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Numerical verification of Percival’'s conjecture in a quantum billiard
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In order to verify Percival’s conjectufd. Phys. B6, L229(1973] we study a planar billiard in its classical
and quantum versions. We provide an evaluation of the nearest-neighbor level-spacing distribution for the
Cassini oval billiard, taking into account relations with classical results. The statistical behavior of integrable
and ergodic systems has been extensively confirmed numerically, but that is not the case for the transition
between these two extremes. Our system'’s classical dynamics undergoes a transition from integrability to
chaos by varying a shape parameter. This feature allows us to investigate the spectral fluctuations, comparing
numerical results with semiclassical predictions founded on Percival's conjecture. We obtairglgbatl
agreement with those predictions, in clear contrast with similar comparisons for other systems found in the
literature. The structure of some eigenfunctions, displayed in the quantum Posecien, provides a clear
explanation of the conjecturS1063-651X98)13105-1

PACS numbes): 05.45:+b, 03.65.Sq

I. INTRODUCTION firmed numerically[7-9,3,10,1], with some well under-
stood exceptiongl2—14], for generic systems numerical cal-
In 1973 Percival conjectured that in the semiclassicakulations give rise to contradictory conclusions. Recently,
limit, the spectrum of a generic dynamical system consists ofthere has been a number of numerical wdrks—17 show-
two parts with strongly contrasting properties: a regular andng that the Brody distributioBD) [18] gives quite a satis-
an irregular parf1]. At the classical level such a system factory fit globally. The Brody distribution is a one-
exhibits a mixed dynamics: Regular regions dominated byarameter family of distributions that interpolates between
tori and chaotic regions with mixing behavior coexist in the Poisson and Wigner in a simple way; however, it has no
phase space. semiclassical meaning. On the other hand, in 1994 Prosen
In order to characterize a semiclassical spectrum it is adand Robnil 19] confirmed numerically semiclassical predic-
vantageous to consider a sensitive fluctuation measure. Thns (the BRD working on an abstract dynamical system:
probability distributionp(s) of the spacings between suc- the standard map on a torus. To agree with this theory, they
cessive levels is of particular interest because it contains imeeded to compute extremely high excited stéesund the
formation of the spectrum on its finest scale. In the speciaB0x 10°). However, at not so excited states they found good
case of multidimensional integrable systems, Berry and Taglobal agreement with the Brody distribution both for the
bor [2] showed that the levels are uncorrelated @ifd) is  standard map and for the Limacon-Robnik billiard. In 1995
governed by a Poisson distribution. The other special casBrosen arrived at the same conclusion working on a two-
corresponds to mixing systems where almost all orbits exedimensional semiseparable oscillai@0].
plore densely and chaotically the energy surface. In this case, The Brody-like behavior at small spacing is understood in
Bohigaset al. [3] conjectured that the fluctuation properties terms of tunneling between classically separated regions of
of these spectra can be modeled by the ensemble of randopiase space; however, the global agreement with the Brody
real symmetric matriceghe Gaussian orthogonal ensembledistribution has no theoretical foundations. On the other
(GOB)] [4]. For such systems, where the energy levels dishand, the very slow transition to semiclassical predictions
play repulsionp(s) is closely approximated by the Wigner can be explained by the presence of partial barriers in the
distribution; however, we have used the exact distributidn  chaotic regions because the corresponding statistics is not a
because the differences are meaningful, as we shall see b&OE for finite# [10,13.
low. The goal of the present article is to verify that the classi-
In the generic case, Berry and Robii, based on Per- cal support of eigenfunctions can be clearly identified as
cival's conjecture, considered independent sequences of levegular or chaotic and this classification is only affected by
els associated with each connected regular or irregular clagdnneling between classically separated regions of phase
sical phase-space region. When only one chaotic regiospace(this effect decays exponentially whéndecreases, as
predominategthe situation considered in this artigléhey it was pointed out in Ref[6]). We compute the spectral
provided an expression for the distributips) in terms of  fluctuations of a one-parameter family of planar billiards: the
the classical fractiop®' of regular regiongreferred to as the Cassini ovalg21]. The classical dynamics in this billiard is
Berry-Robnik distribution BRD)]. mixed, going from integrability to chaos by varying a single
Although the special cases have been extensively cormparameter. We have chosen this parameter such that the clas-
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FIG. 1. Desymmetrized Cassini ovalpper-right quarter of the 1.00
curve with segments of the coordinate axeandy). (a) d=2
with Birkhoff coordinatesp andq. (b) d=2.
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sical dynamics does not show partial barriers immersed in
the chaotic sea to study Percival's conjecture through the 060

accuracy of the BRD. Moreover, we study qualitatively the
eigenfunctions in phase space to provide additional support p
to the results.

