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Quantum lattice-gas model for the many-particle Schro¨dinger equation in d dimensions
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We consider a general class of discrete unitary dynamical models on the lattice. We show that generically
such models give rise to a wave function satisfying a Schro¨dinger equation in the continuum limit, in any
number of dimensions. There is a simple mathematical relationship between the mass of the Schro¨dinger
particle and the eigenvalues of a unitary matrix describing the local evolution of the model. Second quantized
versions of these unitary models can be defined, describing in the continuum limit the evolution of a nonrel-
ativistic quantum many-body theory. An arbitrary potential is easily incorporated into these systems. The
models we describe fall in the class of quantum lattice-gas automata and can be implemented on a quantum
computer with a speedup exponential in the number of particles in the system. This gives an efficient algorithm
for simulating general nonrelativistic interacting quantum many-body systems on a quantum computer.
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I. INTRODUCTION

There are many situations in physics where a continu
system obeying a particular set of equations at a macrosc
scale can be modeled by a discrete microscopic system o
ing a very simple set of local rules. For example, in equil
rium statistical mechanics, simple lattice models such as
Ising model capture the behavior of generic classes of crit
systems at large scales. Another interesting class of disc
systems are lattice-gas automata@1–3#; these models de
scribe systems of particles moving about on a lattice, ob
ing simple collision rules that conserve quantities such
mass and momentum. In the macroscopic limit, these
tems obey Navier-Stokes or other hydrodynamic equati
of interest.

In the quantum domain, there are also examples of
crete microscopic systems that capture interesting ma
scopic behavior. Lattice-gauge theories~see, for example
@4#! give an approach to studying the partition function a
spectra of quantum field theories by mapping these theo
to statistical mechanical ensembles. There are, however,
discrete models for describing the dynamical evolution
quantum systems that preserve important features suc
unitarity. An example of a quantum system for which a u
tary discrete model is known is the Dirac equation describ
a relativistic particle moving in one spatial dimension. A
shown by Feynman@5,6#, this system can be described by
simple microscopic model of a particle moving on a on
dimensional~1D! lattice according to a simple local rule th
essentially corresponds to a unitary form of random walk
straightforward attempt to realize a Dirac equation in m
than one spatial dimension as a form of unitary random w
cannot succeed. By using operator splitting methods, h
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ever, it was shown by Succi and Benzi@7# that a sequence o
random moves along single axes, alternating with trans
mations that diagonalize each of the Dirac matrices in tu
can give an analogous construction in higher dimensio
The discrete model for the~111!-dimensional Dirac equa
tion has been of renewed interest recently@7–9#, due partly
to the possibility of simulating such unitary microscopic d
crete systems by quantum computers. In particular, rece
it has been suggested@9# that a simple quantum lattice mode
can be constructed that describes the motion of a system
many particles moving according to the one-dimensio
Dirac equation.

In this paper we consider a class of models closely rela
to the 1D Dirac lattice model, which give rise to a nonre
tivistic single-particle Schro¨dinger equation in an arbitrary
number of dimensions. In these models, the time deve
ment rule is given by a single local, unitary transformati
matrix. Thus we are essentially considering the motion o
single particle under a unitary random walk process. For
class of models we show that the macroscopic equation
motion satisfied by the wave function corresponding to p
ticle density is the Schro¨dinger equation. We show that suc
nonrelativistic models can be constructed for an arbitr
number of spatial dimensions. We also show that an arbitr
potential can easily be included in these models.

It is natural to generalize from the single-particle mod
to a second quantized many-body system. Such a m
could be implemented very efficiently on a quantum co
puter, so that the number of computational steps necessa
simulate a single time step would depend only upon the s
of the lattice and would not depend upon the number
particles in the system being simulated. Thus our res
could be used to efficiently simulate an arbitrary nonrelat
istic interacting quantum many-body system on a quant
computer exponentially faster than the same calcula
could be performed on a classical computer. Such a sys
would be an ideal example of quantum computing since
54 © 1998 The American Physical Society
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computing elements could be built from a system of sp
1/2 particles on a lattice obeying simple local unitary tim
evolution rules.

The principal difference between our models and the
Dirac lattice model~and its generalization by Succi an
Benzi @7#! is that in the Dirac model, the unitary evolutio
rule satisfied by the wave function or particle at each ti
step is infinitesimally close to the identity transformation.
the lattice spacinge goes to 0, the unitary transition matrix
of the formS511 i eM , whereM is Hermitian. In our mod-
els, we take the transition matrix to be independent of
lattice spacing. This form of a time development equat
makes the system nonrelativistic, but allows for a formu
tion in an arbitrary number of dimensions. A closely relat
model was considered recently in one spatial dimension@10#,
where simulations were shown to be consistent with em
gent behavior corresponding to a Schro¨dinger equation. In
this paper we prove that this is the general behavior of s
models, giving a simple algebraic relation between the tr
sition matrix and the mass of the nonrelativistic particle. W
develop such models for the Schro¨dinger equation in an ar
bitrary number of dimensions.

In the first part of this paper we will consider lattice mo
els for single-particle motion. These models are essenti
unitary lattice Boltzmann models@11#. In the latter part of
the paper we generalize to many-body systems and dis
how a lattice of quantum computing elements could be u
to describe the motion of a large number of nonrelativis
quantum particles. We conclude with a simple numeri
check of the analytic description of a sample model.

