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Gluing bifurcations in optothermal nonlinear devices

R. Herrero, J. Farjas,R. Pons' F. Pi, and G. Orriols
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The gluing process through which two limit cycles become a two-lobed limit cycle by involving an inter-
mediate saddle point has been investigated in the reflection of an optothermal nonlinear device that behaves as
a three-dimensional dynamical system. Sequences of both periodic and aperiodic oscillations of complex
hybrid structures appear during the process. The observed phenomena have been interpreted as arising from a
set of homoclinic bifurcations organized around some codimension-two global bifurcations in which the saddle
point experiences homoclinicity at both sides simultaneously. Experimental results are compared with numeri-
cal simulations[S1063-651X98)12305-X]

PACS numbd(s): 05.45+b, 42.65.Pc

[. INTRODUCTION complex situations may occur when two different homoclinic
bifurcations of the same saddle invariant set cross one an-
Local and global bifurcations are powerful tools for un- other[8—13). These are the so-called gluing bifurcations and
derstanding the appearance of complex dynamics in nonlirthe present work reports numerical and experimental results
ear systems. Multiple bifurcation points appearing in the padealing with one of such bifurcation.
rameter space are particularly significant because they act as Gluing together two attractors is a consequence of a kind
organizing centers of a variety of qualitatively different dy- of global bifurcation during which two attractors living at the
namics. Concerning local bifurcations, accurate analysis obpposite sides of a saddle separatrix are destroyed and a new
the bifurcation set may be obtained through the normal formsttractor is created occupying the loci in phase space of the
derived by applying the center manifold theorem near theprevious ones. In the gluing process both branches of the
degenerate point. This way is really powerful because it evisaddle unstable manifold approach the separatrix and a vari-
dences the intrinsic association of a homoclinic connectiorety of successive homoclinic connections occur through
with certain degenerate local bifurcations and shows how thevhich the original attractors disappear and new periodic or-
corresponding global bifurcation curve emerges from thebits of hybrid structure are created. In the parameter space,
codimension-two poinfl,2]. the gluing phenomena appear organized around the point
Homoclinic orbits are trajectories biasymptotic to a saddlewhere both branches of the saddle unstable manifold experi-
limit set both forward and backward in time, and their crucialence homoclinicity simultaneously. In the absence of sym-
role in the mechanisms originating chaos in dynamical sysmetry, such a point describes a codimension-two global bi-
tems is now widely recognizefil,3—5. Homoclinicity is  furcation.
reached when the unstable and stable manifolds of the saddle Examples of transitions to chaos through gluing processes
approach to cross one through the other by varying somhave been found in models developed in the context of the
parameter and a global bifurcation affecting both sides of th&Rayleigh-Baard convectio14], reaction-diffusion systems
saddle separatrix then occurs. During the process a numbgt5], parametrically excited surface wavids]|, and magne-
of periodic orbits may be generatédestroyegiand, accord- toconvectior{17]. To our knowledge, however, experimental
ing to the actual saddle configuration, complex dynamicsbservations of gluing bifurcation phenomena have been re-
may appeaf6]. The homoclinic orbit characterizes a recur- ported in the literature for two-dimensional dynamical sys-
rent mechanism for global folding of phase space, while theems only[18]. In two dimensions the gluing process is
saddle set provides stretching, folding, and contraction of thgimple. Only the two original limit cycles and the resulting
flow at a local level. two-lobed cycle may be involved and the possible saddle
Homoclinic bifurcations of codimension higher than oneconnections reduce to the four combinations between the
are also possible. A variety of cases arise from the violatiorpairs of one-dimensional branches of the stable and unstable
of some nondegeneracy condition affecting either the saddimanifolds. In three-dimensional phase spaces, however, the
eigenvalues or the twistedness of manifolds around the hgossibility of different homoclinic connections increases in-
moclinic orbit[7]. Typically a number of additional bifurca- definitely and a large variety of hybrid periodic orbits may
tions of both local and global nature emerge from the degenbe created and complex dynamics may odd@,11]. This
erate point of the homoclinic bifurcation curve. More paper describes a gluing process observed in the response of
a three-dimensional dynamical system and which corre-
sponds to the simple case of a saddle point with real eigen-
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similar flow structures in an extended region of phase spactansfers such information to the localized heat source by
and, in particular, it is responsible f@r) a multiple steady means of interference effects. Nonlinearity is due to the cav-
state solution consisting of successive saddle-node pairs dfy response as a function of the round-trip phase shift, i.e.,
fixed points, andii) the occurrence of the same Hopf bifur- the interferometric Airy function. Competition and time de-
cations on either the several nodes or the several saddles alay between the optothermal contributions of the various lay-
the similar evolution of the corresponding limit cycles. In ers to the light phase shift produce instabilities and conse-
this way, phase portraits typically contain several attractorguent dynamical phenomena.

that, originated from the respective node points, appear sepa- Under some simplifying assumptions, the BOITAL cavity
rated by the stable manifolds of the intermediate saddle setwith a multilayer spacer may be described by the homoge-
In their evolution with the input light power, the attractors at neous heat equations subject to a nonlocal and nonlinear
both sides of a given saddle set may approach the saddundary conditiori21]. The linear stability analysis shows
separatrix and may be then glued together. Another signifithat the partial differential equation has effective dynamical
cant property of the nonlinear system is that its effectivedimension equal to the number of spacing layers and that it
dynamical dimension may be chosen freely by simply modi-may be reduced to the following low-order mod2g]

fying the device structure and in this way allowed us to study N

gluing phenomena in phase spaces of different dimensions. de;

