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Quantum-classical correspondence of entropy contours in the transition to chaos

Raphael Zarum and Sarben Sarkar
Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom

~Received 15 December 1997!

Von Neumann entropy production rates of the quantized kicked rotor interacting with an environment are
calculated. A significant correspondence is found between the entropy contours of the classical and quantized
systems. This is a quantitative tool for describing quantum-classical correspondence in the transition to chaos.
@S1063-651X~98!14905-X#

PACS number~s!: 05.45.1b, 03.65.2w
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I. INTRODUCTION

The fundamental split between integrable and nonin
grable systems in classical mechanics has not been com
hensively mirrored in quantum mechanics@1#. The issue
seems to hinge on finding a suitable definition forquantum
chaos. The sensitive dependence on initial conditions
characterizes classical chaos is wholly understood in term
trajectories of classical phase space points which have
direct quantum analog@2#. This has led to two distinct way
of identifying variables to measure quantum chaos. One
volves investigating various quantum variables that can
as signatures of chaos by clearly distinguishing betw
quantum systems whose classical counterparts are integ
and those which are nonintegrable. The implementation o
expanding array of energy spectra properties have made
approach highly successful~e.g., Refs.@3–7#!. A second ap-
proach seeks an intrinsically quantum definition of quant
chaos by investigating the quantum parallels for variab
such as Lyapunov exponents and various entropy meas
which define and quantify chaos in classical mechan
@1,2,8–11#.

In this paper we adopt the second approach, and dev
a technique involving the analysis of entropy producti
measures. This reveals a clear correspondence betwee
quantum and classical formulations of a seminal sys
which has a rich structure of delicately interwoven regu
and chaotic dynamics—the standard map. Section
briefly outlines the main characteristics of the standard m
and then Sec. II B describes how classical entropy conto
are calculated and used to give a comprehensive accou
these characteristics. In a similar fashion, Sec. III A brie
outlines the quantization of the standard map, and then
III B describes how quantum entropy contours are genera
through interaction with an environment. The similariti
and differences between the classical and quantum ent
contours are explained in Sec. IV A, and Sec. IV B co
cludes the paper with a discussion on the use of entr
measures to describe quantum chaos.

II. CLASSICAL STANDARD MAP

A. Phase space description

The standard map describes the local behavior of no
tegrable dynamical systems in the separatrix region of n
linear resonances. The name results from its extensive u
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the investigation of chaos, especially the mechanisms
volved in the transition to global chaos in conservative s
tems. It is derived from the kicked rotor model of a on
dimensional pendulum and is a Hamiltonian~area
preserving! dynamical system. Though the map has been
tensively analyzed@12–15#, here we describe some releva
details.

The standard map can be represented by the equation
motion:

pn115pn2
K

2p
sin~2pqn!,

~1!

qn115qn1pn11~mod q51!,

whereK is a real variable which acts as the chaos parame
With unit mass and discrete time,p and q have the same
dimensions. The phase space of the map is periodic inq, by
definition, and as a special feature of the standard map
also periodic inp, with the same period 1.K50 is the case
for a free rotor, a trivial and completely regular map. In Fig
1~a!–1~c!, we show the well known sequence of standa
map plots for increasing values ofK. The map has severa
axes of symmetry and the unit periodicity in bothp and q
means that only a unit square in phase space need be vie
The interval @2 1

2 , 1
2 ) is used for all results in this pape

Figure 1~a! shows the mapping whenK50.2. Much of the
phase space is composed of KAM~Kolmogorov-Arnold-
Moser! tori @3#, stretching horizontally fromq52 1

2 to 1
2 ,

and serve to isolate one region of phase space from ano
Periodic orbits in the central resonance can be easily see
well as a few other dominant nonlinear resonances~small
ellipses! between KAM tori.

As K is increased, KAM tori that horizontally span th
phase space are destroyed by resonances and are rep
with smaller KAM islands. Beyond a critical value atK
'0.97, the last phase space spanning KAM torus is brok
and the map becomes globally chaotic@Fig. 1~b!#. Now the
remaining resonances are clearly visible asstable islandsin a
chaotic seaof trajectories. On reachingK54, most of the
structure is wiped out@Fig. 1~c!#.

