + 2¢OhOp©
p=e2(pO+epLt--r), T=e(00+egD+--1),
2,100 0 2 (2 +C(0) 1+ —— h(o) z
hze(h( )+€h(1)+...), c=cO+ 2c@ +... , 15P1 &£
M=M©O 4+ M@ ... +[12h +¢9(3—4Pr H)h]To(2)
: : —12cOpPr h{T 2
wheree is a small, ordering parameter that later on we shall CTPT hegeTa(2), (20

identify with the deviation oM from its critical valueM(©,
With these expansions, Eq&l)—(11) can then be solved p?'=Gh?—2c@hM+(8—K HhY - Gh{YPy(2),
order by order ine. The leading ordefO(1) ordel gives (21
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62 =cONOh©7+| —cOhP + 4hL — c@h(

+2¢@hOh + ¢ To(2)

15Py

4
— |p®
SRR
+[(12+ (¢ DN - 4cOPr hiQ]T(2)

12
— ¢ 12+(C(O))2+Fr h(g?gTz(Z), (22

whereh®?=h®@)(¢,r5) is an undetermined function at this
order.

At the O(€% order, the solvability conditioru{®(1)
=[3dz U3)(2) yields the equation controlling the evolution
of the functionh(®(&,r5):

dh® 0. oM@ @
T3+2_I'3h +a;h E +a2&—§3=0, (23
with
 3(G+8) o
“73(6+12) 4

1
R _c—1
as 30G+12) [24PIG+5G+288Pr+ 168—-5K™*]. (25
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anda, anda, have been given in Eq&24) and(25). For the
surface displacemert=h®+ eh®), by recombining Egs.
(23) and (26), we obtain

oh 1 o hah h a’h a*h
E-ﬁ-z—rs +aq 19_§+a2(?_§3+€ a3&—§2+a4a—§4
—{9 h—ah =0 30
+a5 ag ag ] ( )

which is a dissipative cylindrical Korteweg—de Vries equa-
tion. It is a combination of the original cylindrical KdV
equation4,5] and acylindrical Kuramoto-Sivashinsky equa-
tion, with the additional termffh,) ., nonlinear consequence
of the Marangoni effecf17].

If we look for excitations with a nearly cylindrical sym-
metry, we can choose the multiple-scale variableséas
=e(r—ct), rz=€°r, and ¢=>®,® with dy=1/e. The di-
mensionless azimuthal velocity can be expandedvgs
=3O+ ev@®+---). Then up toO(e*), for the surface
displacemenh we have

d [oh 1 A hah a°h #%h *h
&_f E-f—z—rg +a;q 6’_§+a2(9_§3+6 a3a—§2+a4a—§4
d o oh c@ 4?h o a1

tas e\ g) ||t 2z g2 =0 31

wherea; (j=1,2,3,4,5) are the same as in E§0). Equa-

Equation (23) is the well known cylindrical Korteweg—de tion (31) is a dissipative cylindrical Kadomtsev-Petviashvili
Vries equation. The appearance of such an integrable equgduation/18]. Whene=0, i.e., at the threshold of instability,
tion at the threshold of the instability is due to the fact thatEd. (31) reduces to the cylindrical Kadomtsev-Petviashvili
the energy released by the gradient of surface tendita equation given by Johnson for an ideal, viscous-free fluid
rangoni stressbalances exactly the amount of kinetic energy[7]-

dissipated by heat and viscosity. The solutionsuG?, w®,

p®, and 9 can be obtained but their concrete expressions

are omitted here.

