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Semiclassical theory of flexural vibrations of plates

E. Bogomolny and E. Hugues
Division de Physique The´orique, Institut de Physique Nucle´aire, 91406 Orsay Cedex, France

~Received 14 February 1997; revised manuscript received 6 January 1998!

We study the biharmonic equation of flexural vibrations of elastic plates by a semiclassical method that can
easily be generalized for other models of wave propagation. Three terms of the asymptotic number of levels for
plates with smooth boundaries are derived and the trace formula for the density of states is obtained. The main
difference between this formula and the Gutzwiller trace formula for billiards is the existence of a specific
phase factor obtained while reflecting from the boundary. Six hundred eigenvalues of a clamped stadium plate
are obtained by a specially developed numerical algorithm and the trace formula is assessed, looking at its
Fourier transform. An extra contribution occurs for a free plate due to the existence of boundary modes.
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I. INTRODUCTION

The semiclassical approximation via the Gutzwiller tra
formula @1# is one of the cornerstones of the modern a
proach to complicated quantum-mechanical problems~see,
e.g., @2#!. The driving ideas behind this method are ve
transparent and physically appealing. In the high-freque
limit, quantum particles have to propagate according to
rules of classical mechanics~with unavoidable complications
near singular points and points of reflection!. The main dif-
ference from classical mechanics comes from the fact
due to the linear character of the Schro¨dinger equation one
has to sum over all possible classical paths. In particular,
Green’s functionG(rW i ,rW f) of an n-dimensional quantum
problem at the leading order of the semiclassical approxi
tion can be written as the sum over all classical trajecto
connecting the initial pointrW i to the final pointrW f :

G~rW i ,rW f !5(
tr

Atre
~ i /\!Str~rW i ,rW f !2 i ~p/2!n tr. ~1!

Here Str(rW i ,rW f) is the classical action calculated along
given trajectory,Atr is connected with the current conserv
tion in the vicinity of this trajectory,

Atr5
1

i\~2p i\!~n21!/2 U 1

upW i uupW f u
det

]2Str

]rW i
']rW f

'U1/2

, ~2!

whererW' denotes the coordinates perpendicular to the tra
tory, pW is the wave vector, andn tr is the Maslov index, which
counts the points along the trajectory at which the semic
sical approximation cannot be applied.

However, all these arguments are not specific to quant
mechanical problems. Equally well they can be applied
any phenomena of wave propagation when the wavelengl
is small compared to the characteristic dimensions of a
tem. The first problem that comes to mind is the propaga
of high-frequency waves in elastic media. This is one of
oldest wave problems and it is the subject of many textbo
~see, e.g.,@3–6#!. Acoustics, aeronautics, and seismology a
just a few examples of fields where high-frequency ela
waves are important. Recent laboratory experiments of
571063-651X/98/57~5!/5404~21!/$15.00
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brational spectra of simple geometrical objects@7,8# and nu-
merical calculations of high-frequency plate vibrations@9#
strongly require the development of semi-classical theory
high-frequency elastic waves. However, the recent tools
methods thoroughly investigated in the context of quant
chaos have not been widely applied to the general case.
tempts@10,11# have concentrated only on problems with r
splitting, when waves hitting a boundary give birth to mu
tiple reflected and/or transmitted waves.

In this paper we shall focus on one of the simplest ela
problems, namely, the Kirchhoff model of transverse vib
tions of two-dimensional plates~see, e.g.,@4#!. Derived from
three-dimensional elasticity, it describes the first flexu
modes of a thin plate in the regime where the ratio of
thickness to the wavelength is relatively small. In a fort
coming paper about plate experiments@12# the effects of the
existence of different kinds of plate modes will be discuss

Let us consider a plate of thicknessh, having its unde-
flected midsurfaceD in the (x,y) plane, whose contour isC.
The main hypothesis of the classical plate theory is the c
jecture that lines normal to the midsurface stay undeform
and normal when the plate moves. The main effects
glected are the shear, which makes the direction of the li
independent, and the rotary inertia in the moment bala
equations. If a tensionT per unit length of the boundary i
applied in its plane, for small deformation, one obtains
biharmonic equation for the midsurface transverse displa
mentw„rW(x,y),t… @3–6#:

rh
]2w

]t2 ~rW,t !5TDw~rW,t !2DD2w~rW,t !, ~3!

whereD5Eh3/12(12n2) is the flexural rigidity. Herer is
the mass density,E is the Young elastic modulus, andn is
the Poisson coefficient, all characterizing the mechan
properties of the plate. When the tension dominates, or in
long-wavelength regime, one gets the membrane model
scribed by the well-known wave equation

rh
]2w

]t2 ~rW,t !5TDw~rW,t !. ~4!
5404 © 1998 The American Physical Society
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57 5405SEMICLASSICAL THEORY OF FLEXURAL VIBRATIONS . . .
In the opposite limit, when stiffness dominates, or in t
short-wavelength regime, we get the purely biharmo
equation for flexural modes, or Kirchhoff model

rh
]2w

]t2 ~rW,t !52DD2w~rW,t !. ~5!

This plate problem has multiple connections with the me
brane one. A previous study of this model was made in@9#.

The periodic solutionsw(rW,t)5W(rW )eivt have to verify
in D the spectral problem

D2W~rW !2k4W~rW !50, ~6!

where the modulusk of the wave vectorkW obeys the disper-
sion relation

k45
12r~12n2!

Eh2 v2. ~7!

For the membrane, the spectral equation is just the He
holtz equation

DW~rW !1k2W~rW !50 ~8!

or quantum billiard problem, which has been extensiv
studied in the quantum chaos field~see, e.g.,@2#!. Here the
dispersion relation takes the formk25rhv2/T.

Two conditions at the boundaryC are needed to uniquel
define the solution of the fourth-order equation~6!. Let us
define a curvilinear coordinate system where, at the bou
ary, l is the curvilinear abscissa,n the normal coordinate
positive at the interior of the domain, andK( l ) the curvature
of C. Then the standard self-adjoint boundary conditio
~see, e.g.,@13#! can be written in the following forms: a
clamped edge

W50,

]W

]n
50,

~9!

a supported edge

W50,

]2W

]n2 1n
]2W

] l 2 2nK
]W

]n
50;

~10!

and a free edge

]3W

]n3 1~22n!S ]3W

] l 2]n
1

dK

dl

]W

] l D
13K

]2W

] l 2 2~11n!K2
]W

]n
50, ~11!

]2W

]n2 1n
]2W

] l 2 2nK
]W

]n
50.

The main difference between the biharmonic plate eq
tion ~6! and the Helmholtz equation~8! is that the former can
c

-

-

y

d-

s

a-

be factorized into the Helmholtz operator and the opera
(D2k2) giving rise to exponentially decaying and increasi
waves, so the solution can be written as a sum of solution
each operator. The addition of exponential waves is then
main feature introduced in this model that is different fro
the quantum billiard problem.

The purpose of this paper is to develop the semiclass
trace formula (k→`) for the high-frequency vibrations o
the plate (v→`) that will express the density of the vibra
tional spectrum through the classical periodic orbits in co
plete analogy with the Gutzwiller trace formula for quantu
problems. We shall discuss this in such a manner that
can use them not only for this particular problem but also
many similar problems.

The plan of the paper is the following. In Sec. II w
discuss exact solutions of the wave equation near a stra
boundary for different boundary conditions. These solutio
will serve as the building block for further investigation. W
calculate the smooth part of the level density in Sec.
Section IV is devoted to the derivation of the periodic-or
contribution to the trace formula. We study an integrab
case, the disk, in Sec. V. In Sec. VI the chaotic case of
plate in the shape of the stadium is considered and a c
parison with numerical data is performed. In Appendix A w
discuss a certain convenient expression for the second
of the Weyl expansion of the smooth part of the level cou
ing function, in Appendix B we present the calculation of t
curvature contribution to the third term, and in Appendix
we describe the method used to find numerically the sp
trum of the clamped plate problem.

II. HALF-PLANE SOLUTIONS OF THE WAVE
EQUATION

We have mentioned in the Introduction that the main d
ference between the biharmonic equation of plate vibrati
and the quantum billiard equation is the existence of ad
tional exponential waves of the type exp(6kW•rW ). As these
waves are nonpropagating it is clear from physical consid
ations that~i! they can exist only near the boundary of th
plate and~ii ! only the wavesdecreasingfrom the boundary
are allowed. If these conditions are not fulfilled the dens
of vibrational energy blows up somewhere inside the pla
These simple considerations show that the structure of eig
functions of biharmonic equation~6! is the following. Far
from the boundaries a wave function is a sum over differ

propagating waves of the type exp(6ikW•rW ), as for usual bil-
liard problems. In addition, only in a layer of width of th
order of 1/k is the existence of other types of waves impo
tant. This simple picture has been clearly discussed for p
ticular examples in@14#. It means that in the semiclassic
limit, whenk→`, the solutions of a vibrational problem ca
be viewed as those of the billiard~membrane! problem, but
with different boundary conditions.

Any derivative of the fieldW(rW ) contains a term propor
tional tok. Therefore, in the semiclassical limit (k→`), the
dominant contributions come from the terms with the high
number of derivatives. From the boundary conditions~9!–
~11! it follows that in such a limit, terms that contain th
curvature of the boundary and its derivatives are negligib
which leads to the important conclusion that in the semicl
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5406 57E. BOGOMOLNY AND E. HUGUES
sical limit, the reflection coefficient from any smooth boun
ary has to be close to the one from the straight-line bou
ary. Physically, this statement is a consequence of sim
dimensional considerations. The modulusk of the wave vec-
tor is the only internal parameter with the dimension of
inverse length. Therefore, a characteristic length on wh
the fieldW is changed noticeably should be of the order
1/k, which tends to zero whenk→`. If the boundary is
smooth~i.e., far away from corners and other sharp singu
points!, the waves reflect mainly as if there were a straig
line boundary tangent to the actual one. In Appendix B
show how one can compute the corrections to this lead
term. Though this type of consideration is physically qu
natural and is at the very foundation of all semiclassical c
siderations, its mathematical proof, even in the simp
cases, is quite difficult~see@13#!, due to the asymptotic char
acter of the semiclassical series. Below we shall proc
mainly on the formal basis without the explicit estimation
next-to-leading-order terms, which, though possible, requ
quite elaborate calculations~see Appendix B!. Our purpose
is to derive the dominant term of the trace formula for vib
tional spectra of plates, the analog of the Gutzwiller tra
formula for quantum systems, without discussing the di
cult and deep problems of convergence of the resulting
pression.

