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Quantum-classical correspondence of entropy contours in the transition to chaos
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Von Neumann entropy production rates of the quantized kicked rotor interacting with an environment are
calculated. A significant correspondence is found between the entropy contours of the classical and quantized
systems. This is a quantitative tool for describing quantum-classical correspondence in the transition to chaos.
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[. INTRODUCTION the investigation of chaos, especially the mechanisms in-
volved in the transition to global chaos in conservative sys-
The fundamental split between integrable and nonintetems. It is derived from the kicked rotor model of a one-
grable systems in classical mechanics has not been comprdimensional pendulum and is a Hamiltoniafarea
hensively mirrored in quantum mechanif]. The issue preserving dynamical system. Though the map has been ex-
seems to hinge on finding a suitable definition prantum  tensively analyzef12—15, here we describe some relevant
chaos. The sensitive dependence on initial conditions thaletails.
characterizes classical chaos is wholly understood in terms of The standard map can be represented by the equations of
trajectories of classical phase space points which have nmotion:
direct quantum analof?]. This has led to two distinct ways
of identifying variables to measure quantum chaos. One in- —n ﬁsin(z )
volves investigating various quantum variables that can act Prea=Pn= 57 70n),
as signatures of chaos by clearly distinguishing between @)
guantum systems whose classical counterparts are integrable On+1=0n+ Prsi(mod g=1),
and those which are nonintegrable. The implementation of an
expanding array of energy spectra properties have made thighereK is a real variable which acts as the chaos parameter.
approach highly successf(#.g., Refs[3—7]). A second ap-  with unit mass and discrete timg, and g have the same
proach seeks an intrinsically quantum definition of quantunyimensions. The phase space of the map is periodig by
chaos by investigating the quantum parallels for variablegefinition, and as a special feature of the standard map it is
such as Lyapunov exponents and various entropy measurggso periodic inp, with the same period K =0 is the case
which define and quantify chaos in classical mechanicgor a free rotor, a trivial and completely regular map. In Figs.
[1,2,8-11. 1(a)-1(c), we show the well known sequence of standard
In this paper we adopt the second approach, and develagap plots for increasing values &. The map has several
a technique involving the analysis of entropy productiongyes of symmetry and the unit periodicity in bgthand g
measures. This reveals a clear correspondence between igans that only a unit square in phase space need be viewed.
quantum and classical formulations of a seminal systerpe interval[ —3,1) is used for all results in this paper.
which has a rich structure of delicately interwoven regular,:igure ) shows the mapping whei=0.2. Much of the
and chaotic dynamics—the standard map. Section Il ﬁ:)hase space is composed of KAKolmogorov-Arnold-
briefly outlines the main gharacteristics pf the standard MaRviosen tori [3], stretching horizontally fromg=—3 to %,
and then Sec. Il B describes how classical entropy contourgng serve to isolate one region of phase space from another.
are calculated and used to give a comprehensive account hyiggic orbits in the central resonance can be easily seen, as

these characteristics. In a similar fashion, Sec. Ill A briefly\ya a5 a few other dominant nonlinear resonantssall
outlines the quantization of the standard map, and then Se%llipses} between KAM tori.

Il B describes how quantum entropy contours are generated aq K is increased, KAM tori that horizontally span the

through interaction with an environment. The similarities phase space are destroyed by resonances and are replaced
and differences between the classical and quantum entropyith smaller KAM islands. Beyond a critical value &
contours are explained in Sec. IVA, and Sec. IVB con-_q g7 the |ast phase space spanning KAM torus is broken,
cludes the paper \_N|th a discussion on the use of entropyq the map becomes globally chadiiég. 1(b)]. Now the
measures to describe quantum chaos. remaining resonances are clearly visiblesable islandsn a

chaotic seaof trajectories. On reaching =4, most of the
Il. CLASSICAL STANDARD MAP structure is wiped oufFig. 1(c)].

