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Semiclassical theory of flexural vibrations of plates
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We study the biharmonic equation of flexural vibrations of elastic plates by a semiclassical method that can
easily be generalized for other models of wave propagation. Three terms of the asymptotic number of levels for
plates with smooth boundaries are derived and the trace formula for the density of states is obtained. The main
difference between this formula and the Gutzwiller trace formula for billiards is the existence of a specific
phase factor obtained while reflecting from the boundary. Six hundred eigenvalues of a clamped stadium plate
are obtained by a specially developed numerical algorithm and the trace formula is assessed, looking at its
Fourier transform. An extra contribution occurs for a free plate due to the existence of boundary modes.
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I. INTRODUCTION brational spectra of simple geometrical objgats] and nu-
merical calculations of high-frequency plate vibratidreg
The semiclassical approximation via the Gutzwiller tracestrongly require the development of semi-classical theory of
formula [1] is one of the cornerstones of the modern ap-high-frequency elastic waves. However, the recent tools and
proach to complicated quantum-mechanical problésee, methods thoroughly investigated in the context of quantum
e.d., [2]). The driving ideas behind this method are verychaos have not been widely applied to the general case. At-
transparent and physically appealing. In the high-frequencyempts[10,11 have concentrated only on problems with ray
limit, quantum particles have to propagate according to theplitting, when waves hitting a boundary give birth to mul-
rules of classical mechani¢with unavoidable complications tiple reflected and/or transmitted waves.
near singular points and points of reflectioithe main dif- In this paper we shall focus on one of the simplest elastic
ference from classical mechanics comes from the fact thgtroblems, namely, the Kirchhoff model of transverse vibra-
due to the linear character of the Sofimger equation one tions of two-dimensional platgsee, e.g.[4]). Derived from
has to sum over all possible classical paths. In particular, théhree-dimensional elasticity, it describes the first flexural
Green's functionG(r;,f;) of an n-dimensional quantum modes of a thin plate in the regime where the ratio of the
problem at the leading order of the semiclassical approximathickness to the wavelength is relatively small. In a forth-
tion can be written as the sum over all classical trajectoriesoming paper about plate experimefitg] the effects of the
connecting the initial poinf; to the final pointfs : existence of different kinds of plate modes will be discussed.
Let us consider a plate of thicknehs having its unde-
flected midsurfac® in the (x,y) plane, whose contour &
The main hypothesis of the classical plate theory is the con-
jecture that lines normal to the midsurface stay undeformed
Here S,(f;,F;) is the classical action calculated along aand normal when the plate moves. The main effects ne-
given trajectory A, is connected with the current conserva- glected are the shear, which makes the direction of the lines
tion in the vicinity of this trajectory, independent, and the rotary inertia in the moment balance
equations. If a tensioil per unit length of the boundary is
applied in its plane, for small deformation, one obtains a
oFtort| 2) biharmonic equation for the midsurface transverse displace-
mentw(r(x,y),t) [3—6]:
wherer denotes the coordinates perpendicular to the trajec-
tory, p is the wave vector, and, is the Maslov index, which Pw . o
counts the points along the trajectory at which the semiclas- ph —= (RO =TAw(F,t) =DAW(T,1), ©)
sical approximation cannot be applied.
However, all these arguments are not specific to quantumv-vhereD —Eh®/12(1— »?) is the flexural rigidity. Herep is
mechanical problems. Equally well they can be applied tothe mass densitg is the Young elastic modulus, andis
any phenomena of wave propagation when the wavelength 9 ’

is small compared to the characteristic dimensions of a sys:[-he Poisson coefficient, all characterizing the mechanical

tem. The first problem that comes to mind is the propagatiorPrOpert'es of the plate. When the tension dominates, or in the

of high-frequency waves in elastic media. This is one of thelong-wavelength regime, one gets the membrane model de-

oldest wave problems and it is the subject of many textbookgcr'bed by the well-known wave equation
(see, e.g[3—6]). Acoustics, aeronautics, and seismology are
just a few examples of fields where high-frequency elastic
waves are important. Recent laboratory experiments of vi-
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In the opposite limit, when stiffness dominates, or in thebe factorized into the Helmholtz operator and the operator
short-wavelength regime, we get the purely biharmonio(A—k?) giving rise to exponentially decaying and increasing
equation for flexural modes, or Kirchhoff model waves, so the solution can be written as a sum of solutions of
each operator. The addition of exponential waves is then the
main feature introduced in this model that is different from
the quantum billiard problem.

The purpose of this paper is to develop the semiclassical
This plate problem has multiple connections with the mem+race formula k—) for the high-frequency vibrations of
brane one. A previous study of this model was madf9in  the plate (— ) that will express the density of the vibra-

The periodic solutionsv(F,t)=W(F)e'“" have to verify  tional spectrum through the classical periodic orbits in com-
in D the spectral problem plete analogy with the Gutzwiller trace formula for quantum

P PRI problems. We shall discuss this in such a manner that one
ATW(F) —k*™W(r) =0, (6) can use them not only for this particular problem but also in
many similar problems.

The plan of the paper is the following. In Sec. Il we
discuss exact solutions of the wave equation near a straight

J*w

ph _atz

(F,t)=—DA2W(F,t). (5)

where the moduluk of the wave vectok obeys the disper-
sion relation

12p(1— v?) boundary for different boundary conditions. These solutions
kKi=——>— w? (7) Wil serve as the building block for further investigation. We
Eh calculate the smooth part of the level density in Sec. lll.

For the membrane, the spectral equation is just the Helm§ection IV is devoted to the derivation of the periodic-orbit
i ' contribution to the trace formula. We study an integrable

holtz equation case, the disk, in Sec. V. In Sec. VI the chaotic case of the

AW(F)+K2W(F)=0 (8) plate in the shape of the stadium is considered and a com-
parison with numerical data is performed. In Appendix A we

or quantum billiard problem, which has been extensivelydiscuss a certain convenient expression for the second term
studied in the quantum chaos fielsee, e.g.[2]). Here the  Of the Weyl expansion of the smooth part of the level count-
dispersion relation takes the forkd=phw?/T. ing function, in Appendix B we present the calculation of the
Two conditions at the bounda@are needed to unique|y curvature contribution to the third term, and in Appendix C

define the solution of the fourth-order equatit8). Let us  We describe the method used to find numerically the spec-

define a curvilinear coordinate system where, at the boundfum of the clamped plate problem.

ary, | is the curvilinear abscissa the normal coordinate

positive at the interior of the domain, akdl) the curvature Il. HALF-PLANE SOLUTIONS OF THE WAVE
of C. Then the standard self-adjoint boundary conditions EQUATION
E:Tgri,p:.dg.e[;gg can be written in the following forms: - a We have mentioned in the Introduction that the main dif-
ference between the biharmonic equation of plate vibrations
W=0, and the quantum billiard equation is the existence of addi-
(9)  tional exponential waves of the type ez{;dZT). As these
IW waves are nonpropagating it is clear from physical consider-
%:O' ations that(i) they can exist only near the boundary of the
plate and(ii) only the waveslecreasingrom the boundary
a supported edge are allowed. If these conditions are not fulfilled the density
of vibrational energy blows up somewhere inside the plate.
W=0, These simple considerations show that the structure of eigen-
) ) (10)  functions of biharmonic equatio(6) is the following. Far
W vy ITW UK M:O_ from the boundaries a wave function is a sum over different
an’ al? an propagating waves of the type exgk-f), as for usual bil-

liard problems. In addition, only in a layer of width of the
order of 1k is the existence of other types of waves impor-
PEY ( PW  dK aW) tant. This simple picture has been clearly discussed for par-

and a free edge

——+ (2= V)| e ticular examples irf14]. It means that in the semiclassical
an dl%on — dl 4l limit, whenk— oo, the solutions of a vibrational problem can
2 W b(_a vie_vved as those of the bi.II_ial(membranﬁ problem, but
+3K —5— (14 »)K2 —=0, (11) with dlffere_nt t_)oundary C_OndItIO_)I’IS. _
al an Any derivative of the fieldNV/(f) contains a term propor-
tional tok. Therefore, in the semiclassical limk-{«), the
PW  PW oW dominant contributions come from the terms with the highest
Ty gz vK o =0 number of derivatives. From the boundary conditi¢@s-

(11) it follows that in such a limit, terms that contain the
The main difference between the biharmonic plate equaeurvature of the boundary and its derivatives are negligible,
tion (6) and the Helmholtz equatiai®) is that the former can which leads to the important conclusion that in the semiclas-
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: ; . =0.5 (uppe).
the field W is changed noticeably should be of the order of

