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Quantum lattice-gas model for the many-particle Schralinger equation in d dimensions
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We consider a general class of discrete unitary dynamical models on the lattice. We show that generically
such models give rise to a wave function satisfying a Sdinger equation in the continuum limit, in any
number of dimensions. There is a simple mathematical relationship between the mass of thiin§ehro
particle and the eigenvalues of a unitary matrix describing the local evolution of the model. Second quantized
versions of these unitary models can be defined, describing in the continuum limit the evolution of a nonrel-
ativistic quantum many-body theory. An arbitrary potential is easily incorporated into these systems. The
models we describe fall in the class of quantum lattice-gas automata and can be implemented on a quantum
computer with a speedup exponential in the number of particles in the system. This gives an efficient algorithm
for simulating general nonrelativistic interacting quantum many-body systems on a quantum computer.
[S1063-651%97)06808-9

PACS numbe(s): 64.60.Cn

[. INTRODUCTION ever, it was shown by Succi and BelpZj that a sequence of
random moves along single axes, alternating with transfor-
There are many situations in physics where a continuoumations that diagonalize each of the Dirac matrices in turn,
system obeying a particular set of equations at a macroscop@n give an analogous construction in higher dimensions.
scale can be modeled by a discrete microscopic system obeYyhe discrete model for thél+1)-dimensional Dirac equa-
ing a very simple set of local rules. For example, in equilib-tion has been of renewed interest recefly-9], due partly
rium statistical mechanics, simple lattice models such as the the possibility of simulating such unitary microscopic dis-
Ising model capture the behavior of generic classes of criticatrete systems by quantum computers. In particular, recently
systems at large scales. Another interesting class of discreiehas been suggestél] that a simple quantum lattice model
systems are lattice-gas automafta-3]; these models de- can be constructed that describes the motion of a system of
scribe systems of particles moving about on a lattice, obeymany particles moving according to the one-dimensional
ing simple collision rules that conserve quantities such aPirac equation.
mass and momentum. In the macroscopic limit, these sys- In this paper we consider a class of models closely related
tems obey Navier-Stokes or other hydrodynamic equationsg the 1D Dirac lattice model, which give rise to a nonrela-
of interest. tivistic single-particle Schiinger equation in an arbitrary
In the quantum domain, there are also examples of disnumber of dimensions. In these models, the time develop-
crete microscopic systems that capture interesting macranent rule is given by a single local, unitary transformation
scopic behavior. Lattice-gauge theoriésee, for example, matrix. Thus we are essentially considering the motion of a
[4]) give an approach to studying the partition function andsingle particle under a unitary random walk process. For this
spectra of quantum field theories by mapping these theoriesass of models we show that the macroscopic equation of
to statistical mechanical ensembles. There are, however, femotion satisfied by the wave function corresponding to par-
discrete models for describing the dynamical evolution ofticle density is the Schrdinger equation. We show that such
quantum systems that preserve important features such asnrelativistic models can be constructed for an arbitrary
unitarity. An example of a quantum system for which a uni-number of spatial dimensions. We also show that an arbitrary
tary discrete model is known is the Dirac equation describingotential can easily be included in these models.
a relativistic particle moving in one spatial dimension. As It is natural to generalize from the single-particle models
shown by Feynmafi,6], this system can be described by ato a second quantized many-body system. Such a model
simple microscopic model of a particle moving on a one-could be implemented very efficiently on a quantum com-
dimensional1D) lattice according to a simple local rule that puter, so that the number of computational steps necessary to
essentially corresponds to a unitary form of random walk. Asimulate a single time step would depend only upon the size
straightforward attempt to realize a Dirac equation in moreof the lattice and would not depend upon the number of
than one spatial dimension as a form of unitary random wallparticles in the system being simulated. Thus our results
cannot succeed. By using operator splitting methods, howeould be used to efficiently simulate an arbitrary nonrelativ-
istic interacting quantum many-body system on a quantum
computer exponentially faster than the same calculation
*Electronic address:bruceb@bu.edu could be performed on a classical computer. Such a system
"Electronic address:wati@princeton.edu would be an ideal example of quantum computing since the
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computing elements could be built from a system of spin- i
1/2 particles on a lattice obeying simple local unitary time ()= 5(9)2(902('[)-
evolution rules.
The principal difference between our models and the 1D gimilar equation holds fors,, and so it follows that
Dirac lattice model(and its generalization by Succi and
Benzi[7]) is that in the Dirac model, the unitary evolution i
rule satisfied by the wave function or particle at each time (g + l//z)=§5>2<(l!f1+ ¥2).
step is infinitesimally close to the identity transformation. As

the lattice spacing goes to 0, the unitary transition matrix is Thus we see that the total amplitud®(x,t)= g (x,t)

of the formS=1+ieM, whereM is Hermitian. In our mod- U,(x,t) satisfies a Scfitbnger equation. As we shall dem-

els, we take the transition matrix to be independent of the,qirate. this is the generic behavior of a unitary Boltzmann
lattice spacing. This form of a time development equation,, 4e| with a fixed time development rule

makes the system nonrelativistic, but allows for a formula-  \y/a introduce the Schicinger model in Sec. Il by present-
tion in an arbitrary number of dimensions. A closely relateding the one-dimensional case. The model is generalized to

model was consudered recently in one spatlgl d'me”@"h Cartesian lattices of arbitrary dimension in Sec. lI; in this
where simulations were shown to be consistent with emerz

behavi di i ) Section we also discuss the inclusion of a potential. In Sec.
gent behavior corresponding to a Sadirger equation. IN 1y \ye discuss how the one-particle models can be general-
this paper we prove that this is the general behavior of SUCfy oy 15 construct a quantum lattice-gas model of many non-
models, giving a simple algebraic relation between the tran;e a4yistic particles. In Sec. V we give the results of a simu-
sition matrix and the mass of the nonrelativistic particle. We

| h Is for the Scki LM lation of a single free nonrelativistic particle in two
develop such models for the Schifoger equation in an ar-  gimensjons, comparing numerical results with the theoretical
bitrary number of dimensions.