We have argued that in the high-frequency limit the
flection coefficient from a smooth boundary is close to
one from a straight-line boundary~see Fig. 1!. Below we will
present the solution of this classical problem~see, e.g.,@13#!.

Let us choose thex axis along the boundary, the perpe
diculary axis being oriented towards the interior of the pla
In accordance with the above-mentioned statement, tha
only permitted exponential modes have to decay from
boundary, the solutions of the biharmonic equation~6!, with
a wave-vector component along the boundaryp, must have
one of the two following forms: ~i! If k.upu,

Wk,p~x,y!5eipx@e2 iqy1Aeiqy1Be2Qy#, ~12!

where p5k cosu, q5Ak22p25k sinu, u being the angle
between the reflected wave and thex axis, and Q
5Ak21p2; ~ii ! if k,upu,

Wk,p~x,y!5eipx@Ce2Ry1De2Qy#, ~13!

whereR5Ap22k2. The first case corresponds to the co
tinuous spectrum and the second one gives the discrete s
trum, if any.

FIG. 1. Reflection of waves for a straight boundary in the c
k,upu.
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The required solutions for the different boundary con
tions have the following forms~see, e.g.,@13#!. ~i! For the
clamped edge~9!, if k.upu one gets

A52
Q2 iq

Q1 iq
52eifc~u!, B52~11A!, ~14!

where the phase shiftfc is given by

fc~u!522 arctanF sin u

A11cos2 u
G ~15!

and is plotted in Fig. 2, and ifk,upu there is no solution of
the form~13!. ~ii ! For the supported edge~10!, if k.upu one
gets

A521, B50. ~16!

and if k.upu there is no solution of the form~13!. ~iii ! For
the free edge~11!, if k.upu one gets, denotingn8512n,

A52eif f ~u!, B5~11A!
12n8 cos2 u

11n8 cos2 u
, ~17!

where the phase shiftf f is given by

f f~u!522 arctanF sin u

A11cos2 u
S 11n8cos2 u

12n8 cos2 u D 2G ,

~18!

and is plotted on Fig. 2, and ifk,upu there is a solution
when

k~p!5upuk~n8!, ~19!

where

k~n8!5@n8~223n8!12n8A2n8222n811#1/4. ~20!

Then

e

FIG. 2. Variation of the phase shiftf with respect to the inci-
dence angleu for the clamped plate~continuous line! and the free
plate ~dashed lines! for n50.1 ~lower!, n50.3 ~middle!, and n
50.5 ~upper!.
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57 5407SEMICLASSICAL THEORY OF FLEXURAL VIBRATIONS . . .
D

C
5

k2~n8!2n8

k2~n8!1n8
.

This mode propagates along the boundary and is analo
to the Rayleigh surface waves~see, e.g.,@4#!. For a finite
system of perimeterL, boundary modes can be quantiz
semiclassically by the condition

pnL52np, ~21!

n being an integer.

III. MEAN STAIRCASE FUNCTION

A. Surface and perimeter terms

The self-adjoint problem described by the biharmo
equation

~D22k4!W~rW !50 ~22!

for rW in D, with any of the boundary conditions~9!–~11! on
C, admits a discrete real spectrum 0<k1<¯<kn<¯ . The
eigenfunctionsWn(rW ) are normalized in such a manner th

(
n51

`

W̄n~rW8!Wn~rW !5d~rW2rW8!. ~23!

Let N(k) be the number of levels less thank, the staircase
function, andÑ(k) its mean asymptotic value. The standa
approach to the asymptotic evaluation ofÑ(k) ~see, e.g.,
@15#! employs the Green’s function, which obeys

~D r
22k4!G~rW,rW8;k!5d~rW2rW8! ~24!

in D and the given boundary conditions onC. As for quan-
tum problems, this~retarded! Green’s function can be written
as the sum over all eigenvalues

G~rW,rW8;k!5 (
n51

`
W̄n~rW8!Wn~rW !

kn
42k42 i«

, ~25!

where«→01. The importance of this function follows from
the fact that any measurable quantity can be expres
through it. In particular, the density of the vibrational spe
trum defined by

r~k!5 (
n51

`

d~k2kn! ~26!

is connected to the Green’s function by the standard form

r~k!5
4k3

p
Im E

D
drWG~rW,rW;k!. ~27!

The starting point of the semiclassical approximation
quantum-mechanical problems~see@15#! is the construction
of the free Green’s function in the plane~without imposing
any specific boundary conditions!. For our problem of vibrat-
ing plates we will follow the same line of argument and st
from the construction of the free Green’s function that obe
Eq. ~24! in the whole plane
us

ed
-

la

r

t
s

G0~rW,rW8;k!5
1

~2p!2 E eipW •~rW2rW8!

p42k42 i«
dpW . ~28!

From it the dominant contribution to the smooth density
states~27! ~the first Weyl term! equals

r̃1~k!54k3E
D

drWE dpW

~2p!2 d~p42k4!5
S

2p
k, ~29!

whereS is the area ofD. Therefore, at leading order ink the
density of the vibrational spectrum is the same as for billia
problems. On the contrary, the next terms of the Weyl
pansion may be different.

It was noted in@15# that the second term of the Wey
expansion, proportional to the perimeterL of the boundaryC,
can be explicitly calculated from the knowledge of wa
functions near the straight-line boundary. The main po
here is that close to any smooth boundary the Green’s fu
tion has to be close to the Green’s function of the half pla

We compute the latter from the knowledge of the ex
solutions near a straight boundary discussed in Sec. II.
have

G~rW,rW8;k!5(
k8,p

W̄k8,p~rW8!Wk8,p~rW !

k842k42 i«
, ~30!

where the sum is taken over all eigenvalues of our proble
Due to the translational invariance of the half-plane proble
any eigenfunction can be written in the form

Wk8,p~rW !5
1

A2p
eipxVk8,p~y!, ~31!

wherep is a continuous parameter andVk8,p is an eigenfunc-
tion of the one-dimensional problem

Ĥ~p,q̂!Vk8,p~y!5k84Vk8,p~y! ~32!

obeying the required boundary conditions.H(p,q)5(p2

1q2)2 with q̂52 id/dx. For our problemVk8,p(y) has to be
proportional to the expressions in square brackets in E
~12! and ~13! for continuous and discrete spectra, resp
tively. The constant of proportionality is determined from t
normalization ~23!. As for quantum-mechanical problem
wave functions of the discrete spectrum can be normali
by the usual condition

E
0

1`

uVk8,p~y!u2dy51 ~33!

and eigenfunctions of the continuous spectrum should
chosen in such a way that each plane wave in its expan
has the current equal to 1/A2p. From the definition

gĤf 2 Ĥ̄g f5q̂~gĴf !,

it follows that the current operatorĴ satisfies

gĴf 5gq̂3f 1 q̂̄gq̂2f 1q̂2gq̂f 1q̂3g f12p2~gq̂f 1 q̄̂g f !
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5408 57E. BOGOMOLNY AND E. HUGUES
and exp(2iq8x)Ĵ exp(iq8x)5]H/]quq8 . Therefore, the normal
ized eigenfunctions of the continuous spectrum can be w
ten in the form

Vk8,p~y!5
1

A2pu]H/]quq8

@e2 iq8y1Aeiq8y1Be2Q8y#,

~34!

wherek8.upu, q85Ak822p2, andQ85Ak821p2. The val-
ues ofA andB for standard boundary conditions are given
Eqs.~14!, ~16!, and~17!.

The discontinuity of the free Green’s function

DG0~rW,rW8;k![G0~rW,rW8;k!2Ḡ~rW8,rW;k!

is

DG0~rW,rW8;k!5
i

2p E
2`

1`

dpE
2`

1`

dq8eip~x2x8!1 iq8~y2y8!

3d„~p21q82!22k4
…

5
i

2p E
2k

k

dp eip~x2x8!
1

u]H/]quq

3~eiq~y2y8!1e2 iq~y2y8!!, ~35!

where q5Ak22p2. Correspondingly, the discontinuity o
the exact half-plane Green’s function has the form

DG~rW,rW8;k!5 i E
2k

k

dp eip~x2x8!Vk,p~y8!Vk,p~y!

1 i E
2`

1`

dp eip~x2x8!

3(
j

Vkj
~y8!Vkj

~y!d„kj
4~p!2k4

…, ~36!

the last term being the sum, if any, over all discrete eig
valueskj (p).

The second term of the Weyl expansion is expres
through the discontinuity of the Green’s function by t
usual formula@15#

r̃2~k!54k3L lim
a→01

1

2p i E0

1`

@DG~rW,rW;k!

2DG0~rW,rW;k!#e2aydy, ~37!

where the factor exp(2ay) has been introduced for conve
gence, as for the continuous spectrum the integral ovey
diverges. One has first to compute the difference of the
expressions in Eq.~37! and then perform the limita→01.
The calculations are straightforward and one gets
it-

-

d

o

E
0

1`

@DG~rW,rW;k!2DG0~rW,rW;k!#e2aydy

5
i

2p E
2k

k

dp
1

u]H/]quq
F 1

2iq
~Ā2A!1

p

2
d~q!~Ā1A!

1
2

Q1 iq
B̄1

2

Q2 iq
B1

1

2Q
uBu2G

1 i E
2`

1`

dp(
j

d„kj
4~p!2k4

…. ~38!