Our work is organized in the following way. In Sec. Il we
introduce the classical system. Section Il is devoted to the =
description of the quantum syste(its energy spectrum and 0.20 ..
the corresponding eigenfunctiongn Sec. IV we study the
resulting energy level statistic. Finally, Sec. V is devoted to
conclusions. 0.00 ' i :
0.00 0.05 010. 015 020 025

II. THE CASSINI OVAL BILLIARD (o) Q
Our billiard consists of a free-moving point particle inside FIG. 2. Poincaresurface of section expressed in Birkhoff coor-

a two-dimensional box that bounces off the boundary elastidinates ¢ andg) for p=0 and 0=q=<0.25.(a) d= 2. (b) d=2.
cally. The boundary of our billiard system is given by a

fourth-order curve, the Cassini oval: liard for two values ofl. One of them isi= /2 [the value of
, the parameter for which the neck begins to appear; see Fig.
ry-ry=as, 1(a)], whose form mimics the Bunimovich stadium billiard

. . [22]. Figure Za) shows the Poincarsurface at the boundary
wherer, andr, are dls.tances frgm tWO. foci located )g{: using Birkhoff coordinates. The coordinajes related to the
fic andy=0. In Cartesian coordinates it can be cast into the, jangth coordinate at the boundary where the bounce takes
orm place byq= (arclength/(perimetey; p=p-t/|p| is the frac-
(x2+y?)2—2c%(x?—y?)=a*—c*. (2.1)  tion of tangential momentum at this poirtt eing the tan-
gent unit vector to the boundaryExploiting the time-
We have two characteristic lengths. However, the shape Gleversal symmetry, we show only the=0, O<q<1/4
the boundary is defined by the ratib=a/c (from now on,  region. The classical phase space has a bouncing-ball regular
the shape paramejerwhich determines the following region dominated by invariant curves and a chaotic region
boundary types:y2<d, the boundary is an oval; 4d  with unstable short periodic orbits equivalent to those ap-
</2, the boundary is an oval with a neck; ade1, the pearing in the Bunimovich stadium billiard. A resonance of
boundary becomes unlinkdtivo ovals separaje winding number 6 defines the last great regular region before
In the present work we investigate>1 values. Decreas- chaos begins to appefan eigenfunction existing on the
ing the shape parameter, the classical behavior goes from tlehain of islands defined by the resonance is shown in Fig.
regular motion(whend— o, the boundary is a circldo the  3(a)]. We have found two very small stable regions corre-
chaotic ongwhend—1). Using the reflection symmetries of spondingto a stable bifurcation of the unstable bow tie peri-
the boundary, we consider the motion in the regionOyy  odic orbit (two small dark dots can be observed in the cha-
>0 (desymmetrized billiard That is, we study the quarter otic region. [Figure 3b) shows an eigenfunction existing in
billiard defined by the boundaf§eq. 2.1] for x=0,y=0 and that region of the phase spak&/e have not detected any
the coordinate axes andy. We study the Cassini oval bil- other regular region embedded in the chaotic sea.
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FIG. 3. Wave functions of Cassini oval billiard fdr= 2 with wave number& displayed below each one of them. We can &ehe
regular eigenfunction(b) the eigenfunction strongly localized on a scar reminiscent of an unstable periodi¢banitie), (c) the irregular
wave function, andd) the bouncing-ball wave function extremely close in energy to the previous one but without exhibiting mixture.

