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Weak turbulence and structure evolution in N-body Hamiltonian systems with long-range force
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The dynamics of a family of one-dimensional spatially periodic systent¢ dfssical particles interacting
by a repulsive pair force is investigated. This force is the long-range part of the one-dimensional Coulomb
interaction; the family includes the mean-field Hamiltonian rotator model. Initial conditions generating turbu-
lent structures are considered. These structures are density hobes Jrspace that produce a non-Gaussian
probability distribution of fluctuations of the particle distribution functiix,v,t). These density holes appear
in a velocity domain wherd(x,v) has large derivative,f as predicted by the kinetic theory of clumps in
plasmas. Their evolution is shown to be controlled by the motion of the particles irxthg §pace domain
swept by the separatrix associated with the longest-range coupling field components, which implies that their
lifetime is proportional to the numbe\ of particles. The relaxation time of the velocity distribution function
of tagged particles in the systetfor various initial conditions is also shown to be quite insensitive to the
presence of turbulent structures and to spatial scales smaller than the Debye[ BDh@&3-651X98)08905-3

PACS numbgs): 05.45+hb, 64.60.Cn, 52.20.Dq, 52.35.Fp

I. MOTIVATIONS organized structurd4.8,20. Therefore, while the theoretical
basis on which they were analyzed is kinetic theory, they
Systems of many particles interacting via two-body long-should be considered as manifestations of the finiteness of
range forces have peculiar equilibrium and nonequilibriumthe number of particles in the system, but the limitations in
statistical mechanicl,2]. The Coulomb system, which has computer power precluded numerical investigations along
been thoroughly investigated, combines the difficulties ofthis line so far.
long-range interaction with a short-range divergence — or, It has been known for decades that the behavior of the
in one dimension, with a discontinuity in the electric field. (Xx,v) space density of particles interacting by a long range
Recent numerical simulations8—6] and theoretical argu- force like Coulomb’s is described in the limfit—c by the
ments[7-10] indicate that the characteristics of CoulombianVlasov equation. Granularity effects have been computed
plasma turbulence are shared by a family of systems ihrough the Balescu-Lenard equation. However, the typical
which only the smooth, long-range part of the Coulomb in-form of rigorous estimates on the growth of discrepancies
teraction is considered. Such models are discussed in sollegetween kinetic-theoretical evolution and finieevolution
state and nuclear physi¢see, e.g., Ref.11] and references is exponential in time for smooth pair interacti¢d1,22],
therein. and the Vlasov-Poisson system in one space dimension with
A proper understanding of the analogy and differencessmooth initial conditions is able to generate in finite time
between the systems with long-range pair interactions resingularities in the form of “particlelike”(Dirac) concentra-
quires more than a discussion of their equilibrium statistications[23]. This prompts for a more direct study of such finite
mechanics. The aim of the present paper is to show hoWwl effects. The present paper aims to show that phase space
systems with long-range interactions behave similarly to th¢ (x,v) space granulations also appear when the interparticle
Coulomb one in the evolution of theix(v)-space densities. interaction is a smooth long-range one. In the latter case, we
Indeed non-wave-like fluctuationgphase-space granula- take advantage of the development of adapted numerical
tions) are an important element of Vlasov turbulence incodes.
plasma physics(see, e.g., Refs[13—-17 and references In Sec. Il we present our family of modelwith param-
therein, and Ref[18] for a review. These granulations eters), in which the interaction reduces to the Coulomb form
(“clumps” and “holes”) are domains with an excess or a in the limit s—«. The cases=1, or “mean fieldXY" or
depletion of particles, on a length scale comparable with theotator model, was introduced by Antoni and Ruf§12].
Debye length and a velocity range of the order of a fractionLarger values o8 correspond to a Coulomb interaction trun-
of the thermal velocity. They last for long times comparedcated to itss Fourier components with smallest wave number
with the local rate of separation of trajector{d®] and may (i.e., longest range Codes and initial conditions are de-
be presented as nonequilibrium, nonlinear, robust selfscribed in Sec. lll.
In Sec. IV we characterize the relaxation of the distribu-
tion of “tagged” particles(i.e., test particles in the systgm
*Electronic  address:  antoni@jollyjumper.mpipks-dresden.to the ambient distribution, starting from an equilibrium state
mpg.de as well as from a nonequilibrium initial condition. Turbulent
"Electronic address: elskens@newsup.univ-mrs.fr structures generated by our simulations are characterized in
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g field for this interaction and its truncation to the first Fourier
- NN componentgfinite s rotator models
I, Y Hamiltonian(1) yields the equations of motion
0.5 "I’ “\\\ o N
74 N mx=N"12 > Kk,Vng? sinky(x;—Xx,). (3)
o-“ i A n=1r=1
\ l The nth-order total field componer,, its amplitudeS,,
0.5+ \ / and its phasep,, are defined as
\ AN .l N N
A4 X 7
—_ - _{ N2 NG ; _
e -+ -+ + + + +—x Si»=|N 121 g coskpX;,N 121 g sin kqx;
FIG. 1. Pair interaction forc&(x) for Lenard-Prager plasma _ cos sin 4
(s’ =« : full line) and for truncations to first Fourier components (Sh $n:Sn n) @
(s'=1 :dots,s’=3 : dashed ling with q=€,=1, L=2. with — 7< ¢,=< . With no loss of generality, lettingi=1,