B. KS entropy contours

A positive Lyapunov exponent, which quantifies the e
ponential divergence in time of two closely neighborin
5467 © 1998 The American Physical Society
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FIG. 1. Quantum-classical correspondence in the standard map. Three values of the chaos parameterK are shown for each set of map
clearly, showing that correspondence is accurately maintained during the transition to global chaos.~a!–~c! Classical map in unit phase spac
bounded on the interval@2

1
2 , 1

2 ) for both q and p. ~d!–~f! Contour plot of KS entropy in unit phase space for the classical map.~g!–~i!
Contour plot of the von Neumann entropy production rate in unit phase space for the quantum kicked rotor interacting with an envi
ic
a
h

S

phase space trajectories, is a primary definition of class
chaos@16#. For one-dimensional maps such as the stand
map, the positive Lyapunov exponent is equal to t
Kolmogorov-Sinai~KS! entropyhKS, which is a measure of
al
rd
e

the rate of information production in the system@17,18#.
ThushKS50 only for completely regular dynamics. The K
entropy~also called dynamical entropy or metric entropy! of
a chaotic mapping can be calculated using the formula
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hKS5 lim
t→`

S 1

t D (n51

t

log2l n , ~2!

where l n5A(dpn)21(dqn)2 is the changing distance be
tween two initially close neighboring points (p0 ,q0) and
(p01dp0 ,q01dq0) in phase space.dp anddq are evolved
by iterating a linearized form of the chaotic map. Thistan-
gent mapis rescaled after every iteration as follows: thenth
iteration of the map produces the valuesdpn anddqn from
which l n is calculated. These values are then rescaled
d p̄n5dpn / l n anddq̄n5dqn / l n , which are fed back into the
tangent map for the next iteration@12#. Use of the base-2
logarithm in Eq.~2! allows the entropy to be measured
bits of information.

The standard map is linearized to give its associate
gent map

S dpn11

dqn11
D5S 1 K cos~2pqn!

1 11K cos~2pqn!
D S dpn

dqn
D , ~3!

which can be employed in Eq.~2! to calculatehKS.
The tangent map~3! clearly shows that the value ofhKS

depends on the initial position in phase space (p0 ,q0) for the
standard map. This is not always the case.hKS is generally
used as aglobal measure of the level of chaos in a give
system, but this is only valuable if all chaotic trajectories
the system can reach into all regions of its phase space.
known examples of such systems include the cat and bak
maps@19#. However forK,1 the standard map has a pr
dominantlymixedphase space in which different chaotic r
gions are not connected. KAM tori act as boundaries, so
trajectories originating in one chaotic region cannot esc
to another. This isolation inhibits the exponential divergen
of chaotic trajectories, so that the positive Lyapunov ex
nent, and consequentlyhKS, will vary from region to region.
The kicked top is another example of a well known mix
phase space system@20#.

To reveal acompletedescription of the standard map at
specificK in terms of KS entropy, many values ofhKS cor-
responding to many initial positions in phase space can
plotted as a contour map on phase space. This has been
in Figs. 1~d!–1~f!. Using Eqs.~2! and ~3!, and settingt
5105 iterations, values forhKS were calculated for each
point on a 64364 grid spanning the same unit of phase sp
and the sameK values as in Figs. 1~a!–1~c!. Shading inten-
sity reflects the relative sizes of the KS entropy.hKS50 is
shown as white on the maps, while darker and darker sha
of gray reflect an increasinghKS. The black areas show th
largesthKS values corresponding to the most chaotic regio
of the standard map. The resemblance between Figs. 1~a!–
1~c! and Figs. 1~d!–1~f! is striking. Stable islands in the clas
sical maps translate to stark white patches in the con
maps. This is becausehKS50 for all periods in nonchaotic
dynamics. The chaotic sea of trajectories in the class
maps are also faithfully reproduced as very dark patche
similar shape and size in the contour maps. All these co
lations indicate thathKS presented in this way can compr
hensively display all the essential features of the stand
map as it becomes globally chaotic.
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III. QUANTUM KICKED ROTOR

A. Quantization

The quantized model of the standard map is governed
the Hamiltonian

Ĥstan~ p̂,q̂,t !5
p̂2

2
2

K

4p2
cos~2pq̂! (

n52`

`

d~ t2nT!. ~4!

This ‘‘kicked rotor’’ describes a free particle of unit mas
which experiences impulses~kicks! at intervalsT. Following
Refs. @21# and @22#, the kinematics are that of finite
dimensional quantum mechanics with periodic bound
conditions. Position and momentum space are thus
cretized, placing the lattice sites at integer valuesqa5pa
5a/D for a52 D/2 , . . . ,D/221. The dimensionD of
Hilbert space is taken as even and, for consistency of un
the quantum scale on phase space is taken to be 2p\
5 1/D. Position and momentum basis kets are denoted
uqa& and upa&.

