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Recent progress of symbolic dynamics of one- and especially two-dimensional maps has enabled us to
construct symbolic dynamics for systems of ordinary differential equat©BEs. Numerical study under the
guidance of symbolic dynamics is capable of yielding global results on chaotic and periodic regimes in systems
of dissipative ODEs, which cannot be obtained either by purely analytical means or by numerical work alone.
By constructing symbolic dynamics of one- and two-dimensional maps from the Posemiiens all unstable
periodic orbits up to a given length at a fixed parameter set may be located and all stable periodic orbits up to
a given length may be found in a wide parameter range. This knowledge, in turn, tells much about the nature
of the chaotic limits. Applied to the Lorenz equations, this approach has made it possible to assign absolute
periods and symbolic names to stable and unstable periodic orbits in this autonomous system. Symmetry
breakings and restorations as well as coexistence of different regimes are also analyzed by using symbolic
dynamics[S1063-651X98)13205-1

PACS numbe(s): 05.45+b

[. INTRODUCTION cally found periodic orbits in ODEs with symbolic dynamics
of 1D maps[6]. While this approach has had some success

Many interesting nonlinear models in physical sciencegsee, e.g., Chapter 5 p4]), many new questions arose from
and engineering are given by systems of ordinary differentiathe case studies. Some examples are as follows.
equations(ODES. When studying these systems it is desir- (1) The number of stable periodic orbits found in ODEs is
able to have a global understanding of the bifurcation and!sually less than that allowed by the admissibility conditions
chaos “spectrum”: the systematics of periodic orbits, stableof the corresponding 1D symbolic dynamics. Within the 1D
as well as unstable ones at fixed and varying parameters, tig@mework it is hard to tell whether a missing period was
types of chaotic attractors that usually occur as limits of secaused by insufficient numerical search or was forbidden by
quences of periodic regimes, etc. However, this is by far nothe dynamics.

a simple job to accomplish either by purely analytical means (2) In the Poincaresections of ODEs, at closer examina-
or by numerical work alone. In an ana|yt|ca| aspect, ]usttlon the attractors often reveal two-dimensional features
recollect the long-standing problem of the number of limitsuch as layers and folds. One has to explain the success of
cycles inplanar systems of ODEs. As chaotic behavior may the 1D description, which sometimes even turns out much
appear only in systems of more than three autonomouBetter than expected. At the same time, the limitation of the
ODEs, it naturally leads to problems much more formidablelD approach has to be analyzed as the Poinozaps are
than counting the number of limit cycles in planar systemsactually two-dimensional.

As far as numerical study is concerned, one can never be (3) Early efforts were more or less concentrated on stable
confident that all stable periodic orbits up to a certain lengtHPrbits, while unstable periods play a fundamental role in or-
have been found in a given parameter range or no short urganizing chaotic motion. One has to develop symbolic dy-
stable orbits in a chaotic attractor have been missed at a fixgtgmics for ODEs that would be capable of treating stable
parameter set, not to mention that it is extremely difficult toand unstable periodic orbits alike, to indicate the structure of
draw global conclusions from numerical data alone. some, if not all, chaotic orbits at a given parameter set.

On the other hand, a proper|y constructed Symbo"c dy- The elucidation of these problems has to await Significant
namics, being a coarse-grained description, provides a powrogress of symbolic dynamics of 2D maps. Now the time is
erful tool to capture global, topological aspects of the dy-fipe for an in-depth symbolic dynamics analysis of a few
namics. This has been convincingly shown in thetypical ODEs. This kind of analysis has been carried out on
development of symbolic dynamics of one-dimensicii)) ~ Several nonautonomous systef%-9, where the strobo-
maps, see, e.d.1-5]. Since it is well known from numerical scopic sampling methoHLO] greatly simplifies the calcula-
observations that chaotic attractors of many highertion of Poincaremaps. In this paper we consider an autono-
dimensional dissipative systems with one positive Lyapunoynous system, namely, the Lorenz model in which one of the
exponent reveal 1D-like structure in some Poincgeetions, ~first chaotic attractors was discovergd].
it has been suggested to associate the systematics of numeri- The Lorenz model consists of three equations

X=c(y—X), Yy=rx—y—xy, z=xy—bx. (1)
*On leave from the Institute of Theoretical Physics, P.O. Box

2735, Beijing 100080, China. It is known that several hydrodynamical, mechanical, dy-

1063-651X/98/5(5)/537819)/$15.00 57 5378 © 1998 The American Physical Society



57 SYMBOLIC DYNAMICS ANALYSIS OF THE LORENZ ... 5379

namo, and laser problems may be reduced to this set dhdeed, most of the periods known [tb6] are ordered in a
ODEs. The systerfil) contains three parameterso, andb, “cubic” way. However, many short periods present in the
representing respectively the Rayleigh number, the PrandflD map have not been found in the Lorenz equations. It was
number, and a geometric ratio. We will study the system in aealized in[17] that a cubic map with a discontinuity in the

wide r range at fixedr=10 andb=_8/3. center may better reflect the ODEs and many of the missing
We put together a few known facts on EG) to fix the  periods are excluded by the 2D nature of the Poincaap.
notation. For detailed derivations one may refer R&g]. Instead of devising model maps one should generate all re-

For 0<r<1 the origin (0,0,0) is a globally stable fixed lated 1D or 2D maps directly from the Lorenz equations and
point. It loses stability at=1. A 1D unstable manifold and construct the corresponding symbolic dynamics. This makes
a 2D stable manifoldV* come out from the unstable origin. the main body of the present paper.

The intersection of the 2DV® with the Poincareection will For physicists symbolic dynamics is nothing but a coarse
determine a demarcation line in the partition of the 2D phas@rained description of the dynamics. The success of sym-
plane of the Poincarmap. Forr>1 there appears a pair of bolic dynamics depends on how the coarse graining is per-
fixed points: formed, i.e., on the partition of the phase space. From a
practical point of view we can put forward the following
requirements for a good partitiofl) It should assign a
C.=[+\b(r—1),=Vb(r—1),r—1J. uniquename to each unstable periodic orbit in the system;
(2) an ordering rule of all symbolic sequences should be
defined;(3) admissibility conditions as to whether a given
symbolic sequence is allowed by the dynamics should be
formulated; (4) based on the admissibility conditions and

. . ; ordering rule one should be able to generate and locate all
comes into I|fe.a1r:1.3.926. It is atr =24.74 wher.e a sqb- periodic orbits, stable and unstable, up to a given length.
critical Hopf bifurcation takes place and chaotl_c reg'meSSymboIic dynamics of 1D maps has been well understood
commence. Our range extends from 28 to very big values, [1-5]. Symbolic dynamics of 2D maps has been studies in
e.g., 10 000, as nothing qualitatively new appears at, isay, [18-27. We will explain the main idea and technique in the
>350. context of the Lorenz equations.

Before undertaking the symbolic dynamics analysis we  a te\y words on the research strategy may be in order. We
summarize briefly what has been done on the Lorenz systeqy irst calculate the Poincarmaps in suitably chosen sec-

from the viewpoint of symbolic dynamics. Guckenheimer o, |t necessary, some forward contracting foliations

and Williams introduced the geometric Lorenz mofe8] (kg 1o be explained lageare superimposed on the Poin-

for the vicinity of r =28, which leads to symbolic dynamics catemap, the attractor being part of the backward contract-
of two letters, proving the existence of chaos in the geometyy fgjiations (BCFS. Then a one-parameter parametrization
ric model. However, as Smal@4] pointed out, whether the  g'introduced for the quasi-1D attractor. For our choice of the

geometric Lorenz model means the real Lorenz systém résincatesections the parametrization is simply realized by
mains an unsolved problem. Though it does not use symbolig,a v coordinates of the points. In terms of these} a first

dynamics at all, the paper by Tomita and Ts@dl8] study- o 1n mapc—x, . ; is constructed. Using the specific prop-

ing the Lorenz.equations at a d.ifferent set of. parameters erty of first return maps that the spt;} remains the same
=16 andb=4 is worth mentioning. They noticed that the before and after the mapping, some parts{g§ may be

quasi-1D chaotic attractor in the=r—1 Poincaresection safelv squeezed and swapbed to vield a new !
outlined by the upward intersections of the trajectories ma Y sq PP y RiapXy. 1,