With the above solutions we can go up@ge?) order. In
this order, the solvability condition{¥(1)=f3dz U¥(2)
yields the evolution equation fdr(®),

oh® 1 J &°hM 5*h(®
_— h — (h(ORK(D)
(?r3+2r3h +a1{9§(h h )+CY2 af3 +C¥3 0’)52
I*h© I (o0 oh©
+a40,)—§4+a5[?—§(h pY: ):0, (26)
with
P (2
a3=L, 27)
6(G+12)
= ! [268Pr+-34PFG + 408PF+ 44]
105/Pr(G +12) ’
(28
4+/Pr 29
ac= ,
> JG+12

In the (¢,7) version, Eq.(31) takes the form

h 1 3 © 8%h
_+ —_ [
or 271 Cras ag2

ah
h+ C(O)alh ﬂ_f + C(O)a’z
n

When deriving Egs(30)—(32) we have assumed a stress-
free boundary condition for the velocity field on the bottom
z=0 [see Eg(11)]. One can replace the stress-free condition
onz=0 by

i
Yz P

dh 1 azh_o
2] || T 22 902 7Y

(32

J*h d
+C(0)a4 (?_54 +C(0)a5 &_g

av,

0z

(91}0

57 (33

v,=0, Uy, =0vy.

Equation (33) yields a no-slip condition fors=« and a
stress-free condition faf=0 [24]. In some cases we can use
a slightly perturbed stress-free boundary condition by assum-
ing 6+ 0, but much smaller than unity. This kind of assump-
tion is still for simplicity in theory. However, besides under-
standing of relevant qualitative features, even quantitative
comparison with an experiment may be possil24].

When takings= (€)= €*b with b=0(1), for the sur-
face displacemertt we obtain
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7ML a0, TN f g, O Ag= a3+ 26
9E |97 T2 NTC T anh et e ag et e Clas 0=~ m(azas a1a4) (260104~ azas),
38
*ogt ® 9¢ f ° 6(aas— ayay)?
Alzi_ 2 3 3 (39)
1 ¢%h @ 25€e“a s
525520
27° 0d 6(aya5— ajay)?
S e R (49
with ag=b\Pr[2(G+12)], i.e., a new termec©agoh/9¢ 475
is added into Eq(32). _
Arlig— X1y
k=t ——F—, (41

106(1’4&’5
IV. SOLITARY WAVE SOLUTIONS OF THE DCKP
AND THE DCKdV EQUATIONS oy apas— ayaz)

The CKdV and the CKP equations in dissipation-free sys-w = 406,08
tems admit exact solitary wave solutions and they are shown (02
to be completely integrable in the sense that there is a trans- ¢
formation (e.g., inverse scattering transforrwhich would Say
convert them to an uncoupled set of ordinary differential (42)
equations for the amplitudes and phases of normal modes.

Naturally, one can pose the problem of existence of solitongn this case we see that, on the one hahd,amplitude and

(or nonlinear coherent structujer the DCKdV equation wave velocity of the kink-type solitary wave (37) are
(30) and the DCKP equatio82) or (34) in order to look for  uniquely determined by the parameters of the sysfEne

a possible relevance to experimgd@2,23. Unfortunately, solitary waves excited in integrable systems have the ampli-
solving these equations analytically is exceedingly difficulttude (and velocity solely depending on initial conditions.
because they involve nonlinearity, dissipation, dispersionHere, however, as a nonequilibrium driven system although
and variable coefficients. Although we have been unable téhere is no energy conservation yet there is a balance in the
obtain an exact solution for Eq$30) and (34), we have, energy input-output at a steady state. Energy enters in the
however, been able to find exact solitary wave solutions fofong-wave range thus helping create the solitary wave, and
the DCKP equation32) by using a variable transformation |eaks out by viscous and heat dissipation in the short-wave
and the tanh-function ansatz developed in RR28]. range[18]. On the other hand the solitary wav@?) is e

In Eq. (32) there are two terms with a variable coefficient: dependent withAy~e 2, A;~e 2, A,~e 2, k~e !, and
hg/(27) andh,,/(27%). We seek a variable transformation ¢~ e~3. Thus thesolltary wave solutlons obtained here are
wh|ch can make these terms cancel each other. This becomﬁénperturbanve Furthermore, from Eq(37) we see that the
possible if we assumesee Appendix B for the derivation  phase velocity of the solitary wave is angle dependent in the

phase. This means that the cylindrical wave will slightly de-
[=&-1d%r, h=h({, 7). (35)  form as time goes on.
(ii) The casea,as= aia,4. We get

X 4a’3+€ (a2a5—a1a4)(2a2a5— 156!161’4) .

