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Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators
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The mean-field Kuramoto model for synchronization of phase oscillators with anasymmetricbimodal
frequency distribution is analyzed. Breaking the reflection symmetry facilitates oscillator synchronization to
rotating wave phases. Numerical simulations support the results based on bifurcation theory and high-
frequency calculations. In the latter case, the order parameter is a linear superposition of parameters corre-
sponding to rotating and counterrotating phases.@S1063-651X~98!02805-0#

PACS number~s!: 05.45.1b, 05.20.2y, 64.60.Ht
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Collective synchronization and incoherence in large po
lations of nonlinearly coupled oscillators received a gr
deal of attention in recent years. The motivation for this c
be found in the broad variety of phenomena that can be m
eled in this framework. Indeed, synchronous flashing
swarms of fireflies@1#, crickets that chirp in unison@2#, epi-
lectic seizures in the brain@3#, electrical synchrony among
cardiac pacemaker cells@4#, arrays of Josephson junction
@5#, chemical processes@6#, some models of charge-densi
waves in quasi-one-dimensional metals@7#, and some neura
networks used to model dynamic learning processes@8# all
seem to be described in these terms.

The mathematical model conceived first as a large col
tion of elementary nonlinear phase oscillators, each wit
globally attracting limit cycle, goes back to Winfree@9#. It
was later formulated as a system of nonlinearly coupled
ferential equations by Kuramoto@10# in the mean-field cou-
pling case, and as a system of Langevin equations~adding
external white-noise sources! by Sakaguchi@11#,

u̇ i5v i1j i~ t !1
K

N(
j 51

N

sin~u j2u i !, i 51, . . . ,N. ~1!

Hereu i(t) denotes thei th oscillator phase,v i is its natural
frequency@picked up from a given distributiong(v)], K
.0 represents the coupling strength, and thej i ’s are inde-
pendent identically distributed white noises. Consequen
the one-phase oscillator probability densityr(u,t,v) obeys
the following nonlinear Fokker-Planck equation, in the th
modynamic limitN→`:
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whereD.0 comes from the noise terms in Eq.~1! and

v~u,t,v!5v1Kr sin~c2u!. ~3!

Here the complex-valued order parameterreic is defined by

reic5E
0

2pE
2`

1`

eiur~u,t,v!g~v!dv du. ~4!

It is understood that Eq.~2! must be accompanied by th
prescription of the initial value r(u,0,v)5r0(u,v),
2p-periodic boundary conditions, and normalizatio
*0

2pr(u,t,v)du51.
The fundamental phenomenon of transition from incoh

ence (r[1/2p, r[0) to collective synchronization (rÞ0)
is similar to phase transitions in statistical physics and
been analyzed rigorously by Strogatz and Mirollo@12#. They
studied the linear stability of incoherence of populatio
characterized by unimodal frequency distributions. In@13#, a
nonlinear stability analysis was accomplished and bimo
frequency distributions@g(v) with two peaks# were also
considered. In the latter case, different bifurcations were
covered, showing the existence of a rich phenomenolo
such as subcritical spontaneous stationary synchroniza
supercritical time-periodic synchronization, bistability, a
hysteretic phenomena. A large amount of information w
obtained in@12,13#, adopting as models of unimodal an
bimodal frequency distributionsg(v)5d(v) and g(v)
5 1

2 @d(v1v0)1d(v2v0)#. It may be surprising now to
realize that theasymmetric bimodaldistribution

g~v!5ad~v2v0!1~12a!d~v1v0!, 0,a,1,
~5!

entails essentially different features with respect to the sy
metric casea5 1

2, even fora close to 1
2. The casea50, as

well asa51, yields the unimodal distribution already con
sidered elsewhere@12,13#. These cases, in fact, may be r
duced to the casev050, going to a rotating frame. This
cannotbe done, however, for anya with 0,a,1. Since,
c-
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due to unavoidable imperfections, possibly small deviatio
from symmetry are most likely in nature, theasymmetric
case should be rather ubiquitous. The purpose of this pap
to illustrate the distinctive features of an asymmetric osci
tor frequency distribution. The main qualitative effect
asymmetry is that no synchronized stationary phase is
sible. Synchronized phases branch off from incoherence
traveling waves~TWs, see below! and their structure be
comes richer as the strength of the coupling increases.
asymmetry of the frequency distribution changes the stab
boundaries of the incoherence~see the phase diagrams
Figs. 1 and 2!, rendering it less stable and, consequen
rendering the partially synchonized solution~whose order
parameter, however, now always depends on time! more
stable.