Substituting here the expressions forA and B for a given
choice of the boundary conditions, one can obtain the co
sponding second term of the Weyl expansion. For exam
for the clamped edge~9! the result is

r̃2~k!52kLE
2k

k dp

2p
f ~k,p!2

L

4p
, ~39!

where

f ~k,p!5
1

2p F 2~Q22q2!

qQ~Q21q2!G . ~40!

It is easy to verify that the expression in the square bracke
just dfc(k,p)/dk2, wherefc(k,p), with p5k cosu, is the
phase shift due to the reflection on the clamped edge@see Eq.
~15!#. This is not a coincidence. In Appendix A, followin
@13#, we will show that it is a consequence of the Kre
formula @16#. The functionf (k,p) in general can be written
in the form

f ~k,p!5
1

2p

d

dk2 Arg det S~k,p!, ~41!

whereS is the scattering matrix for a given problem. In o
case the S matrix coincides with the coefficientA5
2exp@if(u)# and the second term of the Weyl expansion
the smooth staircase function takes the form for any bou
ary conditions

Ñ2~k!5LE
2k

k dp

2p S 2
1

4
1

1

2p
f~k,p! D

1LE
2`

1` dp

2p
nDS~k,p!. ~42!

The first term comes from thed-function singularity, the sec-
ond is the contribution of the continuous spectrum, and
third one is the staircase function of the pure discrete sp
trum. As the functionsf(k,p) and nDS(k,p) are homoge-
neous functions one obtains

Ñ2~k!5b
L

4p
k, ~43!

b being given by
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b52112E
21

1

dt
1

2p
f~1,t !12E

2`

1`

dt nDS~1,t !.

~44!

For the three standard boundary conditions~9!–~11! the
value of this coefficient is, for the clamped edge,

bc5212
4

p E
0

1

arctanFA12t2

A11t2Gdt5212
G~ 3

4 !

ApG~ 5
4 !

'21.762 759 8; ~45!

for the supported edge,

bs521; ~46!

and for the free edge,

b f~n!52114@n8~223n8!12n8A2n8222n811#21/4

2
4

p E
0

1

arctanFA12t2

A11t2 S 11n8t2

12n8t2D 2Gdt. ~47!

For the membrane with the Dirichlet boundary conditio
b521.

All these results were rigorously demonstrated in@13#.
We have presented the above derivation in order to st
that all steps are exactly the same as for usual memb
problems@15#.

B. Constant terms

The next term of the Weyl expansion should be a cons
c0 , which, as for membrane problems, equals the sum
contributions from the curvature and from the corners of
boundary, if they exist.

In Appendix B we show that the curvature contributio
as in billiard problems~see@17#!, has the form

c0
a5aaE

Ca

dl

R~ l !
~48!

for the conditiona on the boundary partCa , R being the
curvature radius. For a clamped edge, we findac51/3p.

The corner contributions require the knowledge of the
act solution of the biharmonic equation for the infinite wed
with the same boundary conditions, which is not known. T
exception is the contribution from the corners that app
after desymmetrization of the region with respect to discr
symmetry. In the current case of parity transformationx→
2x, the eigenfunction is either even («511) or odd («5
21). The above derivation can be done taking, in place
Eq. ~31!, the following form of eigenfunctions for a bound
ary conditiona:

Wk8,p
a

~rW !5
1

A2p
~eipx1«e2 ipx!Vk8,p

a
~y!. ~49!

After integration overx, one gets the additional term
ss
ne

nt
of
e

,

-
e
e
r
e

f

«
1

2p
d~p!.

From Eq.~42! the contribution of these corners will be

c0
~«2a!5

«

4 F2
1

4
1

1

2p
f~k,0!1nDS~k,0!G . ~50!

Then, for a clamped edge one gets

c0
~«2c!52

«

8
, ~51!

for a supported edge

c0
~«2s!52

«

16
, ~52!

which is the same result as for a right angle corner in
membrane case, and for a free edge

c0
~«2 f !5

«

8
. ~53!

IV. BOUNDARY INTEGRAL EQUATIONS

A. General formalism

The standard method to derive the trace formula for qu
tum billiards is the reduction of the problem to bounda
integral equations@15#. These equations are also a starti
point for many different semiclassical quantization a
proaches@18,19#.

In this section we shall discuss the construction of bou
ary integral equations for the two-dimensional biharmo
equation

~D22k4!W~rW !50, ~54!

with self-adjoint boundary conditions. Any solution of th
equation can be decomposed as a sum of two terms

W~rW !5W~1 !~rW !1W~2 !~rW !, ~55!

whereW(1) andW(2) satisfy the equations

~D1k2!W~1 !~rW !50, ~56!

~D2k2!W~2 !~rW !50, ~57!

with linked boundary conditions.
Let us consider the Green’s functionsG(1)(rW,rW8;k) and

G(2)(rW,rW8;k) of the corresponding free problems

~D r6k2!G~6 !~rW,rW8;k!5d~rW2rW8!. ~58!

They admit the usual integral representation

G~6 !~rW,rW8;k!52E dpW

~2p!2

eipW •~rW2rW8!

p27~k21 i«!
~59!

and can be expressed through the Bessel functions as



th

g
ar

-

ca
ve

n

e

an

rit

t o

the

of

t
s at

trate

the

s.

5410 57E. BOGOMOLNY AND E. HUGUES
G~1 !~rW,rW8;k!5
1

4i
H0

~1!~kurW2rW8u!, ~60!

G~2 !~rW,rW8;k!52
1

2p
K0~kurW2rW8u!. ~61!

The reduction of the two-dimensional Green functions to
one-dimensional ones will also be useful:

G~1 !~rW,0W ;k!5E dp

2p
eipx

eiquyu

2iq
, ~62!

G~2 !~rW,0W ;k!52E dp

2p
eipx

e2Quyu

2Q
. ~63!

Here rW5(x,y), q5Ak22p2, and Q5Ak21p2. In the fol-
lowing we will drop k in the notation for convenience.

We shall try to find the solutions of Eqs.~56! and ~57!
formally written as potentials of a single layer~see, e.g.,
@20#! with distribution functionsm andn on the boundaryC:

W~1 !~rW !5E
C
G~1 !

„rW,rW~a!…m~a!da, ~64!

W~2 !~rW !5E
C
G~2 !

„rW,rW~a!…n~a!da. ~65!

From now ona ~and alsob! will denote the distance alon
the boundary from a fixed point to a point on the bound
whose Cartesian coordinates arerW(a).

The functionsW(1), W(2), andW so defined satisfy, re
spectively, Eqs.~56!, ~57!, and~54! for arbitrary functionsm
andn. There are many different forms ofW with this prop-
erty. As we shall consider below only formal semiclassi
transformations and shall not discuss problems of con
gence, all these forms are considered equivalent, Eqs.~64!
and~65! representing the simplest choice. In real calculatio
other forms can be preferred@see Eq.~87! below#.

To define the distribution functionsm and n, one has to
impose the boundary conditions that lead to a system
equations to be verified by these functions. We present h
their derivation for the case of a clamped edge~9!, where the
function W and its normal derivative must equal zero at
arbitrary pointrW(b) on the boundary:

W„rW~b!…50,
]W

]nb
„rW~b!…50. ~66!

As the free Green’s functions have a logarithmic singula
as rW approachesrW8,

G~6 !~rW,rW8!;
1

2p
lnurW2rW8u,

care should be taken when computing the boundary limi
its normal derivative. AsrW approachesrW(b) from the interior
of the domainD ~see, e.g.,@20#!, one gets
e

y

l
r-

s

of
re

y

f

E
C

]G„rW,rW~a!…

]n
f ~a!da→

1

2
f ~b!

1E
C

]G„rW~b!,rW~a!…

]n
f ~a!da.

~67!

The simplest way to check this relation is to consider
integral over a straight line.

Let us introduce the notationsG6
„rW(b),rW(a)…

5G6(b,a) and ]G6
„rW(b),rW(a)…/]nb5]G6(b,a)/]nb .

Using the above formulas one gets the following system
equations to determine the functionsm andn :

E
C
G~1 !~b,a!m~a!da1E

C
G~2 !~b,a!n~a!da50,

~68!

1

2
m~b!1

1

2
n~b!1E

C

]G~1 !~b,a!

]nb
m~a!da

1E
C

]G~2 !~b,a!

]nb
n~a!da50. ~69!

To find the semiclassical limit (k→`) of these equations i
is necessary to separate the contributions due to point
short distances from those due to points at large ones~see
@18#!. Let us divide each integral in Eqs.~68! and ~69! into
two parts separating a small vicinity of the pointb from the
rest of the boundary (CD):

E
C
g~b,a!da5E

b2D

b1D

g~b,a!da1E
CD

g~b,a!da,

~70!

ChoosingD in such a way that 1/k!D! l 0 , where l 0 is a
characteristic scale of the boundary, one can demons
that

E
b2D

b1D

g~b,a!da →
k→`

E
2`

1`

g~b,a!da, ~71!

where the last integral is taken over the straight line and
corrections could, in principle, be computed~see Appendix
B!. As ]G6(b,a)/]nb equals zero on a straight line, Eq
~68! and ~69! can be asymptotically rewritten in the form

E
SL

G~1 !~b,a!m~a!da1E
CD

G~1 !~b,a!m~a!da

1E
SL

G~2 !~b,a!n~a!da1E
CD

G~2 !~b,a!n~a!da50,

~72!

1

2
m~b!1

1

2
n~b!1E

CD

]G~1 !~b,a!

]nb
m~a!da

1E
CD

]G~2 !~b,a!

]nb
n~a!da50. ~73!
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Now it is convenient to consider the Fourier transform
tion of these equations. As the variablesa and b are the
lengths of the boundary arcs, the functionsm~a!, n~a!, and
G6(a,b) should be periodic functions of its arguments w
the period equal to the perimeter of the boundaryL. There-
fore, they can be represented as the Fourier series

m~a!5E mpeipadp, n~a!5E npeipadp,

G~6 !~b,a!5E E Gp,p8
~6 ! eipb2 ip8adp dp8.

~74!

Here*¯dp denotes the summation over the discrete se
boundary wave vectorspn52pn/L. As we are interested in
the leading term, this discreteness is unessential for us.