1k, which tends to zero whek—co. If the boundary is The required solutions for the different boundary condi-
smooth(i.e., far away from corners and other sharp singulatjons have the following formésee, e.g.[13]). (i) For the
pointg, the waves reflect mainly as if there were a straight—damped edge9), if k>|p| one gets

line boundary tangent to the actual one. In Appendix B we '

show how one can compute the corrections to this leading Q-iq A
term. Though this type of consideration is physically quite A=— otiq —e'%l?  B=—(1+A), (14
natural and is at the very foundation of all semiclassical con- q

siderations, its mathematical proof, even in the simples

cases, is quite difficulise€e[13]), due to the asymptotic char-

acter of the semiclassical series. Below we shall proceed sin 0

mainly on the formal basis without the explicit estimation of d(0)=—2 arctar{—

next-to-leading-order terms, which, though possible, require J1+cos ¢

quite elaborate calculationsee Appendix B Our purpose

is to derive the dominant term of the trace formula for vibra-and is plotted in Fig. 2, and K<|p| there is no solution of

tional spectra of plates, the analog of the Gutzwiller tracethe form(13). (ii) For the supported eddé0), if k>|p| one

formula for quantum systems, without discussing the diffi-gets

cult and deep problems of convergence of the resulting ex-

pression. A=-1, B=0. (16)
We have argued that in the high-frequency limit the re- ) ) _

flection coefficient from a smooth boundary is close to thend if k>|p| there is no solution of the forrtd.3). (iii) For

tvhere the phase shitb. is given by

(15

one from a straight-line boundatgee Fig. 1 Below we will  the free edgel1l), if k>[p| one gets, denoting’=1-v,
present the solution of this classical problésee, e.g.[13]). 1— v cod 8
Let us choose th& axis along the boundary, the perpen- ZTv cos o

A=—e%9  B=(1+A) . , (17
diculary axis being oriented towards the interior of the plate. 1+’ cos
In accordance with the above-mentioned statement, that the S
only permitted exponential modes have to decay from th&vhere the phase shitb is given by

boundary, the solutions of the biharmonic equaiién with

a wave-vector component along the boundpyymust have 9= —2 arct sin ¢ 1+v'cos 62
one of the two following forms: (i) If k>|p|, ¢1(6)=—2arcta J1+cog ¢ |1-v' cos 6/ |
_ . _ 18
W p(X,y)=eP e 'Y+ AP+ Be @], 12 (18

and is plotted on Fig. 2, and K<|p| there is a solution
wherep=k cos6, q=Vk’—p?=k sin 4, 6 being the angle when P

between the reflected wave and the axis, and Q

=kZ+p?; (i) if k<|p], k(p)=|pl«(v"), (19)
Wy p(x,y)=€'PX[Ce RY+De” ¥, (13)  where
where R=\/pZ— k2. The first case corresponds to the con- k(v')=[v'(2—3v")+2v'J2v'?=2v"+1]%%  (20)

tinuous spectrum and the second one gives the discrete spec-
trum, if any. Then
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D K2(v')—v' 1 gip (r=r")
C K (V’)"‘V’ ' Go(r,r 1k): (271_)2 J’ p4_k4_i8 dp (28)

This mode propagates along the boundary and is analogoysom it the dominant contribution to the smooth density of
to the Rayleigh surface wavdsee, e.g.[4]). For a finite states(27) (the first Wey! term equals

system of perimetet.,, boundary modes can be quantized
semiclassically by the condition

_ dp S
pl(k)=4k3fpdff #5@4—%‘):5& (29)

p,L=2n, (21
n being an integer. whereS is the area of>. Therefore, at leading order lnthe
density of the vibrational spectrum is the same as for billiard
IIl. MEAN STAIRCASE FUNCTION problems. On the contrary, the next terms of the Weyl ex-
pansion may be different.
A. Surface and perimeter terms It was noted in[15] that the second term of the Weyl
The self-adjoint problem described by the biharmonic€XPansion, proportional to the perimeteof the boundary,
equation can be explicitly calculated from the knowledge of wave
functions near the straight-line boundary. The main point
(A?2—KHW(F)=0 (22 here is that close to any smooth boundary the Green'’s func-
tion has to be close to the Green’s function of the half plane.
for r in D, with any of the boundary conditior(9)—(11) on We compute the latter from the knowledge of the exact

C, admits a discrete real spectruns@;<---<k,=<---. The  solutions near a straight boundary discussed in Sec. Il. We
eigenfunctionsV,(r') are normalized in such a manner that have

Wk/,p( F’)Wk/,p( F)
K3 —K—ig

> Wi (F)W(F) = 8(F—T"). 23 G k)= (30)
n= k’,p

Let N(k) be the number of levels less thianthe staircase  \ynere the sum is taken over all eigenvalues of our problem.
function, andN(k) its mean asymptotic value. The standardDue to the translational invariance of the half-plane problem,
approach to the asymptotic evaluation k) (see, e.g., any eigenfunction can be written in the form
[15]) employs the Green’s function, which obeys

1
(A2—KHG(F,F';k)=8(F—F") (24) Wkr,p(F)=Ee'pXVkr,p(y). (3D

in D and the given boundary conditions énAs for quan-

tum problems, thigretarded Green’s function can be written WHErep is a continuous parameter alg , is an eigenfunc-
as the sum over all eigenvalues tion of the one-dimensional problem

o — ~ Yt

S-S W, (77 YW, (F) 5 H(P,A)Vir p(Y) =K Vi p(Y) (32

n=1 kﬁ_k4_'8 obeying the required boundary conditiond(p,q)=(p?

+0?)? with g= —id/dx. For our problenV, ,(y) has to be
oportional to the expressions in square brackets in Egs.
2) and (13) for continuous and discrete spectra, respec-

tively. The constant of proportionality is determined from the

normalization(23). As for quantum-mechanical problems,

wave functions of the discrete spectrum can be normalized

wheree —07". The importance of this function follows from
the fact that any measurable quantity can be express
through it. In particular, the density of the vibrational spec-
trum defined by

p(K)=>, s(k—kj) (26) by the usual condition
n=1
—+ oo
is connected to the Green’s function by the standard formula JO Vi p(y)|?dy=1 (33
ak® : . .
p(k)=—Im f diG(F,F:K). (27 and eigenfunctions of the continuous spectrum should be
™ D

chosen in such a way that each plane wave in its expansion

. . . , o has the current equal to\IZ7. From the definition
The starting point of the semiclassical approximation for

guantum-mechanical problenisee[15]) is the construction A

of the free Green’s function in the plarf@ithout imposing gHf—Hgf=q(gJf ),

any specific boundary conditiong-or our problem of vibrat- -

ing plates we will follow the same line of argument and startit follows that the current operatar satisfies

from the construction of the free Green'’s function that obeys _ o . _
Eq. (24) in the whole plane gJf=g0°f +qgof+02gqf + q°gf+2p%(gaf +agf )
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ized eigenfunctions of the continuous spectrum can be writ- | -~ [AG(F.1K) —AGo(F, k) Je”“Vdy

and exp&iq’x)f] exp@q’x)=(9H/<9q|q,. Therefore, the normal- J’+°c
ten in the form

0

—ifkd ! L Aea+ T sq) A+ A
T Pm—(—ﬂ'g ()(A+A)

2iq
1 : .
Vi p(y) = —————[e 19+ A9V +Be "],
(Y) 27T|aH/aq|q,[ ] L2 = oy Lo
34 Qg ® o-ia ° " 29®
+
wherek’>|p|, g’ = Vk'?—p?, andQ’ = Jk'?2+p?. The val- +if dpE 5(kjf‘(p)—k4). (39)
e 5

ues ofA andB for standard boundary conditions are given in
Egs.(14), (16), and(17).

The discontinuity of the free Green’s function Substituting here the expressions fédrand B for a given
choice of the boundary conditions, one can obtain the corre-
sponding second term of the Weyl expansion. For example,
for the clamped edgé) the result is

* ~k—2kak dpfk L 39
p2(k)= e (k,p)= 7. (39)
i tee te i ’ it ’
AGy(r,F";k)= . fﬁm dleoo dg’e'Px—x )+iq' (y=y") where
XA f(k p)—i —(Q-a) (40)
i [k 1 27 [9Q(Q% ) [
=_f dp dp(x=x")

27 )« [oH/dq]4

It is easy to verify that the expression in the square bracket is
just dg.(k,p)/dk?, where ¢.(k,p), with p=Kk cos¥, is the
phase shift due to the reflection on the clamped ¢dge Eq.
(15)]. This is not a coincidence. In Appendix A, following
where q= \/kz—pz_ Correspondingly, the discontinuity of [13], we will show that it is a consequence of the Krein

X (el9~Y") 4 gmialy=y")y, (35)

the exact half-plane Green’s function has the form formula[16]. The functionf(k,p) in general can be written
in the form
k _ P
AG(F,F' k) =i f dp €PCTXV, (Y ) Vi p(y) _1d
+o0 ) ,
+iJ:w dp P whereS is the scattering matrix for a given problem. In our

case theS matrix coincides with the coefficienfA=
— 4 4 —exdi®(6)] and the second term of the Weyl expansion for
x> Vi (Y )iy (¥) 6(ki(p) —K®), (36)  the smooth staircase function takes the form for any bound-
J ary conditions

the last term being the sum, if any, over all discrete eigen- _ k dp 1 1
valuesk;(p). Nz(k)=|-f E(_ZJFZ(b(k'p)
The second term of the Weyl expansion is expressed K
through the discontinuity of the Green'’s function by the += dp
usual formulg[15] + Lf 27 Mos(k,p). (42
~ N a3 1 e . The first term comes from th&function singularity, the sec-
pa(k) =4k Lallrl 2mi Jo [AG(F.rK) ond is the contribution of the continuous spectrum, and the
third one is the staircase function of the pure discrete spec-
—AGy(F,F;k)]e” *dy, (837 trum. As the functionsp(k,p) and npg(k,p) are homoge-

neous functions one obtains

where the factor expf{ay) has been introduced for conver-

gence, as for the continuous spectrum the integral gver Nz(k)zﬂ L K (43)
diverges. One has first to compute the difference of the two 4

expressions in Eq.37) and then perform the limig— 0+ .