framework presented here. The Appendixes give explicit for-
In the first part of this paper we will consider lattice mod- b Pp g P

. ) ; . mulas for models in two and three dimensions on a Cartesian
els for single-particle motion. These models are essen'uallyattiCe

unitary lattice Boltzmann modelsll]. In the latter part of

the paper we generalize to many-body systems and discuss -
how a lattice of quantum computing elements could be used Il. SCHRODINGER EQUATION IN ONE DIMENSION

to describe the motion of a large number of nonrelativistic |y this section we consider unitary lattice Boltzmann

quantum particles. We conclude with a simple numericalnodels describing the evolution of a single particle in one
check of the analytic description of a sample model. _dimension. Keeping the collision operator fixed in the scal-
As a simple example of the type of system considered inng |imit, we show that a very general class of microscopic
this paper, consider the lattice Boltzmann model with a conmggels gives rise in the continuum limit to a Sothirger
figuration space defined by two complex fielgig(x,t) and equation.
ih2(x,1), taking independent values on a lattice with one spa- '\we define the model on a lattice given by poirts en,
tial dimensionx and one temporal dimensidn Define the  \yheren is an integer. The lattice can be taken to either have
dynamics of this model to obey the equations periodic boundary conditions or to be of infinite extent. The
state of the system at a fixed value of the time parantater
1 ) . described by a wave functiofy(x,t) that depends upon the
Pr(x+ 10 = S[(1=Dya(xt=1) = (1+D)ga(x t=1)], discrete positiorx and an “internal” indexk taking values
from 1 tom, labeling possible particle velocities at the lattice
sitex. As in lattice Boltzmann models, at each discrete time
step the various components of the field at each site undergo
a local unitary “collision” and then thgth component of
#(x,t) propagates along thigh lattice vectorc; to the new
site x+c; to yield the new state of the system at time
g t+At. We consider only linear processes, so this interaction
can be specified by amx m scattering matriS.
We take the continuum limit of the theory by scaling
e—0, whereAt~ €2. In this limit we will find that the dis-
1 crete equation describing the dynamicsfobecomes a con-
_Tr_ _ _ tinuous differential equation, which we identify as the Sehro
Pi(x,t+4) 4[ P (X= A1) + 31 (X=2,) + ¢ (X, 1) dinger equation.
. In this section we will assume that each lattice site has
o (x+21) ]+ %[wz(X—ZI)— Po(X,1) two associated po_ssible particle velo_cities, corresponding to
right- and left-moving particles. We will also assume that the
dynamics is symmetric under right-left reflection. More gen-

1
Yo(x— 10 =5 [(1=D (X t=1) = (1+ )¢ (x,t=1)].

These equations give a unitary time evolutiongtoTo un-
derstand howy evolves in a continuum limit, we can expan
the equations of motion through four time steps, giving for
example

~ X+ 20+ gho(x+ 4], eral models can easily be analyzed using a similar formal-
ism.
Taking a continuous limit as the lattice spacing scales ias The equation of motion for the model reads

the x direction ande? in thet direction, we find the differ-
ential equation hi(X+ €Cy,t) = S (X, t—At),
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wherek=1,2 correspond to right- and left-moving particles,  5(t)— »(t—1)=—€eD (XCX })D7dy7n

so that c;=+1c,=—1. The quantum wave function )

. . .
P (x,1) is normalized so that B ?D*T(XCZX*l)DTaﬁmLO(e?’).
;( (. H)[*=1 ) At this point we would like to scale the time step as a

power of e so that this equation can be written as a differen-
. . . . . tial equation in time. However, there is a difficulty that arises
Igrpﬂ;;\,heet?eatégféh;gg)Zx2 matrix that is unitary so as due to .the fact that'there are two relevant time scales in-
We begin our analysis By transforming to the wave func—VOIVed n thg dynamics ofy. Therg 's an ordee-change to
tion 7 at every time step; howevgr, this ordeterm has a phase
angle that rotates at every time step. Thus the oeddy-
namics average out after a large number of time steps, so that
the time-averaged rate of change gpfactually goes ag?.
The dynamics we are interested in are independent of the
short-term ordek fluctuations, so we must perform another
transformation to remove these effects. With this goal in
2 mind, we write

B(t)— p(t—1)=— €S 'CSdyp— %s”c?swi(ﬁ

$h(x,1)=S"g(x,1),

where r=t/At. We can then expand the difference
¢(t)— d(t—1) in the infinitesimal parameter to get

n(t)={(t)+ep(t),

+0(€), where
whereC is the 2<2 matrix p(t)—p(t—1)=—D (XCX 1D, L.
1 0 This equation is solved by
c:( )
0 -1 p(t)=D""GD"4¢,

Because we are assuming that the interaction described hyhere
the matrixS is invariant under reflectiors must be of the

form G-DGD !'=-B=—(XCX Y.
a b This can be solved fo& as long as the only nonzero entries
S= b a)’ Bi; appear where theandj eigenvalues oD are different.