At leading order of the semiclassical approximation

]G~1 !~b,a!

]nb
52 i E E qGp,p8

~1 ! eipb2 ip8adp dp8, ~75!

]G~2 !~b,a!

]nb
5E E QGp,p8

~2 ! eipb2 ip8adp dp8. ~76!

Taking into account these formulas and Eqs.~62! and ~63!,
we find that the Fourier componentsmp andnp have to sat-
isfy the system of equations
o

p
a

m

ee
th

a
ef
-

f

~M0dp,p81M p,p8!S mp8
np8

D50, ~77!

where the matrix

M05 1
2 S 2 i /q

1
21/Q

1 D ~78!

is connected with the integration over the straight line a
the matrix

M p,p85S Gp,p8
~1 !

2 iqGp,p8
~1 !

Gp,p8
~2 !

QGp,p8
~2 ! D ~79!

is related to the integration overCD . The condition of com-
patibility, the quantization condition, is the zero of the det
minant

det~M0dp,p81M p,p8!50, ~80!

which can be transformed into the form

det~dp,p82Tp,p8!50, ~81!

where the total transfer matrixTp,p852M0
21M p,p8 can be

rewritten within semiclassical accuracy as
Tp,p852S 22
Q2 iq

Q1 iq S ]G~1 !

]nb
D

p,p8

4iq

Q1 iq S ]G~2 !

]nb
D

p,p8

4Q

Q1 iq S ]G~1 !

]nb
D

p,p8

2
Q2 iq

Q1 iq S ]G~2 !

]nb
D

p,p8

D . ~82!
it
ral

te
the

ht-
n

tion
ad-

y is
ions
.

y
ant

ir-
BecauseTp,p8→0 on a straight line~when p→k and p8
→k! Eq. ~82! corresponds to the required separation of sh
and long trajectories. Whenk→` with urW(b)2rW(a)u.0,

G~2 !~b,a!'e2kurW~b!2rW~a!u→0

and one can ignore all terms inTp,p8 that containG(2).
Finally, we get that in leading order of semiclassical a

proximation, the quantization condition can be written in
form very similar to the one for the quantum billiard proble
with the Dirichlet boundary conditions

detF122eif0~k,p!S ]G~1 !

]nb
D

p,p8
G50, ~83!

where we recognize the phase shiftfc @Eq. ~15!# due to the
reflection on a clamped edge. The only difference betw
this expression and that of the quantum billiard is that for
latter f(k,p)50 @note that in leading order]G(b,a)/]nb
52]G(b,a)/]na#. This result is quite satisfactory from
semiclassical point of view. The fact that the reflection co
rt

-

n
e

-

ficient from a smooth boundary in the high-frequency lim
tends to the one from a straight line confirms the gene
statement made in Sec. II.

Then the only difference between the problem of pla
vibration and the quantum problem is the existence of
phase shift or, more generally, theS matrix for the scattering
from the straight line, whose calculation is usually straig
forward ~see Sec. II!. It is clear that the same conclusion ca
be made for other boundary conditions as well.

Analogous considerations, as in@15#, also permit one to
obtain the semiclassical expression for the Green’s func
as a sum over classical trajectories. The presence of the
ditional phase shift after each reflection from the boundar
the main difference between the transverse plate vibrat
problem and the corresponding quantum billiard problem

B. Trace formula

The additional phase in Eq.~83! does not change an
standard steps by which one comes from this determin
condition ~83! to the Gutzwiller trace formula~see, e.g.,
@18#!. Using the formulas for the oscillatory part of the sta
case function
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N~osc!~k!5
1

p
Im ln det~12T!,

ln det~12T!5tr ln~12T!52 (
n51

`
1

n
trTn

and computing all traces in the stationary phase approxi
tion, one obtains that the periodic orbits contribution for t
transverse plate vibrations can be written in the form

N~osc!~k!5
1

p (
PPO

(
n51

`
1

nudet~M p
n21!u1/2

3sinFnS Sp2
p

2
mp1FpD G , ~84!

where the summation is taken over all primitive period
orbits corresponding to classical motion with specular refl
tion at the boundary.Sp is the classical action along thi
trajectory: Sp5klp , where l p is the length of a periodic
orbit. M p is the monodromy matrix of this periodic orbit.mp
is the Maslov index of the billiard problem with the Dirichle
boundary conditions. The only unusual quantity here is
additional phase shiftFp due to the existence of expone
tially decreasing waves in a small layer around the bound
For clamped, supported, and free edges the values of
phase shift are given in Eqs.~9!–~11!. For other boundary
conditions it has to be determined from the scattering fr
the straight-line boundary.

The total staircase function has the form

N~k!5Ñ~k!1N~osc!~k!, ~85!

where Ñ(k) is the smooth part of the staircase functi
whose calculation has been discussed in Sec. III.

If the discrete spectrum of boundary waves exists~as for
the free edge plates! it should be added to this formula. I
k5kupu andp52pn/L with integern, then

NDS~k!5 (
n52`

`

QS k22pk
unu
L D

5
L

pk
k1 (

m51

`
1

pm
sinS mLk

k D . ~86!

C. Fredholm equations

The boundary integral equations are a quite natural w
of representing the spectral problem as a Fredholm inte
equation. It has been done for quantum problems in@19#. To
do it for the plate it is convenient to use another represe
tion of formal solutions of the biharmonic equation~54!. The
main drawback of the most simple solution@Eqs. ~64! and
~65!# is that the corresponding equations~68! and~69! do not
automatically have the Fredholm form.

Let us represent our solution in the form

W~rW !5E
C

]G~1 !

]na
~rW,a!m~a!da1E

C
G~2 !~rW,a!n~a!da,

~87!
a-

-

e

y.
is

y
al

a-

with unknown functionsm and n ~different from the ones
above!. Using the fact that]2G(b,a)/]nb]na remains con-
tinuous on the boundary~see, e.g.,@20#!, one easily derives
the system of equations for the clamped edge boundary
ditions

c i~b!1E
C
Ki , j~b,a!c j~a!da50, ~88!

wherei , j 51,2, and

c~b!5S m~b!

n~b! D . ~89!

The kernelKi , j has the form

K~b,a!52S 2
]G~1 !~b,a!

]na
2G~2 !~b,a!

]2G~1 !~b,a!

]nb]na

]G~2 !~b,a!

]nb

D . ~90!

These equations have exactly the Fredholm form with
~slightly singular! kernel and the compatibility equation~the
z function of this problem! has the form of the Fredholm
determinant

det~11K !50. ~91!

Therefore, all consequences of the Fredholm theory~see
@20,19#! can be applied for vibrational problems as well.

V. THE DISK-SHAPED PLATE

In this section we will study the particular case of a
integrable system, the disk plate. The advantage is
knowing exactly the classical and the wave solutions, we
easily check the validity of the semiclassical formulas.

In polar coordinates (r ,u) relative to the center of the dis
of radiusR, this problem is separable and due to the fact
ization property and to the fact that the solution must
finite at the center one finds the following form of eigenfun
tions:

W~r ,u!5@aJm~kr !1bIm~kr !#@A cos~mu!1B sin~mu!#

~92!

for any integerm>0. Jm and I m are Bessel functions of the
first kind and the hyperbolic one. The boundary conditions
r 5R give a system of two linear equations in the unknow
coefficientsa and b, which has a nontrivial solution if and
only if the determinant of the coefficients vanishes. If we
x5kR, we have the following quantization relations fork
for the boundary conditions we will study below: for th
clamped edge

Jm~x!I m8 ~x!2Jm8 ~x!I m~x!50, ~93!

and for the free edge
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x3Jm8 ~x!1m2n8@xJm8 ~x!2Jm~x!#

x3I m8 ~x!2m2n8@xIm8 ~x!2I m~x!#

2
x2Jm~x!1n8@xJm8 ~x!2m2Jm~x!#

x2I m~x!2n8@xIm8 ~x!2m2I m~x!#
50. ~94!

These relations have an infinite number of positive eigen
ues km,1,¯,km,n,¯ . As can be seen from Eq.~92!,
they are doubly degenerate form.0.

To find the solutions of the above equations in the inter
0,k,kmax we compute these functions forx,xmax5kmaxR
for different values ofm in the interval 0<m,mmax. The
maximal value ofm can be estimated from the fact that th
Bessel functionsJm(x) have no zeros form.x, which gives
mmax of the order ofxmax. For each value ofm we found by
standard methods zeros of the above functions that define
eigenvalues of vibrating disk. To verify that we have all t
eigenvalues, we looked at the difference between the e
staircase function and its asymptotic number~see Fig. 3!,
from which a single missing eigenvalue can be detected

In the following subsections we will study the mean sta
case function, the periodic orbit sum formula describing
fluctuations around this mean behavior, and the statistic
the spectra for the clamped and free boundary condition

A. Mean staircase function

In Sec. III the first three terms of the staircase functi
were derived. As for quantum billiards, whenk→` the fol-
lowing expansion holds:

Ñ~k!5
S

4p
k21b

L

4p
k1c01c21

1

k
1oS 1

kD . ~95!

1. The clamped plate

We have determined the spectra fork<400 for a unit
radius disk~39 641 eigenvalues!. In Fig. 3 we have plotted
the difference between the staircase function and its m
taking only the surface and perimeter terms, which confir
that it oscillates around a constant. The amplitude of
oscillations attains values as high as 20, which is charac

FIG. 3. Difference between the staircase function and its m
part for the spectrum of the clamped disk plate withR51 as a
function of k.
l-

l

the

ct

-
e
of

n,
s
e
r-

istic of an integrable system. In order to determine the c
stant term, we integrate this function, which should gi
c0k1c21lnk as the mean behavior, the amplitude of the o
cillations being small in comparison.@The dominant oscilla-
tion term kr(pAp sin(klp1cp), due to periodic orbits, has
been shown to be smaller than the perimeter term linear ik,
so the integration giving the dominant ter
kr(p(Ap / l p)cos(klp1cp), is less thanc0k.# Fitting this
curve, one finds the corresponding parameters. For the c
plete disk, the constant, which is only a curvature effect
c0

c5 2
3 61025, which givesac51/3p6231026 in Eq. ~48!,

in accordance with the exact calculation@see Eq.~B23!# done
in Appendix B. Using a half and a quarter of the disk, wi
odd symmetry on the straight edges~supported edges!, we
introduce corner terms. We find numerically the values p
dicted by Eqs.~51! and ~52!, to an error of 531024.