A. Phase space description

The standard map describes the local behavior of nonin- B. KS entropy contours

tegrable dynamical systems in the separatrix region of non- A positive Lyapunov exponent, which quantifies the ex-
linear resonances. The name results from its extensive use ponential divergence in time of two closely neighboring
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(g) K=0.2 (h) K=1.0 (i) K=4.0

FIG. 1. Quantum-classical correspondence in the standard map. Three values of the chaos pérametbown for each set of maps
clearly, showing that correspondence is accurately maintained during the transition to global@k&osClassical map in unit phase space
bounded on the intervdl-3,3) for both g andp. (d)—(f) Contour plot of KS entropy in unit phase space for the classical rfgp(i)

Contour plot of the von Neumann entropy production rate in unit phase space for the quantum kicked rotor interacting with an environment.

phase space trajectories, is a primary definition of classicahe rate of information production in the systdri7,18§.
chaos[16]. For one-dimensional maps such as the standar@hushys=0 only for completely regular dynamics. The KS
map, the positive Lyapunov exponent is equal to theentropy(also called dynamical entropy or metric entrppy
Kolmogorov-Sinai(KS) entropyhgs, which is a measure of a chaotic mapping can be calculated using the formula
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1) ¢ Ill. QUANTUM KICKED ROTOR
=lim|=|> log,l 2
his tlm = Yaln. A. Quantization

The quantized model of the standard map is governed by

where | ,=(p,)2+(59,)? is the changing distance be- the Hamiltonian
tween two initially close neighboring pointg{,q,) and I52 K o

+ 0pg,do~+ 89p) in phase spaceip and 6q are evolved " R - _
é@oiterapt(i)ngoa Iir?eo?arizepd form gf thepchaotig map. Ttas- Hsad P01 = WZCOQZWq)n;m ot=nT). (4
gent mapis rescaled after every iteration as follows: ti&
iteration of the map produces the valus, and 6q,, from  This “kicked rotor” describes a free particle of unit mass
which |, is calculated. These values are then rescaled twhich experiences impulsékicks) at intervalsT. Following
Spn=06p, /1, and 8q,= 8q,,/1,,, which are fed back into the Refs. [_21] and [22], the kinematics_ are that_ of finite-
tangent map for the next iteratidd?]. Use of the base-2 dimensional quantum mechanics with periodic boundary
logarithm in Eq.(2) allows the entropy to be measured in conditions. Position and momentum space are thus dis-

bits of information. cretized, placing the lattice sites at integer valugs-p,
The standard map is linearized to give its associate tan= D for a=—D/2,...,D/2—1. The dimensionD of
gent map Hilbert space is taken as even and, for consistency of units,

the quantum scale on phase space is taken to hé 2
= 1/D. Position and momentum basis kets are denoted by
3) |da) and[pg).
Initial states|¢,) are assumed to beoherent states
(minimum-uncertainty statg¢sThe fiducial initial coherent
which can be employed in Eq2) to calculatehys. state | o(00,) =|do.Po) is defined as the ground state of a
The tangent ma3) clearly shows that the value tf,s  special Harper operatd23], which can be displaced with the
depends on the initial position in phase spagg,(,) for the  appropriate operators to produce all the other possible initial
standard map. This is not always the casg; is generally — coherent stateRfgapy) =|da.Pp). i-€.,
used as global measure of the level of chaos in a given i mab
system, but this is only valuable if all chaotic trajectories in _ o _ian .
the system can reach into all regions of its phase space. WeIJ %{ab}>_eXF< D )exp( 2miap)exp 2miba)|iojon)-
known examples of such systems include the cat and baker’s 5

maps[19]. However forK <1 the standard map has a pre—A . h be d ibed by the densi
dominantlymixedphase space in which different chaotic re- tume t, the system can be described by the density opera-

gions are not connected. KAM tori act as boundaries, so thﬁr p(t)=[¢(1))(s(t)| which changes according to the evo-

trajectories originating in one chaotic region cannot escap tion equation
to another. This isolation inhibits the exponential divergence

of chaotic trajectories, so that the positive Lyapunov expo-

nent, and consequenthys, will vary from region to region.
The kicked top is another example of a well known mixed

(5pn+1)

(1 K cog2mq,) )(5Dn)
é\Qnﬁ—l '