As a simple example of the type of system considered
this paper, consider the lattice Boltzmann model with a c
figuration space defined by two complex fieldsc1(x,t) and
c2(x,t), taking independent values on a lattice with one s
tial dimensionx and one temporal dimensiont. Define the
dynamics of this model to obey the equations

c1~x11,t !5
1

2
@~12 i !c1~x,t21!2~11 i !c2~x,t21!#,

c2~x21,t !5
1

2
@~12 i !c2~x,t21!2~11 i !c1~x,t21!#.

These equations give a unitary time evolution toc. To un-
derstand howc evolves in a continuum limit, we can expan
the equations of motion through four time steps, giving
example

c1~x,t14!5
1

4
@2c1~x24,t !13c1~x22,t !1c1~x,t !

1c1~x12,t !#1
i

4
@c2~x22,t !2c2~x,t !

2c2~x12,t !1c2~x14,t !#.

Taking a continuous limit as the lattice spacing scales ase in
the x direction ande2 in the t direction, we find the differ-
ential equation
-

e

e
n
-

r-

h
-

e

ly

ss
d

c
l

in
-

-

r

] tc1~ t !5
i

2
]x

2c2~ t !.

A similar equation holds forc2, and so it follows that

] t~c11c2!5
i

2
]x

2~c11c2!.

Thus we see that the total amplitudeC(x,t)5c1(x,t)
1c2(x,t) satisfies a Schro¨dinger equation. As we shall dem
onstrate, this is the generic behavior of a unitary Boltzma
model with a fixed time development rule.

We introduce the Schro¨dinger model in Sec. II by present
ing the one-dimensional case. The model is generalize
Cartesian lattices of arbitrary dimension in Sec. III; in th
section we also discuss the inclusion of a potential. In S
IV we discuss how the one-particle models can be gene
ized to construct a quantum lattice-gas model of many n
relativistic particles. In Sec. V we give the results of a sim
lation of a single free nonrelativistic particle in tw
dimensions, comparing numerical results with the theoret
framework presented here. The Appendixes give explicit f
mulas for models in two and three dimensions on a Carte
lattice.

II. SCHRÖ DINGER EQUATION IN ONE DIMENSION

In this section we consider unitary lattice Boltzman
models describing the evolution of a single particle in o
dimension. Keeping the collision operator fixed in the sc
ing limit, we show that a very general class of microscop
models gives rise in the continuum limit to a Schro¨dinger
equation.

We define the model on a lattice given by pointsx5en,
wheren is an integer. The lattice can be taken to either ha
periodic boundary conditions or to be of infinite extent. T
state of the system at a fixed value of the time parametert is
described by a wave functionck(x,t) that depends upon th
discrete positionx and an ‘‘internal’’ indexk taking values
from 1 tom, labeling possible particle velocities at the lattic
site x. As in lattice Boltzmann models, at each discrete tim
step the various components of the field at each site und
a local unitary ‘‘collision’’ and then thej th component of
c(x,t) propagates along thej th lattice vectorcj to the new
site x1cj to yield the new state of the system at tim
t1Dt. We consider only linear processes, so this interact
can be specified by anm3m scattering matrixS.

We take the continuum limit of the theory by scalin
e→0, whereDt;e2. In this limit we will find that the dis-
crete equation describing the dynamics ofc becomes a con-
tinuous differential equation, which we identify as the Sch¨-
dinger equation.

In this section we will assume that each lattice site h
two associated possible particle velocities, correspondin
right- and left-moving particles. We will also assume that t
dynamics is symmetric under right-left reflection. More ge
eral models can easily be analyzed using a similar form
ism.

The equation of motion for the model reads

ck~x1eck ,t !5Sk jc j~x,t2Dt !,
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56 57BRUCE M. BOGHOSIAN AND WASHINGTON TAYLOR IV
wherek51,2 correspond to right- and left-moving particle
so that c1511,c2521. The quantum wave function
ck(x,t) is normalized so that

(
x,k

uck~x,t !u251 ~1!

for all t. The matrixSk j is a 232 matrix that is unitary so as
to preserve the condition~1!.

We begin our analysis by transforming to the wave fun
tion

c~x,t !5Stf~x,t !,

where t[t/Dt. We can then expand the differenc
f(t)2f(t21) in the infinitesimal parametere to get

f~ t !2f~ t21!52eS2tCSt]xf2
e2

2
S2tC2St]x

2f

1O~e3!,

whereC is the 232 matrix

C5S 1 0

0 21D .

Because we are assuming that the interaction describe
the matrixS is invariant under reflection,S must be of the
form

S5S a b

b aD ,

wherea and b are complex numbers. Because of unitar
we haveuau21ubu251. S can be put in diagonal form by
writing

S5X21DX,

where

X5
1

A2
S 1 1

1 21D .

We can redefineS andc up to a phase, so that without los
of generality we can take

D5S m 0

0 1D ,

where m is a complex number with magnitude
(mm* 51). We then have

S5
1

2S m11 m21

m21 m11D .

If we write Xf5h, then we have
-

by

h~ t !2h~ t21!52eD2t~XCX21!Dt]xh

2
e2

2
D2t~XC2X21!Dt]x

2h1O~e3!.

At this point we would like to scale the time step as
power ofe so that this equation can be written as a differe
tial equation in time. However, there is a difficulty that aris
due to the fact that there are two relevant time scales
volved in the dynamics ofh. There is an order-e change to
h at every time step; however, this order-e term has a phase
angle that rotates at every time step. Thus the order-e dy-
namics average out after a large number of time steps, so
the time-averaged rate of change ofh actually goes ase2.
The dynamics we are interested in are independent of
short-term order-e fluctuations, so we must perform anoth
transformation to remove these effects. With this goal
mind, we write

h~ t !5z~ t !1er~ t !,

where

r~ t !2r~ t21!52D2t~XCX21!Dt]xz.