On the other hand, we dispose of a mathematical model that ~ qt _21
behaves mimetically to the experimental device and the nu-

merical analysis is then really useful for the understanding ofvith
experimental results.

bili—aA(P)¢el, j=12,..N, (18

N
=90+ 2 W, (1b)
1. NONLINEAR DEVICE 1

The nonlinear system is based on the so-called optothetvherey describes the round-trip phase shift of the cawit,
mal bistability with localized absorptiofBOITAL) and it IS the phase shift in the absence of laser heagingienotes
has been described in detail elsewhere from both the experibe variation due to temperature changes of the phase shift
mental[19,20 and mathematicdR1,22 points of view. We associated with thg¢th layer,N is the number of layers, and
here remark on the basic mechanisms underlying the systetfe represents the incident light intensity normalized in such
dynamics and briefly describe essential details of both th@ way thata; = 1. Expressions for the coefficierttg anda,
experimental device and the model used for numerical simuas a function of the physical parameters are givef2i.
lations. A(¥) describes the input mirror absorption by including in-

The BOITAL device is an interferometric cavity with a terference effects and its expression as a function of the mir-
partially absorbing input mirror and a transparent multilayerror parameters is given if21]. A(#) is a periodic function
spacer of alternatively opposite thermo-optic materials. It igvith successive maxima and minima and it constitutes the
illuminated by a laser beam and the time evolution of thenonlinearity of the system. A canonical form of Ed4)
reflected light power is the observed signal. Concretely, irPased on the companion form matrix has been also derived
the experimental device used in this work the cavity wad22]. The response of the system is given by the interferom-
spaced with gglass—silicond23]—glas$ trilayer of thick-  eter reflectionR(y) [21].
nesses 14Qum, 70 um, and 1 mm, respectively. Devices  The partial differential equations and the reduced model
with silicone layers of different thicknesses were also em-ave identical steady state solution with nearly the same lin-
ployed in order to move within the parameter space. Thermagar stability behavior and exhibit very similar dynamics, at
expansion works in the case of glass as a positive phaségast within parameter ranges corresponding to physical de-
shifting effect (10° K1) while the silicon produces nega- Vvices [22]. Numerical simulations presented in this work
tive shifting effects essentially due to refractive index have been done with the reduced model of Egs. On the
changes €4.7x10 4 K™Y). The cavity mirrors were a oOther hand, a variety of experimental results in good agree-
nickel-chrome film of 6 nm thickness coated on the firstment with numerical simulations have been already reported
layer of glass and a Ti©SiO, multilayer stack coated on the for BOITAL devices with one{24], two- [18], and three-
rear glass layer. The dielectric mirror reflection was high[19,20 spacing layers.
(0.98 for the operating wavelengtivhile the metallic mirror Let us briefly give a generic overview of the-layer
had external and internal reflections of 0.17 and 0.23, respe®OITAL dynamics in the (/1,...,#n) phase space, where
tively, and transmission of 0.46. The device was irradiatedhe ¢=const hyperplanes underlie a certain repetition of
for the metal mirror side with a continuous-wave laser beanflow structures as a consequence of fg/y) periodicity.
of 514.5 nm wavelength focused to a 0.3 mm diam spot, thd he steady state solution consists of a number of saddle-node
reflected light was detected by means of a photodiode angairs, Sy, and Ny,..;, m=1,2,..., added to the initial node
the signal was digitized and stored in a computer. The incipoint, Ny, through successive saddle-node bifurcations oc-
dent light power is used as control parameter. curring by increasing the input power-. The fixed points

Time dynamics in BOITAL devices is exclusively based appear aligned in a given direction determined by the cavity
on the heat propagation from the absorbing mirror througtspacer properties, but the number of points and theialues
the cavity spacer, while the light provides an instantaneoudepend on the cavity mirrors and thg value only. The
nonlinear feedback to the heat source. The light tests thphase portrait evolution as a function of the control param-
spacer temperature by means of its own phase shift aneter ¢ is typically as follows: a limit cycle born from the
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folds, respectively. Under clear dominance of the first kind
of homoclinicity the system evolution describessRigr-type
folded bandq19]. In the second case the system evolution
describes Shil'nikov-type attractors if ti8, saddle is either

a focus or a limit cycle[20]. In this work we deal with
homoclinic phenomena associated withSg saddle point
having purely real eigenvalues, i.e., a tridimensional saddle
5 with a positive eigenvalue and two negative ones.