2. The free plate

The spectra have been determined also fork<400 for
different values ofn from 0 to 0.5~40 368 eigenvalues in this
last case!. In this case there exist three ‘‘trivial’’ supplemen
tary solutions that have not the form of Eq.~92!. In Cartesian
coordinates they areW51, x,y. The modes of the discret
spectrum, discussed in Sec. II, verify here semiclassic
km,1,m and special attention is needed to find them. On
oscillatory part of the staircase function~Fig. 4!, it can be
checked, forn50.5 @b f(0.5)'1.887 119 4#, that there are
no missing eigenvalues. For the complete disk, the cons
term due to curvature is found to bec0

f 5 2
3 11.13102464

31025 for 0<n<0.5, which is very close to the clampe
result. Then dependence of this contribution, if it exists, a
is expected, is then inside the error bar. Using a half an
quarter of the disk as in the clamped case, we also find
merically the value predicted by Eq.~53!, to an error of 6
31025.

B. Oscillatory part of the density of states

When the system is integrable, we know that the den
of states

r~k!5 (
m52`

1`

(
n51

1`

d~k2km,n! ~96!

n FIG. 4. Same as Fig. 3 for the free disk plate forn50.5.
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can be expressed at high energy, via the Poisson summ
formula and stationary-phase approximation, by a sum o
periodic orbits at leading order, as derived by Berry a
Tabor @21,22#. However, as shown in Sec. IV Eq.~83! is
applicable for any system, leading semiclassically to a s
over periodic orbits whose coefficients depend on their pr
erties, in particular their stability and the fact that they a
pear alone or in families~here, because of the rotation sym
metry, all periodic orbits appear in continuous familie!.
Furthermore, Eq.~83! differs from the Dirichlet membrane
result only by the presence of the phase factor exp@if(p,k)#.
Then the periodic orbit sum for the plate is the same as
the membrane~see, e.g.,@23#! provided one adds the supple
mentary phase for clamping. At the semiclassical level,
oscillatory part of the density of states

r~osc!~k!5 (
m51

1`

(
n52m

1`

am,n~k!cos~klm,n1cm,n!. ~97!

The sum is made over all the periodic orbits (m,n) of the
disk, m being the winding number andn the number of
bounces on the boundary.l m,n52n sin(pm/n) is the length
of the orbit,

am,n~k!5gm,nA4k

pn
sin3S pm

n D ,

andgm,n is 1 for the bouncing ball orbits (n52m) and oth-
erwise 2. The periodic orbit makes an angleum,n with the
boundary and the phase is expressed by

cm,n5nFf~um,n!1
p

2 G1
p

4
, ~98!

wheref is the additional phase shift given by Eqs.~15! and
~18! for clamped and free boundary conditions, respective
The k1/2 dependence of the coefficients is due the fact t
periodic orbits appear in continuous families. For a fix
winding numberm, l m,n grows from l m,2m54m for the
bouncing ball orbit tol m,`52pm for the whispering gallery
orbits.

In order to look at the precision of this semiclassical fo
mula, a Gaussian-weighted Fourier transform

F@r#~ l !54Ab

pE0

kmax e2bk2

kr e2 iklr~k!dk ~99!

is performed, wherer is the power dependence onk of the
semiclassical coefficients in the periodic orbit sum formu
As kmax→` and for

r~osc!~k!5kr(
PO

Apcos~klp1cp!, ~100!

where the sum is taken over all periodic orbits~PO! of the
system, one gets forl .0
ion
er
d

m
-

-

r

e

.
t

-

.

F@r~osc!#~ l !'(
PO

ApeicpFexpS 2
~ l 2 l p!2

4b D1 igS l 2 l p

2Ab
D G ,

~101!

whereg is an odd function smaller than the Gaussian. T
Fourier transform should then give peaks at periodic o
lengthsl p , with amplitudeAp exp(icp). b is chosen to have
exp(2bkmax

2 ) sufficiently small~a typical value of 0.01! to
get the thinnest peaks with the lowest spurious oscillatio
When periodic orbit lengths differ by less than aboutAb,
different peaks interfere, modifying shapes and amplitud

1. The clamped plate

Plotted in Fig. 5 is the real part ofe2 iCpF@r#, in the
region of length aroundl p . The Gaussian shape and amp
tude of the peaks show that the semiclassical phase and
plitude are quite precise. All orbits of winding number 1 a
visible and as known for the quantum billiard case, t
agreement decreases as the whispering gallery is atta
due to the fact that for modes confined near the bound
the first semiclassical term becomes insufficient.

2. The free plate

In this case, boundary modes obey semiclassically,
lowing Eqs.~19!–~21!,

kn5
2np

L
k~n8! ~102!

and should then give regularly spaced peaks in the Fou
transform at lengthsLp5pL/k(n8). To see them clearly and
to minimize interference effects with periodic orbits pea
located on the left~mainly whispering gallery orbits of
lengths just belowpL!, we choosen50.5 for whichk(n8)
50.9891 is the minimum. However, this value remains qu
close to 1 and the exponent of the first term in Eq.~13! R
5pA12k2(n8) is small for the considered interval ofk. It
prevents using the standard asymptotics of the Bessel f
tion and the semiclassical asymptotics for this particular

FIG. 5. Real part ofe2 iCpF@r# as a function ofl for the spec-
trum of the clamped disk plate withR51. The semiclassical phas
has been eliminated for each periodic orbit to get pure Gaus
peaks. The crosses indicate the semiclassical amplitudes.
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genvalue is reached quite slowly. These peaks then ap
smeared over a quite long distance on their left, as show
Fig. 6. Here the modeskm,1 have been separated from th
rest of the spectrum and separate Fourier transforms s
clearly the influence of this peak, located atl 5L156.3524.
In the following, the first 1000 eigenvalues are ignored to
closer to the semiclassical result.

Apart from this fact, the periodic orbit sum contains t
same orbits and amplitudes for the membrane and for
plates, their classical limit being the same, and so no dif
ence should be seen inuF@r#u2 for these different cases fo
isolated peaks. In Fig. 7 very good agreement is found
tween the three cases, except for the peak located atl 512.
Here an exact degeneracy in orbit lengths occurs for the
time, corresponding to two times the hexagon orbit and th
times the bouncing ball orbit. Semiclassically, the two as
ciated terms have the samek dependence, but a differen
phase. Adding these two terms results in an amplitu
Am,D

2 50.0531 for the Dirichlet membrane,Ap,c
2 50.1102 for

the clamped plate, andAp, f
2 50.4452 for the free one

The agreement is rather good@see Fig. 7~b!#, taking into
account all possible interferences between peaks.

C. Statistics of spectra

Integrable systems of the membrane type are known
have Poissonian statistics of energy levels@21#. The same
behavior is found for the disk plates, as is shown here in F
8 for the nearest-neighbor spacing distribution.~In order to
see a generic behavior, we have taken the half disk, with
symmetry, to get rid of degeneracies.!

The second moment of the statistics of the staircase fl
tuations,

^d2&~k!5E
0

k2

@N~k8!2Ñ~k8!#2dk82, ~103!

is shown to be proportional toCk as k→` for two-

FIG. 6. uF@r#u2 as a function ofl for the spectra of the free dis
plate with R51 (n50.5), for all modes~dotted line!, boundary
modes~dashed line!, and all modes except boundary ones~continu-
ous line!. Crosses indicate semiclassical amplitudes.
ar
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e
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c-

dimensional integrable quantum billiards~see, e.g.,@24# and
references therein! or proportional to C8AN. The same
behavior is also found here for the disk plates, as shown
Fig. 9.

FIG. 7. uF@r#u2 as a function ofl for the spectra of the disk with
R51. The lower curve is for the Dirichlet membrane and the up
curves are for the clamped plate~dashed line! and the free plate for
n50.5 ~continuous line!. Crosses indicate the semiclassical amp
tudes. For~a! orbits have the winding numberm51 and ~b! the
winding numberm52.

FIG. 8. Nearest-neighbor spacing distributionP(s) for the Di-
richlet membrane half-disk spectra~lower histogram!, the clamped
plate ~shifted middle histogram!, and the free plate forn50.5
~shifted upper histogram!. The Poissonian distribution~dotted line!
is shown for comparison.
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VI. THE CLAMPED STADIUM

In this section we check numerically the semiclassi
trace formula for systems whose classical limit is chao
more precisely, the case where all periodic orbits are isola
or unstable. We will concentrate here on the stadium sh
~a square glued with two half disks!, which has been proved
to be ergodic@25# and is today certainly the most studie
nonintegrable quantum billiard. All its periodic orbits a
unstable, except for the neutral bouncing ball orbits betw
the two straight lines.

We will be interested here in the spectra of odd-o
modes with clamped boundary conditions, which is equi
lent to taking the quarter of the stadium with support
boundary conditions on its symmetry lines and clamp
boundary conditions on the rest of the boundary. We
tained numerically~see Appendix C! the first 585 levels,
corresponding tok<100 for a surface equal top/4 ~circle
radiusR51/A114/p!.