1 1+K cog2mq,)/\ 6dn

p(t+T)=Uep()Ugt, (6)

where the kicked rotor unitary evolution operator,

phase space syste0]. . —ip2T iKT cog27q)
To reveal acompletedescription of the standard map at a Us=ex ex 5 . W)
specificK in terms of KS entropy, many values bkg cor- 2h 4mh

responding to many initial positions in phase space can be

plotted as a contour map on phase space. This has been done B. von Neumann entropy contours
in Figs. 1d)-1(f). Using Egs.(2) and (3), and settingt
=10 iterations, values fohyxs were calculated for each
point on a 6464 grid spanning the same unit of phase spac
and the sam& values as in Figs.(&)—1(c). Shading inten-
sity reflects the relative sizes of the KS entropygs=0 is
shown as white on the maps, while darker and darker shad
of gray reflect an increasinigks. The black areas show the
largesthyg values corresponding to the most chaotic regions hyn=—Tr(p log,p). (8)

of the standard map. The resemblance between Figs- 1

1(c) and Figs. 1d)—1(f) is striking. Stable islands in the clas- h,y is a quantative measure of disorder and can be measured
sical maps translate to stark white patches in the contoun bits. However, the unitarity of Hamiltonian dynamical
maps. This is becaudgs=0 for all periods in nonchaotic evolution dictates thalt,, remain constant at all times. The
dynamics. The chaotic sea of trajectories in the classicadituation can be altered by perturbing the system through the
maps are also faithfully reproduced as very dark patches dhteraction with an environment. Averaging over the various
similar shape and size in the contour maps. All these correpossible effects of this environment will then lead to an en-
lations indicate thahyks presented in this way can compre- tropy increase\h, which can then be employed to measure
hensively display all the essential features of the standarthe system’s chaotic nature. This is more than a convenient
map as it becomes globally chaotic. mathematical construction. To produce a quantum kicked ro-

Parallelling the classical case, we look for an entropy
measure to reveal the dynamics of the quantum system. En-
qropy in quantum statistical mechanics is referred to as von
Neumann(vN) entropyh,, (the equivalent measure in clas-
sical mechanics is the Gibbs entrgpgnd can be defined in
%&rms of the density matrig of a system as
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torinan e_xpenmental situation, the fre_e particle motion mUSEy(t+T)E(x|p_(t+T)|y)
be periodically opened up to an environment to allow the

“kick” to be introduced [24]. [Though Eq.(7) defines the M+1 P, R .

evolution operator for free motion experiencing iastanta- => - > X0l Mp()UGHa; N]y)
neousperiodic kick, it is equally valid, as long as the free =1 =1l

motion is not concurrenit7], for a finite time periodic kick =F(X,y)<X|OsP(t)Os—1|y>' (13)

which is what is required to realize this experimentdliy
doing this the environment itself effects the system whichyhere
naturally causes the entropy increase required.

Thus we choose the environmental coupling to mirror the
form of the kick in Eq.(4) viz. theq dependence and inter-  F(X,y)= 2, PaJCOS( 2aiD sin
action time. We also choose the environment model to be a =1 (14)
collection of degenerate two-state atoms with a range of in-
teraction strengths governed by a normal distribufitis is  now contains all the perturbation effects due to the environ-
a generalization of the class of environments considered thent_ This causes a VN entropy increase which can be deter-
Schack and Cave9)]), so that mined by tracing over the system, so that,

M+1

W(X+y)ﬁipw(x—y)
D ° D

. acog2mq) Ahy(nT)==Tr{p(nT)log,p(nT)], (15

int—

® D, 0,(n)d(t—nT). (9)

4772 n=— where p(nT) is the average density matrix of the system
after n time intervals.
. . ) ) _ One final step will allow us to see the quantum chaotic
Thus during thenth kick the rotorJnteracts with a single dynamics. Zurek and Pd20] conjectured that for anpen
two-state system with Pauli operatot(n) and interaction quantum system with minimal dissipation which displays
strengtha. Each of the two-state environment syAstems iSclassical chaos, theate of VN entropy productionﬁ\,N, of
equally likely to be in the “up” state|1), where g,|T) its quantum analog after an initial decoherence tigewill
=[1), or in the “down” state||), where o,||)=—||).  rise to a maximum value which is solely dependent on the
Also, « is drawn from a collection oM+ 1 independent sum of its positive Lyapunov exponents. This will continue

interaction ~ strengths  such thata=«; for j= to be the case until the system begins to approach equilib-
—M/2,....0,... M/2. The distributionP,, for a; is the  rium whenh,y will slowly decrease reaching zero at time
normal distributionN(aO,agd). tegm- In contrast, the entropy production rate of the quantum
The combined Hamiltonian for the coupled system andnalog of a regular systems will asymptotically tend to zero
environment is thus well beforetqq,. Applying this to the standard mah, for

the quantized system interacting with an environment should
be comparable to the KS entropy of its classi¢ahper-