g=1, and introducing the new coordinaté=2mx;/L
Sec. V, where we compare the true one-dimensi¢hB)  + 7 mod(2r), the force in Eq(3) can be reexpressed as a
N-body dynamics of Coulomb interacting particles with the sum ofs’ terms:
kinetic approach16] and withN-body dynamics of finites
interactions. The relaxation of the fields to equilibrium, ) om S
which occurs on longer time scales than the turbulent motion Xj=— TE KoV, S, sin(nX;— ¢é,), (5)
of Sec. V, is investigated in Sec. VI, and we propose a dy- n=1

namical description that may complement the kinetic apiyhere bothS, and ¢, depend on timdcf. Egs. (4)]. The

p.ro%ch._ Tth? mte(;_e:puon_ betweent ztrgctgres \?ﬁngate? -body motion thus reduces to a single particle problem in
similar initial conditions is presented in Sec. VII. Conclu- y . <oit consistent fieldsS(, ;) with n=1,2,...s'.

sions are summarized in Sec. VIII. Expression(4) implies that the two components 8f are
proportional to thenth discrete Fourier coefficients of the
Il. HAMILTONIAN ROTATOR MODEL spatial distribution. Hence, the time evolution of the collec-
tive quantitiese,(t) and S, (t) will characterize the dynam-
ics occurring on spatial scale/n. In a previous worl 24]
we considered the equilibrium statistical mechanical proper-
¢ N ties of this model. This system undergoes no phase transition
pPr q if all coupling constant¥/, are non-negativé.e., if all cou-
“ 2m ﬁgl I,rE:l Vi cogkn(X,—x1)], plings act repulsively The Gibbs canonical distribution of
(1) fieldsS, at temperaturd =(p?) for N— is Gaussian, iso-
tropic, with independent component§, having average

wherex, € R/L is the position of particle (with massmand ~ Square modulus
chargeq) on the interval of length. with periodic boundary
conditions(i.e., the circleS, ), p; is its conjugate momentum, <32>: N~1 )
andk,=27n/L. The Fourier coefficient¥,, of the potential 2T+V,
are positive with finite sunhi24].

We are especially interested in the family

Our system ofN identical classical particles is described
by the Hamiltonian

2T

(6)

The equilibrium correlation function, i.e., the density at dis-
tancey from a test particle, is given by

V,=n"2?K’, 1<n<s', nodd 2 1 cy)
Cly)=(ox1—Xe=yN=7+ "1

and denote bg= (s’ +1)/2 the number of nonvanishing co-
efficients. In the limits— +o with K'=L/(m?€y)>0, 1
model (1) with coefficients(2) defines a one-dimensional =t mZ C, cogk,y) (7)
Coulombian systenj24]. The field generated by a part- =1
icle at x; reads K'a/N)Z(,_, sirlkon—a(x=X)1=(7K'd/  with C,=N(|S,|2)—1=—V,/(2T+V,). In the (Lenard-
4N)sgn sif2m(x—x;)/L], which is constant on both sides of Pragey 1D Coulomb case, the equilibrium correlation func-
the particle and has a jump at locatigpt L/2. Calling our  tion decays exponentially, with the Debye characteristic
particles electrons, this jump may be interpreted as due to Rngth
positron at this opposite location. This model, equivalent to
the model investigated by Lenard and Praf2%,26, may . [LegT\Y2 L[ T |12
thus be considered as a two-species plasma model on the Ap=kp = 2q° 2K’
semicircle of lengthL/2, with boundary condition such that
when a particle exits at 0 its antiparticle enterd &# with ~ The nearness of the finifd-system to the “kinetic limit”
the same velocityand conversely Figure 1 displays the (N— +®) is measured by the mean number of particles per

o

®
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Debye lengtiNp =N\ /L, or by the grain parameteu,gl.
The physical characteristic time on macroscopic scales is the
reciprocal of the plasma pulsation

0 =KpUih 9

and the characteristic velocity ig,= v2H/N. We use these
expressions for the cases<x~ as well as for the 1D Cou-
lomb case to facilitate comparisons. Note thgt, vy, and
wp are finite in the limitN— +< if one keeps the mean
energy per particléi/N or temperaturd fixed.

