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Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators
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The mean-field Kuramoto model for synchronization of phase oscillators witasgmmetricbimodal
frequency distribution is analyzed. Breaking the reflection symmetry facilitates oscillator synchronization to
rotating wave phases. Numerical simulations support the results based on bifurcation theory and high-
frequency calculations. In the latter case, the order parameter is a linear superposition of parameters corre-
sponding to rotating and counterrotating pha$84063-651X%98)02805-0

PACS numbe(s): 05.45+b, 05.20-y, 64.60.Ht

Collective synchronization and incoherence in large popuwhereD >0 comes from the noise terms in Eg) and
lations of nonlinearly coupled oscillators received a great )
deal of attention in recent years. The motivation for this can v(6,t,w)=w+Kr sin(¢—6). (€)
be found in the broad variety of phenomena that can be mod-
eled in this framework. Indeed, synchronous flashing in
swarms of fireflie§1], crickets that chirp in unisof2], epi- 2w [t
lectic seizures in the braif8], electrical synchrony among re“”zf f e'p(0,t,0)g(w)dw d6. (4)
cardiac pacemaker cellgl], arrays of Josephson junctions 0 J-e=
[5], chemical processd$], some models of charge-density
waves in quasi-one-dimensional met@l$, and some neural
networks used to model dynamic learning proce$sésll

ere the complex-valued order parametet’ is defined by

It is understood that Eq2) must be accompanied by the
prescription of the initial value p(6,0,w)=py(6, ),
seem to be described in these terms. 2ar-periodic  boundary conditions, and normalization

The mathematical model conceived first as a large collec-fgﬁp(a*t"")da: 1 N )
tion of elementary nonlinear phase oscillators, each with a "€ fundamental phenomenon of transition from incoher-
globally attracting limit cycle, goes back to Winfrge]. It ~ €nce p=1/2m, r=0) to collective synchronizatiorr ¢0)
was later formulated as a system of nonlinearly coupled difiS similar to pha_se transitions in statistical physms and has
ferential equations by Kuramofd 0] in the mean-field cou- ©€en analyzed rigorously by Strogatz and Mir¢ll@]. They
pling case, and as a system of Langevin equati@osling studied the linear stability of incoherence of populations

external white-noise sourdeby Sakaguchf11], characterized by unimodal frequency distributions[ 18], a
nonlinear stability analysis was accomplished and bimodal

frequency distribution§ g(w) with two peak$ were also
considered. In the latter case, different bifurcations were dis-
covered, showing the existence of a rich phenomenology,
such as subcritical spontaneous stationary synchronization,
supercritical time-periodic synchronization, bistability, and
hysteretic phenomena. A large amount of information was
obtained in[12,13, adopting as models of unimodal and
bimodal frequency distributiongj(w)=4(w) and g(w)

L 8w+ wg)+ 8(w—wp)]. It may be surprising now to
realize that theasymmetric bimodadlistribution

. K
0i:wi+§i(t)+ﬁzlSin(Hl-—@i)1 i=1,...N. (1
“

Here 6,(t) denotes theth oscillator phaseg; is its natural
frequency|picked up from a given distributiog(w)], K
>0 represents the coupling strength, and §{ie are inde-
pendent identically distributed white noises. Consequently
the one-phase oscillator probability densityd,t,») obeys
the following nonlinear Fokker-Planck equation, in the ther-

modynamic limitN— oe: g(w)=ad(w—wy)+(1l—a)d(w+wy), 0<a<l,

)
ap _p 9 : . . .
—=D—— —(vp), ) entails essentially different features with respect to the sym-

ot 79> 0 metric casex= 3, even fora close to3. The casex=0, as
well asa=1, yields the unimodal distribution already con-
sidered elsewhergl2,13. These cases, in fact, may be re-
* Author to whom all correspondence should be addressed. Eleduced to the casey=0, going to a rotating frame. This
tronic address: spigler@dmsa.unipd.it cannotbe done, however, for ang with 0<a<1. Since,
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FIG. 3. Time evolution of the amplitude (t)| and phase/(t)
FIG. 1. Stability boundaries for the incoherent solution for the of the order parameter fd&¢ =3, D=1, andwy=4, with a=0.4.
symmetricbimodal frequency distribution. Incoherence is linearly Note the stability of the incoherent solution.

