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Dynamics of vortex lines in the three-dimensional complex Ginzburg-Landau equation:
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The dynamics of curved vortex filaments is studied analytically and numerically in the framework of a
three-dimensional complex Ginzburg-Landau equatiG®GLE). It is shown that a straight vortex line is
unstable with respect to spontaneous stretching and bending in a substantial range of parameters of the CGLE,
resulting in formation of persistent entangled vortex configurations. The boundary of the three-dimensional
instability in parameter space is determined. Near the stability boundary, the supercritical saturation of the
instability is found, resulting in the formation of stable helicoidal vorti¢&1.063-651X98)01805-4

PACS numbgs): 05.45+b, 47.20.Ky, 47.27.Eq

[. INTRODUCTION cently by the group of Winfree using the advanced optical
tomography techniqugl6]. Complicated vortex configura-

Analysis of “universal” models plays a central role in .. . - . .
contemyorar nonlinear d namicsp Siljch models. as Witt|ons have also been observed in numerical simulations of
porary y ) ’ rFeaction—diffusion equationd 7-19

Ginzburg-Landau and Swift-Hohenberg equations, allow for Theoretical investigation of scroll vortices in reaction-

a quantitative desqr_ipti_on of _a_rl_)itrary nonlinear system at thedhcfusion systems was initiated by Keer[@0], who derived

f_he{r(?ggﬁlderL]:a?iF(;?(ngLEft?jgpisgi ;hn?ecggqf,lg;fgguég'the gquation of motion for the fila_ment axis: In particular, he
Newell[1] and Kuramotd2], has become a paradigm model obtained that the_collapse rate is proportional to the local
f litative descri tior’1 of weakly nonlinear oscillator curvature of the filament, leading to a collapse of a vortex
or a qua . P y ; tory ring in a finite time. The existence of nonvanishing vortex
media(for a review, see Re{3]). Under appropriate scaling nfigurations and an expansion of vortex loops, also ob-

. . . . C
of the physical variables, the equation assumes the umversggrved in numerical simulations of reaction-diffusion equa-

form tions, was associated with “negative line tension” of the
vortex filament18].

Recently, the dynamics dhree-dimensiona{3D) vortex
lines in the CGLE has attracted substantial attent&in-23.
whereA is the complex amplitudéy andc are real param-  As a definition of a vortex line, we accept a line singularity
eters, and\ = g5+ 7 + J is a three-dimensional Laplace op- of the phase of a complex functigh Gabbay Ott and Guz-
erator. The parametéris the ratio of dispersion to diffusion, dar[22] applied a generalization of Keener's method for a
andc is the ratio of conservative to dissipative nonlinearity. scroll vortex in reaction-diffusion systenjf0]. They de-
Although the equation is formally valid only at the threshold rived that the ring of a radiuR collapses in finite time ac-
of a supercritical Hopf bifurcation, it has been found that thecording to the following evolution law
CGLE often reproduces qualitatively correct phenomenology
over a much wider range of the parameters. As a result, the dR 1+b?
predictions drawn from the analysis of the CGlMostly in at R 2
one and two spatial dimensions; see, e.g., Rdis7]) were
recently successfully confirmed by experiments in opticalln addition, there is ndat least, in the first order in R}
and chemical systen}8,9]. Moreover, some results obtained overall drift of the vortex ring in the direction perpendicular
from the CGLE(for example, symmetry breaking of spiral to the collapse motion. The collapse rétdten called “line
pairs was instructive for an interpretation of experiments intension”) »=1+b? appears to be in a reasonable agreement
far more complicated systems of chemical way#8] and  with the simulationg22]. This result generalizes Keener's
colonies of amoebajl1,12 ansatz by including the curvature-induced shift of the fila-

In three dimensions the point singularity at the center ofment’'s wave number. Thereby, as follows from E2), vor-
the spiral becomes a line singularity, known as a scroll, otex loops initially existing in the system will always shrink
vortex filament. The filaments can be opgerolly, closed  (if, of course, there is no bulk instability of the waves emit-
(vortex loops and rings knotted, or even interlinked or en- ted by the vortex filament and under no condition can the
tangled. Scroll vortices had been observed in slime moldortex loop expand.