The calculations are straightforward and one gets B being given by
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1 1 + o 1
,8=—1+2J71dtz¢(1,t)+zjiw dt nps(13). & 5= 3(p).

(44)
From Eqg.(42) the contribution of these corners will be

For the three standard boundary conditioi®—(11) the

. _ . B e 1 1
value of this coefficient is, for the clamped edge, CE)E a)zZ _ 4_1+ o #(k,0) +nps(k,0) . (50)
M—t2 3
=——_1— i ! 1t =—1— i Then, for a clamped edge one gets
Be 1 arcta dt 1
7 Jo J1+t2 Jal'(9)
&

~—1.762 759 8; (45) g =—g (51)
Bs=—1; (46) (e-s)_ & 52

and for the free edge,

s which is the same result as for a right angle corner in the
Bi(v)=—1+4[v'(2-3v")+2v' V2V “=2v" +1] membrane case, and for a free edge

4 fl t VI—t? [1+0t%) 2 A i) ®
- = arctan —= | — 2 7T =2
7 Jo e |-t @7 T 9
[F;J_r _thle membrane with the Dirichlet boundary conditions IV. BOUNDARY INTEGRAL EQUATIONS
All these results were rigorously demonstrated[113]. A. General formalism

We have presented the above derivation in order to streSs Tha standard method to derive the trace formula for quan-

that all steps are exactly the same as for usual membrangn, piliiards is the reduction of the problem to boundary

problems[15]. integral equation$15]. These equations are also a starting
point for many different semiclassical quantization ap-
B. Constant terms proacheg18,19.

The next term of the Weyl expansion should be a constant In this section we shall discuss the construction of bound-

Co, Which, as for membrane problems, equals the sum oY integral equations for the two-dimensional biharmonic
contributions from the curvature and from the corners of thefduation

boundary, if they exist. A2—KHW(F)=0 54
In Appendix B we show that the curvature contribution, ( Wn=0, &4

as in billiard problemgsee[17]), has the form with self-adjoint boundary conditions. Any solution of this
equation can be decomposed as a sum of two terms

a_ af 4
Co=a Jca R() 48 W(P) =W (7) + W), (55

for the conditiona on the boundary par€,, R being the ~whereW(*) andW(") satisfy the equations
curvature radius. For a clamped edge, we firfd= 1/37.

The corner contributions require the knowledge of the ex- (A+KHWH(F) =0, (56)
act solution of the biharmonic equation for the infinite wedge e
with the same boundary conditions, which is not known. The (A-KHW () =0, (57)

exception is the contribution from the corners that appear .
after desymmetrization of the region with respect to discretdVith linked boundary conditions.

symmetry. In the current case of parity transformation Let us consider the Green's functio®™)(,f";k) and
—x, the eigenfunction is either ever€ +1) or odd ¢=  G'7(F,F';k) of the corresponding free problems

—1). The above derivation can be done taking, in place of (2 b s o

Eq. (31), the following form of eigenfunctions for a bound- (A £KH)GH(F, I k)= o(F—F7). (58)

ary conditiona: . . .
y They admit the usual integral representation

NN - s QBT
WE,’p(r):—(ele—i—se |px)Vek‘,’p(y). (49 GUE(F,F k)= — (zd:)z p;—;(kzﬂs)

2 (59

3

After integration overx, one gets the additional term and can be expressed through the Bessel functions as
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1
G<+>(r,r';k)=aHgl>(k|r—r’|), (60)

1
G(‘)(F,F’;k)=—zKo(k|F—F’|). (61)

E. BOGOMOLNY AND E. HUGUES 57

IG (T (a)) 1
fc&—n(“ f(a)da— > f(B)

f(a)da.

+J IG(r(B),f(a))
c on

(67)

The reduction of the two-dimensional Green functions to the

one-dimensional ones will also be useful:

N dp ) eiC”yl
)P 0O k)= ipx —___
G'(r,0;k) J 5 e 2iq (62
(=) N dp . e_Q‘yl
NP O k)= — ipx
G'7/(r,0;k) J —27Te 20 (63

HereF=(x,y), q=k?—p?, and Q= k?+p?. In the fol-
lowing we will dropk in the notation for convenience.
We shall try to find the solutions of Eq$56) and (57)
formally written as potentials of a single lay¢see, e.g.,
[20]) with distribution functionsw and v on the boundary:

W(F) = f G, F(a)u(a)da, (64)
C

W(_)(F)=LG(_)(F,F(a))v(a)da. (65)

The simplest way to check this relation is to consider the
integral over a straight line.

Let us introduce the notationsG=(F(B8),f(a))
=G*(B,@) and dG~(F(B),F(a))dng=3dG*(B,a)ldng.
Using the above formulas one gets the following system of
equations to determine the functiopsand v:

fGW(ﬁ,a)M(a)dwfG<—>(ﬁ,a)v(a)da:o,
C C

(68)
1 1 aG (B,
5 H(B)*+ 5 v(B)+ JC T(lfa) m(a)da
IG (B, )
+J’CTB v(a)da=0. (69

To find the semiclassical limitk— ) of these equations it

is necessary to separate the contributions due to points at
short distances from those due to points at large dses
[18]). Let us divide each integral in Eq&8) and (69) into

two parts separating a small vicinity of the pojgfrom the

From now ona (and alsop) will denote the distance along rest of the boundaryd,):
the boundary from a fixed point to a point on the boundary

whose Cartesian coordinates @(ex).

The functionsw(™), W(=), andW so defined satisfy, re-

spectively, Eqs(56), (57), and(54) for arbitrary functionsu
andv. There are many different forms ©¥ with this prop-

erty. As we shall consider below only formal semiclassica

B+A
fg(ﬂ,a)dCFf g(ﬂ,a)daJrf 9(B,a)da,
c Ca

B—A
(70

|ChoosingA in such a way that k<A<ly, wherel, is a

transformations and shall not discuss problems of convelcharacteristic scale of the boundary, one can demonstrate

gence, all these forms are considered equivalent, .

and(65) representing the simplest choice. In real calculations

other forms can be preferr¢gdee Eq.(87) below].
To define the distribution functionag and v, one has to

hat

B+A +oo
f 9(8,@)da — f_mgw,a)da. (71

B—A

impose the boundary conditions that lead to a system of . ) . )
equations to be verified by these functions. We present heféhere the last integral is taken over the straight line and the

their derivation for the case of a clamped edgk where the

corrections could, in principle, be computéske Appendix

function W and its normal derivative must equal zero at anB)- As 9G~(B,a)/dng equals zero on a straight line, Egs.

arbitrary pointf(8) on the boundary:

IW
W(r(8))=0, o, (F(B))=0. (66)

As the free Green’s functions have a logarithmic singularity

asf approaches’,

+) > > 1 > =
G(—)(r,r’)~zln|r—r’|,

care should be taken when computing the boundary limit of

its normal derivative. A§ approacheg(3) from the interior
of the domainD (see, e.g.}20]), one gets

(68) and(69) can be asymptotically rewritten in the form

f G”)(ﬁ,a),u(a)daJrf G(Ba)u(a)da
SL Ca

+ | e @ n@dat | 6 (s0 M@ daz0,
SL Ca

(72
1 1 G (B,
S 1B+ B+ [ # p(@)da
A
IG (B, a)
-+J;A———7ﬂi;——-V(a)da::O. (73
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Now it is convenient to consider the Fourier transforma- Mpr
tion of these equations. As the variablesand 3 are the (Mo5p,pr+Mp,pI)( Y ,>=0. (77)
lengths of the boundary arcs, the functign&r), (), and P
G™(a,B) should be periodic functions of its arguments with ywhere the matrix
the period equal to the perimeter of the boundaryThere-
fore, they can be represented as the Fourier series 1( —ilq —1/Q)

M0= 2 1 1 (78)

M(a)=f ppe®edp, v(a)=f vpe'Pdp, _ _ _ _ o
P P is connected with the integration over the straight line and
(74 the matrix
(*) — (*) nipB—ip’«a /
G (B,a) f pryp,e dp dp'. ) =)
Cp.pr Gp.pr
. : Mpp=| _: A+ ) (79
Here [---dp denotes the summation over the discrete set of ’ —iqG, . QG
boundary wave vectors,=2wn/L. As we are interested in
the leading term, this discreteness is unessential for us. is related to the integration ov€y . The condition of com-

At leading order of the semiclassical approximation patibility, the quantization condition, is the zero of the deter-
26 (Ba) minant
—ﬂ:_' (+) LipB—ip'a ’
ng 'f f AGppe dp dp, (79 det(MoS, 5+ M, 5)=0, (80)
G (B, ) which can be transformed into the form

(=) LipB—ip'a /
an, JJQGp'p,e dp dp'. (76
de(ﬁp'p/—Tp’p/)=0, (81)
Taking into account these formulas and E(&2) and (63),

we find that the Fourier componenis, and v, have to sat- where the total transfer matrix, , = — MglMp,p, can be

isfy the system of equations rewritten within semiclassical accuracy as
|
2Q—iq G+ 4iq (oG
Q+ig \ dng o/ Q+ig \ dng op
Tppr=- oy ' (=) (82)
‘ 4Q [aG! ) Q-iq (G )
Q+ig | dng o Q+ig | dng o

BecauseT, ,,—0 on a straight line(when p—k and p’ ficient from a smooth boundary in the high-frequency limit
—k) Eqg. (82) corresponds to the required separation of shortends to the one from a straight line confirms the general
and long trajectories. Whek— o with |F(8) —r(a)|>0, statement made in Sec. II.