This equation is solved by

r~ t !5D2tGDt]xz,

where

G2DGD2152B52~XCX21!.

This can be solved forG as long as the only nonzero entrie
Bi j appear where thei and j eigenvalues ofD are different.
We can now write a final dynamical equation forz,

z~ t !2z~ t21!52e2D2tBGDt]x
2z

2
e2

2
D2t~XC2X21!Dt]x

2z1O~e3!.

If we assume that the unit of time scales ase2, we have the
continuous dynamical equation

] tz52D2tBGDt]x
2z2

1

2
D2t~XC2X21!Dt]x

2z.

We can now substitute the known matricesX,C,D to
compute

B5XCX215S 0 1

1 0D ,

XC2X215S 1 0

0 1D ,

G5S 0
21

12m

21

12m*
0 D .
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57 57QUANTUM LATTICE-GAS MODEL FOR THE MANY- . . .
Using these matrices we have

BG1
1

2
XC2X215S 1

2
2

1

12m*
0

0
1

2
2

1

12m

D .

Writing m5cosu1isinu, we have

1

12m
5

12cosu1 isinu

~12cosu!21sin2u
5

1

2
1 i

sinu

2~12cosu!
.

Thus the dynamical equation forz becomes

] tz5 iS 1

2m
0

0 2
1

2m

D ]x
2z,

where

m5cotu2cscu.

The equation for the first component ofz is thus precisely a
Schrödinger equation for a particle moving in one dimensi
with massm. To leading order,z(t) is related toc through
the sequence of transformations described above, so tha

z~ t !5D2tXc~ t !1O~e!.

The first component ofz(t) is therefore given by

C5z1~ t !5
m2t

A2
@c1~ t !1c2~ t !#;

this satisfies the Schro¨dinger equation in the continuum limit

] tC5 i
1

2m
]x

2C.

Note that by takingm52 i we getm51, giving precisely
the example discussed in Sec. I. We shall demonstrat
Sec. III that, in an analogous fashion, in higher-dimensio
theories the sum of the wave function components form
scalar quantity that satisfies a Schro¨dinger equation.

III. SCHRÖ DINGER EQUATION IN DIMENSIONS d>1

In this section we derive the general form for the co
tinuum limit of the dynamics for a unitary lattice Boltzman
model with fixed collision matrix on a lattice with any num
ber of dimensions. Specializing to the case where the lat
is Cartesian and the collision rule is invariant under discr
rotations, we find that a generic collision rule gives a Sch¨-
dinger equation in any dimensiond.

A. General form of the dynamical equation

The analysis of the continuous equations of motion ind
dimensions proceeds in a fashion very similar to the disc
sion in the preceding section. We assume that the lat
in
l
a

-

e
e

s-
e

contains a set of pointsx and that at each lattice site there a
particle velocities labeled byk, corresponding to velocity
vectorsck in the lattice. Denoting spatial indices bya, we
denote theath component of thekth velocity vector by
ck

a . The dynamics of the lattice Boltzmann model are d
scribed by the equation of motion

ck~x1eck ,t !5Sk jc j~x,t21!,

whereS is unitary. Transforming as before

c~ t !5Stf~ t !,

we have

f~ t !2f~ t21!52eS2tCaSt]af2
e2

2
S2tCaCbSt]a]bf

1O~e3!,

where the diagonal matricesCa are given by

Ca[ diag~c1
a , . . . ,cn

a!,

with cj
a being theath spatial component of thej th lattice

vector. WritingS5X21DX, Xf5h we have

h~ t !2h~ t21!52eD2t~XCaX21!Dt]ah

2
e2

2
D2t~XCaCbX21!Dt]a]bh1O~e3!.

We write

h~ t !5z~ t !1er~ t !,

where

r~ t !2r~ t21!52D2t~XCaX21!Dt]az.

This is solved, as before, by

r~ t !5D2tGaDt]az,

where

G2DGD2152~XCX21!52B.

Again, this can be solved forG as long as the only nonzer
entriesBi j appear where thei and j eigenvalues ofD are
different. The resulting continuum equation forh is

] th52D2tBaGbDt]a]bh

2
1

2
D2t~XCaCbX21!Dt]a]bh.

This is the general form of the dynamical equation for
unitary lattice Boltzmann model.

B. Schrödinger equation in d dimensions

We now specialize to the case where the lattice is Ca
sian, so that there are 2d possible particle velocities at eac
lattice site, corresponding to vectors of magnitude1e,2e in
each of thed directions. We choose the collision matrixS to
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be invariant under the symmetry group of the lattice. We w
show that generically the continuum limit of the equation
motion is a Schro¨dinger equation, just as we found for
general collision matrix in one dimension on the Cartes
lattice.