[13], heart tissueg14], and a gel-immobilized Belousov- In this paper we show that under very general conditions,
Zhabotinskii(BZ) reaction[15]. Long-lived entangled vortex and in an extensive part of the parameter space, vortex fila-
patterns in three-dimensional BZ reactions were observed renentsexpand and bendpontaneously and result in persis-

dA=A—(1+ic)|A]?A+(1+ib)AA, (1)
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tent vortex configurations even if there is no bulk instability II. INSTABILITY OF WEAKLY CURVED FILAMENTS

of the emitted waves, and the spiral wave is stable in a two- IN' A HIGH DISPERSION LIMIT

dimensional system. A preliminary account of this work was
published in Ref[23]. We have shown that vortex loops ) B ) )
may expand for any value df above some critical value As a test for instability, we consider the dynamics of a

b.(c). The critical valueb.(c) can be relatively small for not \t/)veakly curve? V(t)]rtex filamlgnt in thfe #igh—dispgrs]ion limit

too largec. For example, our analysis predicts that=2 for >1. We apply the generalization of the method o R&I.

c=0. We prove that, fob>b,, Eq. (2) is not valid, because for the case of 3D vortices, and make perturbations near the
- . y c . y

) . : . .. 2D spiral wave solution to the CGLE. For convenience, we
formally higher-order, but in fact singular, corrections, omit- redefiner —r/yb. Then Eq.(1) assumes the form
ted in Eq.(2), cause severe instability of the filament and ' 9.

A. Derivation of the equation of motion

persistent stretching. This instability is a three-dimensional dA=A—(1+ic)|A[PA+(e+i)AA. 3
manifestation of the two-dimensional core instability of spi-
ral waves(calledacceleration instabilityin Ref.[6]). Its ori-  In the following discussion in this section, we assume

gin can be traced back to the breakdown of the Galilean<1 to be a small parameter. Our objective is to relate the
invariance of the CGLE for any=1/b+0, causing sponta- acceleration of the vortex filamewv with the velocityv
neous acceleration of the spiral waJé3. Whereas in two and local curvaturec of the filament.

dimensions the instability is relatively weak, the situation is In order to develop the perturbation theory for a weakly
different in three dimensions. Using combined analytical ancfurved vortex filament in three dimensions, we begin with
numerical methods, we have proven that the threethe stationary _one-armed isolated spiral solution to Efjs.
dimensional instability of the vortex filaments persists far@nd(3), which is of the form

beyond the core instability limit of a two-dimensional spiral _ -

. . Ao(r,0)=F(r)exgli[wtx 6+ y(r)]}, 4
wave, and typically has a much higher growth rate. It ceases o(rO)=F(Nexile w1} @
to exist on_ly_when_ _thg core _modes “becomes_strongly,\,here ¢,0) are polar coordinatesp=—c—k3(1—ec) is
damped. Th|S InStablllty IS not d”Ven by nega“ve I|ne ten- the rotation frequency, ankb is an asymptotic wave num-
sion.” It develops from a nontrivial response of the filamentper. The real function§ and ¢ have the asymptotic behav-
core to bending, which results in additional “acceleration” jors F(r)—\1—ek2, ' (r)—ko for r—c and F(r)~r,
terms in _the equatlo.n of filament motion. As we vv_|II sho_vy, ' (r)~r for r—0. The wave numbek, of the waves emit-
the bending of the filament greatly enhances the |_nstab|I|tyted by the spiral is determined uniquely for givere [25].
and may result in the formation, after some transient, of &or e=0 one has a type of Galilean invariance and, then, in
highly entangled and dense vortex configuration. The “highaddition to the stationary spiral, there exists a family of spi-

dispersion limit”b>1 is readily fullfilled for many physical rals moving with arbitrary constant velocity= (vy,vy) [6],
and chemical system&ctually b larger than about 2 is

enough to have the effectFor example, in the context of , 1, ,

nonlinear optics, where the CGLE can be derived from the ArY=F(rexp| o't+0+y(r')+——1, 5

Maxwell-Bloch equation in the good cavity limj24], this

parameter is very smalk=1/b~10"4—103. For an oscil- wherer’'=r—vt, »'=w—V?/4, and the function§ and ¢

lating chemical reaction the diffusion rates of various reactare those of Eq4). (This invariance holds for any stationary

ing components can be varied over a wide range by addingolution) For e#0 the diffusion term~sAA destroys the

extra chemicals. family, and leads to slow acceleration or deceleration of the
The structure of this paper is the following. In Sec. Il we spiral proportional toev, depending on the value ef. As

present an analysis of the filament motion in the “high dis-found in Ref.[6], the equations of motion of the spiral core

persion” limit e=1/b<1. This allows us to prove the insta- for e<1 assume the form

bility of a straight vortex filament with respect to bending

and stretching on the basis of a computer-assisted analytical v+ eKv=0, (6)

procedure. In Sec. Ill, we present the results of numerical

simulations of the three-dimensional CGLE. We discuss th&vith the “friction” tensor

properties of a spatiotemporal intermittency which we have

found in our simulations. In Sec. IV, we consider the formal K= ( Kxx ny)

stability analysis of a straight vortex filament with respect to Kyx Kyy/'

periodic perturbations along the filament axes. Using a nu-

merical matching-shooting algorithm, we have calculated thd3ecause of isotropy the elements of the tensor satisfy the

spectrum of eigenvalues, and determined the stability limit ofonditionK,,=K,,,K,,= —K,,. Equation(6) can be writ-

a three-dimensional vortex line in thec plane. In Sec. v, tenin a more compact form:

we present a weakly nonlinear analysis for the vortex fila- . .