The other shape we have studiet<?2) is closer to an and thex>0 andy>0 semiaxes. So the Dirichlet boundary
ellipse[see Fig. 1b)]. In this case the bouncing-ball region condition implies that only odd-odd solutions of the full bil-
of the phase space is greater than before as it can be seenligrd will be found. We have employed a different technique,
Fig. 2(b). Moreover, a regular region appears as a thin bandhe scaling method23]: This is a very efficient one-
for p=0.9 values, dominated by whispering gallery trajecto-dimensional method developed to compute eigenvalues and
ries. Phase space is very mixed and many stable islands efgenfunctions of quite general planar billiar(fer three-
very different sizes are interspersed with the chaotic trajecdimensional billiards this is practically the only available
tories. method to obtain high excited statg®f]). The great advan-

By selecting two regions corresponding to chaotic motiontage of the method is that all eigenvalues and eigenfunctions
in the phase space, we have calculated diffusion times ben a narrowk interval are computed simultaneously with
tween them. The results fat=\2 are independent of the comparable accuracy, thus avoiding time consuming
chosen regions. In the other case<(2) this time is strongly  searches and the possibility of missing some state.
dependent on them and we have obtained diffusion times one
order of magnitude greater than thosedef /2. This fact is - :
related to partial barriers such as those shown in Hg. 4 T — - -

We have determineg®, the fraction of the phase space ‘ = /
that corresponds to regular motion for both the values of the |
parameter. We have found thaf'=0.172 whend= 2,
while p®'=0.394 ford=2.

(a) q (b)
Ill. THE QUANTUM BILLIARD 0 olzs 0

To study the quantum billiard we solve the time-
independent Schdinger equation for one particle inside a
two-dimensional boxD with Dirichlet boundary conditions
at the impenetrable wallgD:

LTI

VZp(r)=—k?¢(r) in D,

¢=0 on 4D,
where FIG. 4. Effects of barriers@) Poincaresection ford=2 taking
\/2— only one initial condition very close to the whispering gallery re-
_ mE gion (p=0.9). We can observe two partial barriers limiting flux and
f defining two small chaotic regionsvhich are filled more densely

. _than the major chaotic part of phase spad®) Husimi distribution
andD corresponds to the surface of the desymmetrized bilof an eigenfunction localized over one of these small regi¢u)s.
liard, that is, the surface bounded by the Cassini ¢24dl) Same eigenfunction in configuration space.
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- not interact because they exist in different regions of phase
P (@) (b) space. On the other hand, this example shows us that it is

necessary to evaluate the eigenvalues with high accuracy in

order to calculate the spectral fluctuations of the systere

the next section

‘ Ford=2, the qualitative description of the eigenfunctions

is equivalent to the previous one. However, there is a signifi-
cant fraction of localized eigenfunctions existing in the cha-

OIS

‘ otic region. One of them is shown in Figsgb# and 4c).
q
0 0125 025 IV. THE ENERGY-LEVEL STATISTIC
(©) (d) In this section we analyze the level spacing distribution of
the numerical data described previously. The counting func-
- P tion N(k) gives us the number of levels with wave number
g below k. Weyl's formula with border, angle and curvature

correctiong 8] provides a good estimate for the smooth part
(N(k)) of the counting function.
In order to verify that no levels had been lost we have
compared N(k)) with a smoothed version ®(k). Defining
\ a new sequence bi,=(N(k,)) (wherek, belongs to the
g original sequence of wave numbgrsve take into account
the “unfolding” procedure by which a unit mean spacing is
FIG. 5. Husimi plots corresponding to the wave functions dis-given to the series of leve[49].
played in Figure 3. This show®) great localization on a classical Following Ref.[17] in the analysis of the data, we use the
resonance(b) remarkable localization on the classical region wherecumulative level spacing distributior\V(s) =[ep(y)dy
an unstable orbit is found to exisfg) almost uniform extension ather tharp(s) because it is numerically easier to evaluate.
over chaotic region anti) strong localization on one torus belong- \ve fit numerical curves with the analytical expression for

ing to the interior of the principal regular island situated at thethe Brody family of cumulative spacing distributions
origin.

Bl — 1
We have calculated the energy levels from the fundamen- Wp(s)=1—exp(— bs”* %),

tal state up to the 25 000th level far= V2 and up to the . _ B+1 . i
10 000th ford=2. Moreover, we took a sequence of 5000 \glct)rt;ntil: 5};&@&3{ (B+1)I7", and the theoretical Berry

levels between the 62 210th and 67 210th for both values of

d. We obtained the eigenvalues with an average precision of WER(s) = 1—exg — pS){pQaox(s)
10" ® of the mean level spacing for chaotic eigenfunctions. P

Regular states are only limited by the compufdouble —(1-p)[Wgoe(s)— 11}
precision.