The constraint thatS is invariant under discrete rotation
and reflections is actually quite a strong condition. Thed
e
s
o

l
m

e
an

-

l
f

n

dimensional space of velocity vectors transforms under a
ear representation of this discrete group. This representa
contains only three irreducible representations, which allo
us to determineD up to three distinct eigenvalues. Becau
of the symmetry constraint, we can always diagonalizeS by
the matrix
ue

al
an
e

whered25d(d21)/2. The rows of this matrix consist of th
three groups of vectors in the irreducible representation
the rotation group mentioned above. The first row is the n
malized vector (1,1, . . . ,1). Thenextd rows are normalized
versions of the vectorsca with 11 in positioni and21 in
position i 1d. The lastd21 rows are vectors with equa
componentsi andi 1d, subject to the condition that the su
of the components vanishes. This matrix putsS in the diag-
onal form

D5XSX215S m 0 ••• 0 0 ••• 0

0 n ••• 0 0 ••• 0

A A A A A

0 0 ••• n 0 ••• 0

0 0 ••• 0 l ••• 0

A A A A A

0 0 ••• 0 0 ••• l

D ,

where the eigenvaluen appearsd times and the eigenvalu
l appearsd21 times. By a simple phase redefinition we c
choosen51. We will furthermore setl521, which as we
shall see will give rise to a Schro¨dinger equation in the con
of
r-

tinuum limit. As we shall discuss later, however, any val
of lÞm gives a Schro¨dinger equation; we use thel521
condition merely to simplify the presentation.

With the stated conditions onD, we can computeS. We
find that all elements ofS are equal to (11m)/2d, except the
matrix elementsSi ,i 1d and Si 1d,i , which are equal to
(11m)/2d21. Thus

Si j 5
11m

2d
2d0,u i 2 j u2d .

At a microscopic level, this collision matrix gives an equ
amplitude for a particle to move in every direction other th
directly backward. To check the unitarity condition, w
verify

~2d21!
~11m!~11m* !

4d2
1

~11m22d!~11m* 22d!

4d2
51

and
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~2d22!
~11m!~11m* !

4d2
1

~11m!~11m* 22d!

4d2

1
~11m22d!~11m* !

4d2
50.

We can now proceed to calculate the other matri
needed for the dynamics. There ared matricesBa. For a
particular value ofa, we find that all matrix entries vanis
except those in the (a11)th row and the (a11)th column,
which are given by

~Ba!a11,i5~Ba! i ,a115S 1

Ad
,0d1a22,2

Aa21

Aa
,r ~a!,

r ~a11!, . . . ,r ~d21!D
i

,

where by 0k we denote a sequence ofk 0’s and we have
defined

r ~a!5
1

Aa~a11!
.

We can now immediately computeGa, which has nonzero
elements in the same positions, given by

~Ga!a11,i5S 21

~12m* !Ad
,0d1a22,

Aa21

2Aa
,2

1

2
r ~a!,

2
1

2
r ~a11!, . . . ,2

1

2
r ~d21!D

i

,

~Ga! i ,a115S 21

~12m!Ad
,0d1a22,

Aa21

2Aa
,2

1

2
r ~a!,

2
1

2
r ~a11!, . . . ,2

1

2
r ~d21!D

i

.

We are now interested in computing the differential equat
describing the continuum limit of the dynamics of the fir
component ofz, which we will denote byC. As before, we
define

C~x,t !5z15
m2t

A2d
S (

i
c i~x,t ! D 1O~e!.

To compute the dynamics ofC, we need to know only the
first rows of the matricesBaGb andXCaCbX21. From the
above expressions, we find that the first row ofBaGb is
given by

~BaGb!0i5
1

Ad
dabS 2

1

Ad~12m* !
,0d1a22,

Aa21

2Aa
,

s

n

2
1

2
r ~a!,2

1

2
r ~a11!, . . . ,2r ~d21!D

i

.

From the above form ofX, we see that the first row o
XCaCbX21 is given by

~XCaCbX21!0i5dab
1

Ad
S 1

Ad
,0d1a22,2

Aa21

Aa
,

r ~a!,r ~a11!, . . . ,r ~d21!D
i

.

Thus the first row of the combined matrix is

S 2BaGb2
1

2
XCaCbX21D

0i

5S i
1

2m
,02d21D

i

,

where

m5d~cotu2cscu!, ~2!

with

m5cosu1 isinu. ~3!

As a result, we obtain the differential equation describing
dynamical evolution ofC in the continuum limit,

] tC~x,t !5 i
1

2m(
a

]a
2C~x,t !, ~4!

which we recognize as Schro¨dinger evolution ind dimen-
sions. In Appendixes A and B we work out the specific ca
of d52 andd53 in detail.

Note that had we chosen the eigenvaluel differently, the
difference would have appeared in the lastd21 rows and
columns ofG. Following through the computation, we fin
that the only change would be that new terms would app
on the right-hand side of Eq.~4!, proportional to the eigen-
vectors ofS with eigenvaluel. However, these terms woul
have had a phase (ml* )t and thus would have averaged o
in the continuum limit as long asmÞl, making no change to
the final result Eq.~4!. Thus we reach the conclusion that fo
any collision rule invariant under the lattice symmetry grou
as long asm is distinct from the other eigenvalues of th
collision matrix, the resulting continuum dynamics for th
total amplitudeC are governed by a Schro¨dinger equation.

C. Inclusion of a potential

In general, we can easily include an arbitrary poten
V(x) by including a position-dependent phase in the tran
tion matrix S. If we perform the above analysis for a mod
with transition matrix

S̃~x!5exp@2 i e2V~x!#S,

where S is a spatially invariant matrix such as discuss
above, then the general form of the dynamical equation
comes
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] th~x,t !52D2tBaGbDt]a]bh~x,t !

2
1

2
D2t~XCaCbX21!Dt]a]bh~x,t !

2 iV~x!h~x,t !.

This becomes, for the total amplitudeC, the Schro¨dinger
equation in an external potential

] tC~x,t !5 i
1

2m(
a

]a
2C~x,t !2 iV~x,t !C~x,t !.