P~ 94 mW

J Ill. MAIN FEATURES OF GLUING BIFURCATION
DIAGRAMS

features of the gluing bifurcation diagrams are briefly de-
- scribed in order to facilitate the connection between our re-
> sults and the theoretical analysis previously reported in the
v, \\ literature[8—13).
L N In symmetric systems where the homoclinic orbits at both
20 v, saddle sides are necessarily simultaneous, the gluing bifurca-
t tion is achieved by varying only one parameter but in the
absence of proper symmetry, as is the case in BOITAL sys-
tems, the full analysis requires good control of two param-
eters and the simultaneous occurrence of both homoclinic
connections is a codimension-two bifurcati@. It has been
N,, point is growing under the presence of a neighboringtheoretically studied for the case of a saddle fixed point with
saddle set and eventually bifurcates towards more or lessnly one positive eigenvalugl0,12 and significant differ-
complex structures according to the saddle configurationences have been appreciated between the case of purely real
The coexistence of several limit cycles, originated from dif-eigenvalues and a saddle focii),11]. BOITAL systems
ferent node points, may lead to complex structures based amay exhibit both kinds of saddle points but in this paper we
multiple-lobed orbits arising from gluing processes. consider cases with purely real eigenvalues only. In the
For N=2, the dynamics remains in a plane and the rel-saddle focus case the bifurcation structure is really dense and
evant features reduce to a variety of homoclinic bifurcationghe experimental analysis becomes rather critical. Numerical
occurring when the growing limit cycles make tangency tosimulations showing gluing phenomena associated with a
the neighboring saddle points and either disappear or beconsaddle limit cycle have been previously reporf@d] and
glued to other cyclegl8]. Figure 1 points out how high the corresponding first-return maps have been explained by
gluing capability of BOITAL systems in the two- means of a quite general Poincanap mode[26].
dimensional case may be. The time evolution of Fit) 1 The homoclinic orbits defining the codimension-two point
was experimentally obtained from{glass-optical ge[25]}  are denoted by, andI';, and it is assumed that indepen-
bilayer with thicknesses of 400 and 2Q6n, respectively. dent control of both connections is provided by parameters
The evolution corresponds to a four-lobed limit cycle arisinguo and wq, respectively, in such a way thht, (I';) occurs
from successive gluing of four limit cycles. The numerical for uy=0 (x,=0). It is also assumed that the correspond-
results shown in Fig. (b) illustrate the same type of attractor ing periodic orbits, to be denoted by symbols 0 and 1, exist
in both the time domain and they(,,) phase space. The for uo<0 andu,<0, respectively. In thegq,u,) param-
time evolutions describe both the interferometric phase eter plane, the axes describe the principal homoclinic con-
and the normalized reflected powgg . The y(t) signal pro- nections and the origin is the codimension-two point. As
vides the simplest picture of the evolution while the supple-schematically indicated in Fig. 2, different regions can be
mentary foldings on theyy signal arise from interference distinguished in this parameter plane. Fop<<O and u;
effects and have no dynamical significance. The phase por0, both the 0 and 1 periodic orbits exist and their respec-
trait shows how the limit cycle rounds around seven fixedtive approach to the saddle point takes place as ejilyeor
points, of which three are saddles. p1 tends to 0. One of the orbits vanishes in crossing the
For N=3 the dynamics appear enriched by two things nothomaoclinic line while the other remains alone. In the white
possible in bidimensional phase spaces. First, the neighboregion within the quadrant defined >0 andw,>0 only
ing saddle set may be now either a saddle point with a bidithe 01 two-lobed periodic orbit exists. This relatively simple
mensional stable manifold or a saddle limit cycle generatedarbit is the final result of the gluing process but the transition
by a Hopf bifurcation of that point. And second, the growing taking place within the dark zones may be extremely com-
limit cycle may bend to reinject towards the inner point from plex. A large variety of homoclinic connections with differ-
which it was originated and which has become a saddle foent looping geometries of saddle manifolds can occur within
cus with outward spiraling and a one-dimensional insetthe transition zonef10,11. Each homoclinic curve creates
Thus, underlying the dynamics are homoclinic connectiongdestroy$ a new periodic orbit possessing some 0-1 hybrid
associated with saddle limit sets arising from Mg andS,,  structure, i.e., a trajectory moving at both sides of the saddle
points and having one- and two-dimensional stable manistable manifold and describing a certain sequence of 0 and 1

. \ (b) In this section the notation is introduced and some general

W

FIG. 1. Four-lobed limit cycle observed in the reflection of a
BOITAL bilayer system. Experimentala) and numerical(b) re-
sults.
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FIG. 3. Gluing configurations where the principal homoclinic
orbits reach the saddle point along either the same[saland(c)]

FIG. 2. Basic scheme of a gluing bifurcation in a parameter o .
plane. Gluing processes producing hybrid periodic orbits and com9r the opposite sidet) of the strong stable manifold.

plex behavior may occur in the shadowed areas. . o ] ] ] )
ration) or opposite sidegfigure eight configurationof the