We have studied the eigenfunctions of the billiard in dif- with Qgoe(s)=(1—p) e d\ [\ Pcoe(Y)dY, Pcoe(y) being
ferent regions of the spectrum. In general, it is possible tdhe exact GOE spacing distribution, anWgoe=1
identify each eigenfunction with a classical region. This+dQgog/d[(1—p)s]. Qcor andWg g are tabulated a¥
identification of the eigenfunctions is more clearly seen inandF (taking as mean density-1p), respectively, in Ref.
the stellar representatid25]. In it, the Husimi distribution [5], for instance. This exact GOE evaluation allows us to
of the normal derivative on the boundary represents thelistinguish deviations of numerical data from theory without
eigenfunctions in the Poincargection in Birkhoff coordi- including the difference between Wigner and exact GOE for-
nates. The stellar representation of an eigenfunction is conmulas[which are of approximately the same order; this can
pared directly with the classical Poincasection. As an ex- be verified in Fig. 63), which shows the difference between
ample we show some eigenfunctions fix J2 (we have the BRD using Wigner surmise and the exact GOE rebults
taken the area of the desymmetrized billiard equatrtd). Deviations of numerical data from best-fitting curves can
Figure 3(a) shows a linear density plot of the square of abe better seen with a transformation defined by
state existing on the chain of islands defined by a resonance
of winding number 6 and Fig.(8 shows the same state in U(W)=(1/m)cos *(1-W), (4.1
stellar representation. Figuretbgand §b) show a scaf26]
of the bow tie unstable periodic orbit. Figure&)Band 5c) which has constant statistical error oversalFurthermore, if
show a delocalized state distributed over all the classicallyve plot U(W) versusWg we will have an equally spaced
chaotic region(chaotic statg Finally, Figs. 3d) and §d)  distribution of points on the abscisgaee Fig. 6, for ex-
show a bouncing-ball state. ample.

We stress that the states appearing in Figs) &nd 3d) We have evaluatedX2=Ei’\':l[W(si)num— W(S) theor]?
are quasi-degenerate. The distance between them is a vemgighted with[ SW(s;)]>=W(s;)[1—W(s;)]/N, so that we
small fraction §=0.000 18) of the mean level spacing. It is could find the optimal values g8 and pBR (pBR is the re-
clear from Figs. &) and 5d) that these states practically do sulting best fitting value for the fractiop of regular levels
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FIG. 6. Differences between numeriddl and UBR taking the FIG. 7. Same as in Fig. 6, but fat=2. (a) N between 1 and

10 000 andb) N between 62 210 and 67 21@e use the same line

best-fitting valuep®R are displayed by a solitfluctuating line for
g @ pay y a 9 patterns as in Fig.)4

d=\/§. Dotted lines that follow the solid one represent g

uncertainty band(@ N between 1 and 25 000 ar‘%)RN between  tained ay? for the BRD that was 25 times lower than for the
62210 and 67 210. Iife) the difference betweel®™ calculated  Bp. This can be checked with Fig(l§, where the region of
with the ngn_er surmise and with exac_t (_BOE results is also plotteds 31 s still shows some deviations from the best-fitting
by_adashed line. We can see that deviations of numerical data frorBRD, but the range where this happens has become very
this curve are of the same order. narrow. In fact, for all values of, the agreement is excellent
and we can say that the BRD is working perfectly well at

employed as a free parameter in order to find the lowést  these not-so-high-energy levels.
Results from fittings can be seen in Table I. In the case ofl=2, for the first 10 000 levels, the same

It is clear that, ford= \/E the BRD curve fits data much order y? was found for the two distributions, although it was
better than the BD curve. Taking the sequence of 25 000 firdeetter for the BRD than for the BD. In Fig.(§) we can
levels, we found that? for the BRD was approximately five appreciate that the BD fits numerical data in an acceptable
times lower than for the BD. Even for the smalkange we W& for small svalues. This is due to tunneling effects that
could verify better agreement between data and the BRIPErSist in @ wides range than for thel= V2 case. A more
formula than for the BD one, although deviations due tocOMPlicated structure of classical phase space makes tunnel-
tunneling can be clearly seen in Figa6 For large values of Ng Processes more significant. However, for greatene
s, differences between data and the BRD could evidench no longer follows numerical data, so there is no global