Then the DCKP equatiofB82) is transformed to 1y 42
h=Ay+ A, tantf[ké+ (w— 2kd?) 7]

3 °h a*h =Ag+A,— A, sech[ké+ (w—1kd?)7], (43

dh dh d°h
— +¢cO — 1 ¢0 - 4
P c¥a;h 2 cVa, P €

Pasgptclaza
with
J dh
+c Qa5 — | h—||=0. (36) 1
al\ 9L Ap=—— (a3—8ayk?), (44)
a5
Equation(36) is just the dissipative KdV equatidri7,18.
The transformation(35) is similar to that used by Johnson A= — 1_2 a k= — 1_2 k2, (45)
for inviscid fluids[7]. The exact solitary wave solutions of 2 as 4 a, 2
Eq. (36) can be obtained by using the tanh-function method
(see Appendix B for details Thus we get the exact solitary _ Coazag 46
wave solutions of the DCKP equati@¢82) as follows. w= a, (46)

(i) The casex,as# aja,. We have
wherek is an arbitrary constant. In this case we haveel-

h=Ao+A, tanfké+ (w— 3kd?) 7] type, hump solitary waveThe solitary wave solutior43)
L provides a possible explanation of the cylindrical solitary
+A, tantf[ké+ (o — 3k®?) 7], (37 wave observed in experimeffig. 1). We see from Fig. 1

that the shape of the cylindrical solitary wave is slightly
with angle dependent. The exact conoidal wave solutions of the
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DCKP equation(32) can also be obtained by using the V. HEAD-ON COLLISION BETWEEN TWO DISSIPATIVE
Weiss-Tabor-Carnevale meth$a6], but we shall not do it CONCENTRIC CYLINDRICAL SOLITARY WAVES
here.

For Eq.(34) we can also use the same transformat®s)
to transfer it into

In conservative systems, one of the striking properties of
solitons is their asymptotic preservation of form following a
collision as first remarked by Zabusky and KruskaB].
This led them to the coinage of soliton. Two distinct types of

oh ah a°h 4°h d*h _di : : : : :
 cOah Z ¢y Syt e ¢ g oy + Py g one dmensmr_we}l interaction have been studied. One is the
or 74 al al al overtakingcollision and the other one is theead-oncolli-
h sion [29,30. For two-dimensional water waves, the oblique
+¢(@ g i h ‘9_ +c@agh|=0. (47) interagtion pf two Cartgsian Kdv golitary ‘waves has also
24 Z4 been investigated by Milg81]. The interaction of the Car-

tesian solitary waves in oscillatory Bard convection has

It is just the dissipative KdV equation found by Rednikov been recently considergd8,32. In this section we employ
et al. from a Benard-Marangoni convection for Cartesian ge-an extended Poincaitdghthill-Kuo (PLK) method[32,33
ometry in the case of a slightly perturbed stress-free bound© investigate the head-on collision between two concentric
ary condition on the bottorf24,27). Although we have been cylindrical surface tension gradient-driven solitary waves.
unable to obtain an exact solution of H47) yet, there exist We consider that two concentric cylindrical solitary
several numerical studies for its solitary wave soluti2ig. ~ waves, of small but finite amplitude® andL, have been
The results show that the slightly perturbed stress-free corgXcited when the Marangoni number of the system slightly
dition (i.e., ag# 0) although it helps appearing periodic wave exceeds its critical value. The solitary walRéL ) is traveling
trains does not destroy the solitary wave solutions. Thus weutward(inward from the initial point of the coordinate sys-
can safely conclude that a cylindrical solitary wave existstem. The initial position(at timet=0) of the solitary wave
when ag#0. R(L) is atr=rg(r ) with r >rg. After some time they