Because the particle interaction is repulsive, the total po- 20 L | L
tential energy
, 150 -
N S

V=H-K== nZl V,S2 (10 E 100] i
is O(N™1) times smaller than the total kinetic energy in 50 ~
equilibrium states. Initial conditions may have larger poten-
tial energy, but the system relaxes to valuesSgfof the 0 A R 0 ; 4
order of Eq.(6): nonequilibrium situations witls, in such a (b) v
range are calleeveakly turbulentoy analogy with the Cou-
lombian plasma cag@7]. Thus the instantaneous rms veloc- so— : : : :
ity (or thermal velocity (p?)¥?=(2H/N—3|S,|?)Y?=v4 ]

+O(N™1) in such regimes, ana,= VK'/2. 69 i
The purpose of the present paper is to characterize non-

2
equilibrium behaviors of our systems such as relaxation to & 40
thermal equilibrium. For the 1D Coulombiacharged 20

sheets model, we shall compare the results Mfbody dy-

namics with the more common kinetic theory. For the rotator o
. . . . . . T T T T T
model (s=1), our work is the first investigation of its -4 -2 0 2 4
weakly turbulent regimes; the low temperature regime has ) X
already been considered by Antoni and Rui8j, who ob- FIG. 2. Typical initial condition withN=20 000 particles\ p

served the formation of clusters in spite of the interparticle_) /1o spatial density modulated at wavelengt® and Maxwell

repulsion. The high temperature behavior of éivel rotator  yejocity distribution function with gaps at 0.63v/v,|<0.08. (a)

model is also investigated currently with focus on its dy-(x,,) space plotone dot per particle (b) Histogram of number of

namical instabilitieg 28]. particles per cell i space(plot restricted to—2<|v/v 4| <2). ()
Histogram of number of particles per cell xnspace.

Ill. CODES AND INITIAL CONDITIONS . .
case, we use an “exact” integration schef®10,30-33,b

To integrate Eq(5) with s finite, we use a second order in which the only numerical errors are caused by the trunca-
symplectic schemdleap-frog [3], developed in analogy tion of real numbers to the machine accuracy. This scheme is
with the code used successfully for modeling the interactioralso O(N).
of N particles withs waves[29]. Since the force on each To allow direct comparison with earlier work on kinetic
particle depends only on the mean fielgls, the algorithm plasma turbulence, we use initial conditions similar to that
requiresO(Ns) CPU time instead oD(N2s). For reason- considered in Ref{16], such as plotted on Fig.(® in the
able values 0§ we can consider values of larger than 16, (x,v) plane (for N=20 000). The(referenc¢ equilibrium
This numerical scheme is easily vectorized, as one computedistribution is uniform in space and Maxwellian in velocities.
successively the field componer8s from all particle posi- The dimensionless control parameter for this equilibrium is
tions, and then one advances the particles independently tiie ratio of the Debye lengthp to the system lengti.
each other using only their own position and velocity and the=2, or equivalently the ratio of thermal velocity,, to
instantaneous fields. Lwy; we setwy=1 with no loss of generality in our nu-

From the numerical analysis viewpoint, our truncation of merical experiments. The thermal velocity is given the value
the binary interaction is a particular type of “mollification” v4,=27/10 to fit 10 Debye lengths on the cirgleormalized
regularizing the dynamic21,23. Then, fors<e, the limit  to 27).

N—oo leads to a regular kinetic limit with a unique solution  The initial perturbation is twofold. The velocity distribu-
for all times to the initial value problerf21,22,. tion [Fig. 2(b)] is a Maxwell distribution from which we

In the limit s— +o, the particles behave like parallel remove all the particles in two narrow symmetric velocity
charged sheets that cross each other smoothly. Between twdmmains(here 0.03<|v/vy,|<0.08). These gaps generdie
crossings, the force on a particle is constant. The dynamics the kinetic approacdhturbulence in their neighborhood, lead-
thus locally integrable in time. To integrate mod#] in this  ing to the formation of “hole”-like coherent structur¢s6].
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FIG. 4. Relaxation time of the tagged particles total kinetic en-
FIG. 3. Relaxation of the fraction of kinetic energy shared byergy vs numbers of nonzero coefficients in the potential. Initial
initially fast particles vs time, for the 1D Coulombian cade ( conditions are spatially unifornfopen circles,N=10 000) and
=2m=10\p). Time axis rescaled b)pw,* . Number of particles  modulated spatiallyblack markers foN=40 000, crosses foN
per Debye lengtiNp = N/10=20,40,80,160,320. =10 000).

The spatial distribution of the particles is modulated with aparticlesN. We shall further discuss the reason for this scal-
period close to the Debye lengkh, to excite structures simi- ing in Sec. VI. These results complement results of Refs.
larly (in the plasma context, Debye-scale density modulaf32,33, which made a similar observation for the 1D Cou-
tions would be short lived due to Landau dampii8#]). lombian system.