. : . : : greement with it. As in the previous case, we take 5000
O e 08 phauer, T80 iesbetwean 62 210 and 7 21, For hese nerges
q e BD is twice the value for the BRD. In Fig(Q) we can

o _ see that discrepancies in the snmltegion have reduced
TABLE I. Results of fittings. Comparison between the regular and, though not as clear asd= \/E case, numerical data are
fraction of levelsp®R and the integrable part of classical phase wel| adjusted by the BRD globally.
spacep®'. Finally, we investigated the behavior of data while going
from low to high energies. In order to do so we took the first
3000 levels for both of the shapes and then three stripes of
levels, the first, second, and third 8000 levelsder 2 and
2 1-25000 0570 19.61 0.177 434 0.172 thefirst, second, and third 4000 levels fi+2. Results of
fittings can be seen in Table Il. It is clear from Figs. 8 and 9
2 62210-67210 0599 450 0165 020 0.172 that t_here is no transition from the Brody to the Berry-
Robnik regime either fod= /2 or ford=2.

d N IBB XZ/N pBR X2/N pcl

2 1-10000 0.230 5.63 0433 479 0.394 V. SUMMARY AND CONCLUSIONS

2  62210-67210 0.226 227 0.437 098 0.394 To verify Percival's conjecture, we have studied the quan-
tum version of a billiard, depending on one shape parameter
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TABLE Il. Results of fittings. Three stripes of increasing energy
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are displayed for the two values of the shape parameter.

d N ek X2IN pBR X2IN

2 1-8000 059 1042 017 3.15
J2 8001-16000 0.57 5.79 0.17 1.33
J2 16001-24000 0.54 4.65 0.19 1.32
2 1-4000 0.24 3.00 0.42 2.88
2 3000-7000 0.22 2.68 0.44 1.02
2 6000—10000 0.22 1.61 0.45 1.97

On the other hand, the level-spacing statistics was fitted
by two distributions depending on one parameter: the semi-
classical Berry-Robnik distribution, which is founded on
Percival’'s conjecture, and the Brody distribution. We have
found in all cases we have analyzed that the BRD is the best
one. Moreover, as expected, fits of the BRD are better for
increasing values of the wave numberhowever, discrep-
ancies due to tunneling effects are found for small values of
s, even for the best-fitting cageee Fig. &), this subject is
currently under study For d= 2, the parameterg of the
BRD corresponding to best fits do not show significant dif-
ferences from the fraction of the regular region of the clas-
sical phase space. In the casedoef 2, the besp’s are sys-
tematically greater than the classical value.

Our calculation of diffusion times shows that the Cassini
billiard with d= 2 has only one chaotic region. There are
not partial barriers dividing chaotic regions of comparable
sizes. So we expect that the chaotic component of the statis-

d. This system shows mixed classical dynamics, going frontic is given by a single GOE distribution. In the cade 2
integrability (d—) to chaos —1) as the parameter is we have determined partial barriers between a main chaotic

varied.

region and a little one near the whispering gallery region.

On the one hand, the Husimi distribution of the eigen-The size of the latter is so small that it enlargésr low
functions that we have obtained clearly display the classicagnergies the regular region of phase space rather than con-
structure of the phase space. Though mixing among reguldfibuting as an independent GOE. This can be seen in Figs.
wavefunctions and irregular ones are expedteabed on the 4(b) and 4c), where we show an eigenfunction localized in
absence of degeneracies in this one-parameter system ttihis small classical chaotic region but having regular charac-
has been desymmetrizedhey seem to happen only when teristics. Moreover, there are small regular islands immersed

the energy difference is surprisingly smighen for levels as

in the chaotic sea that are more relevantder2 (see Fig. 2

low asN=2500, such as the ones exemplified in Fige)3 than ford= 2. They produce quantum localization in their
and 3d)]. So we can say that Percival’s conjecture is effec-chaotic neighborhooffor instance, see the Poincaserface
tively working. Mixed functions are exceptions mainly origi- section Fig. 2a) and the Husimi distribution in Fig.(6)] and
nated in the states whose Husimi distributions localize on theonsequently the resulting of the fits overestimates the
last Kolmogorov-Arnold-Moser tori.
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FIG. 8. Same as in Fig. 6, but far= \2. The levels used for plotting ae) 1-3000,(b) 1-8000,(c) 8001-16 000, andd) 16 001—

24.000.
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FIG. 9. Same as in Fig. 7, but for=2. The levels used in this case &g 1-3000,(b) 1-4000,(c) 3000—-7000, andd) 6000—10 000.

phase space. We stress that, in all cases, the BD has signifi- ACKNOWLEDGMENT
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