A. Mean staircase function

The perimeter term of the semiclassical expansion of
staircase function is obtained by summing over the contri
tions of each part of the boundary, that is, if we assume
same form~95! of the mean staircase function as for the dis

Ñ~k!5
S

4p
k21

@~11p/2!bc13bs#R

4p
k1c01c21

1

k

1oS 1

kD , ~104!

whereS5(11p/4)R2 is the area of the plate and the n
merical value of the perimeter coefficient isc15
20.397 521. The constant term should have the same
tributions as those of the quarter of a clamped disk studie
Sec. V A, that is,c05 23

48 .
As the numerical data in this case are less precise tha

the disk case, we fit the perimeter and constant coefficie
For better precision, we subtract first the oscillating con

FIG. 9. ^d2& as a function ofN for the Dirichlet membrane disk
spectra~lower curve!, the clamped plate~shifted middle curve!, and
the free plate forn50.5 ~shifted upper curve!. The dashed line is
the best fit in the formCAn with Cm

D50.1235,Cp
c50.1238, and

Cp
f 50.1262.
l
,
d

pe

n

-

d
-

e
-
e
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n-
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bution of the family of neutral orbits~see the discussion
below!, which has a greater amplitude than the const
term. We find c1520.397 306431025, and c05 23

48 64
31023, which is in very good agreement with prediction
Subtracting the two first terms from the staircase funct
~see Fig. 10!, one gets oscillations whose amplitude is lim
ited to a few unities, indicating a rigid spectrum, as in t
membrane case.

B. Neutral orbits

The stadium billiard possesses bouncing ball orbits
tween the two straight lines of the square. They constitut
continuous family of neutral orbits, whose contribution d
fers from the isolated unstable orbits contribution obtain
Sec. IV A and whose more careful derivation is done belo

Let us consider an infinite plate along thex axis, whose
width is 2b, with clamped boundary conditions. Due to th
symmetry with respect to the central line (y50), eigenfunc-
tions of this problem can be classified by their parity. Wr
ing the ~odd! eigenfunctions as the corresponding sum
four different exponents

Wk,p~x,y!5eipx@sin~qy!1B sinh~Qy!#, ~105!

wherep5k cosu, q5Ak22p25k sinu, andQ5Ak21p2,
and imposing clamped boundary conditions at the liney
5b, one obtains the quantization condition

Q sin~qb!cosh~Qb!2q cos~qb!sinh~Qb!50. ~106!

In the semiclassical limit (k→`), an implicit relation for
q(p,n) can be written neglecting exponentially small term

qb5arctanF q

A2p21q2G1np, ~107!

wheren is a positive integer. If we search the contribution
the density of states of such solutions for a strip of lengtha,
we have to compute

FIG. 10. Difference between the staircase function and its m
part for the clamped stadium plate odd-odd spectrum as a func
of k ~upper continuous line!, the contribution of the neutral family
of bouncing ball orbits~dashed line!, and the difference of the two
~shifted lower line!.
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rb~k!5
a

2p E
2`

`

dp(
n51

1`

2kd„k22p22q2~p,n!….

~108!

Using the Poisson summation formula leads to the integ
tion over then variable, which can be performed explicitly
Settingp5k cosu, one finds

rb~k!5
ak

2p2 (
N52`

`

3E
0

p

duFb1
1

k
tanS fc~u!

2 D GeiNfc~u!ei2kbN sin u,

~109!

where fc is the phase shift due to clamping~15!. In the
semiclassical limit, the remaining integral can be evalua
using the stationary-phase approximation, whose domin
contribution is found aroundu5p/2. Then, at leading order
the oscillatory contribution to the staircase function is

Nb
~osc!~k!5

1

2p3/2 aAk

b (
N51

`
1

N3/2

3cosS 2Nbk2N
p

2
2

3p

4 D . ~110!

This expression differs from the one for the membrane pr
lem by the additional phase factor2Np/2. Note that higher-
order terms also can be computed. Subtracting this from
previously obtained oscillating staircase function elimina
the large-scale regular oscillation~see Fig. 10!.

C. Oscillatory part of the density of states

As for the disk, we look to the Fourier transform of th
density of states@with the weight sin(pk/kmax)/k, which gives
sharper results# to check the semiclassical trace formula o
tained in Sec. IV. If we compare it with the Dirichlet odd
odd membrane spectrum~596 levels fork<100!, only the
semiclassical phase should be found different.

In Fig. 11 the comparison is made foruF@r#u2. The peri-
odic orbits indicated are those whose amplitude are the gr
est in the trace formula: We have limited ourselves to
lowest values of the trace of the monodromy matrix. Ea
time the orbit is isolated in length, the agreement betw
the two curves is excellent. As the length increases, c
orbits make the different peaks interact, and due to th
different phases, the shape of the composite peak differs
tween the two curves.

The main point is to verify that semiclassical phases
correct. The real part ofe2 iFpF@r#, whereFp denotes the
phase without the Maslov index contribution, should be
same around the periodic orbit lengthl p for the membrane
and the plate. These comparisons are plotted in Fig. 12
the first shortest orbits. The very good agreement shows
adequacy of the semiclassical derivation at this level.
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D. Statistics of spectra

The membrane stadium spectrum is numerically known
have a statistical behavior on a short scale well described
the random matrix Gaussian orthogonal ensemble@26#. The
nearest-neighbor spacing distributionP(s) in this case is
close to the Wigner surmise

PGOF~s!5
p

2
se2~p/4!s2

. ~111!

In Fig. 13P(s) for the clamped plate is plotted, showing th
same behavior here. This conclusion was obtained in@9#,
from about the first 100 levels. A heuristic argument follow
from the analogy at high energy between the membrane
the plate discussed in Sec. II.

In Fig. 14 the second moment of the statistics of the st
case fluctuations is represented. For membranes~and the
demonstration applies to plates! it has been shown@24# that

^d2&~k!5
1

p2 lnS k

r̃~k2! D ~112!

FIG. 11. uF@r#u2 as a function ofl for the odd-odd spectra fo
the stadium with area equalp : Dirichlet membrane~dashed line!
and clamped plate~continuous line!. Vertical lines indicate the pre-
dominant periodic orbits in the trace formula for~a! the first peaks
and ~b! the following peaks.
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ask→` for two-dimensional generic ergodic billiards. Th
is what is observed when the bouncing ball orbit contribut
is suppressed. However, the behavior seems analytically
same with this contribution.

As a general conclusion, it can be said that random ma

FIG. 12. Real part ofe2 iFpF@r# as a function ofl for different
orbits for the odd-odd spectra for the stadium with area equalp :
Dirichlet membrane~dashed line! and clamped plate~continuous
line!. ~a! l 51.3265, bouncing ball~Fm5315°, Fp5225°!; ~b! l
52.9661, diagonal~Fm50°, Fp5244.67°!, ~c! l 53.4463, bow tie
~Fm5180°, Fp528.96°!; l 53.7519, double diamond~Fm50°,
Fp5180°!; l 53.9795, bouncing ball repeated three times~Fm

5315°, Fp545°!.
n
he

ix

theory applies also to plates. Let us remark that about ha
century ago~see references in@9#! it was argued that random
matrix theory should help describe spectral properties
various fields such as elasticity and acoustics.

VII. CONCLUSION

In this paper we have studied the fourth-order biharmo
equation of flexural vibrations of elastic plates in the sa
semiclassical way as the membrane or quantum billi
problem is approached. In our case, exponential waves
creasing from the boundary are added to the classical pr
gating ones. Their influence is measured on the spectr
more precisely on the mean number of levels and on
oscillatory part, and also on the statistical properties.

The surface and perimeter terms of the asymptotic nu
ber of levels are derived following the method of Balian a
Bloch @15#, independently of the rigorous derivation o
Vasil’ev @13#. The next constant term, made of curvature a

FIG. 13. Nearest-neighbor spacing distributionP(s) for the
clamped stadium plate odd-odd spectrum. The Poissonian dist
tion ~dotted line! and thePGOE(s) ~dashed line! are shown for com-
parison.

FIG. 14. ^d2& as a function ofN for the clamped odd-odd plate
spectrum with~upper continuous line! the bouncing ball contribu-
tion and its best fit~dotted line! for N.100 in the form a
1b log10 N: a50.1598 andb50.0410. Without the bouncing
ball contribution~lower curves! a520.0559 andb50.1075.
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corner contributions, is also obtained.
A semiclassical approximation of the quantization con

tion for the transversal vibration of plates is derived, conta
ing, compared to the one for the membrane problem, an
ditional phase factor due to the phase shift of waves w
reflected from the boundary of the plate. From this, a Ber
Tabor–type formula is obtained for the integrable case
disk vibration and a Gutzwiller-type trace formula for th
vibration of plates of general form. The first 600 eigenvalu
for a clamped stadium plate have been obtained with num
cal algorithm specially developed. The comparison of
Fourier-transformed periodic orbit quantization formul
with the ones of a membrane with Dirichlet boundary co
ditions assess these derivations. For free plates, extra m
exponentially decaying from the boundary take place, giv
extra peaks in the Fourier transform. The statistical prop
ties of the spectrum appear to be the same as for the qua
billiard case.

The method we have used can easily be generalized
other models of wave propagation. The main ingredien
the construction of the exact scattering matrix from t
straight boundary, which serves two purposes. First, via
Krein formula, it defines the second term of the Weyl expa
sion of the mean level density and, second, it determines
leading-order term of the trace formula.
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APPENDIX A: SPECTRAL SHIFT FUNCTION
FOR ONE-DIMENSIONAL PROBLEMS

The purpose of this appendix is the derivation of the s
plest version of the general Krein formula~see@16#!, which
is very convenient in many cases and in particular for
derivation of the second term of the Weyl expansion d
cussed in Sec. III~for other applications of this formula fo
certain problems of quantum chaos see@27#!.

Let H andH0 be two self-adjoint spectral problems su
that their differenceV5H2H0 is in some sense small. Th
typical situation is the case whenH andH0 are two Hamil-
tonians with different bounded potentials or two Hamilt
nians with different boundary conditions. Then the Krein fo
mula states that for an ‘‘arbitrary’’ test functionf

tr@f~H !2f~H0!#52E f8~m!j~m!dm, ~A1!

where the functionj called the spectral shift function doe
not depend on the test function and is connected with
scattering matrixS,

det S~l!5ei2pj~l!. ~A2!
-
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Ignoring problems with convergence, Eq.~A1! can be rewrit-
ten in the simple form

Dr~l![rH~l!2rH0
~l!5

dj~l!

dl
, ~A3!

whererH is the density of states for the problemH,

rH~l!5tr@d~l2Ĥ !#5 (
n51

1`

d~l2ln
H!,

andln
H are eigenvalues of the spectral problemĤcn

H5ln
Hcn

H

with the correct boundary conditions. The importance
such formula comes from the fact that it permits one to co
pute easily the change of the density of states for ‘‘sma
changes of the potential or boundary conditions~or both!.