Now we turn our discussion to the solitary wave solutionsinteract, following ahead-oncollision, and then separate
of the DCKdV equation(30). Using a suitable Galilean away. We expect that theead-oncollision will result in

transformation and taking appropriate scales for coordinat@hase shifts in their postcollision trajectories. Hence we in-
and time variables, Eq30) can be written in the form troduce the following transformation of wave-frame coordi-
nates with the phase functions:
3 2 4 2(h2
ﬂ'f’h @+0—2+ih+6 (9_2+5'_2+ ﬁ(hz) =0, §=e(r—CRt—rR)+62®(°)(n,r3)+e3®(1)(§,77,r3)+---,
ot X ox® 2t IXs X X (50
(48)

n=e(r+ct—r )+ eV O r)+ V(g pra)+---
which is the DCKdV equation in thex(t) version. Since an (51
exact solution of Eq(48) has also been found, we turn to a
qualitative discussion of its solitary wave solutions.
Consider the time evolution of a solitary wave frdms
—o to 0. Thus the cylindrical solitary wave moves inward

wherer;=€°r, andcg andc, are constants® ) and ¥ ()
(j=0,1,2...) arefunctions yet to be determined. Thus for
the spatial and temporal derivatives we have

towards the center. Whdt|>1, the termh/(2t) in Eq. (48) 9 9 9 9 9 9
can be neglected. Thus in this case the time evolution of the -~ = 6(—+ —) +el—+0 —+‘I’(§O) |t
. . BT r € Iy ars 7 9€ an
solitary wave can be depicted by the planar dissipation- (52)
modified KdV equation for which some results on solitary
wave solutions are already knoWh8,25—-27. Such flat, sta- 9 P P P P
tionary solitary waves have the unique amplitidewhich is € “CroztoL |+ el 0 Fr cr¥ a—}
related to the paramet& as 3 n 3 K
e (53
21
AS:(S——MD)' (49 Introducing the asymptotic expansion = e?(u®+ eu®
+:+4), v,= 63(W(0)+ ew® .. Y, p= 62(p(0)+ ep(l)—l—‘ ),
_ . . T=3(004eoM+--),  h=e(hO+ehW+...), M
Stationary solitary waves exist only B<z;. When|t|  _p©) 1 2M@4... “and
~0(1), thecylindrical term in Eq.(48) begins to be essen-
tial and makes the amplitude of the solitary waves increase. cr=cO(1+ R +--+), (54)
As the amplitude increases, the velocity of the solitary wave
also increases due to the tetmh/Jx. The expected behav- c,=cO(1+eL@+-.), (55)

ior has been confirmed by our numerical simulation. At vari- _ '

ance with the solitary waves of the standard, dissipation-frewhereR") andL() (j=2,3,...) areconstants to be deter-
CKdV equation, the amplitude, and corresponding velocitymined in the next orders. With these expansions Etjs-
and width, of the solitary waves of the DCKdV equati@®) (11) with 9/d¢=0 andv ,=0 yield a hierarchy of equations
are selected by the fixed physical parameters, and the enerfly equating the powers @f To the first-order approximation
input-output balance in the system. [O(1)] we obtain the solution
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UO=cO[HO (&)~ HO(ra)],  (56) 2 [, Pr 7 o]
L e 77005 |1 e 305 M )

w®=—cOHQ- Hg‘?)])T_l(z), (57 - _ €9

(0) — (0) (0) r ]

(0)_ _ (0) _ 14(0) - i
0% = —co(H—HL) To(2), (59 (70)

h©O=H +HP, (60)
oo PMP

whereH{?) andH{) are two functions to be determined in a RO=L ~2(c)? "

higher-order approximation. Thus in the leading order we
have two cylindrical waves, one of whict]{®)(¢,r3), is
traveling outward, and the other on¢{)( 7,r3), is traveling
inward.