. ; ; Xvhich precisely belongs to the family of Lorenz-Sparrow
be Q|rect!y parametrlzed.by thecpordmates. A 1D.map was map. Inpso doir¥g, all ngeaturémyers,)flolds, etg.are k%pt.
devised in[15] to numerically mimic the global bifurcation However, one can always start from the symbolic dynamics
struciure of the Lorenz quel._SparrcﬁWZ]_ u_sed two SYM™  of the 1D Lorenz-Sparrow map to generate a list of allowed
bolsx qndy to enpode orbits W'thOUt explicitly constructing periods and then check them against the admissibility condi-
zz?bbeocilca ?grzaillylgf.llljn rﬁ;ﬁ:g@“’f‘;ﬂ (cj)%\?i]ousspac[wrgivt\:/edif-vve tions of the 2D symbolic dynamics. Using the ordering of
wish to try to model the behavior of the Lorenz equations inSyrnbOIIC sequences all allowed periods may be located eas-

a i ily. This applies to unstable periodic orbits at a fixed param-
the parameter range = 10, b._8/3' andr>24.06. In what eter set. The same method can be adapted to treat stable
follows we will call this family theLorenz-Sparrow map

. periods either by superimposing the orbital points on a
Referenceq15] and [12] have been mstrumental for the nearby chaotic attractor or by keeping a sufficient number of
present study. In fe;ct, the 1D maps to be obtained from th?ransient points.
2D upward Poincaremaps of the Lorenz equations after
some manipulations belong precisely to the family suggested ;
by Sparrow. IN16] the systematics of stable periodic orbits 1. CONSTRUCTION OF POINCARE AND RETURN MAPS
in the Lorenz equations was compared with that of a 1D L .
antisymmetric cubic map. The choice of an antisymmetric The Poincarenap in thez=r —1 plane captures most of

map was dictated by the invariance of the Lorenz equationgl‘:J mtergstlng dy”am'cj as |Lcontaé)r||s both _?xeds pcfh_t\s
under the discrete transformation The z axis is contained in the stable manifold® of the

origin (0,0,0). All orbits reaching the axis will be attracted
to the origin, thus most of the homoclinic behavior may be
X——X, y—-—Yy, and z—z. (2)  tracked in this plane. In principle, either downward or up-

These two fixed points remain stable untireaches 24.74.
Their eigenvalues undergo some qualitative changes at
=1.345 617 and a strange invariant gabt an attractor yet
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90 T T T ' Collecting successive;, we construct a first return map
r=118.15 Xp—>Xn+1 @s shown in Fig. 2. It consists of four symmetri-

i cally located pieces with gaps on the mapping interval. For a
first return map a gap belonging to bothandx, . ; plays no
role in the dynamics. If necessary, we can use this specificity
of return maps to squeeze some gaps.ifrurthermore, we
can interchange the left subinterval with the right one by
defining, e.g.,

x'=x—36 for x>0; x'=x+36 for x<0. (3

The precise value of the numerical constant is not essential;
it may be estimated from the upper bound{p{|} and is so
chosen as to make the final figure look nicer. The swapped
] ; first return map, as we call it, is shown in Fig. 3. The corre-
90 I i L sponding tangent points between FCF and B@te dia-

-36 -18 0 18 36 monds are also drawn on these return maps for later use.
P% It is crucial that the parametrization and swapping do

o _ keep the 2D features present in the Poincaap. This is
FIG. 1. An upward Poincareection ar =118.15. The dashed jmportant when it comes to take into account the 2D nature
curve is one of the forward contracting foliations and the diamond gyt the Poincarenaps.
tangent point between the FCF and BCF. In Fig. 4 Poincaremaps at 9 different values from=28
) ) ) _ _ to 203 are shown. The corresponding swapped return maps
ward intersections of trajectories with the-r —1 plane may 56 shown in Fig. 5. Generally speaking, rasaries from
be used to generate the Poincarap. However, upward in-  gmg|| to greater values, these maps undergo transitions from
tersections withdz/dt>0 have the practical merit to yield 1p_jike to 2D-like, and then to 1D-like again. Even in the
1D-like objects that may be parametrized by simply usingp_jike range the 1D backbones still dominate. This partly
the x coordinates. o, _ explains our early succegd6,17 in applying purely 1D
Figure 1 shows a Poincargection atr=118.15. The  gympolic dynamics to the Lorenz model. We will learn how
dashed curves and diamonds represent one of the FCFs agflj,dge this success later on. Some qualitative changes at
its tangent points with the BCF. These will be used later inyaryingr will be discussed in Sec. Ill. We note also that the
Sec. V. The 1D-like structure of the attractor is apparent,gtrn map at =28 complies with what follows from the
Only the thickening in some part of the attractor hints on itsgeometric Lorenz model. The symbolic dynamics of this

2D nature. If we ignore the thickening for the time being, the| grenz-like map has been completely construdes.
1D attractor may be parametrized by theoordinates only.

o | r=118.15
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FIG. 2. The first return mag,— X, constructed from Fig. 1 FIG. 3. The swapped return mag—Xx,,, constructed from

by using thex coordinates. Fig. 2. The gaps may be further squeezed, see text.
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FIG. 4. Upward Poincarenaps at 9 different values.

. SYMBOLIC DYNAMICS OF THE 1D X1Xo- -+ X;--- in this map corresponds to a symbolic se-
LORENZ-SPARROW MAP quence
All the return maps shown in Fig. 5 fit into the family of S=0,0, 0 -,

Lorenz-Sparrow map. Therefore, we take a general map from

the family and construct the symbolic dynamics. There is navhere o;e{M,L,N,R,C,D,B}, depending on where the
need to have analytical expression for the map. Suffice it tgoint x; falls in.

define a map by the shape shown in Fig. 6. This map has four

monotone branches, defined on four subintervals labeled by Ordering and admissibility of symbolic sequences

the lettersM, L, N, andR, respectively. We will also use .
these same letters to denote the monotone branches the Al s_ymbollc sequences made of the_se letters may be or-
selves, although we do not have an expression for the ma@jered in the following way. First, there is the natural order
ping functionf(x). Among these branchd? andL are in- N<C<R<B<L<D<M (4)
creasing; we saR andL have an even or parity. The

decreasing branched and N have odd or— parity. Be-  on the interval. Next, we compare two symbolic sequences
tween the monotone branches there are two “turning points’s,; ands,, with a common leading string*, i.e.,

(“critical points”) D andC as well as a “breaking point”

B, where a discontinuity is present. Any numerical trajectory S.=3%%c--, 2,=3%%7..., Oo#rT.
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FIG. 5. Swapped first return maps obtained from the Poincaps shown in Fig. 4.

Since o and 7 are different, they must have been ordered In order to incorporate the discrete symmetry, we define a
according to Eq(4). Theordering ruleis as follows: ifY, is  transformationZ of symbols:

even, i.e., it contains an even numbembandM, the order
of 3, andX, is given by that ofc and r; if 2* is odd, the
order is the opposite to that @f and . The ordering rule
may be put in the following form:

7={M<N,L—R,C—D}, (6)

keepingB unchanged. Sometimes we distinguish the left and

EN.-.--<EC---<ER..--<EB---<EL---<ED--- right limit of B, then we add8_—B_ . We often denotd 2,
<EM. .. by 3 and say> andZ are mirror images to each other.
' (5) Symbolic sequences that start from the next iterate of the
turning or breaking points play a key role in symbolic dy-
ON...>0C..->0OR.-->0B--->0L.-->0D--- namics. They are callekneading sequencég8]. Naming a

symbolic sequence by the initial number, which corresponds
to its first symbol, we have two kneading sequences from the
turning points:

>O0M- -,

whereE (O) represents a finite string dfl, L, N, andR
containing areven(odd) number of letterdM andN. We call o
E andO an even and odd string, respectively. K=f(C), K=f(D).
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HNCRBILDMMH
X

N CRBL DM
FIG. 6. A generic Lorenz-Sparrow map. The symbdisL, R, X

andN label the monotone branches as well as the subinter@als.

) i ) — FIG. 7. A piecewise linear map used to introduce metric repre-
D, andB are turning or breaking points. Fét andH see text.

sentation for the Lorenz-Sparrow map.

Since they are mirror images to each other, we tikas the  yneading pairs in the parameter space. In accordance with

independent one. . _ these two aspects there are two pieces of work to be done.
_ For first return maps the rightmost point{iy } equals the  First, generate all compatible kneading pairs up to a given

highest point after the mapping. Therefof¢B_)=H and |ength. This is treated in Appendix A. Second, generate all

f(B.)=H, see Fig. 6. We takél as another kneading se- admissible symbolic sequences up to a certain length for a

quence. Note thaB_ andB, are not necessarily the left and given kneading pair K,H). The procedure is described in

right limits of the breaking point; a finite gap may exist in Appendix B.

between. This is associated with the flexibility of choosing

the shift constant, e.g., the number 36 in E8). Since a Metric representation of symbolic sequences

kneading sequence starts from the first iterate of a turning or

breaking point, we have It is convenient to introduce a metric representation of

symbolic sequences by associating a real number(®.)