Initial states uc0& are assumed to becoherent states
~minimum-uncertainty states!. The fiducial initial coherent
state uc0$00%&5uq0 ,p0& is defined as the ground state of
special Harper operator@23#, which can be displaced with th
appropriate operators to produce all the other possible in
coherent statesuc0$ab%&5uqa ,pb&, i.e.,

uc0$ab%&5expS ipab

D Dexp~22p iap̂!exp~2p ibq̂!uc0$00%&.

~5!

At time t, the system can be described by the density ope
tor r(t)5uc(t)&^c(t)u which changes according to the ev
lution equation

r~ t1T!5Ûsr~ t !Ûs
21 , ~6!

where the kicked rotor unitary evolution operator,

Ûs5expS 2 i p̂2T

2\
D expS iKT cos~2pq̂!

4p2\
D . ~7!

B. von Neumann entropy contours

Parallelling the classical case, we look for an entro
measure to reveal the dynamics of the quantum system.
tropy in quantum statistical mechanics is referred to as
Neumann~vN! entropyhvN ~the equivalent measure in clas
sical mechanics is the Gibbs entropy!, and can be defined in
terms of the density matrixr of a system as

hvN52Tr~r log2r!. ~8!

hvN is a quantative measure of disorder and can be meas
in bits. However, the unitarity of Hamiltonian dynamic
evolution dictates thathvN remain constant at all times. Th
situation can be altered by perturbing the system through
interaction with an environment. Averaging over the vario
possible effects of this environment will then lead to an e
tropy increaseDhvN which can then be employed to measu
the system’s chaotic nature. This is more than a conven
mathematical construction. To produce a quantum kicked
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tor in an experimental situation, the free particle motion m
be periodically opened up to an environment to allow
‘‘kick’’ to be introduced @24#. @Though Eq.~7! defines the
evolution operator for free motion experiencing aninstanta-
neousperiodic kick, it is equally valid, as long as the fre
motion is not concurrent@7#, for a finite time periodic kick
which is what is required to realize this experimentally.# In
doing this the environment itself effects the system wh
naturally causes the entropy increase required.

Thus we choose the environmental coupling to mirror
form of the kick in Eq.~4! viz. theq dependence and inter
action time. We also choose the environment model to b
collection of degenerate two-state atoms with a range of
teraction strengths governed by a normal distribution~this is
a generalization of the class of environments considered
Schack and Caves@9#!, so that

Ĥ int5
a cos~2pq̂!

4p2
^ (

n52`

`

ŝz~n!d~ t2nT!. ~9!

Thus during thenth kick the rotor interacts with a singl
two-state system with Pauli operatorŝz(n) and interaction
strengtha. Each of the two-state environment systems
equally likely to be in the ‘‘up’’ stateu↑&, where ŝzu↑&
5u↑&, or in the ‘‘down’’ state u↓&, where ŝzu↓&52u↓&.
Also, a is drawn from a collection ofM11 independent
interaction strengths such thata5a j for j 5
2 M /2 , . . . ,0, . . . ,M /2. The distributionPa j

for a j is the

normal distributionN(a0 ,asd
2 ).

The combined Hamiltonian for the coupled system a
environment is thus

Ĥ tot5Ĥstan1Ĥ int , ~10!

and the corresponding density operator evolution equatio

r~ t1T!5Û tot~a,l!r~ t !Û tot
21~a,l!, ~11!

where the combined evolution operator,

Û tot~a,l!5expS 2 ialT cos~2pq̂!

4p2\
D Ûs , ~12!

with lP$21,1%, is the result of measuring the two-sta
environment after each interval to determine whether it is
up or down state.~As before, this same operator would res
if Eq. ~9! was turned on for thefinite time required for an
experimental realization of this system.! The effect of this
environmental coupling is to produce a multiple stochas
perturbation at the end of each time interval. After each
terval, there are 2M12 different measurement results lea
ing to 2M12 possible pure states for the system. Averag
over all these possible outcomes in the position basis
duces the density operator evolution equation
t
e

h

e

a
-

by

s

d
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n
t

c
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g
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r̄xy~ t1T![^xur̄~ t1T!uy&

5 (
j 51

M11 Pa j

2 (
l521,1

^xuÛ tot~a j ,l!r̄~ t !Û tot
21~a j ,l!uy&

5F~x,y!^xuÛsr̄~ t !Ûs
21uy&, ~13!

where

F~x,y!5 (
j 51

M11

Pa j
cosS 2a jDp sin

p~x1y!