Figure Zc) displays the spatial density corresponding to Fig. Thes dependence in Fig. 4 shows that the relaxation time
2(a), i.e., n(x)=ng+ny cos(2mx/\), with A=10\p/9, ny  scaler, of the velocity distribution function is not sensitive

=N/L, n;=0.5n,. to the interaction on spatial scales smaller than Besides,
Numerical simulations starting from uniform initial spa- the closeness of the time scales for the samaad different
tial distributions were also performed. initial conditions implies that the tagged particle relaxation
time does not depend significantly on the presence of turbu-
IV. RELAXATION OF TAGGED PARTICLES lent structures of Debye scale as those observed in the next
DISTRIBUTION section.
Let us first estimate the typical time needed ﬂaygged V. PHASE SPACE DENSITY HOLES
particles to get mixed among the other particles, starting o
from an equilibrium distribution. Given an initial Maxwell- Now we turn to nonequilibrium structures supported by

ian (or nearly so distribution of velocities, and a uniform the dynamics. Following kinetic theory arguments for the
spatial density, we distinguish two families of particles Vlasov-Poisson integrodifferential system, Berman, Te-
[7,3,5: the N/2 initially fast particles(IFP) and theN/2 ini-  treault, and Dupre¢l6] find that weak plasma turbulence
tially slow particles. These families are well defined regard-generates depletions rather than density excessxijn) (
less of whether a turbulent structure or a density modulatiospace, and their simulations confirm these predictions. How-

are present or not. Denote by ever, their simulation method uses particle-in-cell codes,
which automatically smooth the distribution functions, and

1 pr2 one is interested here in small scale structures, with a size

Kigp(t) = KO EIFP > (1)) close to grid mesh scales. In this section we first compare the

structures generated by the microscdgibody dynamics of

the 1D Coulomb system with those obtained from the
Vlasov-Poisson system inxfv) space. We shall see that the
formal difference between the two models on scales smaller
than the Debye scale does not lead to different types of struc-
tures. Then we compare the Coulomb interaction, with all its
Fourier components, to the “truncated” interaction, with
only the longest-range Fourier component, i.e., to the rotator
model withs=1. We end this section by considering the
Sffect of more Fourier components in the interaction.

the fraction of the total kinetic energ§(t) shared by the
initially fast particles. Its relaxation time measures the typi-
cal time needed by a particle to undergo a significant veloc
ity variation. Ast— +o, K,ep(t) relaxes to 1/2, and when
Kiep(t)=~1/2, one can consider that the particles have los
memory of their initial velocity. Initially, we have
Kep(t)=0.9. Figure 3 display& c(t) as a function of time
for various numbers of particles for the 1D Coulombian cas
[7].

The rotator models with finits behave similarly, and we
plot on Fig. 4 the timer,(N,s)/N needed by (t) to reach
the value 0.8. As our diagnostic is easily applied to nonequi- Among the diagnostics used by Berman, Tetreault, and
librium initial distributions, Fig. 4 displays not only data Dupree[16], (x,v)-space plots provide the most direct evi-
obtained from a spatially uniform initial conditiofzircles dence for &,v)-space granulations. Figure 5 displays a se-
but also data evolved from the initial condition of Fig. 2 quence of snapshots at various times for the 1D Coulombian
(black markers and crosges system = +o0) of N=20 000 particles. The velocity range

Like the time scales of Sec. VI below, the characteristicdisplayed is limited tdv/vy,|<0.8 where the structures ac-
times obtained here are proportional to the total number ofually evolve. The density hole observed nedhp~—1

A. The Coulombian model
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FIG. 5. (x,v) space for 1D Coulombian mode$--, or charged sheétsit successive times, starting from initial condition of Fig. 2.

moves slowly to the right and appears as a depletion in thearticles in such a cell, which is large enough to yield sig-

space-averaged velocity distribution function. nificant statistics. We plot in Fig. 6 the distribution &f for
This hole propagates at a characteristic velocity of thghese cells at timet=216w,;1. This plot has an average

order of 0.by,, i.e., in the velocity range in which the ve- (sfy=—-0.2 and a standard deviation &f2)—(5f)?)2

locity distribution function initially has a steep derivativef ~ —( 14, indicating that the cells are depleted rather than over-
(actually f initially has a gap so tha#,f=c formally), in

" e > 7 populated.
agreement with kinetic theoretical predictigri]. These diagnostics confirm the formation and evolution of

A second, less visual, but robust, indication for granula
tions is obtained from a statistical test on the relative fluc
tuationsf of the population in X,v) cells. For an equilib-
rium state, and for large scale perturbations as due t
Langmuir modes(or their finites analog$, the number

"holes in microscopic dynamics of the Coulombian model,
“showing that these structures appear in the same manner as
(i)n the kinetic plasma model. Correlation functions and bior-