IV. MANY PARTICLES: QUANTUM LATTICE-GAS
AUTOMATA

We now consider models in which multiple particle
move independently according to the Schro¨dinger equation
in d dimensions. One way of simulating the motion ofn
particles ind dimensions is to introduce extra degrees
freedom for each particle. Thus, for example, we co
model the motion of two particles in one dimension by t
lattice Boltzmann model

c ik~x1eci ,y1eck ,t !5Sil Sk jc l j ~x,y,t21!, ~5!

wherex,y are the positions of the two particles,i ,k are the
internal indices specifying their directions, andS is a 232
matrix for unitary Schro¨dinger evolution in one dimension
as discussed in Sec. II. Notice that this dynamics is equ
lent to that of a single particle moving in two dimensions

In a similar fashion we can describe models wheren par-
ticles move ind dimensions, by constructing a unitary lattic
Boltzmann model innd dimensions. It is straightforward to
incorporate an arbitrary interparticle potential in this form
lation; the potential is a function of the particle positions a
can be included as discussed in Sec. III C.

This gives a procedure for simulating an interacting no
relativistic quantum many-body system on a classical co
puter. Although this may give a useful algorithm for syste
containing only a few particles, if we wish to simulate th
motion of a large number of particles using the method j
described it is clear that the number of calculations neede
perform even one time step of the evolution become rap
intractable. For example, simulating the motion of 20 p
ticles in three dimensions on a lattice of side length 1
would take on the order of 10120 calculations per time step
beyond the capacity of any imaginable classical compute

However, the technology ofquantum computing@12# pre-
sents a paradigm in which such calculations can be done
will now describe a way in which the above algorithm can
implemented on a quantum computer with a speedup ex
nential in the number of particles. In fact, it is natural
perform simultaneously the calculation for all numbers
particles that will fit on the lattice, essentially performing
discrete simulation of nonrelativistic quantum many-bo
theory. The resulting model falls in the class of quantu
lattice-gas automata, which were recently defined by Me
@9# in the context of the (111)-dimensional Dirac model
The exponential speedup of this algorithm on a quant
computer is a specific example of the general observation
Feynman@13# and Lloyd@14# that quantum-mechanical sys
f
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tems can be simulated more efficiently on a quantum co
puter than on a classical computer.

A quantum-computing device is composed of simp
quantum elements such as particles with spin 1/2~quantum
bits, or q-bits!. The state space of the system at any fix
time is the tensor product of the Hilbert spaces of the sta
of the elementary computational elements. Thus, for
ample, a system withm q-bits has a state space of dimensi
2m. At each time step, some small number of q-bits~usually
2 or 3 @16#! are subjected to a unitary time evolution, d
scribed by acting with a unitary matrix on the Hilbert spa
of the affected elements. Quantum computers have rece
become of great interest because of the result due to S
@15# that it is possible to factor large integers on a quant
computer in polynomial time, a procedure thought to be i
possible on a classical computer.

In order to implement the many-body simulation d
scribed in the beginning of this section on a quantum co
puter, it is necessary to make some restrictions on the be
ior of the many-body wave function under exchange
particles. The example system in Eq.~5! describes two par-
ticles moving in one dimension without interacting. In th
model, both particles can be moving in the same direct
from the same lattice site at a given point in time. We c
modify this model slightly to give the particles exclusiona
~Fermi! statistics by making the transition matrix atx5y
force the two particles to move in different directions. Th
corresponds to introducing a contact interaction between
two particles when they move within a single lattice d
tance. By making the initial conditions antisymmetric und
exchange ofx andy, we have a simulation of two nonrela
tivistic fermions moving in one dimension. Alternatively, w
could symmetrize the wave function and we would have
simulation of ‘‘hard bosons’’ that obey Bose statistics, b
cannot occupy the same lattice site. Either of these
proaches naturally generalize to arbitrary numbers of p
ticles and arbitrary dimensions. For the remainder of the d
cussion we assume that the particles obey Bose statis
The issue of implementing fermionic systems on a quant
computer is more subtle@13# and has been addressed r
cently by Abrams and Lloyd@17#.

In previous sections we discussed the motion of a sin
particle, with a wave functionck(x,t). Now, we would like
to consider the state space for a quantum system of m
particles. A natural basis for the Hilbert space of such
system is the set of states in the fermionic Fock space a
ciated with the spatial lattice; such states are identified b
set of occupation numberssk(x) ~taking values 0 or 1! for
each possible particle positionx and internal indexk. The
Hilbert space of the model is thus 2mld dimensional, where
m is the number of possible values of the internal index a
l d is the number of lattice sites. For example, a basis ve
of the state space for a one-dimensional system with f
lattice sitesx51,2,3,4 might be given by

us&5u„s2~1!,s1~1!…, . . . ,„s2~4!,s1~4!…&

5u~0,1!,~0,0!,~0,0!,~1,1!& ~6!

where each ordered pair corresponds to the occupation n
bers at a given lattice site. Thus this state corresponds to
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configuration where a single particle is atx51, with k51,
and both particle positions atx54 are filled.

The state of the quantum system at any given value of
discrete time parametert is given by a vector

uc~ t !&5(
s

Cs~ t !us&,

where the sum is taken over all basis vectors of the Hilb
space. This state is defined by the coefficientsCs(t). In the
quantum computing paradigm, this corresponds to the s
space ofmld independent q-bits.

We will now define a quantum lattice-gas automaton
defining a dynamics on the quantum state space. The dyn
ics of the quantum lattice gas will be described in two ste
just as in classical lattice-gas automaton models. First th
is a collision step in which the particles at each lattice s
interact. Then there is an advection step, describing
propagation of the particles in the directions associated w
the vectorsck . Each of these steps is described in the qu
tum system by a unitary transfer matrix acting on the st
space of the system. The total dynamics can then be
scribed by the equation

uc~ t1Dt !&5AKuc~ t !&.