To the second order, we find

where @; and a, are the same as Eq&4) and (25). The
function h®) is given by

@__ Pr 9 0) )
uD=cO(5,+d,) X9~ 3,)hP = MOHO+HL) h =2(c02 G+ 5=30/H " (&ra)Hy (7r3)
X[5+Po(2)], (61) +HP(Er9) +HP (.15), (72)

W= —cO(9=,)h VT _1(2) +MOUHI+HE) ) whereH{? andH{? are two functions yet to be determined
62) in higher-order approximations.

In order to obtain a clear physical picture of the collision,
we use the asymptotic solutions of the CKdV equati@®

X[3T_1(2)+To(2)],

(1) — (1) _ 260 H(0) _14(0) . . Lo
p'=Gh 2¢7(Hi g —Hy5), (63) and (68), rather than their exact solutions which involve the
" ©) " © © Airy functions. For large ; we obtain the quasisolitary wave
0" =—c"(d;=3,)h " To(2) + (Hig+HZ,,) solutions of Eqs(67) and (68) [6],
X{EMOT(2) +[MO+(c)2]T,(2)}, (64 o3 " U3
HO = A 28| sect] | 2228 [ o
where @;+ 07,7)*l is the inverse operator ofd¢+d,) and 1 Rlrg 12a, rs

hD(¢,7,r3) is an undetermined function. The solvability

L . r 2/3
congiltlonugl)(l)zfédz UY(2) yieldsc®= Pr(G+M©®) x| & alAR(ﬂ) r3”. (73
(critical wave speed s

At order O(€?), by solving the corresponding approxi-
mate equations we obtairf?), w®, andp®. The solvabil- 213 A\ 12 3
. - @)r1v_ 1 2) . (0)_ 3L Q1AL TR
ity conditionu{?(1)=f1dz U2 (2) yields HY=A|—=]| seci ==
r3 12&2 r3
(12— M)pr 0 0 ra |23
h=—">o— fdgf d7(Hygee=Ha g0y X n—alAL(%) ra } (74)

+HP (&) +HP (r3), (65)
wherersz=€%rg andry =€°r, . Ag (AL) is the amplitude
whereH{" andH{Y are undetermined functions at this or- of the cylindrical solitary waveR (L) at the initial position
der. From Eq(65) we see that ih™® is not to be divergent r=rg (r=r). Using Eqs(69) and(70) we obtain the phase
we must seM (@ =12 as expected for stress-free B(€1).  change of the solitary waves due to the collision:
Then we have

n
O =HY(£,r9)+HE (7.1). 66  ©®=A f HP (7' r3)dn’
Mt=0
1;3 otgg)er 0(53)|, the solvability condition uf*(1) _[12A sy 1/3( MECTIREL
= [gdz U(2) results in = al H 12a, H
g 1 ) d & ra |23 A\ 12 113
—+—|+aH? — HP+a, —5z H”=0, (6 _ 8L _ i IR
(7I’3 2r3 1" ag 1 2{9§3 1 ( 7) X n a'lAL rs rs tan 12012 s
J 1 F P ra |2
o Tt HO Loy, T O X| 7lico— @A (—) raltl, (75)
(ars er) aHy” 72 HY'+ az o3 HY =0, (69 =0~ 1AL S IRE
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n
TO=A f HEP(¢' )¢’

71‘1:0

( 126(2AR) 1/2( rgR) 1/3( ’_{ ( alAR
A —] |tan
a4 r3 12052

1/2 r 1/3
( SR)

s

2/3 12 13

lsr a AR 3R

8 5‘“1‘“(:) ”W 1za2) (—)

Fag)| 23
X| €li—0— a1AR E) r3“ , (76)
whereg|_o=— 7l-o=€(r_~rg) and

A—l 1 Pr 30 7|v|<0> 7
ARG Rt S

From Egs.(50), (51), (75), and(76) we now estimate the

phase shifts in theead-oncollision process. The phase shift

AR(A)) for solitary waveR(L) is given by

1/2 r 1/3( @A, 1/2 r 1/3
v\, T

r. 2/3
E(ZC(O)t-FrR—rL)—€3a'1A|_<T) r}]

)—{ alAL)m(rL)llg
—tan —

12«, r

conli)

12a2A|_

a;