Then the only difference between the problem of plate
vibration and the quantum problem is the existence of the
phase shift or, more generally, tBamatrix for the scattering
] o from the straight line, whose calculation is usually straight-
and one can ignore all terms W, , that containG(~). forward (see Sec. )l It is clear that the same conclusion can

Finally, we get that in leading order of semiclassical ap-pe made for other boundary conditions as well.
proximation, the quantization condition can be written in a Analogous considerations, as [ib5], also permit one to
form very similar to the one for the quantum billiard problem gptain the semiclassical expression for the Green’s function
with the Dirichlet boundary conditions as a sum over classical trajectories. The presence of the ad-

ditional phase shift after each reflection from the boundary is
G(*)) } 0 the main difference between the transverse plate vibrations
p.p’

G(_)(B,a)~e_k‘F(B)_F(“)‘—>O

: J
de{ 1-2¢ ¢°(k’p)( (83 problem and the corresponding quantum billiard problem.

ng
where we recognize the phase shjft [Eq. (15)] due to the B. Trace formula
reflection on a clamped edge. The only difference between The additional phase in Eq83) does not change any
this expression and that of the quantum billiard is that for thestandard steps by which one comes from this determinant
latter ¢(k,p) =0 [note that in leading ordesG(B,a)/dng  condition (83) to the Gutzwiller trace formuldsee, e.g.,
=—0dG(B,a)/dn,]. This result is quite satisfactory from a [18]). Using the formulas for the oscillatory part of the stair-
semiclassical point of view. The fact that the reflection coef-case function
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1 with unknown functionsu and v (different from the ones

N(©s9(k) = —Im In de(1-T), above. Using the fact thav?G(8, a)/anzan,, remains con-

tinuous on the boundarfsee, e.g.[20]), one easily derives
= the system of equations for the clamped edge boundary con-

In de(1-T)=tr In(1-T)=— >, —uT" ditions
n=1
and computing all traces in the stationary phase approxima- 1,/4(,8)+f Kij(B,a@)¢j(a)da=0, (89
c

tion, one obtains that the periodic orbits contribution for the
transverse plate vibrations can be written in the form
wherei,j=1,2, and

o

1 1
NSO == X
7 froi-1 nlde(My—1)[*? :(M(ﬁ)> 89
WA=\ "yp | (89
a
X Si — = Upt
sw{n(sp 2 Me Cbp”’ (84) The kernelK; ; has the form

where the summation is taken over all primitive periodic IG (B, @)
orbits corresponding to classical motion with specular reflec- — : —G(B,a)
tion at the boundaryS, is the classical action along this K(B,a)=2 Mg (90)
trajectory: S,=kl,, wherel, is the length of a periodic ’ PG (B,a)  IGT(Ba) |
orbit. M, is the monodromy matrix of this periodic orbjt,, INgdN, ang

is the Maslov index of the billiard problem with the Dirichlet

boundary conditions. The only unusual quantity here is thel’hese equations have exactly the Fredholm form with a

a_ldditional phgse Shif@l’. due to the existence of exponen- (slightly singulay kernel and the compatibility equatidthe
tially decreasing waves in a small layer around the boundary, function of this problem has the form of the Fredholm
For clamped, supported, and free edges the values of th eterminant

phase shift are given in Eq$9)—(11). For other boundary
conditions it has to be determined from the scattering from
the straight-line boundary.

The total staircase function has the form

de(1+K)=0. (9D

Therefore, all consequences of the Fredholm the@ee

N(k)zﬁ(kH N(©sO(k), (85)  [20,19) can be applied for vibrational problems as well.
where N(K) is the smooth part of the staircase function V. THE DISK-SHAPED PLATE
whose calculation has been discussed in Sec. llI.

If the discrete spectrum of boundary waves exists for In this section we will study the particular case of an
the free edge platgst should be added to this formula. If integrable system, the disk plate. The advantage is that
k= «|p| andp=2=n/L with integern, then knowing exactly the classical and the wave solutions, we can

easily check the validity of the semiclassical formulas.

* In| In polar coordinatesr( 8) relative to the center of the disk
Nps(k) = Z @< kK—2mk T) of radiusR, this problem is separable and due to the factor-
= ization property and to the fact that the solution must be

L 1 (mLk ﬁnite at the center one finds the following form of eigenfunc-
=—k+ > — sinl—|. (86) tions:
TK m=1 7™M K
W(r,0)=[aJ,(kr)+bl,(kr)][A cogmé)+B sin(ma)]
C. Fredholm equations (92

The boundary integral equations are a quite natural wa . - .
of representing the spectral problem as a Fredholm integr%?r any integem=0. Jp, and |, are Bessel functions of the
equation. It has been done for quantum problen{2@). To Irst kind and the hyperbolic one. The boundary conditions at
do it for the plate it is convenient to use another representd-— R 9ive @ system of two linear equations in the unknown
tion of formal solutions of the biharmonic equatits#). The coefficientsa andb, which has a nontrivial solution if and
main drawback of the most simple solutipggs. (64) and only if the determinant of the coefficients vanishes. If we set
(65)] is that the corresponding equatioi8) and(69) do not x=kR, we have the fo_IIpwmg quantization relations flor
automatically have the Fredholm form. for the boundary conditions we will study below: for the

Let us represent our solution in the form clamped edge

I 1 (X) = In(X)1m(X) =0, (93

(9G(+)
W(F)zf (r,a)ﬂ(a)da+fG“Krﬁa)v(a)da,
C ana C
(87 and for the free edge
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FIG. 3. Difference between the staircase function and its mean
part for the spectrum of the clamped disk plate wRk-1 as a
function ofk.

FIG. 4. Same as Fig. 3 for the free disk plate for 0.5.

istic of an integrable system. In order to determine the con-
stant term, we integrate this function, which should give
XAI(X) M2 [XJ3(X) = Im(X)] Ccok+c_4Ink as the mean behavior, the ampli -
0 1 , plitude of the os
X3 (x) —m2p X1/ (%) — I m(X)] cillations being small in comparisofiThe dominant oscilla-
) . ) tion term k"= A, sin(kl,+ ), due to periodic orbits, has
X m(X) + ¥ [X (%) = mMTIm(X)] _0. (94 beenshown tobe smaller than the perimeter term lineky in
Xl ()= v [ X1 () —m?l (x)] so the integration giving the dominant term
K'Z,(Ap/lp)coskl,+¢y,), is less thancgk.] Fitting this
These relations have an infinite number of positive eigenvalcurve, one finds the corresponding parameters. For the com-
ues Ky 1< -"<Kpn,<---. As can be seen from Eq92), plete disk, the constant, which is only a curvature effect, is
they are doubly degenerate for>0. c§5=2%+10"5, which givesa®=1/37+2x10 % in Eq. (48),

To find the solutions of the above equations in the intervalin accordance with the exact calculatimee Eq(B23)] done
0<k<kpmax We compute these functions fa X =KnayR N Appendix B. Using a half and a quarter of the disk, with
for different values ofm in the interval G=m<m,,,. The odd symmetry on the straight edgésipported edgg¢swe
maximal value ofm can be estimated from the fact that the introduce corner terms. We find numerically the values pre-
Bessel functions,(x) have no zeros fom>x, which gives  dicted by Eqs(51) and(52), to an error of 510" *.

M.y Of the order ofx,,.. For each value of we found by
standard methods zeros of the above functions that define the 2. The free plate

eigenvalues of vibrating disk. To verify that we have all the  The spectra have been determined also Ker400 for
eigenvalues, we looked at the difference between the exagfiferent values ot from 0 to 0.5(40 368 eigenvalues in this
staircase function and its asymptotic numitsee Fig. 3 |55t casp In this case there exist three “trivial” supplemen-
from which a single missing eigenvalue can be detected. tary solutions that have not the form of E§2). In Cartesian
In the following subsections we will study the mean stair- o ordinates they ar&V=1, x,y. The modes of the discrete
case function, the periodic orbit sum formula describing thespectrum, discussed in Sec. Il, verify here semiclassically
fluctuations around this mean behavior, and the statistics q{m ,<m and special attention is needed to find them. On the
the spectra for the clamped and free boundary conditions. osbillatory part of the staircase functidfig. 4), it can be
checked, forv=0.5[3:(0.5)~1.887 119 4, that there are
A. Mean staircase function no missing eigenvalues. For the complete disk, the constant

: P €
In Sec. Ill the first three terms of the staircase functiont€™m due to curvature is found to tg=3+1.1x10 %+ 4

were derived. As for quantum billiards, whém- the fol- X 10 ° for 0<»=<0.5, which is very close to the clamped
lowing expansion holds: result. Therv dependence of this contribution, if it exists, as

is expected, is then inside the error bar. Using a half and a
~ S , L 1 1 guarter of the disk as in the clamped case, we also find nu-
N(k)= ype k+ 8 yp k+cgot+c_; E+0 Kl (95 merically the value predicted by E¢53), to an error of 6

X 107°,

1. The clamped plate . .
B. Oscillatory part of the density of states

We have determined the spectra o400 for a unit o )
radius disk(39 641 eigenvalugsin Fig. 3 we have plotted When the system is integrable, we know that the density
the difference between the staircase function and its mea®' States
taking only the surface and perimeter terms, which confirms +to 4o
that it oscillates around a constant. The amplitude of the p(k) = E E S(k—K ) (96)
oscillations attains values as high as 20, which is character- m=—o n=1 '
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can be expressed at high energy, via the Poisson summatiol 15

formula and stationary-phase approximation, by a sum over

periodic orbits at leading order, as derived by Berry and 12 }

Tabor[21,22. However, as shown in Sec. IV E@3J) is x

applicable for any system, leading semiclassically to a sum 09 |
over periodic orbits whose coefficients depend on their prop-
erties, in particular their stability and the fact that they ap-
pear alone or in familieshere, because of the rotation sym-
metry, all periodic orbits appear in continuous families
Furthermore, Eq(83) differs from the Dirichlet membrane 038 ¢
result only by the presence of the phase factorieXp,k)].