ment near the three-dimensional stability limit showing the dw+exv=0, €)

existence of traveling helix solutions. After some concuding R

remarks in Sec. VI we present in the Appendix an analyticalvhere v=v,+iv, is a “complex” velocity and y =K,y

derivation of the equation of motion of the vortex line and +iK,, is a “complex” friction coefficient. It was shown in

the stability boundary in the limit of the perturbed nonlinearthe Ref.[6] that the coefficienK,,<0 for e<1, which im-

Schralinger equatioNSE). plies instability of the spiral corésee Fig. 1 In the limit of

!

)

yX yy
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i B S where ,0) are polar coordinates in a local plane spanned
S e on the vectors of normal and binormal, and we used the
03 7~ expansion for the Laplace operator in the local basis in the
" limit of small curvaturex and torsion7: A=—«kdx+ a%
+a§+a§+--~ . We use the notation =vg+ivy, where
01 ] vg anduvy are the binormal and normal components of the
velocity, respectivelynote that the coordinate is directed
00 1 along the vector of normal
B u B — Separating real and imaginary partwf and representing
o5 0s 10 it in the form of a Fourier series
(v
FIG. 1. Ky (solid ling) andK,, (dashed lingas functions ot. ReW _ An(r) exp(in 6) (13)
Lines are theoretical results, and symbols are the results of two- ImW/ e \ By(r) '

dimensional simulations from Rdf6] for e=0.025.
we arrive at the set of ordinary differential equations for each
the weakly perturbed NSEc(~), the friction x is of the  azimuthal mode#\, and B,,. Since instability occurs only
form (see Appendix A x~—3.45%ex—cm](1+i3.92). for the first azimuthal mode, we consider the equation only
Since in generaK,, # 0, the spiral core moves on a logarith- for n=1 (the equation fom=—1 is obtained by complex
mic spiral trajectory. conjugation. At first order in € the inhomogeneous linear
Let us now consider the dynamics of an almost straighiquation for the corrections; ,B, is of the form
vortex line. The analysis is conveniently performed in a
filament-based coordinate systéfar details, see Ref22]). -
The position in spacX is represented by local coordinags AA;—2
X, andy, wheres is the arclength along the filament, and
X=R(s)+xN(s) + yB(s), whereR is the coordinate of the e rdv_ k_, ek _ |
filament,N(s) the normal, and@(s) the binormal vectofsee BT TRL L S 7( Fo'+—
also Fig. 1 in Ref[22]). On this basis the weakly curved
filament moving with velocityw can be written in the form

9 By B
2 e _+ 4, _—+
CF-A+ Far = + r2)

. a A, iA;
AB;+2| F?PA1+ ' F— —+ —
or F r2
A(r,t):[F(r')+W(r’,0,3)]exp{i w't+ 0+ do+(r')
e[ iF\ «k_, k[_  iF
r'.v =750 Fl[l-l-T—EEF +§ Fy +T, 14
2 ®

_ _ _ whereA =¢?+r1 19, —r 2—(9?F+ 1l 6,F)/F and primes
Herer’=r—vt, ¢ is a phase, ant is the perturbation 10 genote differentiation with respect to Equation(14) can be
the spiral solution which we require to be small. We assum(:f-Ormally simplified by the transformatioB, =B, — erF/4
that the velocity vectow lies in the plane perpendicular to ~ g 1=l '
the vector tangential to the vortex line, and may in generaft1=A1 [26]. After simple algebra, Eqsi14) assume the
depend(slowly) on the arclengtfs. SubstitutingW into Eq.  form (we omit tildes onA andB)
(3), we obtain at first order ire the linear inhomogeneous