loops in a given order. The existence domain of the periodigtrong stable manifolll0,11]. The two situations are sche-
orbit is usually limited by another homoclinic curve. The matically shown in Figs. @) and 3b), respectively, for a
various homoclinic connections define a variety of subzoneshree-dimensional phase space. The basic gluing process in
containing different periodic orbits. Superposition regionsBOITAL systems possess the figure-eight configuration but
where two different periodic orbits coexist may occur in secondary codimension-two points arising from the crossing
some cases according to the ordering of homoclinic curvef other homoclinic connections may be equivalent to the
If two contiguous subzones do not superpose then it mearisutterfly configuration, as shown in Fig(c3. On the other
that an intermediate subzone containing a different perioditiand, it is also relevant to consider the kind of twisting the
orbit must exist in the middle and so on. Under some cir-flow experiences along trajectories nearby the principal ho-
cumstances two homoclinic bifurcation curves can cross oneoclinic orbits. Different structures of homoclinic bifurca-
another and then an additional global codimension-two pointions occur if the orientation is either preserved along both
exists, from which more homoclinic curves emerge. orbits, or inverted along both orbits, or preserved in one orbit
Any hybrid orbit created during the gluing process isbut inverted in the othdr10].
characterized by an ordered sequence of 0's and 1's. Differ- In two-dimensional phase spaces, the saddle point has
ent sequences may be associated with the same orbit accomhe-dimensional manifolds. Four different saddle connec-
ing to the starting point but different orbits have differenttions can occur and the corresponding curves cannot cross
sequences. In the considered case of a saddle having ortyemselves except at the codimension-two point, where the
one positive eigenvalue, it may be shown that the orbit seinvariant manifolds necessarily exhibit a figure-eight con-
guences cannot contain consecutive 1's and 0’s simultafiguration. The order of the homoclinic bifurcations is nec-
neously, that no more than two periodic orbits can coexist iressarily like that shown in the diagram of Figagand it
the same parameter domain, and that the orbits of neighboimplies the coexistence of the 01 two-lobed orbit with either
ing domains are related by symbolic rules based on the Fareyie 0 or 1 orbits. Nevertheless, in strongly dissipative sys-
tree structurg¢10,12. The multiple-loop homoclinic connec- tems like the BOITAL ones, the high negative eigenvalue
tions will be denoted a§;, where the first subindex indi- with respect to the positive one is responsible for such an
cates what kind of loop is outgoing from the saddle pointextreme narrowing of the coexistence regions, which makes
while the second subindex represents the rest of the orbiheir observation difficult. As a matter of fact, we have in-
sequence. The pair of homoclinic orbits limiting the domainvestigated gluing phenomena in BOITAL bilayer devices
of a periodic orbit are always of opposite beginning, iI&;,  without being able to detect any superposition of orbits in the
andI';; with both G and 1j describing the given orbit. transition from single- to two-lobed orbits both experimen-
The actual structure of bifurcation curves around thetally [18] and numerically{22]. On the other hand, the re-
codimension-two point depends on the form of the linearizedults shown in Fig. 1 illustrate a situation in which three
vector field near the saddle point and the vector field geomsuccessive gluing processes involving different saddle points
etry in the neighborhood of bothi; andI'; homoclinic or-  had occurred and a four-lobed periodic orbit has been created
bits[10,11,13. We consider the case of a saddle with purelyin a two-dimensional phase space.
real eigenvalues, of which only one is positive and one In phase spaces of higher dimension both the saddle
among the rest is lower in modulus than the others. Sucmanifold configuration and the orientation properties of the
eigenvalues denoted as and —\, describe the departure reinjection motion are significant in determining the bifurca-
from and the arrival at the saddle point, respectively. Undetion diagram. As a particular example that will be useful for
these circumstances two kinds of situations must be distineur analysis, we show in Fig.(d) the gluing bifurcation
guished according to whether the principal homoclinic orbitsdiagram for the butterfly configuration and for the semiori-
reach the saddle point along the same ¢imidterfly configu- entable case in which orientation is preserved rléabut



5370 HERRERO, FARJAS, PONS, PI, AND ORRIOLS 57

T, 40 7

\/01 Ve

\ (a)

35 1
01 (or 10)

&

FIG. 5. Numerical bifurcation diagram for a BOITAL trilayer
system, represented in the parameter plane defined by the thickness
of the third layer and the input light intensity.

the theoretical analysis of gluing bifurcations reported in the
literature consider the negative saddle case ¢8iy13).

IV. GLUING BIFURCATION OBSERVED IN THE BOITAL

. ) ) . . . SYSTEM
FIG. 4. Gluing bifurcation diagrams for the two-dimensional

case(a) and for a three-dimensional saddle point with—\,<0 This section describes a numerical bifurcation diagram
and homoclinic orbits in the butterfly configuration with orientation obtained for a BOITAL trilayer systerf28]. It corresponds
preserved nedr, but inverted neaf'o(b). Broken line arcs denote  qualitatively to the experimentally analyzed gluing process.
periodic orbit domains. Some numerical simulations are also presented in the next

inverted near’, [10]. In this case the gluing complexity sect_ion for comparison with the experimental results.
appears nearbly; only. There is an accumulation of periodic Figure 5 presents the main features of the bifurcation dia-
domains with orbits of type 1 wheren indicates the num- gram in the parameter plane defined by the normalized inci-
ber of successive 1's and it increases when approaching @ent power,¢e, and the thickness of one of the spacing
I';. The 0T periodic orbit appears associated with the pairlayers,gs. In the considered range @ values, the station-
of homoclinic bifurcationd™;g;n-1 andl'g;n. The domains of — ary solution of the system is constituted by five fixed points,
different periodic orbits appear superposed upon one a2, S;, N3, S;, andN,. The diagram of Fig. 5 concerns
other, except for th&'; boundary where the accumulation of limit cycles originated fronN, andN3; when they approach
01" orhits takes place. S, in the configuration schematically indicated in Fig. 6. The
Up to now we have implicitly supposed a saddle point oftwo basic cycles will be denoted by 0 and 1, respectively,
negative value, i.e., the leading eigenvalues fuliijl—x,  and the corresponding homoclinic orbitsSpby I'y andI’; .
<0. This is important because it means that each homocliniBoth homoclinic connections occur simultaneously in the
connection creates a single periodic orbit that is stgp/@. ~ codimension-two point denoted by in Fig. 5 and the
In the contrary case, whex,—\,>0, a single periodic mo- Scheme of Fig. 6 corresponds to the right-hand side. gkt
tion arises also from each homoclinic bifurcation but it is notthe « point, S, has eigenvalues equal t631.9, 1.1, and
stable [27]. The gluing process observed in the three-—0.2 and manifolds in the figure-eight configuratigfig.
dimensional BOITAL system corresponds to a positive3(b)]. The homoclinic bifurcation$’;, andI'y; appear from
saddle and, for this reason, the stable periodic orbits detected and no more homoclinic curves have been found around
in both numerical simulations and experiments must becomthis point.I";; moves neat’y up to cross from one to the
unstable before reaching homoclinicity. This implies moreother in a second codimension-two point that is denoteg by
complex bifurcation diagrams with additional bifurcation and from which a bundle of bifurcation curves emerges. On
curves that arise from the proper codimension-two points oithis point the saddI&, has eigenvalues equal t626.4, 1.0,
the homoclinic bifurcation curves. Typically, cyclic saddle- and —0.1 and its manifolds connect as shown in Fi¢c)3
node bifurcations appear in the case of an orientationSimilarly, I'g; moves neal’; and another codimension-two
preserving homoclinic connection while period-doubling bi- point denoted by3’ occurs in the crossing of both curves.
furcations accompanied by homoclinic bifurcations of theThe eigenvalues of the stable orbits and the analysis of flow
period-doubled orbits will occur when the orientation is in- sections in a proper Poincaptane indicate that the orienta-
verted[7]. Except for the case of Lorenz-like equatig29], tion is preserved near the four homoclinic connections every-
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We focus our analysis on th@ codimension-two point
and describe details of the gluing bifurcation structure found
in the surroundings of th€, andI 4 lines only. The basic
orbits of the gluing process are now the orbits 0 and 10,
where we have preferred the symbol 10 instead of the
equivalent 01 in order to emphasize the opposite flow emer-
gence from the saddle point of the two basic orbits. The main
glued orbit is therefore described a&l0). Let us also re-
mark that in this case we are dealing with a pair of ho-
moclinic bifurcations of a positive saddle point that involve
nontwisted orbits organized in the butterfly configuration
equivalent to that in Fig. (@) and that, after meeting together
at the 8 point, one of the orbit§the O becomes twisted.