Then the periodic orbit sum for the plate is the same as for 0.0
the membranésee, e.g.[23]) provided one adds the supple-

mentary phase for clamping. At the semiclassical level, the 03 , ‘ .
3.0 4.0 5.0 8.0 7.0

0.6

R(e™"F[p])

oscillatory part of the density of states i
to too FIG. 5. Real part o~ ¥»F[p] as a function of for the spec-
(050 () = a Kicogkl.. + (9 trum of the clamped disk plate witR=1. The semiclassical phase
P k) mz=1 n;;‘m m.n(K)COSKlmn+ thm ). (97) has been eliminated for each periodic orbit to get pure Gaussian

peaks. The crosses indicate the semiclassical amplitudes.

x| - (I;Igp)z)ﬂg(lz_\/%’)

(101)

4K m whereg is an odd function smaller than the Gaussian. The
amn(K)=0mn\/ = sin3(—), Fourier transform should then give peaks at periodic orbit
mn n lengthsl, , with amplitudeA, exp(,). 8 is chosen to have
. ) ] exp(— BK2,,,) sufficiently small(a typical value of 0.0 to
andgp, is 1 for the bouncing ball orbitsn=2m) and oth-  get the thinnest peaks with the lowest spurious oscillations.

erwise 2. The periodic orbit makes an anglg, with the  \yhen periodic orbit lengths differ by less than aba(g,

The sum is made over all the periodic orbits,) of the
disk, m being the winding number and the number of
bounces on the boundarly, ,=2n sin(zm/n) is the length
of the orbit,

FLp*21(1)~ 2 Ane'’
PO

boundary and the phase is expressed by different peaks interfere, modifying shapes and amplitudes.
p o 98) 1. The clamped plate
=n + 5|+ o | _
Ymn =0 S(0ma)* 5]+ 7 Plotted in Fig. 5 is the real part &~ "VoF[p], in the

region of length arountl,. The Gaussian shape and ampli-
where ¢ is the additional phase shift given by Eq$5) and  tude of the peaks show that the semiclassical phase and am-
(18) for clamped and free boundary conditions, respectivelyplitude are quite precise. All orbits of winding number 1 are
The k¥? dependence of the coefficients is due the fact thavisible and as known for the quantum billiard case, the
periodic orbits appear in continuous families. For a fixedagreement decreases as the whispering gallery is attained,
winding numberm, 1,,,, grows from |, ,,=4m for the due to the fact that for modes confined near the boundary,
bouncing ball orbit td m"wzgwm for the Whispering gallery the first semiclassical term becomes insufficient.
orbits.

In order to look at the precision of this semiclassical for- 2. The free plate

mula, a Gaussian-weighted Fourier transform In this case, boundary modes obey semiclassically, fol-
lowing Egs.(19—(21),
\/E Kmax eiﬁkz ikl >
= —_ — ! n
Flpl(h=4 Wfo & p(kdk (99 k= LT’ k(") (102

is performed, where is the power dependence &nof the  and should then give regularly spaced peaks in the Fourier
semiclassical coefficients in the periodic orbit sum formula.transform at lengthk ,=pL/«(»"). To see them clearly and
AS Kpax— and for to minimize interference effects with periodic orbits peaks
located on the left(mainly whispering gallery orbits of
lengths just belowpl), we choosev=0.5 for which x(v")
p<°S®(k): kfz Apcodkly+ i), (100 =0.9891 is the minimum. However, this value remains quite
PO close to 1 and the exponent of the first term in EfB) R
=p1-«%(v") is small for the considered interval &f It
where the sum is taken over all periodic orbiB0) of the  prevents using the standard asymptotics of the Bessel func-
system, one gets fdr>0 tion and the semiclassical asymptotics for this particular ei-
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FIG. 6. |[F[p]|? as a function of for the spectra of the free disk
plate withR=1 (»=0.5), for all modes(dotted ling, boundary
modes(dashed ling and all modes except boundary ortesntinu-
ous ling. Crosses indicate semiclassical amplitudes. 02

04 -

03 -

genvalue is reached quite slowly. These peaks then appear”:[pll2 00 4 MJ\ LB JL
smeared over a quite long distance on their left, as shown in o1l §ox ]
Fig. 6. Here the modek,,; have been separated from the a2l

rest of the spectrum and separate Fourier transforms show |

clearly the influence of this peak, locatedl atL ;= 6.3524. x
In the following, the first 1000 eigenvalues are ignored to be I
closer to the semiclassical result. Py o s 20 128 T30

Apart from this fact, the periodic orbit sum contains the ®) !
same orbits and amplitudes for the membrane and for the 5 7 IF[p]|2 as a function of for the spectra of the disk with

plates, their classical limit being the same, and so no differr— 1 The lower curve is for the Dirichlet membrane and the upper
ence should be seen |R[p]|* for these different cases for curves are for the clamped plai@ashed lingand the free plate for
isolated peaks. In Fig. 7 very good agreement is found bep=0.5 (continuous ling Crosses indicate the semiclassical ampli-
tween the three cases, except for the peak locatéer &R.  tudes. For(a) orbits have the winding numben=1 and (b) the
Here an exact degeneracy in orbit lengths occurs for the firsvinding numbem=2.

time, corresponding to two times the hexagon orbit and three

times the bouncing ball orbit. Semiclassically, the two assodimensional integrable quantum billiardsee, e.g.[24] and
ferences thereinor proportional toC’\/N. The same

ciated terms have the sankedependence, but a different '€'€T€NCE: _ ,
phase. Adding these two terms results in an amplitud ehavior is also found here for the disk plates, as shown in
Aﬁw=0.0531 for the Dirichlet membrané‘,gvczo.llOZ for 9. 9.
the clamped plate, and\g,f:O.4452 for the free one.

The agreement is rather goddee Fig. )], taking into

account all possible interferences between peaks.

C. Statistics of spectra

Integrable systems of the membrane type are known toP(s)
have Poissonian statistics of energy levig2d]. The same
behavior is found for the disk plates, as is shown here in Fig.

8 for the nearest-neighbor spacing distributi@m. order to
see a generic behavior, we have taken the half disk, with odd
symmetry, to get rid of degeneraciges.

The second moment of the statistics of the staircase fluc-
tuations,

2 -
(8% (k)= fk [N(k")—N(k")]?dk’?, (103 FIG. 8. Nearest-neighbor spacing distributiBis) for the Di-
0 richlet membrane half-disk specttwer histogram, the clamped
plate (shifted middle histogram and the free plate fow=0.5
(shifted upper histogramThe Poissonian distributiofdotted ling
is shown to be proportional ta€Ck as k—« for two- is shown for comparison.
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FIG. 9. (4% as a function oN for the Dirichlet membrane disk FIG. 10. Difference between the staircase function and its mean

spectralower curve, the clamped platéshifted middle curve and  part for the clamped stadium plate odd-odd spectrum as a function
the free plate forv=0.5 (shifted upper curve The dashed line is  of k (upper continuous ling the contribution of the neutral family
the best fit in the formCyn with C7=0.1235,C{=0.1238, and  of bouncing ball orbitgdashed ling and the difference of the two
CL:0.1262. (shifted lower line.