A(Xq,vq) of particles in a cell [Xx—Xo|<Ax/2, |[v—v| 20 L L L
<Av/2) is a Poisson random variable with expectation
Ac(X0,v0) =fedX0,v0)NAXAv. Thus the relative fluctua- 15+ | B
tion o ]
L 10+ 1 =
8F(X0,00) =A(Xg,00)/ Aeg X0,00) — 1 (12) 2 i
5+ -
is a random variable with vanishing expectation in equilib- |
rium states. It is clear thatsf(xg,vp)=—1 and that 0 T : /
(AedX0,00) 8T (Xg,v0))=0 for any state of the system. -1.0 -0.5 %-fo 0.5 1.0
Moreover, for an equilibrium state, the distribution of rela-
tive fluctuations is expected to be nearly Gaus$is]. FIG. 6. Distribution of relative fluctuations ok(v)-space den-

We divide the rangév|<vy, in 300 cells with sizefA\x  sity in range|v|<uvy, in the presence of hole structure, for 1D
=\p/2 by Av=vy/15. At equilibrium, there aréA;;~50  Coulomb system of Fig. 5. Ordinates in arbitrary units.
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FIG. 7. (x,v) space for rotator modekg& 1), starting from initial condition of Fig. 2.

thogonal decomposition of the distribution functi¢f,6]  shows the distribution of relative fluctuatioa$. Similar re-

lead to the same conclusion. sults[5] were obtained for larges.
The similarity between the structures observedderl,
B. The rotator model s=2, and larges is easily explained by the fact that, accord-

) ) . ing to Eq.(6), thermal equilibrium values d§, are close to
Fors=1 with L=2, equation of motion(S) reduces to  gach other, so that coefficien®) imply k,V,S,~n" 1, and
the pendulum equation the long-range components are thus dominant in(&gin

. ) . weak turbulence regimes.
X =K'Sy sin(X; — ¢1), (13

VI. RELAXATION OF FIELDS TO EQUILIBRIUM
where intensityS; and phasep,; depend on all particles po-
sitions through Eq(4). The interaction is “only long range”
as the fieldS; has wavelength 2 on the circlg 3]. The time

The weakly turbulent structures of Sec. V characterize the
behavior of particles in X,v) space on “microscopic”

evolution of a system oN=80 000 particles, starting from 20 1 1 1 1 1 1
the initial condition of Fig. 2, is similar to the evolution of 200 <t < 250
the Coulombian system. However, the absence of short- 154 =

range components in the for¢&3) gives a smoother shape

to the density hole as shown on Fig. 7. Theu)-space % 104 -
density relative fluctuations, displayed in Fig. 8, are similar
to those of the previous section. 5 -

T T T T T T
-1.0 -0.8 -0.6 -0.4 f—0.2 0.0 0.2 0.4
&

C. The modulated rotator interaction

For s=2 (s'=3) with coefficients (2) a system of
N=80 000 particles evolves from the initial condition of Fig.  F|G. 8. Distribution of relative fluctuations ok(v)-space den-

2 to the same type of structures as$er1 ands—ce. Figure  sity in range|v|<vy, in the presence of hole structure, for rotator
9 displays anX,v)-space picture dt= 250(,)‘;1, and Fig. 10  system of Fig. 7. Ordinates in arbitrary units.
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+njq

FIG. 9. (x,v)-space distribution of particles &t=250w* for
modulated $=2, s’ =3) rotator system, evolved from initial con-
dition of Fig. 2. Solid lines indicate the instantaneous separatrix of
the resonance associated3pof Sec. V B and Sec. VI B.

<¢;>p
=y

scales. The formation of these structures was triggered by
perturbations of the initial distribution of particles, but the -]
diagnostics of Sec. V were instantaneous. Now we consider
“macroscopic” time scales, over which the fiel@ decay

from nonequilibrium values to values of thermal magnitude. 10+ 1 L = L — .
s= ]

x102

A. Characteristic time scales

As the system dynamics is dominated by tthengest- s} 0
range field Sy, i.e., the first Fourier component of the inter- €

action field, we monitor its evolution to describe the ap- <
proach to weakly turbulent quasistationary behavior, starting _, I

from modulated initial conditions. Figure 11 displays a typi- © ° 05 X 1.5 210"
cal evolution(for s=2, N=80 000) of the amplitud&,, of to
the phasep,, and of the phase velocity¢, /dt. The initial FIG. 11. Evolution of(a) amplitudeS,, (b) phase¢; modulo

condition is modulated so th&,;(0) is a few times the ther- 27 and(c) phase velocityd ¢, /dt from a moderate initial modula-
mal equilibrium value(6). The amplitude decays regularly tion in the rotator systemsi 2, N=_80 000).
and the phase velocity varies slowly over an intervaitO
<r,. At time 7,, the amplitude reaches the equilibrium smooth distribution function, which evolves following ki-
level (6) and the phase velocity gets dominated by noise. netic theory. The factoN ! in the coupling term in Eq(1)