The one-parameter diagrams of Fig. 7 correspond to ver-

FIG. 6. Schematic bifurcation diagram as a function of the inputtical sweepings across the homoclinic lines for three values

power for ags value at the right-hand side of the codimension-
two point. The order of thd’y andT"yy (I'y andI"y;) homoclinic
bifurcations determines at what side of t€3’) point the system
is.

where in the diagram except for thg andI'; curves at the
right-hand side of the3 and B’ points, respectively. This

of g3, one located in between the and 8 points and the
other two at the right-hand side ¢f. In the diagrams we
have represented the time intervals between successive pas-
sages of the orbit for a certain Poincalane that cuts the 0
loops only. In this way the Poincaietersections detect both

the 0 and 10 loops one time per loop only, and the 10 loops
are easily distinguished from the 0 ones by their longer re-

indicates that the principal homoclinic orbits experienceturn times. The orbit analysis for a givefr value has been

twistedness change in such codimension-two points.

return time
i/

done after disregarding a long enough time evolution tran-

7 Taop I'e*

return time

Taoy oo lIo

5
32.15

0 (0010 0)]"
0(10)

15“ 0

0'(10)

0'(10
‘ o

return time

o 5|

[o(10)'[o(10y1"
o(10)’ 0
] J E o1y -

incident power (‘"PE )

FIG. 7. Bifurcation diagrams as a function ¢f for g;=2.62(a), 3 (b), and 8(c). The orbits are characterized by their return times to
a Poincareplane cutting the 0 loops only. The diagrams describe stable orbits except for the 0 saddle orbit shown by the brokés line in

to indicate the occurrence of thg homoclinic connection.
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FIG. 8. Coexisting orbits fopz=33.685 in the case of Fig(d
showing that both approach the saddle point tangent to each other | - r
The cross denotes the saddle. \ sy 0y
o .
sient so that attracting orbits are solely considered. Signifi- \
cant stable and unstable periodic orbits have been followec ‘Q