V1. THE CLAMPED STADIUM bution of the family of neutral orbitgsee the discussion

In this section we check numerically the semiclassicaP€low, which has a greater amplitude than the constant
trace formula for systems whose classical limit is chaotice'™m- We findc,=—0.397 30-4x10"*, and co=4;*4
more precisely, the case where all periodic orbits are isolategt 10 °, Which is in very good agreement with predictions.
or unstable. We will concentrate here on the stadium shapgubtracting the two first terms from the staircase function
(a square glued with two half diskswhich has been proved (Se€ Fig. 18 one gets oscillations whose amplitude is lim-
to be ergodic[25] and is today certainly the most studied ited to a few unities, indicating a rigid spectrum, as in the
nonintegrable quantum billiard. Al its periodic orbits are Membrane case.
unstable, except for the neutral bouncing ball orbits between
the two straight lines. B. Neutral orbits

We will be interested here in the spectra of odd-odd

d ith cl d bound diti hich i ; The stadium billiard possesses bouncing ball orbits be-
modes with clamped boundary conditions, which Is equivay,aen the two straight lines of the square. They constitute a
lent to taking the quarter of the stadium with supported

bound diti : i q ol ontinuous family of neutral orbits, whose contribution dif-
oundary conditions on its symmetry [ines and clampe ers from the isolated unstable orbits contribution obtained

boundary conditions on the rest of the boundary. We obgec |y A and whose more careful derivation is done below.
tained numerically(see Appendix € the first 585 levels, Let us consider an infinite plate along theaxis, whose

corresponding t<100 for a surface equal ta/4 (circle width is 2b, with clamped boundary conditions. Due to the
radiusR=1/\1+4/).

symmetry with respect to the central ling=0), eigenfunc-
_ _ tions of this problem can be classified by their parity. Writ-
A. Mean staircase function ing the (odd) eigenfunctions as the corresponding sum of

The perimeter term of the semiclassical expansion of thdour different exponents
staircase function is obtained by summing over the contribu- _iPXr i .
tions of each part of the boundary, that is, if we assume the Wicp(x,y) =€ePsin(qy) +B sinh(Qy)], (109

same form95) of the mean staircase function as for the d'Sk’wherep= k cos6, q=k?— pZ=k sin 6, and Q= JkZ+ pZ,

B S [(1+7/2) B+ 3B<]R 1 and imposing clamped boundary conditions at the lne
N(k)= yp= k2+ ype k+cot+c_; K =b, one obtains the quantization condition
1 Q sin(gb)cosHQb) —qg cogqb)sinnNQb)=0. (106
+0 E), (104)
In the semiclassical limitK—~), an implicit relation for

where S=(1+ w/4)R? is the area of the plate and the nu- g(p,n) can be written neglecting exponentially small terms

merical value of the perimeter -coefficient ig;=
—0.397 521. The constant term should have the same con- gb=arctan ————

ihuti i iad i 21 o2
tributions as those of the quarter of a clamped disk studied in V2p+q
Sec. VA, that isco= 2.

As the numerical data in this case are less precise than wheren is a positive integer. If we search the contribution to

the disk case, we fit the perimeter and constant coefficientshe density of states of such solutions for a strip of leragth
For better precision, we subtract first the oscillating contri-we have to compute

+nm, (107
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too 0.20

a oo
po(K)= 5~ Lﬁdpgl 2ka(k?~ p?=q*(p,n)).
(108

0.15

Using the Poisson summation formula leads to the integra-
tion over then variable, which can be performed explicitly. IFjp]* ¢4 .
Settingp=k cos¥, one finds

|
l
0,05 |- |
|

ak <
=52 2

- . 1 (¢0) 000 | Jk \J\j} \JL
[ador b 40 | —

do giN¢c(8) gi2kbN sin 0 1 2 3
0

(109

0.20

where ¢ is the phase shift due to clampir@5). In the !
semiclassical limit, the remaining integral can be evaluated
using the stationary-phase approximation, whose dominant 18T
contribution is found around= 7/2. Then, at leading order, I |
the oscillatory contribution to the staircase function is FloT ’ | MRt

Pl 010+ [ i

1 Kk o 1
N0~ pmany S,

0.05

t
|
|
§
W
5{ T 377) \ | \"\/f\
X cog 2Nbk—N =— —]. 110 f A ‘ |
2 4 (110 0.00 / /\ v B/ \‘\/
6
(b) I
This expression differs from the one for the membrane prob- ) ,
lem by the additional phase facterN /2. Note that higher- FIG. 11.[F[p]|* as a function of for the odd-odd spectra for
order terms also can be computed. Subtracting this from thg1e stadium with area_equazi. .D'”Chlet. mernbra.ne(.dashed ling
. . S . : o and clamped platécontinuous ling Vertical lines indicate the pre-
previously obtained oscillating staircase function eliminates

I . dominant iodi bits in the t f I the first k
the large-scale regular oscillatidgsee Fig. 10 agg]('g)a Phepglllz V\I/(i:ngrple;g e trace formula f@ the first peaks

C. Oscillatory part of the density of states D. Statistics of spectra

As for the disk, we look to the Fourier transform of the  The membrane stadium spectrum is numerically known to
density of statepwith the weight sinfrk/kyq,0/k, which gives  have a statistical behavior on a short scale well described by
sharper resulisto check the semiclassical trace formula ob-the random matrix Gaussian orthogonal ensem®&. The
tained in Sec. IV. If we compare it with the Dirichlet odd- nearest-neighbor spacing distributid?(s) in this case is
odd membrane spectru®96 levels fork<100, only the close to the Wigner surmise
semiclassical phase should be found different.

In Fig. 11 the comparison is made fd#[p]|%. The peri- T (i)
odic orbits indicated are those whose amplitude are the great- Peor(s) = 2 S€ ) (111)
est in the trace formula: We have limited ourselves to the
lowest values of the trace of the monodromy matrix. Each
time the orbit is isolated in length, the agreement betweein Fig. 13P(s) for the clamped plate is plotted, showing the
the two curves is excellent. As the length increases, closeame behavior here. This conclusion was obtaine@9in
orbits make the different peaks interact, and due to theifrom about the first 100 levels. A heuristic argument follows
different phases, the shape of the composite peak differs béom the analogy at high energy between the membrane and
tween the two curves. the plate discussed in Sec. Il.

The main point is to verify that semiclassical phases are In Fig. 14 the second moment of the statistics of the stair-
correct. The real part od~'®rF[ p], where®, denotes the case fluctuations is represented. For membraaesl the
phase without the Maslov index contribution, should be thedemonstration applies to plajes has been showfR4] that
same around the periodic orbit lendth for the membrane
and the plate. These comparisons are plotted in Fig. 12 for
the first shortest orbits. The very good agreement shows the (82)(K) = i In(.. k ) 112
adequacy of the semiclassical derivation at this level. w? \ p(k?)
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FIG. 12. Real part o '®»F[p] as a function of for different
orbits for the odd-odd spectra for the stadium with area egual
Dirichlet membranegdashed ling and clamped platécontinuous
line). (a) 1=1.3265, bouncing bali{®™=315°, ®P=225°); (b) |
=2.9661, diagonal®™=0°, ®P=244.679, (c) | =3.4463, bow tie
(®M=180°, ®P=28.969; 1=3.7519, double diamon¢d™=0°,
®P=180°; 1=3.9795, bouncing ball repeated three timds™
=315°, ®P=45°).

ask—oo for two-dimensional generic ergodic billiards. This

P(s)

FIG. 13. Nearest-neighbor spacing distributi®s) for the
clamped stadium plate odd-odd spectrum. The Poissonian distribu-
tion (dotted ling and theP;o(s) (dashed lingare shown for com-
parison.

theory applies also to plates. Let us remark that about half a
century agdsee references ii9]) it was argued that random
matrix theory should help describe spectral properties in
various fields such as elasticity and acoustics.

VIl. CONCLUSION

In this paper we have studied the fourth-order biharmonic
equation of flexural vibrations of elastic plates in the same
semiclassical way as the membrane or quantum billiard
problem is approached. In our case, exponential waves de-
creasing from the boundary are added to the classical propa-
gating ones. Their influence is measured on the spectrum,
more precisely on the mean number of levels and on its
oscillatory part, and also on the statistical properties.

The surface and perimeter terms of the asymptotic num-
ber of levels are derived following the method of Balian and
Bloch [15], independently of the rigorous derivation of
Vasil'ev [13]. The next constant term, made of curvature and

<%

0.0

0 200 400 600
n

FIG. 14.(5°) as a function oN for the clamped odd-odd plate

iS What iS Observed When the bOUnCing ba” Orbit Contributionspectrum With(upper continuous ||r)ethe bouncing ball contribu-

is suppressed. However, the behavior seems analytically thn and its best fit(dotted ling for N>100 in the forma

same with this contribution.
As a general conclusion, it can be said that random matriyall contribution(lower curveg a= —0.0559 andb=0.1075.