The advection step simply corresponds to a permutation
trix A on the basis vectors described above, where each b
moved forward in the direction corresponding to the app
priate vectorck . For example, acting on the state in Eq.~6!,
the result of applying the advection operator would be

Aus&5u~0,1!,~0,1!,~1,0!,~0,0!&

where we assume periodic boundary conditions on the
tice. The particle that was at lattice sitex51 has been ad
vected to x52,k51 and the two particles that were
x54 have moved tox53 andx51.

We now consider the collision part of the time develo
ment rule. The collision process is defined by a single unit
2m32m matrix T, which acts separately on the quantum b
associated with each lattice site. Thus the state of the sys
is transformed by the unitary matrix

K5T^ T^ ••• ^ T,

given by thel d-fold tensor product ofT. We would like the
collision matrixT to have the property that it conserves pa
ticle number. Thus this matrix is block diagonal in the su
spaces of the Hilbert space at each lattice site correspon
to a fixed particle number.

We have now defined a discrete model for quant
many-particle systems. To understand the behavior of
model in the continuum limit, let us consider the behav
when the number of particles in the system is relatively sm
compared to the number of lattice sites. In this case, at m
lattice sites the number of particles present will be either 0
1. This part of the dynamics, which describes the free pro
gation of single particles, is described by the part ofT in the
single-particle Hilbert space. However, because this is a
tary matrix, generically the dynamics described by this tr
sition matrix is precisely that which we studied in the pre
e

rt

te

y
m-
s,
re
e
e

th
-
e
e-

a-
is
-

t-

-
y

m

-
-
ng

is
r
ll
st
r

a-

i-
-

ous sections and corresponds to a nonrelativistic part
propagating according to the Schro¨dinger equation. Thus, fo
relatively sparse systems, this quantum lattice-gas mo
simulates a system of many nonrelativistic particles wh
free propagation is given by the Schro¨dinger equation. The
remaining parts of the collision matrixT describe a contac
interaction between the various particles.

Let us now discuss the computational complexity of t
quantum algorithm. To implement the advection transform
tion by using quantum computing elements, it is only nec
sary to perform a series of exchanges of the values of
quantum bits representing the particle occupation numb
The number of such exchanges is essentially equal to
number of bitsmld ~recall that on a Euclidean lattice o
dimensiond, m52d, so that for example, ifd53, the ad-
vection operation can be implemented in approximatelyl 3

quantum operations!.
The matrixT acts on the Hilbert space associated with

subset ofm of the q-bits in the system. Counting degrees
freedom, generically such a matrix can be implemented w
approximately 22m/15 elementary quantum operations o
pairs of q-bits. For example, in a 3D system, it would take
the order of 300 quantum operations to implement eacT
matrix, so that the number of computational steps neede
perform the transformation byK would be around 300l 3.
Note, however, that the part ofT that acts on the multiple-
particle Hilbert space simply changes the phases o
d-function-type interaction between the particles. Since th
phases may not affect the results in most problems of ph
cal interest, these components ofT can be arbitrary. Thus, in
practice we need only find a combination of operations
q-bits that will give a matrixT that preserves particle numbe
and gives the desired symmetry properties and eigenval
reducing the number of steps needed significantly below 3

Combining these observations, we see that this model
be simulated with on the order ofl d elementary quantum
computations at each time step~or on the order of 1 if we are
using a quantum computing system that allows parallel co
putation!. Since this system automatically contains the m
tiparticle wave function for all possible particle numbers, w
have achieved an exponential increase in speed over w
was possible on a classical computer.

The system as defined so far includes only interacti
between the particles in the form ofd-function interactions
parametrized by the components ofT in the multiple-particle
space. We can introduce an arbitrary interparticle poten
V(x,y) by hand, by multiplying the wave function at eac
time step by the tensor product over all pairs of q-bits

U5 ^ Ui , j ,x,y ,

where the matrix

Ui , j ,x,y5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e2 i e2V~x,y!

D
acts on the Hilbert space associated with the q-bitssi(x) and
sj (y), changing the phase of the wave function only in t
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62 57BRUCE M. BOGHOSIAN AND WASHINGTON TAYLOR IV
component where both q-bits have the value 1. Implemen
this interparticle potential will take on the order ofm2l 2d

quantum computations for each time step. Although this s
nificantly increases the computational complexity of t
quantum algorithm this is still exponentially faster than t
analogous classical algorithm, since the particle numben
does not affect the complexity. Note that, unlike the rest
the algorithm, the implementation of interparticle potenti
involves nonlocal interactions on the lattice.

To clarify the discussion, we consider a simple exam
of a collision matrixT. For a many-body system in one d
mension, at each lattice site the collision matrixT is a
434 matrix, acting on the Hilbert space with basisu(0,0)&,
u(0,1)&, u(1,0)&, u(1,1)&. Since we are assuming that partic
number is conserved and that the dynamics is symme
under left-right reflection, the matrixT is of the form

T5S a 0 0 0

0 a b 0

0 b a 0

0 0 0 b

D ,

where a,b,a,b are complex numbers satisfyin
uau25ubu25uau21ubu251 and a b̄1 āb50. By a simple
global phase redefinition, we can choosea51. The part of
T in the single-particle Hilbert space is precisely the form
the collision matrixS from Sec. II. From the eigenvalues o
this matrix we can determine the mass of the free particle
the model. Finally, there is a single parameterb that de-
scribes the phase with which two particles ‘‘bounce.’’ In th
simple one-dimensional model, there is therefore little fr
dom in choosing the particle interaction. In higher dime
sions there would be nontrivial phases describingd function
interactions between up to 2d particles.