by continuation techniques and characterized in detail. The o,
windows with a discrete number of branches denote stable I (10) 0
periodic orbits and the structure of such orbits in 0 and 10
loops is given by the number of short and long return times, FIG. 9. Gluing bifurcation diagram corresponding to tjge
respectively. When both kinds of loops appear more than onkoint. _Each homocl_in_ic bi_furcati_on creates a_saddle periodic orbit.
time the sequential order can be only determined by insped\_lontwsted homO(_:Ilnlc plfurcatlpns appear in as_sociati_on with a
tion of the time evolution. Asymptotic return time rises of saddle-noddSN) bI.fUI’C&tIOH.. Twisted homoclinic bifurcations are
certain loops indicate a close approach of such loops to the€ceded by a period-doublingD) sequence.
saddle point and the consequent vanishing of the periodic
orbit suggests the occurrence of a homoclinic bifurcationstable orbit is even growing in period and both orbits meet
Notice that the asymptotic rises correspond to 0 loops at ththen together by vanishing in a saddle-node bifurcation. Nev-
right-hand side of the windows and to 10 loops at the otheertheless, our continuation techniques have not been able to
side. Windows with a continuous spread of points describeatch any saddle orbit and therefore we cannot confirm the
aperiodic evolutions and usually contain smaller periodicbifurcation details.
windows. Nonperiodic windows appear through a period- Figure 7b) corresponds to the right-hand side gfand
doubling sequence beginning from the previous periodic orcontains a rich variety of gluing phenomena. The principal
bit and vanishes with intermittencies towards the next perihomoclinic connectiond;, andI' o, appear now in opposite
odic orbit. Aperiodic evolutions are typically observed asorder as in Fig. @) and, therefore, there is no coexistence of
hesitations among neighboring periodic orbits. The way thé and 10 orbits but two new kinds of structures have ap-
period-doubling bifurcations appear in the return time dia-peared. One is equivalent to the gluing structure of Fig) 4
grams indicates that the two loops of the doubled orbit exfor the semiorientable case of a negative saddle point, i.e.,
hibit oppositely varying return time. Such a behavior is ex-the sequence of homoclinic bifurcations orderedl'ag))o,
plained by noting that the doubling orbit is in the way of I'g, I'10)0¢10): '0(10):---: (100 @nd the succession of peri-
homoclinicity and by assuming that the two loops move op-odic windows of type 0(10) accumulating towardd ;.
positely with respect to the saddle point. The second kind of structure appears at the right-hand side of
Consider first the diagram of Fig.(& corresponding to each periodic window in a region opened with a period-
the left-hand side of3. Only the two basic orbits 0 and 10 doubling bifurcation of the given orbit and ended just at the
have been detected in this case and they appear superpossinning of the next periodic orbit. For the 0(10)in-
in a certainygz domain. Figure 8 shows the coexisting orbits dows, such a region appears as a narrow aperiodic window
in the (y1,4,,¢3) phase space and points out how the tra-resulting from the period-doubling sequence. A wider struc-
jectories approach the saddle in the butterfly-equivalent corture appears in the case of the basic orbit O, in which a
figuration. The two orbits vanish with an asymptotic increased?(10) periodic window may be seen in the middle of two
of their periods in what seems the two principal homoclinici-aperiodic windows both appearing through period-doubling
ties, I'y andI';o. The process is, however, more complexsequences. The eigenvalue analysis points out that every
because each one of the orbits possess an eigenvalue tiséable periodic orbit suffers a reversion of twistedness across
tends to+1 while its period increases, instead of 0 as in aits existence domain. At the left-hand side, the orbits vanish
regular homoclinic connection. The situation may be inter-with one eigenvalue tending t¢ 1 and with asymptotically
preted according to the scheme of the resonant sidéncreasing period. As already discussed, it may be inter-
switching codimension-two bifurcation for a nontwisted ho-preted as a combination of I ;q); nontwisted homoclinic
moclinic orbit [30]. We suppose that the homoclinic bifurcation creating a saddle orbit and a saddle-node bifur-
bifurcation takes place by creating a saddle orbit while thecation vanishing the two periodic orbif84]. On the con-
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FIG. 10. Period-doubling sequence at the beginning of the gluing process. Experimental time evolutions of the reflected power and
corresponding return time maps for two incident powéais, Numerical results showing successive phase portraits of the sequence, the time
evolution of the basic 0 orbit, and return maps for the aperiodic Stajte,

trary, at the right-hand side of the windows, the orbits havegluing processes between orbits of typ® @#nd the basic
an eigenvalue equal te 1 and are therefore fully twisted. A orbit 10. As will be shown in the light of the one-
period-doubling bifurcation takes place and the remainingdimensional map describing the gluing process, the presence
saddle orbit continues the asymptotic time increase towardsf 0" with odd n numbers may be explained as due to a
what seems & ; twisted homoclinic connection. Something period-adding sequence of saddle-node bifurcations generat-
similar happens with the successive period-doubled orbiting superstable orbits"Owith n=3. On the other hand, a
but it cannot be appreciated in the bifurcation diagramsrelatively large packet containing orbits of type
where only the 0 saddle orbit has been represented. Su¢i®?(10)]"[0(10)] appears in between the@0) and 010)
behavior is clearly related with the positive value of thewindows. Similarly, a group of0(10)]"[0(10Y] orbits ap-
saddle point and the consequent fact that its homoclinic corpears at the other side of thél0) window. Such a complex
nections cannot produce stable orbits. In summary, we corstructure can be explained if additional crossings of ho-
clude that the main bifurcation structure around ghpoint  moclinic bifurcations have occurred. Such a kind of hybrid
is as schematically shown in Fig. 9. All of the bifurcation orbits has not been observed in the experiment and not will
curves emerge fronB except for the principal homoclinic be considered in more detail.
bifurcations and the saddle-node bifurcation associated with
I'1p. The domain of a given stable periodic orbit is denoted
by a solid line arc that becomes broken at the period-
doubling bifurcation. Period-doubling sequences yielding
aperiodic evolutions occur in the regions between the period- Figures 10—15 present a series of experimental and nu-
doubling bifurcation and the saddle-node bifurcation of themerical results illustrating a variety of states observed during
next periodic window. The additional substructure existinga gluing process of the BOITAL system for successively
in the case of the O periodic orbit will be seen in more detailincreasing incident powers. The experimental results were
in the diagram of Fig. (). obtained with a{glass-silicone-glag3sdevice of thicknesses
Notice that the whole structure of Fig(bj covers a rela- 140 um, 70 um, and 1 mm, respectively, and the numerical
tive g interval lower than 1%. The experimental resolution simulations correspond to the one-parameter bifurcation dia-
does not permit one to distinguish details of such a structurgram of Fig. 7c). Poincaresections of the attractors obtained
except perhaps for the intermediate periodic window. It hadoth experimentally and numerically appear to be almost one
been necessary to go farther froph in a situation that dimensional. It denotes strong contraction due to dissipation
roughly corresponds to the diagram of Figc)7 The system and suggests that the main features of the dynamics might
exhibits in this case periodic orbits of both 0(20and probably be well described by means of one-dimensional
0"(10) types, even if organized in a different way. The ap-maps. Time evolutions appear in the figures usually accom-
pearance of §(10) orbits, withn=2,3,4, can be attributed to panied by time first-return maps and, in some numerical

V. EXPERIMENTAL RESULTS AND NUMERICAL
SIMULATIONS
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FIG. 13. Experimental Rg=132.4 mW) and numerical ¥z
=18.67) results illustrating an aperiodic orbit of type 0(1@jth n
varying from 1 to 2.

times of two successive loops. Phase space return maps pro-
vide a more direct interpretation of the attractor structure and
will be useful for comparing with one-dimensional maps de-
veloped from the gluing bifurcation theof$1,32,13. In all

of the cases the Poincasections have been chosen to cut
the O orbits of the attractors only.