+b log;g N: a=0.1598 andb=0.0410. Without the bouncing
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corner contributions, is also obtained. Ignoring problems with convergence, E4.1) can be rewrit-
A semiclassical approximation of the quantization condi-ten in the simple form

tion for the transversal vibration of plates is derived, contain- den)

ing, compared to the one for the membrane problem, an ad- _ B _ A

ditional phase factor due to the phase shift of waves when Ap(M)=pu(M) = pry(N) = ==, (A3)

reflected from the boundary of the plate. From this, a Berry- _ _

Tabor—type formula is obtained for the integrable case ofvherepy, is the density of states for the probleth

disk vibration and a Gutzwiller-type trace formula for the

vibration of plates of general form. The first 600 eigenvalues . O L H

for a clamped stadium plate have been obtained with numeri- PN =ULo(A—H)]= z‘l oA,

cal algorithm specially developed. The comparison of the

Fourier-transformed periodic orbit quantization formulasand)\ﬁ are eigenvalues of the spectral probléhtrﬁ=)\ﬁ¢ﬁ

with the ones of a membrane with Dirichlet boundary con-with the correct boundary conditions. The importance of

ditions assess these derivations. For free plates, extra modgsch formula comes from the fact that it permits one to com-

exponentially decaying from the boundary take place, givinghyte easily the change of the density of states for “small”

extra peaks in the Fourier transform. The statistical properchanges of the potential or boundary conditiéas both.

ties of the spectrum appear to be the same as for the quantum For clarity we sketch the formal derivation of this formula

billiard case. _ . in the case of one-dimensional operators with constant coef-
The method we have used can easily be generalized fa[cients of the type discussed in Sec. IIl, where all steps can

other models of wave propagation. The main ingredient ie done without general theorems. The general derivation

the construction of the exact scattering matrix from the(but not the prooffollows a similar schemésee[16,13).

straight boundary, which serves two purposes. First, via the | et h(g) be a self-adjoint operator wheig= —id/dy.
Krein formula, it defines the second term of the Weyl expan-one can consider it, e.g., as a real polynomial

sion of the mean level density and, second, it determines the

+ oo

leading-order term of the trace formula. . 2m .
h(@)=2, a.d", (A4)
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(Bju)(0)=0, j=1,...m, (AB)
APPENDIX A: SPECTRAL SHIFT FUNCTION

FOR ONE-DIMENSIONAL PROBLEMS with certain operatoréj . Note that the number of different

The purpose of this appendix is the derivation of the simboundary conditions for an elliptic operator of degrem 2
plest version of the general Krein formulsee[16]), which ~ equalsm.
is very convenient in many cases and in particular for the In the case of flexural vibrations of platégq)=(q?
derivation of the second term of the Weyl expansion dis-+ p?)? and theB;’s, for standard boundary conditions, are
cussed in Sec. ll{for other applications of this formula for obtained from Eqs(9)—(11) taking only the leading-order
certain problems of quantum chaos $2&|). derivatives and replacing/dl by ip andd/dn by iq.

Let H andH, be two self-adjoint spectral problems such  The spectral problem admits the plane-wave solutions of
that their difference/=H—Hy is in some sense small. The the typee' ™Y whereq()\) satisfies the equation
typical situation is the case whet andH, are two Hamil-

tonians with different bounded potentials or two Hamilto- h(@(\))=A\. (A7)
nians with different boundary conditions. Then the Krein for- . ) i
mula states that for an “arbitrary” test functiop For a given value oh, let us assume that this equation has

2d(\) real solutionsg,(A), r=1,...,24. As the power of
h(qg) is 2m and ash(Q) is assumed to be self-adjoint, the
tfp(H) — @(Ho)]= —f ¢'(wépw)du,  (Al)  2(m—d) complex roots can be divided in pairs with differ-
ent sign of the imaginary pad,. (\)=ac*ib. with b;>0
andc=1,... m—d.
where the functiorg¢ called the spectral shift function does  Assuming that all real roots are different, one can divide
not depend on the test function and is connected with thénhem into two intertwining classeg!™) and q{™) with r
scattering matrixs, =1,...d, such that

det S(\) =270 (A2) qy7'<qi”<agy <agb <<t
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q‘*) is a root for whichdh/dqg(q)>0 andq!~) for which  tionsuj(y;A), j=1,... d. From physical considerations it
dh/dg(q)<0. The numbed is called the multiplicity of the IS clear(and can be easily checked from the current conser-

eigenvaluex. vation that the amplitudes of incoming Wavéﬁ ) can be
Let us define the current operatbiby the condition chosen as an arbitrafynitary) matrix and the amplitudes of
i outgoing wave<|;”) will be connected to them by a unitary
glh(@)f]1-[h(q)g]f=argJfl. (A8)  matrix S,
The explicit form ofJ follows from the identity ctH=sc™), (A13)
_ n-1__ which is obviously called the scattering matrix. Direct veri-
g f—fq"g=q>, g*ga" 1. fication shows that for a unitary matri@(~) the factors in
k=0 Eq. (A12) ensure that the functions;(y;\) are normalized
as

One can check that for every plane-wave solut&f the
value of the current is

dh J ui(y;Mup(y s M d =85 8(y—y'). (Al4)
e iYW =— (q). (A9) _ _
dqg The knowledge of eigenfunctions of the spectral problem

. ermits one to compute the Green’s function by the usual
The above-mentioned two types of real roots correspond t

rmula
two different types of Waveeqﬁ’) can be interpreted as wave
vectors for incoming waves arqj” correspond to outgoing . un(y )up(y)
waves. Gy IN=2 Ty (A15)
The Green’s function of the free problery can be ex-
pressed by the usual formula where the sum is taken on both the continuous and discrete
spectra. In particular,
. 1 (+= @ay=y)
Go (y,y ’M_Zfﬂo mdq (A10) , 3 ,
AG(y,y ;x>=2mj§1 ui(y ;MU (ViN)
and its  discontinuity AGg(y,y ;\)=Gg (Y,Y';\)
—Gg (y,Y';\) equals ; P
o (-¥'i2) eq 2713 SN NTY ) U(Y),
. elqﬁﬂ(yfy’) eldl y-y")
Go(yy iM=12 | roh +5h , (A16)
’dq (") dq () where the second sum extends to the purely discrete spec-
trum for which C(*)=0. These eigenfunctions are normal-
(A1l) .
ized to 1.
whereqﬁi) are real solutions of EqA7). The change of the density of states defined in &®)

Letu;j(y;\) be thejth eigenfunction of the spectral prob- equals
lem (A5) with boundary conditiongA6). If all solutions of

. . . 1 + o
Eq. (A7) are different, each eigenfunction has the form Ap()\)_ — [AG(Y,y:\)— AGo(y,y:\)]dy.
L giay (A17)
Uj(X;\) = —E i ’—rdh m o _ o
V2 1= (q ) Substituting expression#11) and (A16) into this formula,
where a factor exp{ay) is introduced for convergence, one
S () m—d obtains
e'dr Y ,
O rah |t &, Bree e, .
‘— (a™) Ap(\)=lim | X f luj(y;\)|?e” ¥dy
dq a0t j=1J0
(A12)
d
where the first sum is the expansion over the incoming and 1 1 N 1
outgoing waves and the second one is the expansion over the 2ma (<4 dh +) =)
complex admissible wave vectog§™ , the latter giving so- ( | |gg ar )
. ) q
lutions decaying ag— +o°.
All coefficientsC{;”) andB;. have to be determined from B
the boundary condition§A6). As the number of boundary +2k O\ M) (AL8)

operators ism and the number of unknowns isd2 (m
—d)=m+d, in general one getd linear independent solu- To compute the integral
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+
2 fo |uj(y;\)|2e” dy,

it is convenient to use the following tridlsee, e.g.[13]). By
differentiating the equation

h(@)u;(y;N)=\uj(y;\)
with respect to\, one gets

au;(y;N)

u;(y;M)=[h(gq)—A] Py

From Eq.(A8) it follows that

—_—ra M —————— dU;
Uit =uilh(q) —A] Z==[h(q) —Nuju ==

and

J’ﬂc 2e” Ydy=—i J+°°_3 2, vd
. @ =—j ] — e @ .
, luj|e”Ydy a| U ey

As «—0+ only terms of negative power af can contrib-

5421

1 dct® dct™)
Ap()\)ZZtI’(CH)T i cot i

+2 S\ \)

k
1 ds
S {— _
27Ttr(s i +; S(N—N), (A19)

where the scattering matri is defined in Eq(A13). Intro-
ducing the spectral shift functiog by the relation

1
E(N)==— Arg detS(\), (A20)
2
one immediately concludes that
dé
Ap(V) =gy (WV+ 20 800N (A21)
and the change of the staircase functions is
AN(N)=&(N)+npg(N). (A22)

The second term in these formulas is connected with the
discrete spectrum dfl. (If H, also has a discrete spectrum
the modification of this formula is obvioys.

In the derivation of this formula it was assumed thaiggall
are different. The pointa.« where the equatiom(q) =\«

ute. However, they can come only from the integrand pro-has a multiple real roog, are called singular points of the
portional to 1 ang;. In other words, only terms coming from continuous spectrum. In these points the dimension of the
the interference of plane waves with exactly the same valuescattering matrix changes and they gis&unction singulari-

of q(\) are important. Taking into account E#\9) and that

dh dq v A A i d’h
E(Q(?\) o M=1 e qy(Jy—yJ)equ—zd—qz(Q),
one obtains
d d
.~ 0U; 1
27, ujJ—])ZiyE |ICC)2 e
A S T N N L
ﬁ(qr )
1
(+)]2
+|er | dh
_(q(+))
dg* ™
d (+) (—)
— . dCi — dC
(+) Ir__~(= ir
+j’r221 Ci i g }

As the matrice<C(*) are unitary, the first term equals

1 1
+

d
Iy 2 ‘dh

=1
' A (gt

h
— (g™

ties in Ap or a jump in functioné.