AR: _€2A(

X

€(rg—ry)

(78)
120, 1/2 e 1/3( aAg 1/2 e 1/3
—=_¢2 A _R
AL € A( al ) r tan 12012 r
e 23
X 6(—20(0)t+l’|_—l’R)—63a1AR(T) I’“
aAg 1/2 e 1/3
—tanr{ 120, (T) e(r,—rp)
e 2/3
—63011AR<T) I’“ y (79)

when returning to the original variables.
If the initial distance between the two solitary waves

andL is large enough, i.er,, —rg>1, and the observation

time t>tc=3(r_—rg) (tc is the collision timg, from Egs.
(78) and (79) we have

12a,A 1/2 r 1/3
Ap=—e22A| =225 (2] (80)
aq r
12a-A 1/2 r 1/3
A =e22A| 2R IR 81)
aq r
which satisfy
1 1 1/3 1 1 1/3
—_— | — A-I——(—) A =0. 82
wla) sl s 2
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Equationg80) and(81) show that, asymptoticallythe phase
shifts of two colliding concentric cylindrical solitary waves

in a head-on collision are proportional to 1+ and depend

on their initial positionsrg and r,_ . In the collision process,

a phase-conserving relation, E¢B2), is preserved. The
higher-order corrections, not considered here, may give some
secondary structures for the wave forms and phase shifts.

VI. DISCUSSION AND SUMMARY

In this paper we have derived a DCKdV equation and a
DCKP equation, describing radial and nearly radial symmet-
ric, long-wavelength oscillatory disturbances excited and
sustained by Marangoni stresses due to the nonuniform dis-
tribution of surface tension along the open surface of a shal-
low horizontal Baard liquid layer heated from the air side.
Exact solitary wave solutions of the DCKP equation have
been found and the solitary wave solutions of the DCKdV
equation have also been discussed. Furthermore, the head-on
collisions between two concentric cylindrical solitary waves
have been considered and their solitonic character is dis-
played.

For a Newtonian, incompressible shallow liquid layer
bounded below by a solid support where temperature is held
constant and above with a free, deformable surface, a long-
wavelength oscillatory instability occurs when the Ma-
rangoni number reaches a critical value. We have shown that
radially symmetric, weakly nonlinear excitations satisfy the
CKdV equation. When the Marangoni number of the system
slightly exceeds its critical value past the instability thresh-
old, the surface displacement is found to obey the DCKdV
equation(30). It is a combination of the CKdV equation and
a cylindrical Burgers-Kuramoto-Sivashinsky equation with
an additional termtgh,) ., nonlinear consequence of the Ma-
rangoni effect. Nearly radially symmetric solutions have
been obtained. These exact solutions amependent with
negative powers thus being nonperturbative.

We have considered the head-on collision of two concen-
tric cylindrical solitary waves by using an extended
PoincareLighthill-Kuo method. The results show that there
are some new geometric and dynamic effects, given by Egs.
(80)—(82). The phase shifts of the solitary waves in head-on
collisions are shown to be proportional to ¥ and also
depend on their initial positions.

Cylindrical solitons in dissipation-free systems have been
widely studied both theoretically and experimentally. The
CKdV and CKP equations are nonautonomous generaliza-
tions of the standard KdV and KP equations and they are
also completely integrable. The DCKdV equati¢80) as
well as the DCKP equation&32) and (34) derived in this
paper include nonlinearity, dispersion, effect of geometrical
distortion, instability, and dissipation. They are the natural
dissipative generalizations of the CKdV and CKP equations
incorporating an input-output energy balance, hence dissipa-
tion in the Baard-Marangoni problem. Our theoretical study
of the dissipative cylindrical solitary waves and their
head-on interactions given here is promising for guiding new
experimental findings about the solitary waves in driven-
dissipative systems. Linde and co-workgt8—23 have ob-
served solitonlike behavior with solitary waves and wave
trains in a Beard-Marangoni convecting system with and
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without cylindrical geometry. Unfortunately, there is still not APPENDIX B

enough guantitative information in Refl22,23 about the
cylindrical case(Fig. 1) to allow comparison with our theo-
retical predictions. However, work still in progreg22,23