Figure 10 illustrates the period-doubling sequence gener-
ated from the basic orbit O just before the beginning of the
gluing process. The experimental evolutions correspond to
the periodic orbit near the first doubling and the aperiodic
state containing O loops only resulting from the sequence,
respectively. The subharmonic process is clearly seen in the
numerical phase portraits. The numerical time evolution
shown in the figure represents the normalized reflected
power gz as a function of a dimensionless time. Such an
evolution corresponds to the periodic orbit and looks really
similar to the experimental one. The experimental return
maps point clearly out the periodic and aperiodic behavior of
the corresponding time signals. Notice that in one case the
w_ne scale of the return map is ten times longer than in the
other. The agreement between the experimental and numeri-

caresections. Time maps are easily obtained from time evo-
lutions and are particularly convenient for the experimental
analysis. Time maps provide complementary information
concerning time divergences but their interpretation is no
immediate because each point is associated with the return
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FIG. 12. Experimental results showing an aperiodic orbit of type
0"(10) with n varying from 1 to 2, forPg=128 mW, and the
periodic orbit @10) for 130 mW.
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Fal return time maps is remarkable. The single hump and the
shapes of both the time and phase space return maps are
{ypical for chaotic signals arising from subharmonic cas-

FIG. 14. Return time map corresponding to a 0(18periodic

orbit with n varying from 4 to 9 obtained foPg=138.4 mW.
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P.=1392 mW will manifest in the displacement of this intersection point
towards infinite return times. At the same time one of the
P time divergence peaks will approach the diagonal to merge
R

with it at theI"y homoclinicity and then the map branch will
cross at the other side of the diagonal. At the same time the
small lower branch will enlarge and also approach the diag-
onal. At a certain moment the hybrid orbif1®) will be
created in a saddle-node bifurcation. This process is illus-
b4 trated in Figs. 12 and 13. Figure 12 presents results corre-
2n1 sponding to a 0(10) orbit, withn varying between 1 and 2,
and to the periodic orbit(@0). Notice that this periodic orbit
1 does not necessarily lie on the diagonal since the return times
e of the 0 and 10 loops may be different. The return maps of
t(s) Fig. 13 indicate thal’y has already happened. In the phase
FIG. 15. Basic periodic orbit of type 10 appearing at the end ofSF_)ace mapl’, takes _place_when the pe”Od'C_ orbit 0 connects
the gluing process. with the stable manifold, i.e., when the ending point of the 0
branch arrives just at the diagonal.
cades. The stable manifold of the saddle point responsible A qualitatively different feature has also happened in the
for the gluing process lies higher than the hump of the phasease of Fig. 13. The 10 branch of the phase space map has
space map and the iteration remains always in the 0 branckurpassed the horizontal level of the stable manifold and then
Nevertheless, such a kind of map is able to produce supetrajectories passing over such a level iterate again on the
stable periodic orbits of type"Q with n=3 through saddle- same branch. In this way 10 successive loops may occur as is
node bifurcations occurring when the trajectory passes fothe case in the 0(10)aperiodic orbit of Fig. 13. Two diver-
the critical point at the top of the hum33]. These orbits gent peaks appear again on the return time map. The peak at
experience also period-doubling sequences and, most impathe left-hand side describes passages nearby the stable mani-
tantly, will be involved in gluing processes with the 10 orbit fold after having doa a 0 loop while the other peak corre-
when the stable manifold will touch the map hump. In thissponds to 10 loops. The process appears more pronounced in
way 0"(10) orbits will appear. the recording for 138.4 m\WFig. 14), which shows a 0(10)
Figure 11 corresponds to a higher input power and showsrbit with n varying from 4 to 9. In this case the return time
an aperiodic hybrid orbit of the type"(10) with n varying  divergence associated with the 0 loops has almost vanished.
from 3 to 6(from 4 to 7 in the numerical simulatipnThe  Finally, the signal for 139.2 mW in Fig. 15 shows how the
interferometric phase)(t) derived from the experimental system exhibits the 10 periodic orbit at the other side of the
signal Pr(t) has been included here to point out the orbitgluing process.
structure more directly and to facilitate the comparison with  The theoretical analysis of the codimension-two gluing
the numerical results reported in the same figure. The timéifurcations[31,32,13 are based on a Poincareap that,
evolution points clearly out the presence of a saddle point iunder the assumption of a stable foliation of the return plane,
correspondence with the intermediate level of the signalcan be reduced to a one-dimensional 2. It is not clear
where the system remains a variable time interval accordintp what extent this condition is fulfilled in the BOITAL sys-
to how close to the stable manifold the evolution passes. Thtems. The twofold structure clearly marked in the experimen-
double way of departure from the intermediate level and thdal return maps indicates that the physical devices exhibits a
return to it after both kinds of departure indicate that themore complex behavior. Nevertheless the numerical return
saddle is relatively near homoclinicity at both of its sides.maps do not show such a twofold structure and, on the other
Notice again the good agreement between the experimentabnd, the Poincargections of the numerical attractors appear
and numerical return time maps. The well defined structur@lways as very thin curves without any sort of transverse
of these maps evidences the deterministic evolution of thestructure. We then find it reasonable to assume that the dy-
system. The additional small branch in the lower part of botamics of the BOITAL model is essentially associated with
the phase space and return time maps and the return tintee longitudinal coordinate along the Poincaection and
double peak are clearly associated with the occurrence of 1that the numerical phase space return map shown in Fig. 13
loops. The phase space map clearly points to the stable manifovides a global overview of the one-dimensional map un-
fold of the saddle point as the vertical line to which the twoderlying the gluing dynamics. It is a two-branched map de-
branches approach tangentially. Unlike in Fig. 10, the stablecribing the two basic loops to be glued and with both
manifold now cuts the top of the hump so that the trajectoriedranches ending on a common vertical line associated with
passing over that manifold describe a 10 loop followed agairthe two-dimensional stable manifold of the saddle point re-
by a sequence of 0 loops. The successive 0 loops are orieaponsible for the gluing process. Thg andI" ;o homoclinic
tation preserving but the last one may be either nontwisted azonnections will happen when the ending point of the respec-
twisted according to at what side of the critical point thetive branch reaches the diagonal. The relative position of the
iteration takes place. This means two different ways to apending points determines at what side of the codimension-
proach the stable manifold and it is the origin of the doubletwo bifurcation the system is found and, in particular, their
peak in the return time divergence. By following the returncoincidence denotes the degenerate point. It may be appreci-
time map notice that the intersection with the diagonal deated that in the case of Fig. 13 thg homoclinicity has just
scribes the periodic orbit 0 and therefore the approadfyto occurred because the 0 branch appears to be just discon-
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nected from the diagonal, while tH&, homoclinicity is re- !
ally far. Notice also that both branches touch tangentially the
vertical line so that both homoclinic connections will create a
nonstable periodic orbit. This fact is related with the positive
value of the saddle point. The negatiymsitive slope of the
0 branch(10 branch nearby the vertical line indicates that
this part of the map invertgpreserves the orientation of L0
intervals, i.e., thel'o; (I'(10;) homoclinicities involve
twisted (nontwisted connections. On the other hand, the
bending of the 0 branch to acquire a positive slope permits
the occurrence of stable orbits. The same happens to the 1!
branch even if in this case no changes of slope sign are
appreciated in the map of Fig. 13. The 10 branch will cross
the diagonal before th&';; connection and a saddle-node 0.0
pair of 10 periodic orbits will be then created. The saddle
orbit will become thel’;; homoclinic orbit while the stable
orbit will be the detected statd39.2 mW signal in Fig. 16