C_=NK, C+=RK, B_=RH, <1 to each sequencg. To do so let us look at the piecewise
(7)  linear map shown in Fig. 7. It is an analog of the surjective
B, = LH D._=LK. D =M K. tent map in the sense that all symbolic sequences made of the

four lettersM, L, R, andN are allowed. It is obvious that the
A 1D map with multiple critical points is best param- maximal sequence iSMN)® while the minimal one is
etrized by its kneading sequences. The dynamical behavidiNM)*. For this map one may further write
of the Lorenz-Sparrow map is entirely determined by a
kneading pair(K,H). Given a kneading pairk,H), not all
symbolic sequences are allowed in the dynamics. In order to
formulate the admissibility conditions we need a new notion.

Take a symbolic sequen&and inspect its symbols one by 14 jntroduce the metric representation we first usel
one. Whenever a letteé is encountered, we collect the 5 mark the even parity df andR, ande=—1 to mark the

subsequent sequence that follows this The set of all such 44 parity ofM andN. Next, the number(3) is defined for
sequences is denoted B (2) and is called a1 -shift set of a SeqUENCE =S,S,- - - §;- - - as
3. Similarly, we defineZ(2), R(3), andM3). '
The admissibility conditionsbased on the ordering rule * _
(5), follow from Eq. (7): a=> w4, 9

C_=N(NM)*, C+=R(NM)*, B_=R(MN)*,

B,=L(NM)*, D_=L(MN)*, D,=M(MN)*.

H<NMZ)<NK, K<R(3)<H, (8  Where

<L(3)<K, MK=MM(3)<H.

ingRorlL.
The twofold meaning of the admissibility conditions
should be emphasized. On one hand, for a given kneading
pair these conditions select those symbolic sequences that,
may occur in the dynamics. On the other hand, a kneading
pair (K,H), being symbolic sequences themselves, must also
satisfy conditions(8) with 3 replaced byK and H. Such
(K,H) is called acompatible kneading paifThe first mean- M=
ing concerns admissible sequences in the phase space at a
fixed parameter set while the second deals with compatible

0
Here in the two middle relations we have canceled the lead- wi= ! for s =
1 2 |
3

for Si: |f 6162"'6],1:_1.

O P N W
< rr 3oz
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It is easy to check that thing as a superstable periodic sequence or a periodic win-
dow that would appear when one considers kneading se-
a(NM)*)=0, a(C.)=1/4, a(B.)=1/2, quences with varying parameters.
Similar analysis may be carried out for otlrein Table |
a(D+)=3/4, a(MN)*)=1. we collect some kneading sequences at differenalues.

Their corresponding metric representations are also included.
We first note that they do satisfy the admissibility conditions
(8), i.e.,K andH at eachr make a compatible kneading pair.
(100 An instructive way of presenting the data consists in drawing
_ the plane of metric representation for batkK) and «(H);
a(RX)=[1+a(2))/4 see Fig. 8. The compatibility conditions require, in particu-

One may also formulate the admissibility conditions in termg@» K<H, therefore only the upper left triangular region is

of the metric representations. accessible. o _
P As we have indicated at the end of the last section, the

Lorenz-Sparrow map has two one-parameter limits. The first
limit (11) takes place somewhere et 36, maybe around
The family of the Lorenz-Sparrow map includes somer=30.1, as estimated by Sparr¢d2] in a different context.
limiting cases. In Table | there is only one kneading patr=R® and H
(1) TheN branch may disappear, and the minimal point of =15, i.e., practicallyK=R” and H=L", which satisfies
the R branch moves to the left end of the interval. This mayy — | K. |n terms of the metric representations the condition

be described as (11) defines a straight lindine a in Fig. 8

The following relations hold for any symbolic sequeriXe

aS)=1—a(3), a(LS)=[2+a(3)]/4,

One-parameter limits of the Lorenz-Sparrow map

C=H=RK or H=LK. (11) a(H)=[3—a(K)]/4.

It defines the only kneading sequeri¢drom the next iterate [We have used Eq10).] The pointr =28 drops down to this

of C. . ) ) . line almost vertically from the =36 point. This is the region
(2) The minimum aiC may rise above the horizontal axis, \yhere “fully developed chaos” has been observed in the

as is evident in Fig. 5 at=203. The second iterate of either | orenz model and perhaps it outlines the region where the

the left or right subinterval then is retained in the same SUbgeometric Lorenz model may apply.

interval_. Consequently, the two kneading sequences are Nno The other limit(12) happens at>197.6. In Table | all 6

longer independent and they are bound by the relations kneading pairs in this range satisk=LH. They fall on

K=LH or K=RH. 12 another straight linéline b in Fig. 8

Both one parameter limits appear in the Lorenz equations a(K)=[3—a(H)]/4,

as we shall see in the next section. but can hardly be resolved. The value 197.6 manifests

itself as the point where the attractor no longer crosses the
IV. 1D SYMBOLIC DYNAMICS OF THE LORENZ horizontal axis. In the 2D Poincammap this is where the
EQUATIONS chaotic attractor stops to cross the stable manifoftlof the
Now we are well prepared to carry out a 1D symbolic _origin. '_I'he kneading OE)air at= 203 is very close to a limit-
dynamics analysis of the Lorenz equations using thd"d Pair K=LN(LR) wW"Fh a precise valuea=21/40
swapped return maps shown in Fig. 5. We takel18.15 as  — 0-525 andH=M(RL)" with exacta=0.9.

a working example. The rightmost point§r;} and the mini- For any kneading pair in Table | one can generate all
mum atC determine the two kneading sequences: admissible periods up to length 6 inclusively. For example,
atr =125 although the swapped return map shown in Fig. 5

H=MRLNRLRLRLRLNRL -, exhibits some 2D feature as a few points off the 1D attractor,
the 1D Lorenz-Sparrow map still works well. Besides the 17
K=RLRLRLRRLRLRLRR-. orbits listed above for=118.15, five new periods appear:

LLN, LNLRMR LNLLC, andRMRLN All these 22 un-

Indeed, they satisfy Eq8) and form a compatible kneading stable periodic orbits have been located with high precision
pair. Using the propositions formulated in Appendix B, all in the Lorenz equations. Moreover, if we confine ourselves
admissible periodic sequences up to period 6 are generatei®. short periods not exceeding period 6, then from28 to
They areLC, LNLR, LNLRLC, RMRLR RMLNLC, 59.40 there are only symbolic sequences made of the two
RMLN, RLLC, RLLNLC, RLRMLG andRLRLLGC Here lettersR andL. In particular, Fronr =28 to 50.50 there exist
the letterC is used to denote botN andR. Therefore, there the same 12 unstable periodsR, RLR, RLLR, RRLR
are altogether 17 unstable periodic orbits with period equaRLRLR RRLLR RRRLR RLRLLR RRLLLR
to or less than 6. Relying on the ordering of symbolic se-RRLRLR RRRLLR and RRRRLR This may partly ex-
guences and using a bisection method, these unstable pepikain the success of the geometric Lorenz model leading to a
odic orbits may be quickly located in the phase plane. symbolic dynamics on two letters. On the other hand, when

It should be emphasized that we are dealing with unstablgets larger, e.g.r =136.5, many periodic orbits “admis-
periodic orbits at a fixed parameter set. There is no suckible” to the 1D Lorenz-Sparrow map cannot be found in the
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TABLE |. Kneading pairs K,H) at differentr values.

r K a(K) H a(H)