We can now write a final dynamical equation far

wherea and b are complex numbers. Because of unitarity — (t)—¢(t—1)= —eZD*TBGDTaig

we have|al?+|b|2=1. S can be put in diagonal form by ,

" e
wriing — 5 DTXCX )DL+ O(€2).
S=X"1DX,

If we assume that the unit of time scalesedswe have the

where continuous dynamical equation
1
wo Lt 1 af=—D""BGD" %L~ 5D (XCX HDGL.
2\l -1)

We can now substitute the known matric¥sC,D to
We can redefin& and ¢ up to a phase, so that without loss compute

of generality we can take

. 0 1
(m O B=XxCX'=| .
\o 1)
10
; : : XC2X 1= ,
where u is a complex number with magnitude 1 0 1
(up*=1). We then have
0 -1
+1 -1 T
1w KR 1- 4
20lpu—1 p+1l G= 1
0

If we write X¢p= 7, then we have 1-—u
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Using these matrices we have contains a set of pointsand that at each lattice site there are
particle velocities labeled bk, corresponding to velocity
1 1 0 vectorsc, in the lattice. Denoting spatial indices fy; we
1, .01 1—pu* denote theath component of thekth velocity vector by
BG+ 5 XCX 7= 11 c¢. The dynamics of the lattice Boltzmann model are de-
0 R scribed by the equation of motion
—

(Xt ec 1) =S ¢(x,t—1),

whereS is unitary. Transforming as before

Writing = cosf+ising, we have

1 1—cos9+ising 1 N sing =St
= R =5
1-p  (1-cow)?+sirts 2  2(1-—cosh) YH=S"$(0),
) ) we have
Thus the dynamical equation fgrbecomes
2
€
1 0 ¢(t)— dp(t—1)=—€S 'C*S"d,¢p— ES’ "C*CPS 9,05
| 2m .
g l=i L | % +0(€%),
0o -
2m where the diagonal matric&3® are given by
where Ce= diag(ct, ....cpn),
m=cotf— csd. with c{* being theath spatial component of thgth lattice

. _ _ vector. WritingS=X"1DX, X¢= 7 we have
The equation for the first component ofis thus precisely a

Schralinger equation for a particle moving in one dimension y(t)— (t—1)=— €D~ (XC*X 1)D7d,7
with massm. To leading order{(t) is related toy through
the sequence of transformations described above, so that

L(t)=D " "Xy(t) +O(e).

2

— & D (XCUCAX YD g, 0+ O( €
2 ( ) (24 ,87] (6 )'

We write
The first component of(t) is therefore given by
B n(t)={(t) +ep(t),
V=gi(t)= %[m(m Pa)]; where

_ p(t) = p(t—1)=—D"(XCX HD7,L.
this satisfies the Schdinger equation in the continuum limit,
This is solved, as before, by

1
=i 2 —-TapT
APl p()=D""G*D73, ¢,

Note that by takingu=—i we getm=1, giving precisely where

the example discussed in Sec. I. We shall demonstrate in G-DGD !=—(XCX Y=-B
Sec. lll that, in an analogous fashion, in higher-dimensional '

theories the sum of the wave fL_l_nCtion Components forms ﬁ\gain, this can be solved fd® as |ong as the on|y nonzero
scalar quantity that satisfies a Scttirger equation. entriesB;; appear where thé and j eigenvalues oD are
) different. The resulting continuum equation fgris
Ill. SCHRO DINGER EQUATION IN DIMENSIONS d=1
. . . din=—D""B“GPD70,d47
In this section we derive the general form for the con-
tinuum limit of the dynamics for a unitary lattice Boltzmann 1
model with fixed collision matrix on a lattice with any num- )
ber of dimensions. Specializing to the case where the lattice
is Cartesian and the collision rule is invariant under discretélhis is the general form of the dynamical equation for a
rotations, we find that a generic collision rule gives a Sehro unitary lattice Boltzmann model.
dinger equation in any dimensiah

D™ 7(XC*CAX 1D 73,d47.

B. Schradinger equation in d dimensions

A. General form of the dynamical equation We now specialize to the case where the lattice is Carte-

The analysis of the continuous equations of motiomin sian, so that there ared2possible particle velocities at each
dimensions proceeds in a fashion very similar to the discushattice site, corresponding to vectors of magnitute, — € in
sion in the preceding section. We assume that the latticeach of thed directions. We choose the collision mat&xo
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be invariant under the symmetry group of the lattice. We willdimensional space of velocity vectors transforms under a lin-
show that generically the continuum limit of the equation ofear representation of this discrete group. This representation

motion is & Schrdinger equation, just as we found for a containg only three irreducible representations, which allows
general collision matrix in one dimension on the Cartesian

lattice us to determind up to three distinct eigenvalues. Because

The constraint tha$ is invariant under discrete rotations °f the symmetry constraint, we can always diagonaBizsy
and reflections is actually quite a strong condition. Thie 2 the matrix

1 1 1 1 1 1 1 1 1
/Iﬁ J2d  \2d V2d  2d  2d  2d J2d Jﬁ\
1 1
— 0 0 0 —-—— 0 0 0 0
% 7
0 ! 0 0 0 ! 0 0 0
V2 V2
0 0 0 ! 0 0 0 0 !
x= 2 z |
1 1 1 1
- - - = 0 0
2 2 0 0 2 2
1 L 1 12 0 o
23 23 23 23 243 23