For the same initial condition, with different values ®f  ensures that the macroscopic time saagé (which governs
andN, the evolution ofS, looks similar. Results summarized hydrodynamiclike behavior of the Langmuir moglésinde-
in Fig. 12 show that the time scatg(N,s) is proportional to  pendent oN, but here we consider microscogitnolecular
N. The dominance of the small-wave-number componentglynamics”) evolution. In the plasma case, it has been shown
appears in the fact that,/N rapidly approaches its that the distribution function relaxes on a time scale propor-
asymptotic value for increasing tional toN because “binary interactions” must preserve en-

The proportionality ofr, to N may be explained for the ergy and momenturthence they cannot modify the distribu-
plasma case as follows. Increasing the number of particles ition function as all particles have equal masshe
the system makes the *“discrete distribution function” distribution function can relax only as a result of “three-
fn(X,0,1)=N"12,8(x—x, (1))@ —v,(t)) closer to a body interactions,” for which the coupling isl~! times

weaker than the “two-body coupling.”
104 L 1 1 L 1 L 5 Our results show that the truncated interaction behaves in

200 < t < 250 the same way as the full Coulombian interaction, and that the
time scales of the latter are reproduced already with a small
number of Fourier components.

P(5f)
T
T

B. Particle motion and field evolution for s=1

Let us now describe the microscopic dynamics underlying
| Y : : : : the relaxation. We first consider the simple rotator case
1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 =1. Thenk;=1 with L=2, andV;=K'. Equation(13)
o shows that any particle moves in a pendulumlike field. We
FIG. 10. Distribution of relative fluctuations ok (v)-space den-  aSSociate to this motionfarcedHamiltonian dynamics, gen-
sity in range|v|<uvy, in the presence of hole structure, for modu- €rated bye, : =Wr2/2+ K’S, cosy;, where we trea, as a
lated (=2, s’ =3) rotator system of Fig. 9. Ordinates in arbitrary time-dependent external parametee., we neglect the fact
units. that particler contributes to the evolution d&;). Herey, :
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3.0
x10
2.5
20 r
’@ 15
Z
o 10|
0.5
0.0
0
(@)
f i t f i
030 | ; : ; : ' i - —Ax/2 0 Ax/2 Ty
¢ FIG. 13. Sketch of resonance iy,(v) plane associated to the
025 | i effective one-particle reduced Hamiltonimﬁ/2+ K'S,; cosy, with
Z * L=2m, ¢;=0, ¢,=0. Resonance half-width is E(S;)"2 Thin
* solid line is the instantaneous separaftixo branches Thick solid
7, 020 | . ] line is a typical particle orbit withe>0. Dotted line is a typical
:} particle orbit near hole boundary. The fieR®] is generated self-
* consistently by a depletion of particles in the center of its resonance
0.15 P ] (typically inside shaded domairiThe hole is centered on (0,0) with
characteristic sizeAx,Av). Compare with Figs. 7 and 9.
0.10 : . : : ‘ . . L .
0 2 4 6 8 10 12 which are exact solutions of the kinetic Vlasov-Poisson sys-
(b) s tem.

However, with a finite number of particles, BGK modes
are perturbed. The slow drift igh,(t), i.e., global motion of
the turbulent structures on the circle, is not a constant-
velocity drift. To understand this motion we distinguish the
trapped particle$TP) having energye, <K’S; from the un-

=X—¢; andw, : =p, — ¢, are conjugate variables in the co- trapped one$UP) with e,=>K’S,. Denote bypp (pyup) the
moving frame of the resonandebtained fromx, and p, momentum oflun)trapped particles, which may be averaged
through a Galileo transformatignThus particler may be — over one(approximatg period of the (unjtrapped motion.
trapped or untrapped in the “resonance” generated by th&henpp= ¢; as a trapped particle moves on the average at
density structure. This resonance is centered¢gn with the same velocity as its trapping structure. Also,Sjsis

instantaneous velocityb,=d¢, /dt, and its half width is Small, the momentum of an untrapped particle is almost con-

2K’S,. The bouncing period for trapped particle motion is Stant: only particles witte, = O(K'S,) have a motican sensi-
27-r/wtrap=27r(K’Sl)*1’2, and the exponential rate of diver- tive to the fieldS;, whereas for particles wite,>K'S; the

gence of trajectories at the structure’s saddle point &cceleration due t8, is averaged off. .