203.0 LNLRLRLRLRLRLRL 0.525000 MRLRLRLRLRLRLRL 0.900000
201.0 LNLRLRLRMRLRLRM 0.524995 MRLRLRLNLRLRLNL 0.900018
199.04 LNLRLRMRLRLNLRL 0.524927 MRLRLNLRLRMRLRL 0.900293
198.50 LNLRMRMRLRMRMRL 0.523901 MRLNLNLRLNLNLRL 0.904396
197.65 LNLRMRLRLNLRLRM 0.523827 MRLNLRLRMRLRLNL 0.904692
197.58 LNLRMRRMRMRLRMR 0.523796 MRRMRMRLNLNLRLR 0.908110
196.20 LNLLNLRLNLRLRLN 0.523042 MRRLRLRLRLRLNLR 0.912500
191.0 RMRLNLNLLRLRLRM 0.476096 MNRLRLRMRLRMLNL 0.962518
166.2 RMLNRMLNRMLNRML 0.466667 MNRLNRMRLRLLNRM 0.961450
136.5 RLRMLRRLRMRLLRL 0.403954 MNRRLLNLRRLRMLR 0.959498
125.0 RLRLLNLRLRRLRLL 0.400488 MRRLRMLRLRRLRLL 0.912256
120.0 RLRLRLRLRLRLRML 0.400000 MRRMLRLRLRLRLRR 0.908594
118.15 RLRLRLRRLRLRLRR 0.399988 MRLNRLRLRLRLNRL 0.903906
117.7 RLRLRLNRLLRLRLR 0.399938 MRLRRLRLRLNRLLR 0.900781
107.7 RLRRLLRRLRRLLRR 0.397058 MRLLRRLLRLLNRLR 0.897058
104.2 RLRRLRLRRLRRLRL 0.396872 MRLLRLLRLRRLLNR 0.896826
99.0 RLNRLRRLRRLRRLR 0.384425 MLNRLRRLNRLRRLN 0.865572
93.4 RRMLLNRRMLLNRLL 0.365079 MLRRLLRRRMLRLLR 0.852944
83.5 RRLLRRRLLRRRLLR 0.352884 MLRLLRLRRRLLLRR 0.849233
71.7 RRLRRRLRRRLRRLR 0.349020 MLLRLRRLLRRLLLR 0.837546
65.0 RRRLLRRRRLLRLLR 0.338217 MLLLRRRLRRRLLRL 0.834620
59.4 RRRLRRRRLRRRLLL 0.337243 MLLLRLLRLRRLRLL 0.834326
55.9 RRRRLLRRRRLRLLR 0.334554 MLLLLRRLRRLLLLR 0.833643
50.5 RRRRRLLRRRLRLRL 0.333639 MLLLLLRRLLRRLRR 0.833410
48.3 RRRRRLRRRRRLLLL 0.333578 MLLLLLRLLLLRLLR 0.833394
46.0 RRRRRRLRLRRRRLL 0.333398 MLLLLLLRLRLLLLN 0.833350
36.0 RRRRRRRRRRRRRLR  0.333333 MLLLLLLLLLLLLLR 0.833333
28.0 RRRRRRRRRRRRRRR  0.333333 LLLLLLLLLLLLLLL 0.666667

original Lorenz equations. This can only be analyzed by ingent points, it was suggested to take “primary” tangencies
voking 2D symbolic dynamics of the PoincCamep. where the sum of curvatures of the two manifolds is minimal
[20].
. A natural generalization of the Grassberger-Kantz idea is
V. SYMBOLIC DYNAMICS OF THE 2D POINCARE ~ MAPS to use tangencies betwedarward contracting foliations
Essentials of 2D symbolic dynamics (FCFs and backward contracting foliation§BCF9 of the
dynamics to determine the partition lif24]. Points on one

The extension of symbolic dynamics from 1D to 2D maps ; ;
is by no means trivial. First of all, the 2D phase plane has tcgnd the same FCF approach each other with the highest

" ; " eed under forward iterations of the map. Therefore, one
be partitioned in such a way as to meet the requirements ofr%) P

. " " i ay introduce an equivalence relation: poiptsandp, be-
good partition that we put forward in S_ec. . N_e>_<t, as 2D long to the same FCF if they eventually approach the same
maps are in general invertible, a numerical orbit is encode

: P . estination under forward iterations of the map:
into abi-infinite symbolic sequence

< S S351°91S2 - - Spt P1~P2 if lim |fn(pl)_fn(p2)|:0'

n—oc

where a heavy dotdenotes the “present,” and one iteration The collection of all FCFs forms the forward contracting
forward or backward corresponds to a right or left shift of themanifold of the dynamics. Points in one and the same FCF
present dot. The half-sequenegs,- - -s,- - - is called afor- have the same future.

ward symbolic sequence and- -sqy---s;51- a backward Likewise, points on one and the same BCF approach each
symbolic sequence. One should assign symbols to both foether with the highest speed under backward iterations of the
ward and backward sequences in a consistent way by partinap. One introduces an equivalence relation: pantand
tioning the phase plane properly. In the context of thedte p, belong to the same BCF if they eventually approach the
map Grassberger and Kar{29] proposed to draw the par- same destination under backward iterations of the map:
tition line through tangent points between the stable and un-

stable manifolds of the unstable fixed point in the attractor. p1~p, if lim |[f"(py)—f "(p,)|=0.
Since preimages and images of a tangent point are also tan- n—o
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0 N ¢ R B L D M 1
o(K)

FIG. 8. Thea(H) vs a(K) plane shows kneading paitsolid
circles corresponding to the Lorenz equations from 28 to 203.
Only the upper left triangular region is accessible for compatible
pairs in the Loren-Sparrow map. The two straight liresind b FIG. 9. An upward Poincarsection atr =136.5 showing the
represent the two one-parameter limits of the Lorenz-Sparrow maghaotic attractor, a few FCHglashed lings and segments of the

partition lines for forward symbolic sequenc@otted lines.

The collection of all BCFs forms the backward contracting o o _
manifold of the dynamics. Points in one and the same BCF Partitioning of the Poincare section

have the same history. When the phase space is partitioned | grenz equations at=136.5 provide a typical situation
properly, points in a FCF acquire the same forward symboliGyhere 2D symbolic dynamics must be invoked. Figure 9
sequence while points jn a BCF acquire the same backwarghows an upward=r—1 Poincafesection of the chaotic
symbolic sequence. This has been shown analytically for thgractor. The dashed lines indicate the contour of the FCFs.
Lozi map[24] and Té map[25]. There has been good nu- The two symmetrically located families of FCFs are demar-
merical evidence for the h@n map[19,20,26,2T. We men-  cated by the intersection of the stable manifoif of the
tion in passing that the forward contracting and backward(oyo,o) fixed point with the=r—1 plane. The actual inter-
contracting manifolds contain the stable and unstable mankection located between the dense dashed lines is not shown.
folds of fixed and periodic points as invariant submanifolds.The BCFs are not shown either except for the attractor itself,
The generalization to use FCFs and BCFs is necessary @ich is a part of the BCFs.
least for the following reasonsl) It is not restricted to the The 1D symbolic dynamics analysis performed in Sec. IV
attractor only. The attractor may experience abrupt changegeals with forward symbolic sequences only. However, the
but the FCF and BCF change smoothly with parameter. Thigariition of the 1D interval shown in Fig. 3 may be traced
is a fact unproven but supported by much numerical evipack to the 2D Poincarsection to indicate the partition for
dence.(2) A good symbolic dynamics assigns unique Sym-assigning symbols to the forward symbolic sequences. Two
bolic names to all unstable orbits, not only those located iNLegments of the partition lines are shown in Fig. 9 as dotted
the attractor. One needs partition lines outside the attractor 3§,es. The labelsC and -D correspond tcC and D in the

well. (3) Transient processes also take place outside the af_'orenz—Sparrow map, see Fig. 3. The ordering r(&
tractor. They are part of the dynamics and should be covereghq,id now be unders’tood as

by the same symbolic dynamics.
In practice, contours of BCFs and especially FCFs are not -EN...<.EC...<.ER---<:EB..-<:EL--:
difficult to calculate from the dynamics. This has been

shown for BCFs by Greeng80] and for FCFs by Gii31]. <-ED---<-EM---,

Once a mesh of BCFs and FCFs are drawn in the phase

plane, FCFs may be ordered along some BCFwacelversa -ON--->.0C--->-OR.-->-0B--->-0OL- --
No ambiguity in the ordering occurs as long as no tangency

between the two foliations is encountered. A tangency sig- >-0D--->-0OM---,

nals that one should change to a symbol of a different parity

after crossing a tangency. A tangency in a 2D map plays avith E andO being even and odd strings bf, L, R, andN.

role similar to a kneading sequence in a 1D map in the senda fact, from Fig. 3 one could only determine the intersection
that it prunes away some inadmissible sequences. As themint of the partition line with the 1D-like attractor. To de-
are infinitely many tangencies between the FCFs and BCF#ermine the partition line in a larger region of the phase plane
one may say that there is an infinite number of kneadingne has to locate more tangencies between the FCFs and the
sequences in a 2D map even at a fixed parameter set. HoBCFs. However, it is more convenient to use another set of
ever, as one deals with symbolic sequences of finite lengtkangent points to determine the partition line for backward
only a finite number of tangencies will matter. symbolic sequences. To this end 6 tangent points and their
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FIG. 10. The same as Fig. 9 showing 12 tangent poidis-

36 T T

18

n+l

mondg and the partition lines for backward symbolic sequences

(dotted lines.