1 1 1 1—-d 1 1 1 1 1—-d
\2\/0'_2 2Vd, 24d, 2Vd, 2Vd, 2Vd, 24, 2Vd, 2d,

whered,=d(d—1)/2. The rows of this matrix consist of the tinuum limit. As we shall discuss later, however, any value
three groups of vectors in the irreducible representations off A # u gives a Schrdinger equation; we use the=—1

the rotation group mentioned above. The first row is the noreondition merely to simplify the presentation.

malized vector (1,1 . .,1). Thenextd rows are normalized With the stated conditions ob, we can comput&. We
versions of the vectors® with +1 in positioni and—1 in  find that all elements of are equal to (% x)/2d, except the
positioni+d. The lastd—1 rows are vectors with equal matrix elementsS;;,q and S, 4;, which are equal to
components andi +d, subject to the condition that the sum (1+ u)/2d—1. Thus

of the components vanishes. This matrix p8ts the diag-

onal form
1+ pu
w0 .. 00 --- 0 Sij= Zd__50,|i—j|—d-
0 v 0 0 0
5 At a microscopic level, this collision matrix gives an equal
D=XsSx=| 0 O v O 01, amplitude for a particle to move in every direction other than
directly backward. To check the unitarity condition, we
O --- 0N --- O :
verify
0o 0 (L+p)(A+p*) | (1+p—2d)(1+u* —2d)
+ + +u— +u*—
(2d—1)—— £ TR L 2T H £ -1

where the eigenvalue appeard times and the eigenvalue 4d? 442
\ appearsl— 1 times. By a simple phase redefinition we can

chooser=1. We will furthermore sek = —1, which as we

shall see will give rise to a Schidimger equation in the con- and
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(I+p)(1+p*)  (1+p)(1+p*—2d) 1 1
(2d-2) PPE + il —El’(a),—ir(a-f—l), comrd=1) .
i
1+u—2d)(1+u* '
+( s )2( L )=o_ From the above form oK, we see that the first row of
4d XC*CPX~1is given by
We can now proceed to calculate the other matrices . 101 ., a—1
needed for the dynamics. There atematricesB®. For a (XC*CPX )Oizﬁaﬁﬁ ﬁ’o 5= NP
particular value ofw, we find that all matrix entries vanish @
except those in thea+1)th row and the ¢+ 1)th column,
which are given by r(a),r(at+l),... ,r(d—l)) .
[
(B%) (B%) ! Qdta—2 . (a) Thus the first row of the combined matrix is
“ at+li™ “i a+1™ | T * y T a),
+ 1 atl \/a \/E
1 1
—B*GF- —xcacﬂx—l) =(i—,02d‘1> :
Fa+1),...r(d-1)| , 2 o\ 2m |
| where
where by ¢ we denote a sequence kf0’'s and we have
defined m=d(cotd—csd), 2
with
3 1
r(a)= fa(atl) w=Ccosh+ising. A3

As a result, we obtain the differential equation describing the

We can now immediately compute®, which has nonzero . : . . -
y P dynamical evolution of’ in the continuum limit,

elements in the same positions, given by

1
I B N o B aW (1) =i 5= SR (X1), @
(G gr1i= _—*.0 , ,—Er(a), o
(1-p*)Vd 2\a
L L which we recognize as Schiimger evolution ind dimen-
sions. In Appendixes A and B we work out the specific cases
—pflatl) .. "Er(d‘l))y of d=2 andd=3 in detail
! Note that had we chosen the eigenvaludifferently, the
difference would have appeared in the ldst1 rows and
- _ -1 diap Na—1 1 columns ofG. Following through the computation, we find
(CYiar1= (1_M)\/a’ "oa Er(“)' that the only change would be that new terms would appear

on the right-hand side of Ed4), proportional to the eigen-

1 1 vectors ofS with eigenvaluexn. However, these terms would
—5rlatl), ...~ Ef(d—l)) : have had a phase:f*)” and thus would have averaged out

i in the continuum limit as long g8+ \, making no change to
the final result Eq(4). Thus we reach the conclusion that for
We are now interested in computing the differential equatiorany collision rule invariant under the lattice symmetry group,
describing the continuum limit of the dynamics of the firstas long asu is distinct from the other eigenvalues of the
component o, which we will denote byl. As before, we  collision matrix, the resulting continuum dynamics for the

define total amplitude¥ are governed by a Schiimger equation.

C. Inclusion of a potential
+0(e).

/1/ T
TxH=6 @(Z vix In general, we can easily include an arbitrary potential
V(x) by including a position-dependent phase in the transi-
To compute the dynamics oF, we need to know only the tion matrix S. If we perform the above analysis for a model
first rows of the matrice8“G# and XC*C#X 1. From the  With transition matrix

above expressions, we find that the first row BFG? is - L,
given by S(X)=exd —ieV(x)]S,

1 1 1 where S is a spatially invariant matrix such as discussed
anBy  —_— saB dra-2 V& above, then the general form of the dynamical equation be-
(B*GF)g=—=6 0

Vd (_ﬁ(l—u*)’ "2Va comes
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dm(x,t)= —D_TBaGBDTaaaﬁyl(xlt) tems can be simulated more efficiently on a quantum com-
puter than on a classical computer.