One major concern in the implementation of any alg
rithm is the issue of precision. This problem is particula
acute on a quantum computer, where each quantum op
tion involves acting on the state with a unitary transform
tion that can only be controlled up to some finite precisio
Furthermore, on a quantum computer there is the related
distinct problem of decoherence that must be addresse
order for any quantum computation to be feasible. There
been a great deal of work recently describing how th
problems can be solved using dynamical quantum error
rection methods@18#. Without going into this issue in depth
we make the simple observation that even without error c
rection, if the precision of each quantum operation
121/t, then at each time step the error in the wave funct
will take a random step in the Hilbert space with size 1t.
Only after on the order oft2 operations will this error be-
come significant. Thus, if we could achieve a precision be
than 1025, we could perform 1010 quantum operations suc
cessfully, which would allow us to simulate, for example,
interacting 3D system on a lattice with size of order 23.
With the error correction schemes described in@18#, there is
in principle no upper bound on how large a system could
simulated, other than the size of the quantum computer
could be built to perform the simulation.

Finally, we consider the issue of measurement in quan
lattice gases. In a classical lattice gas, hydrodynamic qua
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ties, such as mass and momentum density, are obtaine
averaging particles’ mass and momentum over blocks
space and/or time. In a typical lattice-gas simulation, this
done from time to time to obtain the macroscopic variab
of interest. The process of measuring these quantitie
purely passive, that is, their measurement does not affec
subsequent dynamical evolution at all. In contrast, the an
gous operation for a quantum lattice gas would involve
casionally measuring the state of some subset of the q-bi
the system, thus collapsing the quantum wave function o
the eigenstates of the~space and/or time! block number op-
erator. The set of quantities that are accessible through
type of simulation are rather different from those access
through simulation methods on a classical computer. For
ample, the dynamics of the system defines an effec
Hamiltonian that is an approximation to the Hamiltonian
the many-body quantum system being simulated; howe
the spectrum of this Hamiltonian is not directly amenable
measurement. Instead, the types of observables that ca
measured in the simulation are precisely equivalent to
types of observables that can be measured in an actual i
acting quantum system. For example, a typical experim
might be to initialize the system in a particular known sta
at time t50 and to ask for the probabilityp at time t that
there is a particle in a region of spacedx3. Just as in the
physical quantum system, we can ask such a question of
simulation; we can perform the experiment a number
times and each time we will find a particle with probabili
p. To actually computep to some degree of accuracy re
quires repeating the experiment a number of times.

V. NUMERICAL RESULTS

To test the algorithm, we consider the dispersion relat
of plane waves in periodic geometry in two dimensions. W
consider a periodic grid with dimensionsN3N, and initial-
ize it with a plane wave of the form

c j~x,0!5
1

4
exp~ ik•x2 ivt !

for j 51, . . . ,4,where

k52p~ l xx̂1 l yŷ!,

wherel x andl y are integers. Choosing units where the spa
dimensions are of unit length, we havee51/N and
Dt5e251/N2

We evolve this initial condition in time, using Eq.~A1!
with m52 i ~hencem52) for the collisions. Every four
time steps, we measure the inner product of the wave fu
tion with its initial condition

S~ t ![
1

N2(x
C* ~x,0!C~x,t !.

The result should go like exp(2ivt), so the ratio of two
successive values of this quantity is

S~ t14Dt !

S~ t !
5exp~24ivDt !
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and hence the frequency is given by

v5
i

4Dt
lnS S~ t14Dt !

S~ t ! D .

For a given wave vectork, we measure this frequency a
many time stepst and take an average.

We expect the evolution of the system to be governed
the Schro¨dinger equation

] tC5
i

2m
]2C.

Sincem52, this leads to the dispersion relation

v5
k2

4
.

We performed a series of simulations where we cons
ered wave numbersl x53l and l y5 l , wherel P$1, . . . ,12%.
The points plotted in Fig. 1 show the measured frequencv
as a function ofuku52pAl x

21 l y
2. The solid curve isuku2/4. It

is evident that the agreement is excellent in the ‘‘hydrod
namic’’ limit of small uku, but degrades due to lattice art
facts of orderukuDx at higher wave-vector magnitudes. T
demonstrate this, we include data forN5256 ~gray points!
and N5512 ~black points!. It is evident that the dispersio
relation is valid for higher wave numbers on the larger l
tice.

VI. CONCLUSION

We have considered a very general class of lattice mo
satisfying unitary time-evolution rules. We have shown th
generic models of this type describe the evolution of a n
relativistic particle according to the Schro¨dinger equation in
an arbitrary number of dimensions. These models can n
rally be used to construct quantum lattice gases descri
nonrelativistic many-body physics in an arbitrary number
dimensions. It is straightforward to include an arbitrary
terparticle potential into these models.

There are many ways in which this work could be e
tended. Numerical simulations could be performed in an
bitrary number of dimensions with multiple particles a
with nontrivial spatially dependent potentials and the res

FIG. 1. Plane-wave dispersion relation shown forNx5256~gray
points! andNx5512 ~black points!.
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checked in analytically tractable cases. Further analysi
needed to understand the behavior of the system in the
gime where particles are dense. It might also be interestin
consider more general collision rules that create and des
particles, possibly including antiparticles with separate qu
tum numbers.