FIG. 11. The swapped return maprat 136.5.

mirror images are located and indicated as diamonds in Fig. (21.246853832518, 40.525036662442

10. The tangencies in the first quadrant are

(3.833630661151,5.915245399002
(13.34721714210,27.06932440906
T,:(16.50130604850,33.81425621518
T,:(21.24012850767,40.56850842796
(23.86757424970,58.00925911937

(26.73829676387,79.37583837912

(We have not labeled the tangent points that are not in the

attractor) The partition linesC- and D- are obtained by

T4:L"LLC-RLRMLRRLRMRLLRL: -

(21.240128507672, 40.568508427961

Due to insufficient numerical resolution in Fig. 10 the dia-
mond on the main sheet of the attractor represéptsndT,,
while the diamond on the secondary sheet representnd

T,. The mirror images of these tangencies are located on the
D - partition line:

T.:R°LND-LLRLRRLRMLRRLRM: -
T,:L”LND-LLRRLLRRMLRLNRM: -

T3:L”LRD-LRLNRLLRRMLRLNR -

threading through the diamonds. The two partition lines and

the intersection with’® of the origin divide the phase plane
into four regions, marked with the lette’§ N, M, andL.
Among these 6 tangencies only andT, are located on the

attractor. Furthermore, they fall on two different sheets of th

attractor, making a 2D analysis necessary.

In order to decide admissibility of sufficiently long sym-
bolic sequences more tangencies on the attractor may
needed. These tangencies are taken across the attractor.
example, on the partition lin€- we have

T:L"RMC-RRLRLLRLNRLLRLN - (13
(16.501306048503, 33.814256215181

T,:R"RMC-RRLLRRLLNRLRMLN -
(16.567206430154, 34.823691929Y70

T3:R" RLC-RLRMLRRLLNRLRML: -

T,:R“RRD-LRLNRLLRLNLRRLR -

We denote the symbolic sequence of the tangencss
Q;C-K;, keeping the same lett&r as the kneading sequence

% in the 1D Lorenz-Sparrow map, becausecomplies with

the definition of a kneading sequence as the next iterafe of

kJ}(‘aone is interested in forward sequences alone, only tKgse

r\_t\/éU matter. Moreover, one may press together different
sheets seen in Fig. 10 along the FCFs, as points on one and
the same FCF have the same forward symbolic sequence.
Here lies a deep reason for the success of 1D symbolic dy-
namics at least when only short periodic orbits are con-
cerned. Therefore, before turning to the construction of 2D

symbolic dynamics let us first see what a 1D analysis would
yield.

1D symbolic analysis atr=136.5

Figure 11 is a swapped return map obtained from the first
return map by letting the numerical constant be 41 in(Bg.
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TABLE II. Admissible periodic sequences up to period 6 under 2D symbolic dynamics analysis at =136.5
the kneading pairk;,H) atr =136.5. Only the nonrepeating shift-
minimal strings with respect thl or R are given. An asterisk marks
those forbidden by 2D tangencies; see text and Table IlI.

In order to visualize the admissibility conditions imposed
by a tangency between FCF and BCF in the 2D phase plane
we need metric representations both for the forward and
backward symbolic sequences. The metric representation for

Period Sequence Period Seatience the forward sequences remains the same as defined by Eq.
2 LC 6 RLRRMR 9).
4 LNLR 3 RLC* The partition of phase plane shown in Fig. 10 leads to a
6 LNLRLC 6 RLNRLR different ordering rule for the backward symbolic sequences.
6 LNLRMR 6 RLNRMR Namely, we have
5 LNLLC 5 RLNLC*
3 RMR & RLNLLC L<D<M<B<N<C<R,
5 RMRLC 4 RRMR with the parity of symbols unchange@fhe unchanged par-
6 RMLNLC 6 RRMRLC ity is related to the positiveness of the Jacobian for the jlow.
4 RMLN 6 RRMRMR The ordering rule for backward sequences may be written as
4 RLLC 5 RRMLC
6 RLLNLC 6 RRMLLN ---LE-<.--ME-<-.-NE:-<-.-RE:,
6 RLRMLC 6 RRLLLC
6 RLRLLC 5 RRLLC ...LO->..-MO->---NO->---RO-.,
5 RLRLC 6 RRLRMC

whereE (O) is a finite string containing aeven(odd num-
ber of M andN. From the ordering rule it follows that the

) i maximal sequence BR”- and the minimal id*-. To intro-
The 2D feature manifests itself as layers n€aandD. The  j,ce a metric representation for backward symbolic

four tangencies are plotted as two diamonds in the ﬁg”resequences, we associate each backward sequence
sinceT is very close tol, andT3 to T4. Asno layerscanbe | o~ . << with a real numbey:

seen away from the turning points one could only get dHne m 2

from the set{|x/|}. Now there are 4 kneading sequené&gs ~ .

ordered as BZiEl vid™,

K <K,<Ki<K, where

according to Eq(5). From the admissibility condition@) it
follows that if two K_<K, are both compatible withH,
then any symbolic sequence admissible undér (H) re- Vi=
mains admissible underK(_ ,H) but not the other way
around. In our caseK(,H) puts the most severe restriction
on admissibility while K;,H) provides the weakest condi-
tion. We start with the compatible kneading pair

i—-1

for 5= and H =1,
i=1

w N B O
gz < r

or

L
K;=RRLRLLRLNRLLRLN -, 14 M i—1
(14 for s;=§ . and Il e=-1.
i=1

O r N W

H=MNRRLLNLRRLRMLR -. R

We produce all periodic symbolic sequences admissible unAccording to the definition we have

der (K;,H) up to period 6 using the procedure described in B(L*)=0, B(D.-)=1/4, B(B.-)=1/2
Appendix B. The results are listed in Table Il. Only shift- ' - ' - ’
minimal sequences with respectNbandR are given. Their B(C.-)=3/4, B(R”)=1.

mirror images, i.e., shift-maximal sequences ending With

or L, are also admissible. There are in total 46 periods in In terms of the two metric representations a bi-infinite
Table Il, where &C stands for botiN andR. The kneading symbolic sequence with the present dot specified corre-
pair (K,,H) forbids 2 from the 46 periods. The two pairs sponds to a point in the unit square spannedabyf the
(K3,H) and K4,H) lying on the main sheet of the attractor forward sequence an@ of the backward sequence. This unit
have the same effect on short periodic orbits. They reducequare is called the symbolic plaf#9]. In the symbolic
the allowed periods to 20, keeping those frdo€ to  plane forward and backward foliations become vertical and
RLRMLCin Table Il. The actual number of unstable peri- horizontal lines, respectively. The symbolic plane is an im-
odic orbits up to period 6 may be less than 46, but more thaage of the whole phase plane under the given dynamics.
20. A genuine 2D symbolic dynamics analysis is needed tdRegions in the phase plane that have one and the same for-
clarify the situation. ward or backward sequence map into a vertical or horizontal
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1 — - TABLE IIl. Location of admissible periodic orbits left from
o Table Il by 2D analysis. The coordinates,y) are those of the first
symbol in a sequence.

FFZ ..ﬁ: E f i Period Sequence X y
—IJ e 2 LR —26.789945953 —51.732394996

2 LN —33.741639204 —79.398248620

B 4 LNLR —34.969308137 —84.807257714

- - 6 LNLRLN —34.995509382 —84.923968314

6 LNLRLR —35.378366481 —86.639695512

6 LNLRMR —36.614469777 —92.269654794

o 5 LNLLN —36.694480374 —92.638862207

D ceim = ] FF7 5 LNLLR —37.362562975 —95.744924312

oy - 3 RMR 36.628892834 92.335783415

h o o 5 RMRLN 36.548092868 91.963380870

5 RMRLR 35.927763416 89.123769188

”‘ 6 RMLNLR  33.541019900 78.514904719

0 0 1 6 RMLNLN 33.465475168 78.187866239

o 4 RMLN 33.432729468 78.045902429

4 RLLR 29.500017415 61.545331390

FIG. 12. The symbolic plane at=136.5. A total of 60 000 4 RLLN 28.800493901 58.709002527
points representing real orbits are drawn together with the FFZ 6 RLLNLN 28 566126025 57.759480656
outlined by the 4 tangencies and the forbidden zone causétl. by 6 RLLNLR 28548686604 57.682625650
6 RLRMLN 28.310187611 56.723089485

line in the symbolic plane. The symbolic plane should not be ¢ RLRMLR 28.299181162 56.676646246
confused with thex(H) ~a(K) plane(Fig. 8), which is the 6 RLRRMR  26.376239173 48.942140325
metric representation of the kneading plane, i.e., the param- g RLNRMR 25.282520197 44566367330
eter plane of a 1D map. 4 RRMR 25.163031306 44.088645613
As long as foliations are well ordered, a tangency on a g RRMRMR 25.047268287 43.625877472
partition line puts a restriction on allowed symbolic se- 6 RRLRMN 24055406683 39 708285078
guences. Suppose that there is a tang€p€yK on the par- 6 RRLRMR 24.064390385 39.704320864

tition line C-. The rectangle enclosed by the lingéQR-),
B(QN-), a(-K), anda((NM)*)=0 forms a forbidden zone
(F2) in the symbolic plane. In the symbolic plane a forbid- the rectangle formed byr=a(H), a=1, 8=0.5, andg

den sequence corresponds to a point inside the FZ@K. =1 determines the forbidden zone causedbyt is shown