A quantum-computing device is composed of simple
guantum elements such as particles with spin (fZantum
) bits, or g-bit3. The state space of the system at any fixed
—IVX)7(x,1). time is the tensor product of the Hilbert spaces of the states
of the elementary computational elements. Thus, for ex-
ample, a system witm g-bits has a state space of dimension
2™, At each time step, some small number of g-Bitsually

1 -7, ar~By—1 T
— 5D (XC CAX D d,d5m(X,1)

This becomes, for the total amplitudk, the Schrdinger
equation in an external potential

1 2 or 3[16]) are subjected to a unitary time evolution, de-
Y (x,t)=i %E aillf(x,t)—iV(x,t)llf(x,t). scribed by acting with a unitary matrix on the Hilbert space
“« of the affected elements. Quantum computers have recently
become of great interest because of the result due to Shor
IV. MANY PARTICLES: QUANTUM LATTICE-GAS [15] that it is possible to factor large integers on a quantum

AUTOMATA computer in polynomial time, a procedure thought to be im-
possible on a classical computer.

In order to implement the many-body simulation de-
scribed in the beginning of this section on a quantum com-
puter, it is necessary to make some restrictions on the behav-
ior of the many-body wave function under exchange of
particles. The example system in E§) describes two par-
ticles moving in one dimension without interacting. In this
model, both particles can be moving in the same direction

. . _ e _ from the same lattice site at a given point in time. We can
Yi(XF €yt ec ) =SuSq¥ (XYt 1), ® modify this model slightly to give the particles exclusionary
wherex,y are the positions of the two particldsk are the ~ (Ferm) statistics by making the transition matrix aty
internal indices specifying their directions, aSds a 2x2  force the two particles to move in different directions. This
matrix for unitary Schrdinger evolution in one dimension, C€orresponds to introducing a contact interaction between the
as discussed in Sec. II. Notice that this dynamics is equivav0 particles when they move within a single lattice dis-
lent to that of a single particle moving in two dimensions. tance. By making the initial conditions antisymmetric under

In a similar fashion we can describe models whergar- ~ €xchange ok andy, we have a simulation of two nonrela-
ticles move ind dimensions, by constructing a unitary lattice Vistic fermions moving in one dimension. Alternatively, we
Boltzmann model imd dimensions. It is straightforward to could symmetrize the wave function and we would have a
incorporate an arbitrary interparticle potential in this formu-Simulation of “hard bosons” that obey Bose statistics, but

lation; the potential is a function of the particle positions andc@nnot occupy the same lattice site. Either of these ap-
can be included as discussed in Sec. Il C. proaches naturally generalize to arbitrary numbers of par-

This gives a procedure for simulating an interacting non_ticles and arbitrary dimensions. For the remainder of the. d[s—
relativistic quantum many-body system on a classical comgussion we assume that the particles obey Bose statistics.
puter. Although this may give a useful algorithm for systems! Ne issue of implementing fermionic systems on a quantum
containing only a few particles, if we wish to simulate the COMputer is more subtl13] and has been addressed re-
motion of a large number of particles using the method jus€ently by Abrams and Lloyd17]. _ _
described it is clear that the number of calculations needed to !N Previous sections we discussed the motion of a single
perform even one time step of the evolution become rapidiparticle, with a wave function(x,t). Now, we would like
intractable. For example, simulating the motion of 20 par-t© consider the state space for a quantum system of many
ticles in three dimensions on a lattice of side length 100Particles. A natural basis for the Hilbert space of such a
would take on the order of 1 calculations per time step, SYyStem is the set of states in the fermionic Fock space asso-
beyond the capacity of any imaginable classical computer. ciated with the_ spatial lattice; such _states are identified by a

However, the technology afuantum computinfl2] pre-  S€t of occupation numbewg(x) (taking values O or jLfor
sents a paradigm in which such calculations can be done. Wgch possible particle positionand internal index. The
will now describe a way in which the above algorithm can beHilbert space of the model is thus"8 dimensional, where
implemented on a quantum computer with a speedup expan is the number of possible values of the internal index and
nential in the number of particles. In fact, it is natural to |9 is the number of lattice sites. For example, a basis vector
perform simultaneously the calculation for all numbers ofof the state space for a one-dimensional system with four
particles that will fit on the lattice, essentially performing a lattice sitesx=1,2,3,4 might be given by
discrete simulation of nonrelativistic quantum many-body

We now consider models in which multiple particles
move independently according to the Salinger equation
in d dimensions. One way of simulating the motion rof
particles ind dimensions is to introduce extra degrees of
freedom for each particle. Thus, for example, we could
model the motion of two particles in one dimension by the
lattice Boltzmann model

theory. The resulting model falls in the class of quantum [s)=1(s5(1),81(1)), . .. (S2(4),51(4)))
lattice-gas automata, which were recently defined by Meyer
[9] in the context of the (& 1)-dimensional Dirac model. =1(0,1),(0,0),(0,0),(1,1) (6)

The exponential speedup of this algorithm on a quantum
computer is a specific example of the general observation bywhere each ordered pair corresponds to the occupation num-
Feynman13] and Lloyd[14] that quantum-mechanical sys- bers at a given lattice site. Thus this state corresponds to the
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configuration where a single particle is»at 1, with k=1, ous sections and corresponds to a nonrelativistic particle

and both particle positions at=4 are filled. propagating according to the Schinger equation. Thus, for
The state of the quantum system at any given value of theelatively sparse systems, this quantum lattice-gas model
discrete time parameteris given by a vector simulates a system of many nonrelativistic particles whose

free propagation is given by the ScHioger equation. The
_ remaining parts of the collision matrik describe a contact
|z/;(t)>—§ Cst)ls), interaction between the various particles.