Of course, the actual implementation of quantum lattic
gas models on quantum computing devices is something
may not be possible for many years, if ever. However, th
lattice models give a simple framework with which to stu
problems in many-body theory. Furthermore, the meth
described here are also quite practical for simulating syst
of a few particles on a classical computer. It may be that
exact unitarity of these models at a microscopic level w
make them more stable and possibly more useful than
rently used discrete methods such as finite-difference
proaches.
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APPENDIX A: SCHRÖ DINGER EQUATION
IN TWO DIMENSIONS

We now present the formalism described above explic
in two dimensions. The matricesD andX are given by

D5S m 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21

D ,

X5S 1/2 1/2 1/2 1/2

1

A2
0 2

1

A2
0

0
1

A2
0 2

1

A2

1/2 21/2 1/2 21/2

D .

This gives us the collision matrix

S5X21DX5
1

4S m11 m11 m23 m11

m11 m11 m11 m23

m23 m11 m11 m11

m11 m23 m11 m11

D .

~A1!
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We can compute

B15XC1X215S 0
1

A2
0 0

1

A2
0 0

1

A2

0 0 0 0

0
1

A2
0 0

D , B25XC2X215S 0 0
1

A2
0

0 0 0 0

1

A2
0 0 2

1

A2

0 0 2
1

A2
0

D ,

and thus

G15XC1X215S 0 2
1

~12m!A2
0 0

2
1

~12m* !A2
0 0 2

1

2A2

0 0 0 0

0 2
1

2A2
0 0

D ,

G25XC2X215S 0 0 2
1

~12m!A2
0

0 0 0 0

2
1

~12m* !A2
0 0

1

2A2

0 0
1

2A2
0

D .

Combining these matrices together we find

] tz5S i

2m
0 0 0

0 2
i

2m
0 0

0 0 0 0

i ~2m!t

2m
0 0 0

D ]x
2z1S i

2m
0 0 0

0 0 0 0

0 0 2
i

2m
0

i ~2m!t

2m
0 0 0

D ]y
2z1S 0 0 0 0

0 0 2
i

2m
0

0 2
i

2m
0 0

0 0 0 0

D ]x]yz,
ot

th
as
ec-

iffer-
with m described as in Eqs.~2! and ~3!, with d52.
As predicted by the general discussion above, the t

amplitude contained in the first component ofz satisfies a
Schrödinger equation

] tC~x,t !5 i
1

2m
~]x

21]y
2!C~x,t !,

where
al C~x,t !5
m2t

2
@c1~x,t !1c2~x,t !1c3~x,t !1c4~x,t !#.

It is interesting to note that while the variation of the four
component ofz contains an oscillating phase, and thus h
no interesting behavior on the time scale of interest, the s
ond and third components obey separate second-order d
ential equations analogous to the Schro¨dinger equation, but
without rotational invariance.
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APPENDIX B: SCHRÖDINGER EQUATION IN THREE DIMENSIONS

Using the above formalism in three dimensions, we have

X51
1

A6

1

A6

1

A6

1

A6

1

A6

1

A6

1

A2
0 0 2

1

A2
0 0

0
1

A2
0 0 2

1

A2
0

0 0
1

A2
0 0 2

1

A2

1

2
2

1

2
0

1

2
2

1

2
0

1

2 A3

1

2 A3
2

1

A3

1

2 A3

1

2 A3
2

1

A3

2 ,

D5S m 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 21 0

0 0 0 0 0 21

D , S5
1

6S m11 m11 m11 m25 m11 m11

m11 m11 m11 m11 m25 m11

m11 m11 m11 m11 m11 m25

m25 m11 m11 m11 m11 m11

m11 m25 m11 m11 m11 m11

m11 m11 m25 m11 m11 m11

D ,

B151
0

1

A3
0 0 0 0

1

A3
0 0 0

1

A2

1

A6

0 0 0 0 0 0

0 0 0 0 0 0

0
1

A2
0 0 0 0

0
1

A6
0 0 0 0

2 ,

G151
0 2

1

A3~12m!
0 0 0 0

2
1

A3~12m* !
0 0 0

21

2 A2

21

2 A6

0 0 0 0 0 0

0 0 0 0 0 0

0
21

2 A2
0 0 0 0

0
21

2 A6
0 0 0 0

2 .
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B251
0 0

1

A3
0 0 0

0 0 0 0 0 0

1

A3
0 0 0 2

1

A2

1

A6

0 0 0 0 0 0

0 0 2
1

A2
0 0 0

0 0
1

A6
0 0 0

2 , G251
0 0 2

1

A3~12m!
0 0 0

0 0 0 0 0 0

2
1

A3~12m* !
0 0 0

1

2 A2

21

2 A6

0 0 0 0 0 0

0 0
1

2 A2
0 0 0

0 0
21

2 A6
0 0 0

2 ,

B351
0 0 0

1

A3
0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

A3
0 0 0 0 2A2

3

0 0 0 0 0 0

0 0 0 2A2

3
0 0

2 , G351
0 0 0 2

1

A3~12m!
0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
1

A3~12m* !
0 0 0 0

1

A6

0 0 0 0 0 0

0 0 0
1

A6
0 0

2 .

From these matrices we find that the total amplitude

C~x,t !5
m2t

A6
@c1~x,t !1c2~x,t !1c3~x,t !1c4~x,t !1c5~x,t !1c6~x,t !#

satisfies the Schro¨dinger equation

] tC~x,t !5 i
1

2m
~]x

21]y
21]z

2!C~x,t !,

where as usualm is related tom through Eqs.~2! and ~3!, with d53.
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