A tangency may define some allowed zones as well. Howin Fig. 12 by dashed lines. Indeed, no real orbital points fall
ever, in order to confirm the admissibility of a sequence allin the forbidden zones.

of its shifts must fall in the allowed zones, while one pointin  In order to check the admissibility of a periodsequence
the FZ is enough to exclude a sequence. This “all or none’one calculates points in the symbolic plane by taking the
alternative tells us that it is easier to exclude than to confirneyclic shifts of the nonrepeating string. All symbolic se-
a sequence by a single tangency. Similarly, a tangencguences listed in Table Il have been checked in this way and
QD -K on the partition lineD - determines another FZ, sym- 20 out of 46 words are forbidden bly;. This means among
metrically located to the FZ mentioned above. Due to thehe 26 sequences forbidden Ky in a 1D analysis actually 6
anti-symmetry of the map one may confine oneself to théd'® allowed in 2D. We list all admissible periodic sequences
first FZ and to shift-minimal sequences ending witandR of length 6 and less in Table [ll. The 6 words at the bottom
only when dealing with finite periodic sequences. The uniorPf the table are those forbidden by 1D but allowed in 2D. All
of FZs from all possible tangencies forms a fundamental for{h€ unstable periodic orbits listed in Table Ill have been lo-
bidden zongFF2) in the a-8 symbolic plane. A necessary cated with high precision in the Lorenz e_quanons.. Thg
and sufficient condition for a sequence to be allowed consist§nowledge of symbolic names and the ordering rule signifi-
in that all of its shifts do not fall in the FFZ. Usually, a finite c@ntly facilitates the numerical work. The coordinatesy]
number of tangencies may produce a fairly good contour off the first symbol of each sequence are also given in Table
the FFZ for checking the admissibility of finite sequences. Infll-
Fig. 12 we have drawn a symbolic plane with 60 000 points
representing real orbits generated from the Poincaae at

r =136.5 together with a FFZ outlined by the four tangencies Symbolic sequences that correspond to chaotic orbits also
(13). The other kneading sequenét in the 1D Lorenz- obey the ordering rule and admissibility conditions. How-
Sparrow map bounds the range of the 1D attractor. In the 2[@ver, by the very definition these sequences cannot be ex-
Poincaremap the sequencél corresponds to the stable haustively enumerated. Nevertheless, it is possible to show
manifold of the origin, which intersects with the attractor andthe existence of some chaotic symbolic sequences in a con-
bounds the subsequences followRgIn the symbolic plane structive way.

Chaotic orbits
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We first state a proposition similar to the one mentioned In a periodically driven system the period of the external
in the paragraph before E€V ). If (K,H_) and (K,H,) are  force serves as a unit to measure other periods in the system.
two compatible kneading pairs witH_<H_ , then all ad- Therefore, it makes sense to refer to, for instance, a period 5
missible sequences undé¢,(H_) remain so underi{,H. ), orbit. However, this is not the case in an autonomous system
but not the other way around. It is seen from Table | thatike the Lorenz model, since the fundamental frequency

fromr=120.0 to 191.0 alK starts withR while the minimal ~ drifts with the varying parameter. A byproduct of the sym-
H starts WithMRR. Let K=R--- andH=MRR.--. Itis  Polic dynamics analysis consists in telling the absolute peri-

easy to check that any sequence made of the two segmer‘ﬁgsh.of variou§ OFg“S- 'Itthist,hrerréartkabl'e tgaft periods Iabssigned
LR and LNLR satisfies the admissibility condition). In this way coincide wi at determined from a calibration

o . _curve of the fundamental frequency obtained by direct Fou-
Therefore, a random combination of these segments is an . .

o . - “rier analysis of numerically observed orhj3].
admissible sequence in the 1D Lorenz-Sparrow map. A simi-
lar analysis can be carried out in 2D using the above tangen-

cies. Any combination of the two segments remains an ad- Symmetry breakings and restorations
missible sequence in 2D. T_heref(_)re,_ we have indicated the | dynamical system with discrete symmetry the phe-
structure of a class of chaotic orbits in the parameter rang&,,mena of symmetry breaking and symmetry restoration
come into play. In the Lorenz equations periodic orbits are
VI. STABLE PERIODIC ORBITS IN LORENZ either symmetric or asymmetric with respect to the transfor-
EQUATIONS mation (2); asymmetric orbits appear in symmetrically lo-
So far we have only considered unstable periodic orbits a2{€d pairs. Some essential features of symmetry breaking
fixed r. A good symbolic dynamics should be capable ofénd restoration have been knoy#]. For example, in many
dealing with stable orbits as well. One can generate all comdiSSipative systems when studied in the properly chosen di-
patible kneading pairs of the Lorenz-Sparrow map up to dection of th_e parameter space symmetry br.eakmgs usually
certain length by using the method described in Appendix APreécede period doubling — no symmetric orbits can undergo
Although there is no way to tell the precise parameter wher&€rod doubling directly without the symmetry being broken
a given periodic orbit will become stable, the symbolic se-lI'St: Furthermore, while symmetry breakings take place in
quence does obey the ordering rule and may be located dfi€ Periodic regime, symmetry restorations occur in the cha-
ther axis by using a bisection method. Another way of find-Oti¢ regime. All these features may be explained by using
ing a stable period is to follow the unstable orbit of the same>yMbolic dynamic$35]. Although the analysis performed in.
name at varying parameters by using a periodic orbit track-3>] Was based on the antisymmetric cubic map, it is appli-
ing program. Anyway, many periodic windows have beencable to the ‘I‘_orenz equaHons via the Lor_enz-Sparrow map.
known before or encountered during the present study. we # doubly “superstable” symmetric orbit must be of the
collect them in Tables IV and Y32]. Before making further form XDXC, therefore its period is even and only even pe-
remarks on these tables, we indicate how to find symboli¢giods of this special form may undergo symmetry breaking.
sequences for stable periods. The shortest such orbit BC. To keep the symmetry when
When there exists a periodic window in some parametegxtending this superstable period into a window, one must
range, one cannot extract a return map of the interval from ghangeD andC in a symmetric fashion, i.e., either replacing
small number of orbital points so there may be ambiguity inD by M andC by N, or replacingD by L andC by R at the
assigning symbols to numerically determined orbital pointssame time, see Eqs4) and (6). Thus we get a window
Nonetheless, there are at least two ways to circumvent theVIN,DC,LR) (MN does not appear in the Lorenz equa-
difficulty. First, one can take a nearby parameter where théions while LR persists to very large). This is indeed a
system exhibits chaotic behavior and superimpose the persymmetric window, as the transformati®®) brings it back
odic points on the chaotic attractor. In most cases k() after cyclic permutations. Moreover, this window has a sig-
pair calculated from the chaotic attractor may be used tmature (+,0,+) according to the parity of the symbolae
generate unstable periods coexisting with the stable periodssign a null parity taC and D). It cannot undergo period
Second, one can start with a set of initial points and keep adoubling as the latter requires & (0,—) signature. By con-
many as possible transient points before the motion settleinuity LR extends to an asymmetric window R,LC,LN)
down to the final stable periodic reginta few points near with signature ¢,0,—) allowing for period doubling. It is
the randomly chosen initial points have to be dropped anyan asymmetric window as its mirror imagRI(,RD,RM) is
way). From the set of transient points one can construct redifferent. They represent the two symmetrically located
turn maps as before. Both methods work well for shortasymmetric period 2 orbits. The wortlR)” describes both
enough periods, especially in narrow windows. the second half of the symmetric window and the first half of
Figure 13 shows a stable period 6 orBLtRRMRat r the asymmetric window. The precise symmetry breaking
=183.0435 as diamonds. The background figure looks mucpoint, however, depends on the mapping function and cannot
like a chaotic attractor, but it is actually a collection of its be told by symbolic dynamics.
own transient points. The last symb%lin RLRRM Xcorre- In general, a word\” representing the second half of the
sponds to a point (20.945699,45.391029) lying to the righsymmetric window continues to become the first half of the
of a tangency at (20.935971,45.393162). Therefore, it acasymmetric window X,7C,p). The latter develops into a
quires the symboR, not N. This example shows once more period-doubling cascade described by the general rule of
how the x parametrization helps in accurate assignment oymbolic dynamics. The cascade accumulates and turns into
symbols. a period-halving cascade of chaotic bands. The whole struc-



SYMBOLIC DYNAMICS ANALYSIS OF THE LORENZ ...