Let us consider the most common case of the appearance
of an eigenvalue of multiplicity 2. One can check that in the
vicinity of a singular point the important part of solutions
should have the form, choosing heyg=0,

W+ gem W,

with e—*1 wheng—0. The plus sign corresponds to the
Neumann type of boundary condition and the minus sign to
the Dirichlet one. Repeating arguments leading to B8),

one concludes that the sign of tlidunction term is propor-
tional to ¢ and that

£ +0) =€, —0)= 7. (A23)

The general case is discussed in detai[18]. Using Eq.
(A22), the second term of the Weyl expansion of the smooth
staircase function for two-dimensional problems can be writ-
ten in the form

+ oo

_ dp
o)=L SR [eup)Hnodup),  (a20

where £(\,p) andnpg(\,p) are the spectral shift function
and the number of states of the discrete spectrum for the

and after the integration it cancels with the same term fronone-dimensional straight-line boundary problem anid the

AGy [Eq. (A11)] and the final formula reads

wave-vector component along this boundary.
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APPENDIX B: CURVATURE CONTRIBUTION

TO THE ASYMPTOTIC NUMBER OF LEVELS Gup(F,f';s)

The general method for the computation of the higher-
order terms of the Weyl expansion for billiard problems with
smooth boundaries has been developgd #f}. With obvious
modifications it can be adapted as well for problems of plate
vibration. We found that it is more convenient to use a
slightly different method. As if17], the Weyl expansion can
be read off from the knowledge of the asymptotics, wiken
of the Green’s function corresponding to the
(diffusion-type equation

—)OO,

57
i . ’ 1 ’
=_— | @PO=x")|  a=rily=y|
8ms r.
1 ) '
—— e T-VYIp AL e YD
r_
+A_e -y pB ey TrY
+B_e "Y' |dp, (B8)

where the coefficient®\. and B. have to be determined

(AZ+8)G(F,F';5)=8(F—F'),

(B1)

from the boundary conditions. At this stage, we will focus on
the clamped edge. Similar but more tedious computations
can be done for a free edge. In the former case

inside the domairD, G obeying to the desired boundary

condition on the contout. G
. ~ Gly-0=0, —| =0 (B9)
Let the smooth part of the staircase functisik) have ay| _
. . y=0
the following Weyl expansion as— o:
and one obtains
2
N{SESPINAS (B2 ro4r_ 1
n=—N L= — == (B10)
r+ —r_r + r + =
If we consider To find the contribution from the curvature one has to con-
1 struct the Green'’s function that obeys the boundary condition
_ _ N not on the liney=0 but on the “circle” y=x?/2R, whereR
K(s) ; kn+s? JDG(r,r,s)dr, B3 is the local radius of curvature. We shall look for this func-

tion in the form similar to Eq(B8). Namely, we assume that

then its asymptotic form as—o is connected to the Weyl
coefficientsc, by

2

it can be written in the form

G(F,F’;s)=Gh.p.(ﬁF’;5)+f ePeD, (p,y)e "+

Ch mn
KOO~ 2 Z= ganianid) (B4) +D_(py")e "-V]dp. (B1D)
, o ) o The function defined by this expression obeys i) for
In particular, the beginning of this expansion is arbitrary functionsD . (p,y’), which have to be found from
boundary conditions. AG,p(F,F’;s) obeys the boundary
K T w2 1 B5 conditions aty=0, the functionsD. (p,y’) can be deter-
(s)~ 2s Cot 453 Cut 2 Co- (BS) mined by perturbation theory for large We shall perform
the calculation for the clamped boundary conditions
The free Green’s function of E@B1) is 96
Gly-x22r=0, n =0. (B12)
dp dq elP(x=x")+ialy=y") y=x2/2R
Go(F,1';8)= 7 2 2722 - (B6
(2m)* (p*+Qq°)°+s Setting x’=0 and taking into account that the normal
derivative at the poink is
Integrating overg, one gets the expression
J p J in o J
i _ (1 , %ZCOS &——Slﬂ &,
PEray— | aipx—x)| T ai—rily=y']| y
Go(F,r";s) 87 e (r+e
1 where sind=x/R, one gets that in the leading-order functions
-= er_|yy,)dp, B7)  D=(p.y’) fulfill the equations
ipx ’ 4 =
wherer , = \p?=Ts. J e?”[D.(p,y")+D_(p,y")]dp=0  (B13

The half-plane y=0) Green’s function that obeys the

desired boundary conditions can be writfas in Sec. Illas  and
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ipx &ZGHP
eP[D.(py)r +D_(py")r-Jdp= ﬂz—

(Bl4)
Their solution is
D.(py)=-D_(py)=pu(p.y’) (B15
and
N i 1 &
m(py )__BWSRuTa_pZ
X[(ro+r_)(e "Y' —e™Y)]. (B16)

The functionK(s) in Eq. (B3) can be expressed &see[17])

+o© y
Ks=jd|f dy G(x,Vy;X, ;s(l——),
()= ] dl ]~ dy Gxyxy:s)| 1= g
(B17)
wherel denotes the coordinate along the boundary

At leading order inR (or s), the third term of the Weyl
expansion can be written as the sum of two integrals

dl
K =(1,+1 —_—, B18
(9=02+12) [ ais (19
where
e 2y @ 2ry
~ 8ws pf ydy{ + r_ )
B 4 e_(r++r)y} (Blg)
ro—r_
and

+Yy _@ r+y

2= ~ 87s pf dy[

92
X1 o) (e —e - y)]}. (B20)

+—r_

After some algebra we obtain

1 r3+r® 2
Il+|2:E J’ dp

8(ror_)° ror_(ry+r_)3
(B21)
Introducing the anglep from the condition tanp=s/p?, this
integral can be transformed as
l+1,= ! fﬂlzdd) sin ¢
L2 1ens” Jo \Jcos ¢ cosS¢/2
X (1—coS¢l2 cos 5p/2)

1 Jcosg

487s? cos @12

X(15—2 co$6—cog0+4 cosb)|)=g"?

(B22)

5423

Comparing it with Eq.(B5), one concludes that the third
term of the Weyl expansion connected with the curvature of
the boundary is

. 1 dl 823
=37 | RO)" 623

Note that for the membrane the corresponding coefficient
equals 1/1%.

APPENDIX C: NUMERICAL SOLUTION
OF THE BIHARMONIC EQUATION

We found that it is convenient to represent solutions of
the biharmonic equation in the form

+ o

w(r)=

m=—®

Jn(kr)em?+ cho(kIF—F(S)I)M(s)ds,
(Cy

where(C is the boundary of the plate ar, is the modified
Bessel function. The first term is the general solution of the
Helmholtz equation in polar coordinates §), written in the
form of a series, which has been proved to be an efficient
numerical formulation for the membrane problem. The sec-
ond is a solution of the equation\  k?) W=0, written as a
boundary integral representing the potential of a single layer
(see Sec. IV, with the distribution functionu. As Kg(x)
~/2x exp(—x) whenx— +oo, the integral is thought to
behave well at high energies. The choice of writing this part
similarly to the first part of the solution, as a series of hyper-
bolic Bessel functions,(kr), has previously been tried in
[9], but leads rapidly to numerical divergence problems due
to the exponentially increasing behavior of these functions
for a large argument.

The solution of the problem, which is the determination of
the unknown coefficients,, and of the functionu, is ob-
tained writing that Eq.(C1) satisfies the boundary condi-
tions. We have considered here only the case of clamping,
which leads to the following system, for any poii(t) on
the boundary:

S cndn(kr0)em O+ | Kol - (5 pa(s)d5=0,
€2

+ oo

2 cn

m=—oo

kJp(kr(t))cos a(t)

Jm(kr(t))sin a(t)|e™O + 7 u(t)

T

- LKl(klr*m—r*(s)l)

(7O —F(9)]- (D)
FO-7(9)]

A(t) is the outward normal at poinf which makes an angle
a(t) with F(t). It is well known (see, e.g.[20]) that the
single layer potentialthe second term in EqC2)] is con-

u(s)ds=0. (C3
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tinuous across the boundafyand that the double-layer po- a logarithmic singularity at small distances and to be handled
tential[the last term in Eq(C3)] is discontinuous, leading to with precision, one should take enough points around it. Nu-
the extra termmu(t) in Eq. (C3). merically,p= 3 has been proved to give a sufficient accuracy
Numerically, we can only impose these previous condi-for the eigenvalues if the boundary integral containiqgis
tions at a finite number of points and for a finite number offurthermore integrated by partintegrating ) to diminish
unknowns. From the well-known property thif(x)—0 as the effects of the singularity.
m— +, the series can be truncated |to|<M =E[Kr 5] We obtain a linear system off2equations with 2 un-
+Mg (M=0,1,2,3), where ., is the maximum value of. knowns, which possesses a nontrivial solution wkegs an
The boundary integral is discretized usiNgpoints regularly  eigenvalue, that is, when the determinant of the system van-
spaced on the boundarg, giving the unknownsu,, ishes. The method determines the optimal number of un-
n=1,...,N. We impose the equalitig€2) and(C3) to be  knowns for a range ik and calculates the determinant as a
satisfied aP points regularly spaced on the boundary. To befunction ofk.
soluble, the parameters of this finite system must satisfy the In the computation for a quarter of a stadium, symmetry
condition 2P=M + N for the particular case of odd solutions has been taken into account to reduce the number of points.
with respect tod, which will be the case below. To control The determinant has been written so as to be real and has
the error term of the algorithm, it is convenient to choose thébeen found to oscillate, having zeros in between. Several
P evaluation points at a regular distance from khéiscreti-  precision tests have determined the accuracy of the com-
zation points: In other words, we impo$¢=(2p—1)M, puted eigenvalues to be of the order &tk?)/50, where
wherep is an integer, and theR=pM. The functionK, has  A(k?) is the local level spacing in the vicinity &= k?.
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