The stability boundaries for the incoherent soluti
r0(u,v)[1/2p can be calculated by setting to zero t
greatest of the Re(l)’s, wherer5r01eelth(u,v)(e→0)
andl are the eigenvalues of the linearized problem. They
given by @12#

x

2E2`

1`

dv
g~v!

Z1 i
v

D

51, ~6!

FIG. 1. Stability boundaries for the incoherent solution for t
symmetricbimodal frequency distribution. Incoherence is linea
stable in the region to the left of the solid line.

FIG. 2. Stability boundaries for the incoherent solution for t
asymmetricbimodal frequency distributiona50.49 and 0.3.
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where we have definedx5K/D and Z511l/D. For the
asymmetricbimodal distribution~5! we find

Z1,25
x

4
6F x2

16
2y21 i

xy

2
~2a21!G1/2

, ~7!

wherey5v0 /D. The stability regions in Figs. 1 and 2 ar
then determined by the condition maxReZ1,2<1.

The branch on the right of the asymptote in Fig. 2 is n
completely unexpected. Indeed, its counterpart in the s
metric case is a parabolic profile continuing that in Fig.
~see@13#!. In the latter case, however, such a branch is no
important as in Fig. 2 since it does not separate differ
stability regions. The behavior depicted in Figs. 1 and 2
confirmed by direct numerical simulation@14,15# of the
Kuramoto-Sakaguchi equation~2!; see the evolution of the
amplitude and phase of the order parameter in Figs. 3
Observe that the phasec(t) is always time dependent rathe
than constant as in the case of the symmetric bimodal di
bution @13,16#. The new synchronized phases are describ

FIG. 3. Time evolution of the amplitudeur (t)u and phasec(t)
of the order parameter forK53, D51, andv054, with a50.4.
Note the stability of the incoherent solution.

FIG. 4. Time evolution of the amplitudeur (t)u and phasec(t)
of the order parameter forK54, D51, andv054, with a50.4.
This is the region of stability of the TW solution.
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by a bifurcation analysis near the line in the parameter sp
where the incoherence loses stability:

v0

D
5

2S 12
Kc

4D
DAKc

2D
21

Aa~12a!AS 2

a
2

K

D
D S 2

12a
2

K

D
D

. ~8!

This is obtained by setting the largest real part of
eigenvalues to zero and corresponds toKc54D, v0.D of
the symmetric case~see Fig. 1!. The two-time asymptotic
analysis conducted in@13# may be used unchanged for bifu
cations at the line~8! with the asymmetric frequency distr
bution, taking into account that nowV25v21D22KcD/2
and thatg(v) is the asymmetric frequency distribution
Eq. ~5!. In fact, the symmetric case possesses the reflec
symmetryv0→2v0 , u→2u, which causes the eigenva
ues to be doubly degenerated@17#, whereas this isnot the
case for the asymmetric frequency distribution. Then
simple analysis of Ref.@13# ~which overlooked eigenvalue
multiplicity, as pointed out in@17#; see also@16#! can be
directly used for the asymmetric case.

The result is that a branch of stable synchronized pha
bifurcates from incoherence at the point given by Eq.~8!.
Near the bifurcation line, these solutions have the form
TWs rotating counterclockwise@13#:

r~u,t,v!5
1

2p
1

ReiC0~K2Kc!~ t2t0!

2p@D1 i ~v1V!#
ei ~Vt1u!1c.c. ~9!

1O~K2Kc!,

where c.c. denotes the complex conjugate of the prece
term and

R5A~K2Kc!Rel1

Reg
, C05Iml12Img

Rel1

Reg
. ~10!