(K'S)Y2 _ Now recqll that the _f|glc51 is gene_rated_by the dI_SB’IbU-
The self-consistent relation of the resonance with the hol&ion Of particles. Statistical fluctuations indud&(N )

it traps[15] is sketched in Fig. 13. First note that the dynam-Vvariations inS,(t). Hence, the pendulumlike picture has a

ics of the resonance depends on all partidlesntributing tlme-_dl?pendent separatrix sweeping a narrow domam of size

equally toS; with the same chargg), but that particles with O(N ) around its average value. These fluctuations may

velocity neard¢, /dt play a dominant role as they are nearly CaUS€ particles to switch between trapped and untrapped mo-

fixed in the resonance frame. Particles moving with respedions: In this process, total momentum is conserved, so that

to the resonance generate an oscillating contribution that av- d _d . d -

erages away to_ first approxma_tlc[th]. ThL_Js we dlscuss_ i 2 prza(NTP%):_& 2 Pr, (14)

only particles withw~0. If there is a depletion near a posi- up

tion x,, the repulsive coupling ensures that the resonance

will be centered neax;, (i.e., ¢1~X;) and the saddle will be whereNyp is the number of trapped particles. EquatidA)

nearx,+L/2(modL). As the particles follow constant en- shows that the drift velocity$,; changes mainly when a

ergye lines in the {/,w) plane, particles on the boundary of trapped particle becomes untrapped or the converse. Thus its

the hole move on closed, ellipselike orbits surrounding theime evolution is due to the small population of particles that

hole. In the kinetic limit N—o°), with Coulomb interaction evolve in the domain swept by the separaf@x The change

(s—=), such phase space pictures are characteristic of the the velocity of the particle with respect to the *reso-

Bernstein-Greene-KruskaBGK) modes of plasma$38], nance” [35—37 is proportional to the fluctuation d,(t),

FIG. 12. (a) Lifetime 7,(s,N) of turbulent structure vs number
of particles for various values af (b) Normalized lifetimer, /N vs
numbers of Fourier components in the interaction.
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which is O(N~Y?). The number of particles in the domain
swept by the fluctuating separatrixil;p/dt) scales also
like NN~ Y2~ N2

The global effect of these scalings is that the rate of
change of the mean fiel&,(t) on the average scales as
N~Y2N"2=N"1. This rate of change is indeed the rate of
decay of the amplitud&,(t).

Finally note that the trapping of a particle reducgs
while a detrapping enhanc&s. Indeed, a trapped particle at
X;~ ¢, lies in a well generated by particles that repel it, so
that particles responsible for the well lie neaf+ 7. Thus
the particles generating the well are untrapfibety lie near
the saddle of the resonancand must move a little with
respect to the resonance. The resonance can, however, sub-
sist over a long timgwith a small size: in our simulations
S,~10 ?) because particles near the saddle are slower than
particles with the same, passing near the spatial centgy.

Let us stress that, as seen on Fig. 9, the resonance en-
closes a depletion of particles rather than an excess of par- )
ticles. The argument above also explains why the turbulent -5 0
structures of Sec. V are holes. Indeed, an excess of particles (b) Ao

generates locally a saddle point, which repels the particles £ 14, ) distribution of N=20000 particles(with L
and destroys the cluster, whereas a depletion can be filled 10\ ) in two-hole states at time. Initial conditions have no
only by the(slowey trapping process described. This asym-spatial modulation and have a Maxwell distribution with two gaps
metry between excess and depletions was already discusse®.025 ,<|v|—u<0.025,: (@) u=0.1%y,, t=400w"%; (b) u

in the plasma kinetic theory of clumgsee Ref[16] and =0.25),,, t=800w .

references thereinFor the rotator model, neither long-lived
density excess nor holes were generated when injecting a

beam of particles in the system at velocities at which Weeach other, forming a dipolelike structure as displayed on

; _ -1
remove the “strips.” Fig. 14@) att=400w". . . .
For u=0.2%y,, two holes appear similarly with veloci-

ties ~ *u and with sizes similar to the previous ones. They

C. Cases>1 last beyond=2.1(53wrj|1. These holegshown on Fig. 1)

When the structures are preseft,V,S;>k,V,S, (n att=800w,;1] move with respect to each other. In the pro-
#1), and ¢,(t) is slowly varying compared tap,(t), 3  cess of their formation, smaller holes appear transiently and
<n=s'. Consequently, the components of the force with are absorbed by these two big ones. _
=3 have small average effect and the dynamics is dominated Similar processes of hole formation and merging are
by the first componens,. However, the presence of the known to occur and were observed in the kinetic theory of
higher-order modes changes the shape of the “resonance@Umps in plasmagl3,17,39. Our observations confirm the
As a first approximation, one may estimate that they enlarggynamical role of the holes in smooth interactions. In par-
the domain around the “moving separatrix” in which the ficular, we note that initial conditions with a “missing strip™

particles get trapped or detrapped. Thus the characteristi@ the \{elocity o_listribution function_tend to generate a hole at
time 7. /N must decrease whesincreases the strip velocity. If one starts with two strips, two holes
3 .