Let us now discuss the computational complexity of the
where the sum is taken over all basis vectors of the Hilberquantum algorithm. To implement the advection transforma-
space. This state is defined by the coefficigdgét). In the  tion by using quantum computing elements, it is only neces-
quantum computing paradigm, this corresponds to the statgary to perform a series of exchanges of the values of the
space ofml9 independent g-bits. quantum bits representing the particle occupation numbers.

We will now define a quantum lattice-gas automaton byThe number of such exchanges is essentially equal to the
defining a dynamics on the quantum state space. The dynamumber of bitsml? (recall that on a Euclidean lattice of
ics of the quantum lattice gas will be described in two stepsdimensiond, m=2d, so that for example, itil=3, the ad-
just as in classical lattice-gas automaton models. First thereection operation can be implemented in approximatefy 6
is a collision step in which the particles at each lattice sitequantum operations
interact. Then there is an advection step, describing the The matrixT acts on the Hilbert space associated with a
propagation of the particles in the directions associated witlsubset ofm of the g-bits in the system. Counting degrees of
the vectorsc, . Each of these steps is described in the quanfreedom, generically such a matrix can be implemented with
tum system by a unitary transfer matrix acting on the stat@pproximately 2™15 elementary quantum operations on
space of the system. The total dynamics can then be deairs of g-bits. For example, in a 3D system, it would take on

scribed by the equation the order of 300 quantum operations to implement e&ch
matrix, so that the number of computational steps needed to
lp(t+ A1) =AK|§(1)). perform the transformation bi would be around 308.

) ) . Note, however, that the part df that acts on the multiple-
The advection step simply corresponds to a permutation Masarticle Hilbert space simply changes the phases of a

trix A on the basis vectors described above, where each bit I§ nction-type interaction between the particles. Since these
moved forward in the direction corresponding to the approphases may not affect the results in most problems of physi-
priate vectorg, . For example, acting on the state in E6), ¢4 interest, these componentsTotan be arbitrary. Thus, in
the result of applying the advection operator would be practice we need only find a combination of operations on
_ g-bits that will give a matrixT that preserves particle number
Als)=1(0,,(0,2),(1,0),(0.0) and gives the desired symmetry properties and eigenvalues,
reducing the number of steps needed significantly below 300.
Combining these observations, we see that this model can
be simulated with on the order d¢f elementary quantum
computations at each time stégp on the order of 1 if we are
using a quantum computing system that allows parallel com-
utation). Since this system automatically contains the mul-
iparticle wave function for all possible particle numbers, we
ve achieved an exponential increase in speed over what
was possible on a classical computer.
The system as defined so far includes only interactions
K=ToT® T, between the particles in the form otfunction interactions
parametrized by the componentsTofn the multiple-particle
given by thel d_fold tensor product off. We would like the  space. We can introduce an arbitrary interparticle potential
collision matrixT to have the property that it conserves par-V(x,y) by hand, by multiplying the wave function at each
ticle number. Thus this matrix is block diagonal in the sub-time step by the tensor product over all pairs of g-bits
spaces of the Hilbert space at each lattice site corresponding
to a fixed particle number. U=aUixy:
We have now defined a discrete model for quantum )
many-particle systems. To understand the behavior of thi¥/nere the matrix
model in the continuum limit, let us consider the behavior

where we assume periodic boundary conditions on the la
tice. The particle that was at lattice site=1 has been ad-
vected tox=2k=1 and the two particles that were at
x=4 have moved tx=3 andx=1.

We now consider the collision part of the time develop-
ment rule. The collision process is defined by a single unitar
2Mx 2™ matrix T, which acts separately on the guantum bits
associated with each lattice site. Thus the state of the syste
is transformed by the unitary matrix

when the number of particles in the system is relatively small 100 0
compared to the number of lattice sites. In this case, at most 0 1 0 0
lattice sites the number of particles present will be either O or Uijxy= 0 0 1 0
1. This part of the dynamics, which describes the free propa- L
gation of single particles, is described by the parTah the 0 0 0 gieVy

single-particle Hilbert space. However, because this is a uni-
tary matrix, generically the dynamics described by this tran-acts on the Hilbert space associated with the qg(te) and
sition matrix is precisely that which we studied in the previ-s;(y), changing the phase of the wave function only in the
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component where both g-bits have the value 1. Implementingjes, such as mass and momentum density, are obtained by
this interparticle potential will take on the order of?l%¢ averaging particles’ mass and momentum over blocks in
guantum computations for each time step. Although this sigspace and/or time. In a typical lattice-gas simulation, this is
nificantly increases the computational complexity of thedone from time to time to obtain the macroscopic variables
guantum algorithm this is still exponentially faster than theof interest. The process of measuring these quantities is
analogous classical algorithm, since the particle number purely passive, that is, their measurement does not affect the
does not affect the complexity. Note that, unlike the rest ofsubsequent dynamical evolution at all. In contrast, the analo-
the algorithm, the implementation of interparticle potentialsgous operation for a quantum lattice gas would involve oc-
involves nonlocal interactions on the lattice. casionally measuring the state of some subset of the g-bits in
To clarify the discussion, we consider a simple examplehe system, thus collapsing the quantum wave function onto
of a collision matrixT. For a many-body system in one di- the eigenstates of thepace and/or timeblock number op-
mension, at each lattice site the collision matflixis a  erator. The set of quantities that are accessible through this
4x 4 matrix, acting on the Hilbert space with ba§§,0)),  type of simulation are rather different from those accessible
[(0,1)), |(1,0)), |(1,1)). Since we are assuming that particle through simulation methods on a classical computer. For ex-
number is conserved and that the dynamics is symmetriample, the dynamics of the system defines an effective