FIG. 5. Time evolution of the amplitudeur (t)u and phasec(t)
of the order parameter forK56, D51, andv054, with a50.4.
Another TW solution has bifurcated from incoherence, resulting
a more complex behavior of the order parameter.
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See Ref.@13# for the explicit expressions of the parametersg
and l15(]l/]K)uK5Kc

. In the symmetric case, another s
lution corresponding to waves rotating clockwise has to
added to Eq.~9!. This results in a stable standing wave s
lution, whose order parameter has a constant phase an
oscillatory amplitude@16,17#.

In the high-frequency limitv0→` a different perturba-
tion analysis provides expressions for the evolution of
probability density, either near or far from bifurcation poin
@14#. The main result is that the frequency distribution d
composes into as many phases as peaks of the oscillato
quency distribution in such a limit. Each phase rotates w
the frequency corresponding to its respective peak. Then
order parameter may be written as a linear superposition
the order parameters of the different phases. For the as
metric bimodal distribution, the overall order parame
evolves~except by a constant phase shift! to

reic5aR1ei ~v0t1C1!1~12a!R2e2 i ~v0t1C2!, ~11!

whereR6 andC6 correspond to phases rotating with ang
lar speeds6v0. They can be calculated with the stationa
formulas ~2.1! and ~1.7! of Ref. @13#, with zero frequency
@14#. Let a,1/2 to be specific.

We have the following possibilities depending on t
value of the coupling constant.

~i! If 0 ,K,2D/(12a), the incoherent solutionr0
[1/2p is stable and it is the only possible stationary so
tion.

~ii ! If 2D/(12a),K,2D/a, a globally stable partially
synchronized solution branches off incoherence atK
52D/(12a). It has R150, c5C22v0t, and r 5(1
2a)R2 . Its componentr1[1/2p is incoherent, while its
componentr2 is synchronized. The overall effect is having
TW solution ~rotating clockwise!.

~iii ! If K.2D/a, the componentr1 becomes partially
synchronized too. The probability density then has TW co
ponents rotating clockwise and counterclockwise. Their
der parameters have different strengths andR2.R1 if a
,1/2.

Let us now compare the analytical results obtained in
high-frequency limit with those obtained by means of bifu
cation theory. Asv0→`, the parametersl1 , g, andKc in
Eq. ~10! become~cf. @13#!

l15
2D2

~12a!Kc
2

, g5
1

2D
, Kc5

2D

12a
.

We can now calculate the order parameter in Eq.~4! by using
Eqs.~9! and ~10! and the previous expression:

reic'~12a!H K~12a!

D
22J 1/2

e2 iv0t. ~12!

Equation ~12! agrees exactly with the results of the hig
frequency limit~11! in @14#: The amplitude of the order pa
rameter is constant and its phase decreases linearly in t
Of course, for larger values of the coupling constant anot
branch of oscillatory solutions~TW rotating clockwise! bi-
furcates from incoherence. Then the overall probability d

n
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sity is richer, with an order parameter whose amplitude a
phase both vary with time as in Fig. 5.

In conclusion, we have analyzed the mean-fie
Kuramoto-Sakaguchi model of oscillator synchronizati
with an asymmetric bimodalfrequency distribution. In this
case, reflection symmetry is broken, which results in sta
synchronized phases that have the form of TWs~rotating
clockwise or counterclockwise!. These waves have order p
rameters with constant amplitude and phases that depend
early on time in the limit of high frequencies and almo
linearly for v0 finite @14#. As the strength of the coupling
constant increases, such a synchronized phase bifurc
from incoherence. Larger values of the coupling strength
sult in a new bifurcation, which contributes to another TW
Then both the phase and amplitude of the order param
become time dependent. Numerical simulations of the mo
favorably agree with the results of bifurcation theory and
et
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high-frequency perturbation expansions@14#. One of the
main consequences of the asymmetry considered in
present model is thatno stationary synchronized solution ex
ists, which contradicts what is claimed in ideally symmet
models, as it can be found in the currently available lite
ture. Extensions of our analysis to the case of a multimo
frequency distribution@i.e., a discrete or a continuousg(v)
havingm peaks# are worth considering in future works.
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