form, but they merge if their relative velocity is close to their
characteristic width irv. On the contrary, if their relative
velocity is significantly larger than their size in they be-
Finally, we turn to the interactions betweer,f)-space have rather independent$].
density holes and their dependence on initial conditions. The resonance description of Sec. VI B explains these
These phenomena will be illustrated with the rotater ( various behaviors. First recall that, if a particle has a large
=1) model. velocity w relative to a resonance, the force acted by this
We consider initial distributions oN=20 000 particles resonance on the particle is averaged over a short time scale
with no spatial modulation and=10\p. The velocity dis- (L/w). Then, if two holes are present with very different
tribution is a Maxwell distribution, from which we remove phase velocities d¢y,/dt, d¢p,/dt), one distinguishes
two stripsu—0.02%,<|v|<u+0.02%,. The central ve- three classes of particlebt,; particles with velocity in the
locity u takes values 0.15, and 0.2y, significantly larger range of “hole 1” (i.e., with |[v —d¢pn,/dt|<2VK’S;1),
than the valuei=0.05%, used in the previous sections. The similarly Ny, particles with velocity in the range of “hole
runs reveal the following qualitatively different evolutions. 2" (|v—d¢p,/dt|<2yVK'S;,), and Np=N-—Nu;—Np»
Foru=0.1%,, two holes appear in the velocity ranges “background” particles. In this classificatior,; and S,
v~=*u, with sizes similar to the single hole of Sec. V B. are defined by the sur¥) restricted to the particles with
They last untilt~10°’w,;1: at this time, the X,v)-space den- velocity in their own rangeto first approximatiojy which
sity has reached equilibrium. These holes remain close tmakes the definition of each class of particles self-consistent.

5

VII. INTERACTION OF HOLES
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Denote by  Schir:=(2VK'S;+2VK'S,)/|d ey /dt bulent structures may be small. Indged the dor_ninant process
—d¢y, /dt| the Chirikov overlap parameter of the reso- for the evolution of the structures is separatrix crossing in
nances[40]. Then the total fieldS, rewrites in the forms, ~ (X.v) space, i.e., trapping-detrapping of particles in the reso-
—S,,+S,+S,, and the effective Hamiltonian generating nance assome_mted Wlt!’]. the long wavglength field component.
the motion of a particle takes the paradigmatic tWO_Th|s process is sensitive to the particle number density: Its

2 ) N , characteristic time scale is proportional M (or to Np
resonance ~ form pp/2+K'Sy; Costq ) +K'Spcoste 2 NAp/L) although the macroscopic time scalg, is inde-
— ), NeglectingS, . For the latter Hamiltoniafd4Q], if the pendent oiN
two resonances do not 9v_er|ﬁpa., if ‘SCh‘r<1)’ the particle Our results also show that important dynamical properties
motion is rather regular: it is trapped in one of the resonancegy

: . ; the 1D Coulombian system are well reproduced, even
or it moves quite freely. But if the two resonances overlap y P

. : guantitatively, by the dynamics of the rotator modg),
(Scri=1), a particle that should be trapped in one of theWhich is easily simulated numerically by molecular dynam-

resonances moves chaotically.fr.o.m one resonance to ﬂ]@s. This validates the use of direct molecular dynanpes-
other (and incidentally our definition of the two classes sibly with truncation to Fourier components with scales

h1” and "h2” breaks down). As the motion of holes s just larger than\, in a kind of spectral codeas an alternative

the same as the motion of test particles, this implies thaj, kinetic-theory based codes for electrostatic plasma turbu-
holes can keep their identities over a significant time Scal‘f’ence, such as classical particle-in-cell codes. Besides, our

only if their relative velocity is large enoudH1]. observation of holes for finite and finiteN shows that their

Practically, the .Ch'”kov resonance overlap parametet, o ation is not related to the ability of the Vlasov-Poisson
may be grossly estimated as follows. The relative phase ve-

: B R ; system to generate singularitigz3].
Iocny |dbna /dt d¢h1/(jt|~2u is _checked dlre(;tly frpm This work leaves open several interesting problems. The
the figures. The half-width of each resonance is estlmateﬂr

from the aspect ratio of its hole: the hole has a characterisn{:r stis to discuss similarly the evolution of structures in at-
Com ) active potentials, such as the gravitational one and the fer-
lengthAx (=~\p) and a characteristic width in velocityv P g

(=0.1y). The ratioAv/Ax i the bounce frequenayygy at romagneticXY model[42—-44,3,12 The second is the low

X . . temperature dynamics for repulsive models, as long-lived
the bottom O.f the resonance s_potentlal wigfovided Ax clusters have been observed in gwe 1l rotator model3].
<.Ia ;o_r a Eer'Od/L CZS'/nAe po;entlﬁl and thedr_esclnnandce halr1:- The third is the interaction of the turbulent structures consid-
width is thus (/) Av/Ax. For the cases displayed on the oo here with large perturbations of hydrodynamic type.
figures, wyap~0.lw, Yields the estimates Scp

This will be the subject of forthcoming works.
=0.2v4/(2u), which is smaller than 1 for Figs. 1@ and s W ™ ng W
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