We consider the theoretical one-dimensional Poincare
map[32] writen as follows:

0.5

Xj+ 1= ao( i) = bo( )X} €= co( )X %+ (h.0.t), %<0 -1

Xj+1= —ago(p) + blO(:U’)ng_ ClO(M)ijg"' (h.o.t), x>0,

(2 -5 T T 1
0.8 -0.4 0.0 0.4
where the local coordinatg is measured on the unstable a,
manifold, u describes the set of parameters governing the
principal homoclinic bifurcations, “h.o.t.” stands for “high- FIG. 16. Bifurcation diagram of the m&@) as a function ofy,

order terms,” andé=—(—\,/\;) is the saddle index, @and fora;;=as+0.7,bo=-2.3,b10=1.1,¢o=2, €1c=0.3, and¢
which in our case ig< 1. This means that the derivatives of =0-2. The inset shows the representation of the map dor
the map ax=0 are infinite and that both homoclinic loops =-0.2.

cannot be therefore attractivay and a;y characterize the

separation between each one of the two branches of the utype have been observed in the response of an optothermal
stable manifold and the stable manifold on the Poincareistable device irradiated by a laser beam. A detailed analy-
plane, i.e., these parameters provide independent control @fs of a gluing transition process as a function of the input
the two principal homoclinic connectioniss andbyg are the  power has evidenced a variety of hybrid orbits based on
so-called separatrix quantities determining the orientatiogompinations of the two basic periodic orbits. Return time
properties of the two branches of the n{&@]. For the situ- first-return maps derived from the time evolutions have been
ation considered in this section, corresponding to the rightyseq to understand details of the process. The clear and well
hand side of thes codimension-two point, it i9,<0 and  gefined structure of such maps confirms the occurrence of
byo>0 but at the other side g8 must beb,>0 in order o deterministic chaos in cases of aperiodic evolutions. Com-
describe the twistedness reversion experienced fiyThe  parison with numerical simulations has shown a really good
second-order terms in E(R) are responsible for the folding agreement, particularly remarkable for the return maps. The
of the branches with increasing| values necessary for per- experimental analysis has been done relatively far from the
mitting stable periodic orbits. Figure 16 shows a representacodimension-two point in order to be able to observe the
tion of the map(2) for a given set of parameters and a bifur- gjying structure in certain detail. Nevertheless, the occur-
cation diagram obtained by varyireg anda;in suchaway rence of additional codimension-two bifurcations affecting
that both branches of the map displace simultaneously b¥econdary homoclinic bifurcations makes the bifurcation dia-
maintaining a given separation. Similar diagrams with thegram more complex. Finally, the return maps observed both
same structure of main periodic windows are obtained for &xperimentally and numerically have been connected with

relatively wide range of the map parameters. Notice also théne one-dimensional map established in the theories of the
similarities with the numerical diagram of Fig(l$ obtained  ¢codimension-two gluing bifurcation.

from the BOITAL model. Nevertheless, a more careful

choice of the map parameters would be required in order to
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