For convenience and generalization for our analysis we
extend the DCKP equatiof82) here to the more general

supports our findings. form
g [oh 1 oh ah a’h a*h
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responding physical system. For traveling-wave solutions we

anticipate that the velocity of the waves may have a possible

%%dependence due to the last term in EB1). Thus we
sume

wheref(y) is a function yet to be determined. Then Eg1)

APPENDIX A is transformed to
3 2 4
The functionsT;(z) andP;(z) (j=0,1,2 . ..) used in the 4 |dh dh ah h d'h
main text are defined by oz |t TP Gy T B2 Ga B Gz Ba g
z 7 z J oh 1 [d*f dh
Ti(z):jodzlfl deTj—l(Zz):fodzlpj(Zl), (A1) +Bs o7 h oz)| 2t\dy? ) gz
+ (fzf()&ZhO (B3)
z = | 5= —f(y)| —==0.
Pj(z)=J’ dz;T;_4(2), (A2) 2 \dy 9z°
1
In order to eliminate the variable-coefficient terms of Eq.
T_.(2)=z (A3) (B3), we set
From Egs.(A1)—(A3) it follows that d’f 1=0 ! df)z f(y)=0 B4
1 . .
To(2)= 3 (z3—-32), (A4) It is easy to get the solution fdi(y) as
f(y)=3y? (B5)
1
Ti(2)= 5 (z°—102%+252), (A5)  Thus for Eq.(B1) we have
ahﬂg N ah+B a3h+'8 02h+ﬁ (94h+l3 d (h ah)
1 PN TP 3 T3 s T Pa 72T Ps | N
TA2)= = (7 -215+ 1753 4272),  (AG) o gz Tt oz 7z 9z 9z oz
' =0, (B6)

with z=x— 3y?t. Equation(B6) is just the dissipative KdV
equation[17,18§|.

and We use the tanh-function ansdi25] to solve Eq.(B6).
For the traveling-wave solutioh(z,t) =h(#)=h(kz+ wt),

1 Eg. (B6) becomes
Po(2)= 57 (1), (a7)  E9 (B9
wh+ %ﬂlkh2+ ﬂ2k3h7]7]+ ngzhn‘l' ﬁ4k4h7]7]77+ ﬂ5k2h h7/
1 =
Pi(2)= 4 (2'~62°+5), (A8) < (B7)

after integrating once with respect §owhereC is an inte-
1 gration constant. Based on the consideration of the balance
P,(2)= &l (z8—152*+ 752 61), (A9)  between the highest-order derivative and the highest-order
: nonlinearity in Eq.(B7), we make the assumption

h(z,t)=h(7n)=Ao+A,; tanhp+A, tanit », (B8)
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with A; (j=0,1,2) constants yet to be determined. By sub- B1(B2B85— B1B4) 1

stituting Eq.(B8) into Eq.(B7) and equating the coefficients w=* 4085 [4,334' 56, (B2Bs— B1B4)

of tanH % (j=0,1,...,5), weobtain a set of algebraic equa- a5 4

tions forA; (j=0,1,2),k, w, andC. Solving these equations

we obtain their solutions in the following. X(2B2B5—1561B4)
(i) When B,85# B184, we have

. (B13)

The expression of is not needed and is not given explicitly

Bs 1 here.
Ap=— E+ 256,52 (,32,35_,31,34)(263134_:32,352' ) (ii) If B2Bs=pPB1B4, ONe has
B9 1
Ag=— ,3_5 (,33_8,34k2)1 (B14)
6(8285— B1B4)°
A= i2255’8—4ﬂ§4, (B10) A=0, (B15)
o e Lo 2 o
A—— (,32/53;4’%1,34) , (B11) 2 Bs "4 B
o /3233, (B17)
o Babs—Biba @12 b
— 10B4Bs with k being arbitrary in this case.
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