For clarity we sketch the formal derivation of this formu
in the case of one-dimensional operators with constant c
ficients of the type discussed in Sec. III, where all steps
be done without general theorems. The general deriva
~but not the proof! follows a similar scheme~see@16,13#!.

Let h(q̂) be a self-adjoint operator whereq̂52 id/dy.
One can consider it, e.g., as a real polynomial

h~ q̂!5 (
n50

2m

anq̂n, ~A4!

wherea2m.0. The operatorH0 corresponds to the spectra
problem

h~ q̂!u5lu ~A5!

on the whole line2`,y,` and the operatorH will cor-
respond to the same spectral problem but on the se
interval 0<y,` with self-adjoint boundary conditions

~B̂ju!~0!50, j 51, . . . ,m, ~A6!

with certain operatorsB̂j . Note that the number of differen
boundary conditions for an elliptic operator of degree 2m
equalsm.

In the case of flexural vibrations of platesh(q)5(q2

1p2)2 and theB̂j ’s, for standard boundary conditions, a
obtained from Eqs.~9!–~11! taking only the leading-orde
derivatives and replacing]/] l by ip and]/]n by i q̂.

The spectral problem admits the plane-wave solutions
the typeeiq(l)y, whereq(l) satisfies the equation

h„q~l!…5l. ~A7!

For a given value ofl, let us assume that this equation h
2d(l) real solutionsqr(l), r 51, . . . ,2d. As the power of
h(q) is 2m and ash(q̂) is assumed to be self-adjoint, th
2(m2d) complex roots can be divided in pairs with diffe
ent sign of the imaginary partqc

6(l)5ac6 ibc with bc.0
andc51, . . . ,m2d.

Assuming that all real roots are different, one can divi
them into two intertwining classesqr

(2) and qr
(1) with r

51, . . . ,d, such that

q1
~2 !,q1

~1 !,q2
~2 !,q2

~1 !,¯,qd
~1 ! .
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qr
(1) is a root for whichdh/dq(q).0 andqr

(2) for which
dh/dq(q),0. The numberd is called the multiplicity of the
eigenvaluel.

Let us define the current operatorĴ by the condition

g@h~ q̂! f #2@h~ q̂!g# f 5q̂@gĴf #. ~A8!

The explicit form ofĴ follows from the identity

gq̂nf 2 f q̂̄ng5q̂(
k50

n21

q̂̄kgq̂n212kf .

One can check that for every plane-wave solutioneiqy the
value of the current is

e2 iqyĴeiqy5
dh

dq
~q!. ~A9!

The above-mentioned two types of real roots correspon
two different types of waves:qr

(2) can be interpreted as wav
vectors for incoming waves andqr

(1) correspond to outgoing
waves.

The Green’s function of the free problemH0 can be ex-
pressed by the usual formula

G0
6~y,y8;l!5

1

2p E
2`

1` eiq~y2y8!

h~q!2l7 i«
dq ~A10!

and its discontinuity DG0(y,y8;l)[G0
1(y,y8;l)

2G0
2(y,y8;l) equals

DG0~y,y8;l!5 i (
r 51

d F eiqr
~1 !

~y2y8!

Udh

dq
~qr

~1 !!U 1
eiqr

~2 !
~y2y8!

Udh

dq
~qr

~2 !!UG ,

~A11!

whereqr
(6) are real solutions of Eq.~A7!.

Let uj (y;l) be thej th eigenfunction of the spectral prob
lem ~A5! with boundary conditions~A6!. If all solutions of
Eq. ~A7! are different, each eigenfunction has the form

uj~x;l!5
1

A2p
(
r 51

d FCjr
~2 !

eiqr
~2 !y

Udh

dq
~qr

~2 !!U1/2

1Cjr
~1 !

eiqr
~1 !y

Udh

dq
~qr

~1 !!U1/2G1 (
c51

m2d

Bjce2bcyeiacy,

~A12!

where the first sum is the expansion over the incoming
outgoing waves and the second one is the expansion ove
complex admissible wave vectorsqc

(1) , the latter giving so-
lutions decaying asy→1`.

All coefficientsCjr
(6) andBjc have to be determined from

the boundary conditions~A6!. As the number of boundary
operators ism and the number of unknowns is 2d1(m
2d)5m1d, in general one getsd linear independent solu
to

d
the

tions uj (y;l), j 51, . . . ,d. From physical considerations
is clear~and can be easily checked from the current cons
vation! that the amplitudes of incoming wavesCjr

(2) can be
chosen as an arbitrary~unitary! matrix and the amplitudes o
outgoing wavesCjr

(1) will be connected to them by a unitar
matrix S,

C~1 !5SC~2 !, ~A13!

which is obviously called the scattering matrix. Direct ve
fication shows that for a unitary matrixC(2) the factors in
Eq. ~A12! ensure that the functionsuj (y;l) are normalized
as

E ū j~y;l!uj 8~y8;l!dl5d j j 8d~y2y8!. ~A14!

The knowledge of eigenfunctions of the spectral probl
permits one to compute the Green’s function by the us
formula

G6~y,y8;l!5(
n

ūn~y8!un~y!

ln2l6 i«
, ~A15!

where the sum is taken on both the continuous and disc
spectra. In particular,

DG~y,y8;l!52p i (
j 51

d

ūj~y8;l!uj~y;l!

12p i(
k

d~lk2l!ūk~y8!uk~y!,

~A16!

where the second sum extends to the purely discrete s
trum for which C(6)50. These eigenfunctions are norma
ized to 1.

The change of the density of states defined in Eq.~A3!
equals

Dr~l!5
1

2p i E0

1`

@DG~y,y;l!2DG0~y,y;l!#dy.

~A17!

Substituting expressions~A11! and ~A16! into this formula,
where a factor exp(2ay) is introduced for convergence, on
obtains

Dr~l!5 lim
a→01F (

j 51

d E
0

1`

uuj~y;l!u2e2aydy

2
1

2pa (
j 51

d S 1

Udh

dq
~qr

~1 !!U 1
1

Udh

dq
~qr

~2 !!U D
1(

k
d~lk2l!. ~A18!

To compute the integral
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(
j
E

0

1`

uuj~y;l!u2e2aydy,

it is convenient to use the following trick~see, e.g.,@13#!. By
differentiating the equation

h~ q̂!uj~y;l!5luj~y;l!

with respect tol, one gets

uj~y;l!5@h~ q̂!2l#
]uj~y;l!

]l
.

From Eq.~A8! it follows that

ū juj5ū j@h~ q̂!2l#
]uj

]l
5@h~ q̂!2l#uju

]uj

]l

2 i
d

dx S ū j Ĵ
]uj

]l D
and

E
0

1`

uuj u2e2aydy52 iaE
0

1`

ū j Ĵ
]uj

]l
e2aydy.

As a→01 only terms of negative power ofa can contrib-
ute. However, they can come only from the integrand p
portional to 1 andy. In other words, only terms coming from
the interference of plane waves with exactly the same va
of q(l) are important. Taking into account Eq.~A9! and that

dh

dq
„q~l!…

dq

dl
~l!51, e2 iqy~ Ĵy2yĴ!eiqy52

i

2

d2h

dq2 ~q!,

one obtains

2p(
j 51

d S ū j Ĵ
]uj

]l D5 iy (
j ,r 51

d F uCjr
~2 !u2

1

Udh

dq
~qr

~2 !!U
1uCjr

~1 !u2
1

Udh

dq
~qr

~1 !!UG
1 (

j ,r 51

d F C̄jr
~1 !

dCjr
~1 !

dl
2C̄jr

~2 !
dCjr

~2 !

dl
G .

As the matricesC(6) are unitary, the first term equals

iy(
r 51

d F 1

Udh

dq
~qr

~1 !!U 1
1

Udh

dq
~qr

~2 !!UG
and after the integration it cancels with the same term fr
DG0 @Eq. ~A11!# and the final formula reads
-

es

Dr~l!5
1

2p
trS C~1 !†

dC~1 !

dl
2C~2 !†

dC~2 !

dl D
1(

k
d~lk2l!

5
1

2p
trS S†

dS

dl D1(
k

d~lk2l!, ~A19!

where the scattering matrixS is defined in Eq.~A13!. Intro-
ducing the spectral shift functionj by the relation

j~l!5
1

2p
Arg det S~l!, ~A20!

one immediately concludes that

Dr~l!5
dj

dl
~l!1(

k
d~lk2l! ~A21!

and the change of the staircase functions is

DN~l!5j~l!1nDS~l!. ~A22!

The second term in these formulas is connected with
discrete spectrum ofH. ~If H0 also has a discrete spectru
the modification of this formula is obvious.!

In the derivation of this formula it was assumed that allqj
are different. The pointsl* where the equationh(q)5l*
has a multiple real rootq0 are called singular points of th
continuous spectrum. In these points the dimension of
scattering matrix changes and they gived-function singulari-
ties in Dr or a jump in functionj.

Let us consider the most common case of the appeara
of an eigenvalue of multiplicity 2. One can check that in t
vicinity of a singular point the important part of solution
should have the form, choosing hereq050,

eiqy1«e2 iqy,

with «→61 whenq→0. The plus sign corresponds to th
Neumann type of boundary condition and the minus sign
the Dirichlet one. Repeating arguments leading to Eq.~38!,
one concludes that the sign of thed-function term is propor-
tional to « and that

j~l* 10!2j~l* 20!5
«

4
. ~A23!