TABLE IV. Some stable periodic orbits in the Lorenz equations associated with the main sheet of the

dynamical foliations.

Period Sequence ré
2 DCP 315-10000
2 LN 229.42-314
4° LNLCY 218.3-229.42
8 LNLRLNLC 216.0-218.3
16 LNLRLNLNLNLRLNLC 215.5-216.0
24 LNLRLNLNLNLRLNLRLNLRLNLC 215.07-215.08
12 LNLRLNLNLNLC 213.99-214.06
6 LNLRLC 209.06-209.45
10 LNLRLRLNLC 207.106-207.12
8 LNLRLRLC 205.486-206.528
10 LNLRLRLRLC 204.116-204.123
12 LNLRLRLRLRLC 203.537
14 LNLRLRLRLRLRLC 203.2735
16 LNLRLRLRLRLRLRLC 203.1511
18 LNLRLRLRLRLRLRLRLC 203.093332
30 LNLRLRLRLRLRLRLRLRLRLRLRLRLRLC 203.04120367965
14 LNLRLRDRMRLRLC 200.638-200.665
10 LNLRDRMRLC 198.97-198.99
5 LNLLC 195.576
5 RMRLC 190.80-190.81
7 RMRLRLC 189.559-189.561
9 RMRLRLRLC 188.863—188.865
16 RMRLRLRDLNLRLRLC 187.248-187.25
12 RMRLRDLNLRLC 185.74-185.80
8 RMRDLNLC 181.12-181.65
10 RMRMRMLNLC 178.0745
12 RMRMRDLNLNLC 177.78-177.81
6 RMLNLC 172.758-172.797
16 RMLNRMRDLNRMLNLC 169.902
10 RMLNRMLNLC 168.58
4 RDLC 162.1-166.07
4 RLLC 154.4-162.0
4 RLLN 148.2-154.4
8 RLLNRLLC 147.4-147.8
16 RLLNRLLRRLLNRLLC 147
12 RLLNRLLRRLLC 145.94-146
20 RLLNRLLRRDLRRMLRRLLC 144.35-144.38
12 RLLNRDLRRMLC 143.322-143.442
6 RLLNLC 141.247-141.249
6 RLRMLC 136.800—136.819
10 RLRMLRRLLC 136.210-136.2112
16 RLRMLRRDLRLNRLLC 135.465-135.485
8 RLRDLRLC 132.06-133.2
16 RLRLLRRDLRLRRLLC 129.127-129.148
6 RLRLLC 126.455-126.52
12 RLRLRDLRLRLC 123.56-123.63
8 RLRLRLLC 121.687-121.689
7 RLRLRLC 118.128-118.134
14 RLRLRRDLRLRLLC 116.91-116.925
5 RLRLC 113.916-114.01
10 RLRRDLRLLC 110.57-110.70
9 RLRRLLRLC 108.9778
7 RLRRLLC 107.618-107.625
14 RLRRLRDLRLLRLC 106.746—106.757
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TABLE IV. (Continued.

Period Sequence ré
8 RLRRLRLC 104.185
16 RLRRLRRDLRLLRLLC 103.632-103.636
3 RLC 99.79-100.795
6 RLNRLC 99..629-99.78
9 RLNRLRRLC 99.275-99.285
12 RRMLRDLLNRLC 94.542-94.554
6 RRDLLC 92.51-93.20
6 RRLLLC 92.155-92.5
12 RRLLRDLLRRLC 90.163-90.20
8 RRLLRLLC 88.368
7 RRLLRLC 86.402
14 RRLLRRDLLRRLLC 85.986-85.987
8 RRLLRRLC 84.3365
5 RRLLC 83.36-83.39
10 RRLRDLLRLC 82.040-82.095
8 RRLRLLLC 81.317
6 RRLRLC 76.818-76.822
12 RRLRRDLLRLLC 76.310-76.713
8 RRLRRLLC 75.1405
7 RRLRRLC 73.712
14 RRLRRRDLLRLLLC 73.457
4 RRLC 71.452-71.52
8 RRLNRRLC 71.410-71.451
8 RRRDLLLC 69.724-69.839
8 RRRLLRLC 66.2046
9 RRRLLRRLC 65.5025
6 RRRLLC 64.895-64.898
12 RRRLRDLLLRLC 64.572-64.574
7 RRRLRLC 62.069
14 RRRLRRDLLLRLLC 61.928
9 RRRLRRLLC 61.31497
8 RRRLRRLC 60.654
5 RRRLC 59.242-59.255
10 RRRRDLLLLC 58.700-58.715
9 RRRRLLLLC 58.0763
9 RRRRLLRLC 56.53315
7 RRRRLLC 55.787
14 RRRRLRDLLLLRLC 55.675
6 RRRRLC 52.457-52.459
12 RRRRRDLLLLLC 52.245-52.248
8 RRRRRLLC 50.3038-50.3240
7 RRRRRLC 48.1188-48.1194
14 RRRRRRMLLLLLLN 48.027

&The numbers indicate where the symbolic sequence has been observed. They are not necessarily the range of

the windows.

®The lettersD andC are used to indicate a symmetric window.
°The indented numbers indicate members of a period-doubling cascade.

4The letterC stands for bottR andN.

ture is asymmetric. Finally, the chaotic attractor collides withlV this limit has been traced blyN(LR)" " ?LC up ton=15.

the symmetric unstable periodic orit and takes back the The only period 30 sequence in Table IV indicates closely
symmetry to become a symmetric chaotic attractor. This is &he location of the symmetry restoration point corresponding
symmetry restoration crisis, taking place at the limit de-to the asymmetric period"2cascade. All other symmetric
scribed by the eventually periodic kneading sequepic€.  orbits in Table IV are put conditionally in the forlDXC

In our period 2 example this happensl&i(LR)”. In Table as the parameters given can hardly match a doubly super-
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TABLE V. Some stable periodic orbits in the Lorenz equations associated with secondary sheets of the
dynamical foliationgsee footnotes in Table IV

Period Sequence r
3 RMN 328.0838
3 RMC 327.58-327.88
6 RMRRMC 327.3-327.5
12 RMRRMNRMRRMC 327.26
24 RMRRMNRMRRMRRMRRMNRMRRMC 327.2
10 RMRRDLNLLC 191.982-191.985
20 RMRRMLNLLRRMRRMLNLLC 191.9795
6 RLRRMC 183.0435
12 RLRRMRRLRRMC 183.0434
24 RLRRMRRLRRMNRLRRMRRLRRMC 183.04338
6 RLNRMC 168.2492
12 RLNRMNRLNRMC 168.249189
4 RRMR 162.1381
8 RRMRRRMC 162.13806
16 RRMRRRMNRRMRRRMC 162.13804
6 RRMRMC 157.671066
12 RRMRMNRRMRMC 157.6710656
24 RRMRMNRRMRMRRRMRMNRRMRMC 157.6710654
6 RRLRMC 139.9238433
12 RRLRMRRRLRMC 139.9238430
24 RRLRMRRRLRMNRRLRMRRRLRMC 139.9238428

stable orbit. For example, the three consecutive period 4 Symbolic dynamics also yields the number of periodic
from r=148.2 to 166.07 in Table IV actually mean

(RMLN,RDLC,RLLR—(RLLRRLLC,RLLN),

(+,0,+)—(+,0,—),

followed by an asymmetric period-doubling cascade. The

symmetry restores & LLN(RLLR)* whose parameter may

easily be estimated.

136 : ! .
r=183.0435 hat
6P: RLRRMR _ /

68 | ) -
6o~ 1
y 0
68 2/\ -
/o

-136 1 | ]

-46 -23 0 23 46
X

FIG. 13. A stable period 6 orbit at=183.0435 on the back-

ground of its own transient points.

orbits that are capable of undergoing symmetry breaking. In
the parameter range of the Lorenz equations there are one
period 2, one period 4, and two period 6 such orbits, all listed
in Table IV.