Hiot=Hstant Hint, (100 turbed counterpart. Thus fory<nT<teqm,
and the corresponding density operator evolution equation is . Ahyy(nT)—=Ahy[(n—1)T] ~h 16
vN T KS - ( )
p(t+T)=Ua,M)p(t)Ul(a)), (11 A uniformly spaced 6464 grid of initial coherent states
(corresponding to an even spread over unit phase spase
where the combined evolution operator, numerically evolved in time. The maximum value lofy for

each evolution was plotted on a contour map in a similar
fashion to the classical case. Figurdg)t1(i) display the
results for the same three values if with D =256, «a

—ia\T COE(ZWE]) .
Us, (12 =0.001,ae=0.209, M=100, andT=1.

A7%h

Otot(a,)\)=8X[{

IV. DISCUSSION
with N e{—1,1}, is the result of measuring the two-state
environment after each interval to determine whether it is an
up or down state(As before, this same operator would result  There are remarkable similarities between Figd)21(f)
if Eq. (9) was turned on for thdinite time required for an and 1g)—1(i). For the samé& values, the size and location
experimental realization of this systenThe effect of this of the various stable islands is analogous, dark patches are
environmental coupling is to produce a multiple stochastigorevalent in the heavily chaotic regions, the axes of symme-
perturbation at the end of each time interval. After each intry are consistent, and the overall complexity of the dynam-
terval, there are B + 2 different measurement results lead- ics is clearly visible in both.
ing to 2M + 2 possible pure states for the system. Averaging There are also differences. The qguantum contour maps are
over all these possible outcomes in the position basis pragenerally much smoother than their classical counterparts.
duces the density operator evolution equation This is because each initial coherent state in the quantum

A. Quantum-classical correspondence



57 QUANTUM-CLASSICAL CORRESPONDENCE OF ENTRORP. .. 5471

system has a support area causing their evolution to imitatand classical entropy measures foaaageof K values. Even
that of adensityof points on phase space. Thus neighboringmore interesting is the kicked td@0] which is described by
coherent states will fail to achieve dramatically differenta map on the unit sphere. Like the standard map, it has a
rates of VN entropy production. Increasiyy reduces the predominantly mixed phase space for lower values of its
supports of the initial coherent states as well as reducing thehaos parameter, making it ideal for comparing classical and
overlap between neighboring states. It was found that this leguantum entropy contours. The kicked top also has a special
to a reduction in the smoothness of the quantum CONtOUFgrder-within-chaos” [27] feature. In generahys increases
maps, causing them to resemble the classical contour MaPSonotonically with the chaos parametérof a given map.
more greatly. However, the kicked top has islands of stability reappearing

The proczss.%f ca!cqlatlng thesez ent'r:opy contom:rK Mapg,y specific higheK values when the map is already globally
was repeated with variations M(a, ayey). FOr ag,asq<K,  cpaniic This leads to an intricate relationship betwbgg

when any entropy increase is due pflmar|ly _to th? qhaOt'Cand K which can be compared to numerical results for the
dynamics of the system and not the interaction, similar re-

sults were achieved. correspondingh,y. We will discuss the results for these
maps elsewhere.

Finally, KS entropy is information-theoretically defined
as the rate of production of Shannon entrd@algo called the

We have demonstrated that an entropy based approaghannon information measorg28]. Thus within well de-
allows classical chaotic dynamics to be measured accuratefined parameters, we have shown that the quantum-classical
in a trajectory independent way which in turn makes it emi-correspondence of chaotic dynamical systems may be real-
nently suitable to measuf@5] and analyze the correspond- jzed by viewing the Shannon entropy production rate as the
ing quantum chaotic dynamics. We have also given numerigjassical measure corresponding to the quantum measure of
cal support to the Zurek and Paz conjecture in a chaotighe yon Neumann entropy production rate. These results pro-
system which folds phase space, a characteristic that thejige an intrinsically quantum diagnostic for investigating the

B. Conclusion

conjecture did not directly take into account. chaotic nature of quantum systems.
Entropy measures for diagnosing chaotic dynamics can
also be employed in other maps. The sawtooth 4] ACKNOWLEDGMENTS
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