The general case is discussed in detail in@13#. Using Eq.
~A22!, the second term of the Weyl expansion of the smo
staircase function for two-dimensional problems can be w
ten in the form

Ñ2~l!5LE
2`

1` dp

2p
@j~l,p!1nDS~l,p!#, ~A24!

wherej(l,p) and nDS(l,p) are the spectral shift function
and the number of states of the discrete spectrum for
one-dimensional straight-line boundary problem andp is the
wave-vector component along this boundary.
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APPENDIX B: CURVATURE CONTRIBUTION
TO THE ASYMPTOTIC NUMBER OF LEVELS

The general method for the computation of the high
order terms of the Weyl expansion for billiard problems w
smooth boundaries has been developed in@17#. With obvious
modifications it can be adapted as well for problems of pl
vibration. We found that it is more convenient to use
slightly different method. As in@17#, the Weyl expansion can
be read off from the knowledge of the asymptotics, whes
→`, of the Green’s function corresponding to th
~diffusion-type! equation

~D rW
21s2!G~rW,rW8;s!5d~rW2rW8!, ~B1!

inside the domainD, G obeying to the desired boundar
condition on the contourC.

Let the smooth part of the staircase functionÑ(k) have
the following Weyl expansion ask→`:

Ñ~k!5 (
n52N

2

cnkn. ~B2!

If we consider

K~s!5(
n

1

kn
41s2 5E

D
G~rW,rW;s!drW, ~B3!

then its asymptotic form ass→` is connected to the Wey
coefficientscn by

K~s!; (
n52N

2
cn

s22n/2

pn

4 sin~pn/4!
. ~B4!

In particular, the beginning of this expansion is

K~s!;
p

2s
c21

p&

4s3/2 c11
1

s2 c0 . ~B5!

The free Green’s function of Eq.~B1! is

G0~rW,rW8;s!5E dp dq

~2p!2

eip~x2x8!1 iq~y2y8!

~p21q2!21s2 . ~B6!

Integrating overq, one gets the expression

G0~rW,rW8;s!5
i

8ps E eip~x2x8!S 1

r 1
ei 2r 1uy2y8u

2
1

r 2
e2r 2uy2y8u Ddp, ~B7!

wherer 65Ap26 is.
The half-plane (y>0) Green’s function that obeys th

desired boundary conditions can be written~as in Sec. III! as
-

e

GHP~rW,rW8;s!5
i

8ps E eip~x2x8!S 1

r 1
e2r 1uy2y8u

2
1

r 2
e2r 2uy2y8u1A1e2r 1~y1y8!

1A2e2r 2~y1y8!1B1e2r 1y2r 2y8

1B2e2r 2y2r 1y8Ddp, ~B8!

where the coefficientsA6 and B6 have to be determined
from the boundary conditions. At this stage, we will focus
the clamped edge. Similar but more tedious computati
can be done for a free edge. In the former case

Guy5050,
]G

]y U
y50

50 ~B9!

and one obtains

A65
r 11r 2

r 12r 2

1

r 6
, B652

2

r 12r 2
. ~B10!

To find the contribution from the curvature one has to co
struct the Green’s function that obeys the boundary condi
not on the liney50 but on the ‘‘circle’’ y5x2/2R, whereR
is the local radius of curvature. We shall look for this fun
tion in the form similar to Eq.~B8!. Namely, we assume tha
it can be written in the form

G~rW,rW8;s!5Gh.p.~rW,rW8;s!1E eip~x2x8!@D1~p,y8!e2r 1y

1D2~p,y8!e2r 2y#dp. ~B11!

The function defined by this expression obeys Eq.~B1! for
arbitrary functionsD6(p,y8), which have to be found from
boundary conditions. AsGHP(rW,rW8;s) obeys the boundary
conditions aty50, the functionsD6(p,y8) can be deter-
mined by perturbation theory for larges. We shall perform
the calculation for the clamped boundary conditions

Guy5x2/2R50,
]G

]nU
y5x2/2R

50. ~B12!

Setting x850 and taking into account that the norm
derivative at the pointx is

]

]n
5cosu

]

]y
2sin u

]

]x
,

where sinu5x/R, one gets that in the leading-order functio
D6(p,y8) fulfill the equations

E eipx@D1~p,y8!1D2~p,y8!#dp50 ~B13!

and
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E eipx@D1~p,y8!r 11D2~p,y8!r 2#dp5
x2

2R

]2GHP

]y2 U
y50

.

~B14!

Their solution is

D1~p,y8!52D2~p,y8!5m~p,y8! ~B15!

and

m~p,y8!52
i

8psR

1

r 12r 2

]2

]p2

3@~r 11r 2!~e2r 1y82e2r 2y8!#. ~B16!

The functionK(s) in Eq. ~B3! can be expressed as~see@17#!

K~s!5E
C
dlE

0

1`

dy G~x,y;x,y;s!S 12
y

R~ l ! D ,

~B17!

wherel denotes the coordinate along the boundaryC.
At leading order inR ~or s!, the third term of the Weyl

expansion can be written as the sum of two integrals

K3~s!5~ I 11I 2!E
C

dl

R~ l !
, ~B18!

where

I 152
i

8ps E dpE
0

1`

y dyF r 11r 2

r 12r 2
S e22r 1y

r 1
1

e22r 2y

r 2
D

2
4

r 12r 2
e2~r 11r 2!yG ~B19!

and

I 252
i

8ps E dpE
0

1`

dyFe2r 1y2e2r 1y

r 12r 2

3
]2

]p2@~r 11r 2!~e2r 1y2e2r 2y!#G . ~B20!

After some algebra we obtain

I 11I 25
1

4p E dpS r 1
5 1r 2

5

8~r 1r 2!52
2

r 1r 2~r 11r 2!3D .

~B21!

Introducing the anglef from the condition tanf5s/p2, this
integral can be transformed as

I 11I 25
1

16ps2 E
0

p/2

df
sin f

Acosf cos3f/2

3~12cos3f/2 cos 5f/2!

52
1

48ps2

Acosf

cosf/2

3~1522 cos3u2cos2u14 cosu!uu50
u5p/2

5
1

3ps2 . ~B22!
Comparing it with Eq.~B5!, one concludes that the thir
term of the Weyl expansion connected with the curvature
the boundary is

c0
c5

1

3p E
C

dl

R~ l !
. ~B23!

Note that for the membrane the corresponding coeffici
equals 1/12p.

APPENDIX C: NUMERICAL SOLUTION
OF THE BIHARMONIC EQUATION

We found that it is convenient to represent solutions
the biharmonic equation in the form

W~rW !5 (
m52`

1`

cmJm~kr !eimu1E
C
K0„kurW2rW~s!u…m~s!ds,

~C1!

whereC is the boundary of the plate andK0 is the modified
Bessel function. The first term is the general solution of
Helmholtz equation in polar coordinates (r ,u), written in the
form of a series, which has been proved to be an effici
numerical formulation for the membrane problem. The s
ond is a solution of the equation (D2k2)W50, written as a
boundary integral representing the potential of a single la
~see Sec. IV!, with the distribution functionm. As K0(x)
;Ap/2x exp(2x) when x→1`, the integral is thought to
behave well at high energies. The choice of writing this p
similarly to the first part of the solution, as a series of hyp
bolic Bessel functionsI m(kr), has previously been tried in
@9#, but leads rapidly to numerical divergence problems d
to the exponentially increasing behavior of these functio
for a large argument.

The solution of the problem, which is the determination
the unknown coefficientscm and of the functionm, is ob-
tained writing that Eq.~C1! satisfies the boundary cond
tions. We have considered here only the case of clamp
which leads to the following system, for any pointrW(t) on
the boundary:

(
m52`

1`

cmJm„kr~ t !…eimu~ t !1E
C
K0„kurW~ t !2rW~s!u…m~s!ds50,

~C2!

(
m52`

1`

cmFkJm8 „kr~ t !…cosa~ t !

1 i
m

r ~ t !
Jm„kr~ t !…sin a~ t !Geimu~ t !1pm~ t !

2E
C
K1„kurW~ t !2rW~s!u…

3k
@rW~ t !2rW~s!#•nW ~ t !

urW~ t !2rW~s!u
m~s!ds50. ~C3!

nW (t) is the outward normal at pointt, which makes an angle
a(t) with rW(t). It is well known ~see, e.g.,@20#! that the
single layer potential@the second term in Eq.~C2!# is con-
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tinuous across the boundaryC and that the double-layer po
tential @the last term in Eq.~C3!# is discontinuous, leading to
the extra termpm(t) in Eq. ~C3!.

Numerically, we can only impose these previous con
tions at a finite number of points and for a finite number
unknowns. From the well-known property thatJm(x)→0 as
m→1`, the series can be truncated toumu<M5E@krmax#
1M0 (M050,1,2,3), wherer max is the maximum value ofr .
The boundary integral is discretized usingN points regularly
spaced on the boundaryC, giving the unknownsmn ,
n51, . . . ,N. We impose the equalities~C2! and~C3! to be
satisfied atP points regularly spaced on the boundary. To
soluble, the parameters of this finite system must satisfy
condition 2P5M1N for the particular case of odd solution
with respect tou, which will be the case below. To contro
the error term of the algorithm, it is convenient to choose
P evaluation points at a regular distance from theN discreti-
zation points: In other words, we imposeN5(2p21)M ,
wherep is an integer, and thenP5pM. The functionK0 has
s
.-J

of

J

.

i-
f

e
e

e

a logarithmic singularity at small distances and to be hand
with precision, one should take enough points around it. N
merically,p53 has been proved to give a sufficient accura
for the eigenvalues if the boundary integral containingK0 is
furthermore integrated by parts~integratingm! to diminish
the effects of the singularity.

We obtain a linear system of 2P equations with 2P un-
knowns, which possesses a nontrivial solution whenk is an
eigenvalue, that is, when the determinant of the system v
ishes. The method determines the optimal number of
knowns for a range ink and calculates the determinant as
function of k.

In the computation for a quarter of a stadium, symme
has been taken into account to reduce the number of po
The determinant has been written so as to be real and
been found to oscillate, having zeros in between. Sev
precision tests have determined the accuracy of the c
puted eigenvalues to be of the order ofD(k2)/50, where
D(k2) is the local level spacing in the vicinity ofE5k2.
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