stable in the region to the left of the solid line.
. . . . .. _where we have defined=K/D and Z=1+\/D. For the
due to unavoidable imperfections, possibly small deV'at'On%symmetrid)imodal distribution(5) we find

from symmetry are most likely in nature, tlesymmetric
case should be rather ubiquitous. The purpose of this paper is x  [x2 Xy 12
to illustrate the distinctive features of an asymmetric oscilla- 21'2:71 + 1—6—y2+i 7(2&— 1, (7
tor frequency distribution. The main qualitative effect of
asymmetry is that no synchronized stationary phase is pos- . . -
sib)lle. Syn)(/:hronized phz)a/ses branch off from )i/ngoherencg ayherey=wo/D. The stability regions in Figs. 1 and 2 are
traveling waves(TWs, see belowand their structure be- 1'€n determined by the condition maxRe<1.
comes richer as the strength of the coupling increases. The 1h€ branch on the right of the asymptote in Fig. 2 is not
asymmetry of the frequency distribution changes the stabiliyFOmPpletely unexpected. Indeed, its counterpart in the sym-
boundaries of the incoherendsee the phase diagrams in Metric case is a parabolic profile continuing that in Fig. 1
Figs. 1 and 2 rendering it less stable and, consequently,(See[13])- In the latter case, however, such a branch is not as
rendering the partially synchonized solutiéowhose order important as in Fig. 2 since it does not separate different
parameter, however, now always depends on timere  stability regions. The behavior depicted in Figs. 1 and 2 is
stable. confirmed by direct numerical simulatiofi4,15 of the
The stability boundaries for the incoherent solution Kuramoto-Sakaguchi equatio®); see the evolution of the
po(6,w)=1/27r can be calculated by setting to zero theamplitude and phase of the order parameter in Figs. 3-5.
greatest of the Ra()’s, where p=py+ee*'7(6,w)(e—~0)  Observe that the phasggt) is always time dependent rather
and\ are the eigenvalues of the linearized problem. They arghan constant as in the case of the symmetric bimodal distri-

given by[12] bution[13,16. The new synchronized phases are described
X[+ g(w)
= dw =1, 6 o o
2 j —w 74 1) ©
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FIG. 4. Time evolution of the amplitude (t)| and phasej(t)
FIG. 2. Stability boundaries for the incoherent solution for the of the order parameter fdt=4, D=1, andwy=4, with «=0.4.
asymmetricdbimodal frequency distributioar=0.49 and 0.3. This is the region of stability of the TW solution.
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See Ref[13] for the explicit expressions of the parameters
and Alz(a)\/aK)|K:Kc. In the symmetric case, another so-

i F lution corresponding to waves rotating clockwise has to be
l added to Eq(9). This results in a stable standing wave so-
‘ lution, whose order parameter has a constant phase and an
oscillatory amplitudd 16,17].
| In the high-frequency limitwy— a different perturba-
tion analysis provides expressions for the evolution of the
probability density, either near or far from bifurcation points

04 -

Irit)

[14]. The main result is that the frequency distribution de-

02| | | composes into as many phases as peaks of the oscillator fre-
quency distribution in such a limit. Each phase rotates with

the frequency corresponding to its respective peak. Then the

2 % order parameter may be written as a linear superposition of

o ‘ ‘ ‘ the order parameters of the different phases. For the asym-
00 200 400 e00 200 metric bimodal distribution, the overall order parameter

t(s)
evolves(except by a constant phase shifi

FIG. 5. Time evolution of the amplitude (t)| and phase/(t)

of the order parameter fd€ =6, D=1, andwy=4, with a=0.4. re'’=aR, e @™V 4 (1—q)R_e (@tt¥-)  (11)
Another TW solution has bifurcated from incoherence, resulting in
a more complex behavior of the order parameter. whereR.. and¥ . correspond to phases rotating with angu-

) ) _ o lar speedst wq. They can be calculated with the stationary
by a bifurcation analysis near the line in the parameter spacgrmulas (2.1) and (1.7) of Ref. [13], with zero frequency

where the incoherence loses stability: [14]. Let @< 1/2 to be specific.
We have the following possibilities depending on the
Ke Ke value of the coupling constant.
o 2| 1= 4D 5_1 (i) If 0<K<2D/(1—a), the incoherent solutiorp,
—= ) (8) =1/27 is stable and it is the only possible stationary solu-
D 2 K\( 2 K tion.
Va(l-a) (—— —) —= —) (i) If 2D/(1— a)<K<2D/a, a globally stable partially
@ D/\l-a D synchronized solution branches off incoherence Kat

=2D/(1-«). It has R, =0, ¢=¥_—owgt, andr=(1
—a)R_. Its componenip, =1/27 is incoherent, while its
componenp _ is synchronized. The overall effect is having a
TW solution (rotating clockwisé

(iii) If K>2D/«a, the componenp, becomes partially
synchronized too. The probability density then has TW com-
ponents rotating clockwise and counterclockwise. Their or-
ﬂer parameters have different strengths &d>R, if «
<1/2.