D
sin

p~x2y!

D D
~14!

now contains all the perturbation effects due to the envir
ment. This causes a vN entropy increase which can be de
mined by tracing over the system, so that,

DhvN~nT!52Tr@ r̄~nT!log2r̄~nT!#, ~15!

where r̄(nT) is the average density matrix of the syste
after n time intervals.

One final step will allow us to see the quantum chao
dynamics. Zurek and Paz@10# conjectured that for anopen
quantum system with minimal dissipation which displa
classical chaos, therate of vN entropy production,h̃vN , of
its quantum analog after an initial decoherence timetd , will
rise to a maximum value which is solely dependent on
sum of its positive Lyapunov exponents. This will continu
to be the case until the system begins to approach equ
rium when h̃vN will slowly decrease reaching zero at tim
teqm. In contrast, the entropy production rate of the quant
analog of a regular systems will asymptotically tend to ze
well beforeteqm. Applying this to the standard map,h̃vN for
the quantized system interacting with an environment sho
be comparable to the KS entropy of its classical~unper-
turbed! counterpart. Thus fortd,nT!teqm,

h̃vN'
DhvN~nT!2DhvN@~n21!T#

T
'hKS. ~16!

A uniformly spaced 64364 grid of initial coherent states
~corresponding to an even spread over unit phase space! was
numerically evolved in time. The maximum value ofh̃vN for
each evolution was plotted on a contour map in a sim
fashion to the classical case. Figures 1~g!–1~i! display the
results for the same three values ofK with D5256, a0
50.001,asd50.2a0, M5100, andT51.

IV. DISCUSSION

A. Quantum-classical correspondence

There are remarkable similarities between Figs. 1~d!–1~f!
and 1~g!–1~i!. For the sameK values, the size and locatio
of the various stable islands is analogous, dark patches
prevalent in the heavily chaotic regions, the axes of symm
try are consistent, and the overall complexity of the dyna
ics is clearly visible in both.

There are also differences. The quantum contour maps
generally much smoother than their classical counterpa
This is because each initial coherent state in the quan
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system has a support area causing their evolution to im
that of adensityof points on phase space. Thus neighbor
coherent states will fail to achieve dramatically differe
rates of vN entropy production. IncreasingD reduces the
supports of the initial coherent states as well as reducing
overlap between neighboring states. It was found that this
to a reduction in the smoothness of the quantum con
maps, causing them to resemble the classical contour m
more greatly.

The process of calculating these entropy contour m
was repeated with variations toN(a0 ,avar

2 ). For a0 ,asd!K,
when any entropy increase is due primarily to the chao
dynamics of the system and not the interaction, similar
sults were achieved.

B. Conclusion

We have demonstrated that an entropy based appr
allows classical chaotic dynamics to be measured accura
in a trajectory independent way which in turn makes it em
nently suitable to measure@25# and analyze the correspond
ing quantum chaotic dynamics. We have also given num
cal support to the Zurek and Paz conjecture in a cha
system which folds phase space, a characteristic that
conjecture did not directly take into account.

Entropy measures for diagnosing chaotic dynamics
also be employed in other maps. The sawtooth map@26#
~which becomes Arnold’s cat map@19# for a specific value of
the chaos parameterK) does not have a mixed phase spa
so entropy contours would be of little interest. Howev
correspondencecan be investigated by comparing quantu
si-
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and classical entropy measures for arangeof K values. Even
more interesting is the kicked top@20# which is described by
a map on the unit sphere. Like the standard map, it ha
predominantly mixed phase space for lower values of
chaos parameter, making it ideal for comparing classical
quantum entropy contours. The kicked top also has a spe
‘‘order-within-chaos’’ @27# feature. In generalhKS increases
monotonically with the chaos parameterK of a given map.
However, the kicked top has islands of stability reappear
for specific higherK values when the map is already global
chaotic. This leads to an intricate relationship betweenhKS

and K which can be compared to numerical results for t

correspondingh̃vN . We will discuss the results for thes
maps elsewhere.

Finally, KS entropy is information-theoretically define
as the rate of production of Shannon entropy~also called the
Shannon information measure! @28#. Thus within well de-
fined parameters, we have shown that the quantum-clas
correspondence of chaotic dynamical systems may be r
ized by viewing the Shannon entropy production rate as
classical measure corresponding to the quantum measu
the von Neumann entropy production rate. These results
vide an intrinsically quantum diagnostic for investigating t
chaotic nature of quantum systems.
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