“2D” orbits and coexisting attractors

Now we return to Tables IV and V. Table IV is a list of
stable periods associated with the main sheet of the dynami-
cal foliations. When there is an attracting stable period these
sheets are not readily seen, but they resemble the main sheets
seen in Fig. 5 or Fig. 11. In fact, one may insert all the
kneading sequencds; listed in Table | into Table IV ac-
cording to theirr values. They all fit well into the overall
ordering. The ordered list of stable periods plus that of
kneading sequenck; determined from the main sheets of
the chaotic attractor makes an analogue of the MSS sequence
[1] in the symbolic dynamics of unimodal maps. It is a sur-
prising fact the 1D Lorenz-Sparrow map captures so much of
the real Lorenz equations. Then where are the manifestly 2D
features? As long as stable periods are concerned, some or-
bits showing 2D features are collected in Table V. As a rule,
they are very narrow windows in the parameter space with
orbits living on some secondary sheets of the dynamical fo-
liations. It is remarkable that they may be named according
to the same rule of the Lorenz-Sparrow map; they form a
different ordered list as compared with Table IV. Among
them there are a few orbits coexisting with a periodic orbit
from the main sheet especially when the latter forms a wide
window. For instanceRMN andLR coexist in the vicinity
of r=328.0838. This period 3 orbit develops a period-
doubling cascade, traced to period 24 in Table V. The period
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2 orbit (LR)” may even be seen to coexist with a tiny cha-kneading pair K,H). This means, in particular, two se-
otic attractor from the same"3cascade at=327.16755. quences withH<K cannot make a compatible pair. More-
Other cases, given in Table V, includBRMR and over, from the admissibility conditions one can deduce that
RRMRMCas well as their period-doubled regimes, boththe minimalH that is compatible with a giveK is deter-
coexisting with the symmetric period RLLR below r mined by

=162.1381 and 157.671 066, respectively. In addition, there . .

are orbits involving both sheets. We attribute all these orbits K<H pin=max{R(K),R(K),MK),MK)},

to the manifestation of 2D features.
whereR(K) is the R-shift set ofK, etc.

VIl. CONCLUDING REMARK According to the ordering rulés) the greatest sequence is
(MN)*, and the smallestNM)”*. A sequenceH =(MN)*
Fairly detailed global knowledge of the Lorenz equationswill be compatible with anyK. The admissibility conditions
in the phase space as well as in the parameter space has begb require thak must be shift minimal with respect @
obtained by numerical work under the guidance of symbolicandN. Both (MN)* and (NM)* meet this requirement. Tak-
dyr]amics. Two-dimensional symbolic dynamics of the Poin-ing the extreme sequencés =(MN)*, K,=(NM)*, and
caremap may provide, in principle, a complete list of stable 4= (MN)*, one can generate all compatible kneading pairs

and unstable periodic orbits up to a given length and a partinJp to a certain length by making use of the following propo-
description of some chaotic orbits. However, 1D symbolicsjtions. Denote by =s,s;- - - s, a finite string ofM, L, R,

dynamics extracted from the 2D Poincanap is simplerand  andN, and assume that,ve {M,L,R,N}, u# »:
instructive. The 2D features seen in the Poincand first (1) If Ky=3pu--- andK,=3v--- are both compatible
return maps may safely be circumvented by shrinking alongyith a givenH, thenK=37 is also compatible withH,
the FCFs in a 1D study, which deals with forward SymbC"ijhereq—e{C,B,D} is included betweem andv, i.e., either
sequences only. Whether 1D or 2D symbolic dynamics is,< ;< , or »> 7> u holds.

needed and how many tangencies to keep in a 2D study is a (2) For 7=C, under the conditions of K =(3t)* is also

matter of precision. Even in a seemingly “pure” one- compatible withH, wheret stands for eitheR or N.
dimensional situation 2D features may need to be taken into (3) For r=D, under the conditions of K=(Et’2_ﬂ°° is

account when it comes to coping with very long symbolic ) : , .

sequences. This has to be decided in practice. Therefort(é‘f)mpatlble withH, wheret stancj; for eitheM or L.
what has been described in this paper remains a physicist’s (4) For 7=B, under the _cond|t_|0ns of I, =3>RH and
approach for the time being. However, it may provide foodK2=2LH are both compatible withi. .

for thought to mathematicians. We mention in passing that Without going into the proofs we continue with the con-
there are some technical subtleties in carrying out the prostruction. By means of the above propositions we have the
gram that we could not touch upon due to limited space, buinedian wordk =D ,B,C betweenK, andK,. At this step
there also has been hope to automate the process and W have the following words in ascending order:

apply it to more systems of physical importance.
pply Yy pny p (NM)* N*,C,R* R(MN)*,B,L(NM)*
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APPENDIX A: GENERATION OF COMPATIBLE (RLLR)",RDLC,(RMLN) R(MN)™.

KNEADING PAIRS FOR THE LORENZ-SPARROW MAP This process is repeated to produce all possilep to a

We first make a proviso relevant to both Appendices. In &certain length. For eack one determines &l . In this
2D setting it is difficult to say that a symbolic sequence isway we construct the entire kneading plane for the Lorenz-
included “between” some other sequences without furtherSparrow map. Figure 8 shows that only a small part of this
specifying how the order is defined. In a phase space a nunflane is related to the Lorenz equations. This is caused
ber of FCFs may be ordered along a BCF that intersects witmainly by the set oH that may occur in the system.
some FCFs transversely. In the parameter space of the Lo- The above method may be applied to the Lorenz equa-
renz equations we are working along thaxis and there is a tions to generate and locate median words included between
1D ordering of all symbolic sequences according to thefwo known stable periods. For example, betw&RRL Cat
Lorenz-Sparrow map. We hope this is clear from the context;=59.247 andRRRRLLCat r,=55.787 two period 9
in what follows. words RRRRLLLLCand RRRRLLRLCcan be produced
Two kneading sequenc&andH must satisfy the admis- as follows. At first, taker ;=59.40 andr,=55.90 near the
sibility conditions (8) in order to become a compatible twor’ values and determine the corresponding maximal se-
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guencedH from the chaotic attractors as we did above at
=181.15 or 136.5. They turn out to beH,
=MLLLRLLRL. - for the former and H,
=MLLLLRRLR -- for the latter. Then take their common
string to be a newH=MLLL. Finally we can useK;
=RRRLC K,=RRRRLLGandH=MLLL to form com-
patible kneading pairs and to gener®®RRRLLLLCand
RRRRLLRLCwhich are included in betwedRRRLCand
RRRRLLC In order to have this procedure working well,
the differencelr,—r,| should be small to guarantee tHat
is long enough to be usable. In additian, andr, should
be chosen close enough to; and r; so that K,

=RRRLRRRRLRRRLLLE. at ry and Ky,

=RRRRLLRRRRLRLLR- at r, are very close to
RRRLCandRRRRLLGC respectively.

APPENDIX B: GENERATION OF ADMISSIBLE
SEQUENCES FOR A GIVEN KNEADING PAIR

Given a compatible kneading paiK(H), one can gener-
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the admissible sequences. These rules are based on continu-
ity in the phase plane. To simplify the writing we introduce
some notation. Le®,=s;s,---S, be a finite string ofn
symbols; let symbolg, v, ands;, i=1,2, ... n be all taken
from the sef{M,L,R,N}; and let the symbot denote one of
{C,B,D}. Recollect, moreover, that at any step of applying
the rules &C at the end of a string is to be continuedGkK,
aD asDK, and aB asRH or LH, see Eq(7).

We have the following propositions:

(1) If both X,u--- and X,,v--- are admissible, then
3.7 -+ is admissible provided is include between. and
v, i.e., eitherv<<r<u or v>71>u takes place.

(2) If 2,B and,,C are admissible then so does{R)”.

(3) If 2,C andX,u--- are admissible and, in addition,
SK<(E ) <Spu- -+, wherete{R,N}, then G t)* is
admissible.

@ If Spp---, 2,D andsv- - - are admissible, ,t and
3, ,w are respectively the greater and the smalleE gif and

3.M, then S tK< (2ot w)*<3,u implies the admissi-
bility of (St2,w)” or X, v- - - <(Z W t)* <3 ,wK im-

ate all admissible periodic symbolic sequences up to a giveRlies the admissibility of ¥ ,wXt)”.

length, e.g., 6. Usually, we are interested in having a list of

(5) If I1=uqus---u,B=UB andl,=UR- .- are admis-

symbolic names of all short periodic orbits. This can be donéible and the leading string of, turns out to be

by brute force, i.e., first generate alf @ossible symbolic

UiU,- - - U7 with k<n and re{C,B,D} , then UR)” is

sequences then filter them against the admissibility condiadmissible if it is included between andl,, otherwise it is
tions (8). In so doing one should avoid repeated counting ofinadmissible. Similarly, Ifl;=UB andl,=UL--- are ad-
words. Therefore, we always write the basic string of a pemissible, then JLUR)” is admissible if it is included be-

riodic sequence in the shift-minimal form with respectNo
or R. The shift-maximal sequences with respectMoor L
may be obtained by applying the symmetry transformagion

tweenl, andl,, otherwise it is inadmissible.
We omit the proof§36] of these propositions, which are
based on continuity in the phase plane and on explicit check-

However, one can formulate a few rules to generate onlyng of the admissibility condition$8).
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