under left-right reflection, the matriX is of the form Hamiltonian that is an approximation to the Hamiltonian of
the many-body quantum system being simulated; however,
a 0 0 O the spectrum of this Hamiltonian is not directly amenable to
0 a b 0 measurement. Instead, the types of observables that can be
T= , measured in the simulation are precisely equivalent to the
0 b ao types of observables that can be measured in an actual inter-
0 0 0B acting quantum system. For example, a typical experiment

might be to initialize the system in a particular known state
where «,B8,a,b are complex numbers satisfying at timet=0 and to ask for the probabilitp at timet that
|a|?=|B|%=|al?+|b|?=1 and ab+ab=0. By a simple there_ is a particle in a region of spade®. Just as in the
global phase redefinition, we can choase 1. The part of Physical quantum system, we can ask such a question of our
T in the single-particle Hilbert space is precisely the form ofSimulation; we can perform the experiment a number of
the collision matrixS from Sec. II. From the eigenvalues of times and each time we will find a particle with probability
this matrix we can determine the mass of the free particles if- T actually computep to some degree of accuracy re-
the model. Finally, there is a single paramefetthat de-  guires repeating the experiment a number of times.
scribes the phase with which two particles “bounce.” In this
simple one-dimensional model, there is therefore little free- V. NUMERICAL RESULTS
dom in choosing the patrticle interaction. In higher dimen-

sions there would be nontrivial phases describdfginction of plane waves in periodic geometry in two dimensions. We

interactions between up todZparticles. : T - . -
One major concern in the implementation of any algo_pon&der a periodic grid with dimensiofdsx N, and initial-

rithm is the issue of precision. This problem is particularlyIze it with a plane wave of the form
acute on a quantum computer, where each quantum opera- 1
tion involves acting on the state with a unitary transforma- z/fj(x,0)=Zexp(ik~x—iwt)
tion that can only be controlled up to some finite precision.
Furthermore, on a quantum computer there is the related b'I'(Sr =1 4 where
distinct problem of decoherence that must be addressed in T
order for any quantum computation to be feasible. There has
been a great deal of work recently describing how these
problems can be solved using dynamical quantum €rror Colznere| andl, are integers. Choosing units where the spatial
rection method$18]. Without going into this issue in depth, dimensions );are of unit length, we have=1/N and
we make the simple observation that even without error cory , _ 2_ 1 \2 ’
rection, if the precision of each quantum operation is
1- 14, then at each time step the error in the wave functioqu
will take a random step in the Hilbert space with sizé. 1/ time steps, we measure the inner product of the wave func-
Only after on the order of? operations will this error be- tion with ité initial condition
come significant. Thus, if we could achieve a precision better
than 10°°, we could perform 18 quantum operations suc- 1
cessfully, which would allow us to simulate, for example, an S(t)= _2 P (x,0)W(x,t).
interacting 3D system on a lattice with size of orderf.20 N2
With the error correction schemes describedlli8l], there is
in principle no upper bound on how large a system could bd he result should go like exp(iwt), so the ratio of two
simulated, other than the size of the quantum computer thauccessive values of this quantity is
could be built to perform the simulation.

Finally, we consider the issue of measurement in quantum S(t+4At) —exp(— 4i wAt)
lattice gases. In a classical lattice gas, hydrodynamic quanti- S(t)

To test the algorithm, we consider the dispersion relation

k=2m(l,x+1yy),

We evolve this initial condition in time, using EgAL)
th w=—i (hencem=2) for the collisions. Every four
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14000 ‘ checked in analytically tractable cases. Further analysis is
needed to understand the behavior of the system in the re-
gime where particles are dense. It might also be interesting to
10000 consider more general collision rules that create and destroy

12000

g 8000 particles, possibly including antiparticles with separate quan-
2 tum numbers.
2 6000 Of course, the actual implementation of quantum lattice-
4000 gas models on quantum computing devices is something that
~ may not be possible for many years, if ever. However, these
2000 ~ lattice models give a simple framework with which to study
—
0 — problems in many-body theory. Furthermore, the methods
0 50 100 150 200 described here are also quite practical for simulating systems

of a few particles on a classical computer. It may be that the
exact unitarity of these models at a microscopic level will

FIG. 1. Plane-wave dispersion relation shownNge=256(gray ~ make them more stable and possibly more useful than cur-
pointg andN, =512 (black points. rently used discrete methods such as finite-difference ap-
proaches.

Wavevector Magnitude, k

and hence the frequency is given by

S(t+4At))
sty )
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w= 7 APPENDIX A: SCHRO DINGER EQUATION

IN TWO DIMENSIONS

We performed a series of simulations where we consid- \ye now present the formalism described above explicitly

ered wave numberg =3l andl =I, wherel {1,...,13. 5 two dimensions. The matricé® andX are given by
The points plotted in Fig. 1 show the measured frequancy

as a function ofk|=2m/lxz+ly2. The solid curve isk|%/4. It

is evident that the agreement is excellent in the “hydrody-
namic” limit of small |k|, but degrades due to lattice arti-
facts of order|k|Ax at higher wave-vector magnitudes. To
demonstrate this, we include data fd= 256 (gray point$
andN=512 (black point3. It is evident that the dispersion
relation is valid for higher wave numbers on the larger lat- 12 1/2 1/2 1/2
tice.