This is obtained by setting the largest real part of the
eigenvalues to zero and correspond¥Xie=4D, wy>D of
the symmetric casésee Fig. 1 The two-time asymptotic
analysis conducted if13] may be used unchanged for bifur-
cations at the linég8) with the asymmetric frequency distri-
bution, taking into account that noR?= w2+ D?—KD/2
and thatg(w) is the asymmetric frequency distribution in
Eqg. (5). In fact, the symmetric case possesses the reflectio
%?rt?gwg;bl;) %égei:ratgﬁv]\fhﬁneﬁgssefhfgei:]getﬂ\éal' _ Let us now compare the analyticgl results obtained i_n the
case for the asymmetric frequency distribution. Then théﬂg_h-frequency limit with those obtained by means of _blfur-
simple analysis of Refl13] (which overlooked eigenvalue cation theory. Aswo—c, the parameters,, y, andK in
multiplicity, as pointed out inf17]; see alsg16]) can be Eq. (10) become(cf. [13])
directly used for the asymmetric case. )

The result is that a branch of stable synchronized phases N = 2D _ 1 _ 2D
bifurcates from incoherence at the point given by E). 1 (1—a)K§’ Y= 2D '
Near the bifurcation line, these solutions have the form of
TWs rotating counterclockwiskL3]: We can now calculate the order parameter in @jby using
Egs.(9) and(10) and the previous expression:

_ 12
K(1—a) _2] ot

RdYo(K—Ke)(t-to)

_ = i[(Qt+6)
p(6,t,w) 27T+27T[D+i(w+Q)]e +c.c. (9

D (12)

rel¥~(1— a){
+0O(K—-K,),
] ~ Equation(12) agrees exactly with the results of the high-
where c.c. denotes the complex conjugate of the precedingequency limit(11) in [14]: The amplitude of the order pa-
term and rameter is constant and its phase decreases linearly in time.

Of course, for larger values of the coupling constant another

_[(K=K¢)Ren _ Ren, branch of oscillatory solution§TW rotating clockwisg bi-
R=\/——=—"—, Yo=Imr;—Imy—=—. (10 ' i
Rey Rey furcates from incoherence. Then the overall probability den-
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sity is richer, with an order parameter whose amplitude andhigh-frequency perturbation expansiofis4]. One of the
phase both vary with time as in Fig. 5. main consequences of the asymmetry considered in the
In conclusion, we have analyzed the mean-fieldpresent model is thato stationary synchronized solution ex-
Kuramoto-Sakaguchi model of oscillator synchronizationists, which contradicts what is claimed in ideally symmetric
with an asymmetric bimodafrequency distribution. In this models, as it can be found in the currently available litera-
case, reflection symmetry is broken, which results in stablgyre. Extensions of our analysis to the case of a multimodal
synchronized phases that have the form of TWating  frequency distributiori.e., a discrete or a continuoggw)
clockwise or counterclockwu}eThese waves have order Pa- havingm peaks are worth considering in future works.
rameters with constant amplitude and phases that depend lin-
early on time in the limit of high frequencies and almost This work was supported in part by the Italian GNFM-
linearly for wq finite [14]. As the strength of the coupling CNR (J.A.A. and R.S, the Fundacin Carlos IIl de Madrid
constant increases, such a synchronized phase bifurcatékA.A.), the Spanish DGES under Grant No. PB95-0296
from incoherence. Larger values of the coupling strength re(L.L.B.), and the EC Human Capital and Mobility Pro-
sult in a new bifurcation, which contributes to another TW.gramme under Contract No. ERBCHRXCT930483D.L.).
Then both the phase and amplitude of the order parametérA.A. is grateful to the University of Roma Tre, Rome,
become time dependent. Numerical simulations of the moddtaly, for its hospitality and to the GNFM-CNR for financial
favorably agree with the results of bifurcation theory and ofsupport.
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