0 0 O
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O O O'xT
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0
0
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VI. CONCLUSION

We have considered a very general class of lattice models 1
satisfying unitary time-evolution rules. We have shown that 0 E 0 - E
generic models of this type describe the evolution of a non-
relativistic particle according to the Scliiager equation in 172 -1/
an arbitrary number of dimensions. These models can natu-
rally be used to construct quantum lattice gases describinghis gives us the collision matrix
nonrelativistic many-body physics in an arbitrary number of
dimensions. It is straightforward to include an arbitrary in- utl put+l pu=3 p+l
terparticle potential into these models. 1| p+1 p+1l p+l u-3
There are many ways in which this work could be ex- S=X"DX=-—
tended. Numerical simulations could be performed in an ar- Hp=3 ptl p+l p+l
bitrary number of dimensions with multiple particles and u+l wu—3 wput+tl p+l
with nontrivial spatially dependent potentials and the results (A1)

2 12 -1/2
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We can compute

1 1
0 — 0 O 0o 0 — 0
V2 V2
1 1 0O O 0 0
~_ 0 0 —
Bl=XCX"'=| 2 V2 |, B2=XCX =] 1 1|,
0 0 -
0 0 0 O V2 J2
0 ! 0 O 0 O ! 0
V2 V2
and thus
0 ! 0
(1- w2
1
- - 0 0O ———_
Gl=XCX"'=| (1-u*)\2 V2 |,
0 0 0
0 - 0 0
242
0 0 !
(1—-p)\2
0 0 0 0
G%2=XC?*X" 1= 1 0 1
(1—-p* )2 22
0 0 ! 0
22
Combining these matrices together we find
! 0O 0 0 0 0 o 0 0 0 0
2m 2m _
|
0O 0 O 0 -
_2'_ 00 ) _ 5 2m
W= m 92+ 0 N G+ i Ixdy,
0 0O 0 O 2m - 0
. 2m
i(—uw)” i(—u)”
—w) 00 Wy 0 o 0 0 0 0
2m 2m

with m described as in Eq$2) and (3), with d=2. wT
As predicted by the general discussion above, the total W (X,1)="75—[#1(X.t) T (X, 1) + (X, 1) + dha(x, 1) ].

amplitude contained in the first component pfatisfies a
Schralinger equation

It is interesting to note that while the variation of the fourth
component off contains an oscillating phase, and thus has
no interesting behavior on the time scale of interest, the sec-
ond and third components obey separate second-order differ-
ential equations analogous to the Salinger equation, but
without rotational invariance.

a\p(xt)=ii(a2+a2)\1f(xt)
A 2m x "% e

where
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APPENDIX B: SCHRODINGER EQUATION IN THREE DIMENSIONS

Using the above formalism in three dimensions, we have

1 1 1 1 1 1
V6 V6 V6 & 6B 6
1 1
5 0 0 -5 0 0
0o = 0 0 -~ o
V2 V2
X= ,
1 1
0o o0 N7 0 0 -5
1 1 1 1
2 2 ° 3z 3 °
1 1 1 1 1 1
23 23 3 23 23 3
u 0 0 0O O 0 putl w+l pu+l wu—5
01 0 0 O 0 putl wpu+l pu+l p+l
0010 O O ut+l pu+l u+l u+l
P=10 001 0 ol 56 u-5 u+1 u+1 u+1
0000 -1 0 u+l u—5 u+l p+1
0 000 0 -1 put+tl pu+tl pw—5 p+l
1
0 N 00 0 O
1 1 1
5 0 0 0 5
o1 0 0 00 O O
0 0 00 0 O}
1
0 5 00 0 O
1
0 % 00 0 O
0 ! 0O 0 0
V3(1—p)
1 -1 -1
B 0 °03% 2
. 0 0 00 0 O
0 0 00 0 O
-1
0 A 00 0 O
0 1 00 0 ©

e

utl
m—5
utl
utl
ut+l
utl

ut1
put+l
m—5
utl
ut+l
utl

65
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1 1
0O 0 — © 0 0 0 0O ——— 0 0
V3 V3(1-p)
0 O 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 1 -1
| V3 CRRCH ISR IR 242 26
o o o o o of 7 0 0 0 0 O o |’
0 O ! 0 0 0 0 0 ! 0 0 0
V2 22
00 = 0o 0 o 0 0 -1 o 0 0
V6 26
0O 0 O ! 0 0 0 00 !
V3 V3(1-w)
0 0 0 0 0 0 0 0 O
0 O 0 0 0 0 0 0
s=| 1 3= 1 1
B — 0 O 0 0 — \ﬁ G - 0 0 0 —
V3 3 V3(1-pu*) V6
0O 0 O 0 0 0 0 0 O 0 0O O
0O 0 O \F 0 0 0 0 O ! 0O O
~ V3 V6
From these matrices we find that the total amplitude
M*T
\P(X!t) = %[%(X-t) + wZ(X!t) + 1/13(X1t) + ¢4(X,t) + lﬂ5(X,t) + lIIG(X’t)]
satisfies the Schdinger equation
1 s
¥ (x,t)=i ﬁ(ﬁﬁ ay+ 7))V (x,1),
where as usuah is related tou through Eqgs(2) and (3), with d=3.
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