2 ’ i_
CF?A,+y'F +

(assumingdv,v,k<1 and neglecting higher-order correc- A5 _ 5 By 'B_l __f Fow =
tions dgv,d2v, etc) equation ! o F 2 2i 4i
L(W,W*)=H, (10) ig 1ol F2a +<//'F(9 Ar iAy EU_(FI//JF iF
1 1 o E T T T 5 rak
where ar F r2 2i r
(15
. o~ 2i _dW — - - o
L(IW,W*)=iAW+ — dgW+ 2|FE 3 wherev=v —ik/e. The solvability condition for Eqs(15)
r

implies a unique relation betweﬂf; andv. If the solvabil-
—(1+ic)FA(W+W*), (11 ity condition is fulfilled, the solutionsA; and B; remain
finite atr =0 and do not grow exponentially for—oc. Slow,
and A =0+ (1/r) 9, + (12 92— (LI F) d,(r 4,F). The inho- powerlike growth of the solutions is permitted, since the
mogeneityH is of the form right hand side of Eq915) grows linearly withr. Thus the
transformationB,;—B;— erF/4 does not change the solv-
i ) ) ) ability condition. Remarkably, Eqg15) coincide with the
5 OWVIF—1d1poF — eV[VE+IFV(0+ ) ]+ x(e+i) equations analyzed in Ré6] for the case of the acceleration
instability of a spiral wave in two dimensions. The only dif-
X[oxF+iFox(0+ )], (12 ference is that the normal velocity is modified by the curva-

H=
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0.0050

ture k. Obviously, it results in the same solvability condi-
tions as the corresponding equations of the two-dimensional
case,

0.0025

Re Ak)

o +exv=0, (16)

< 0.0000
L) 0.000 0.005 0.010
k

Re A(K)

with the same “complex” friction coefficieny. The equa-
tion of motion(16) can be written in the matrix form

dv+K[ev—«kN]=0. (17)

Note that, dropping the acceleration term in Efj7), we K
recover the result of Ref22] for b—oo, since for the ring _
vn=4R and k=—1/R. Restoring the original scaling FIG. 2. The growth rate R€k) as function ofk for e

Hr/\/E, we obtaing,R= —b%R. However, since in three =0.02¢=0.1. The solid line is the theoretical result o1, and

dimensions the local velocity in general varies along the vor—thg ggsrédli:ggt_wt')tlgvzmE?Liésst;yerzuzgﬁf numerical solution of
tex line, even small acceleration may cause a severe instabﬁ— ' ' P glon.

ity of the vortex line, because the local curvature becomes rowth ratex at laraek which is not cantured by the small-
very large. Moreover, deviation of the local velocity from the 9 9 P y

direction of normal will lead to a stretching and bending Ofcurvature approximation used here. This effect will be in-

the vortex line. Thus the acceleration term, which formallyCIUded in the treatment below.

can be considered as a higher-order correction to the equa-

tion of the motion, may play a pivoting role in the dynamics Ill. NUMERICAL RESULTS
of a vortex filament. Our subsequent analysis and numerical

. . . . X In order to verify our results numerically and to follow
simulations verify this hypothesis. v y

later development of the instability, we performed simula-
_ tions of the three-dimensional CGLE. We studied a system
B. Almost straight vortex of 50°-60° dimensionless units of E¢3) with either no-flux

Let us Consider an a|most Straight vortex para”e| to thé)r peI’iOdiC boundary COI‘IditiOﬂS. The numerical.solution was
axisz. We can parametrize the position along the vortex lindMmplemented on a parallel 16 processors Origin 2000 com-
by the z coordinate: Xo(2),Yo(2)]. Since in this limit the puter of the High Performance Computing Center at Ar-

arclengths is close toz, the curvature correction to the ve- 9onne National Laboratory. We applied an implicit Crank-
locity N is simply «N=(d2Xq,d2Yo)=d2r, where r Nicholson algorithm based on iteration scheme for inversion
z L4 z'

= (Xo.Y,). Using a7 = v, from Eq. (17) we then obtain of a band matrix. The number of grid points was 10028
We performed simulations in the parameter regime away
gv+K[ev—d2r]=0, (1gy  from amplitude turbulence in two dimensiof# for various
values ofe andc.

Let us now consider perturbations of the vortex that are pe- We numerically verified our theoretical result for the
riodic alongz. Due to the linearity of the problem, the solu- growth rate of linear perturbation for a straight vorféq.
tion can be written in the form~ exgikz+\(K)t], wherexis ~ (19)]. As an initial condition we selected a straight vortex

the growth rate. We immediately obtain the following rela-line with small periodic modulation along the axis. We
tion for \: have numerically measured the growth rate as a function of

modulation wave numbek. The results of our simulations
A2+ x(en+k?)=0. (190 are summarized in Fig. 2. As we see from the figure, the
growth rate indeed increases initially wiky and then falls

Let us consider separately two cadese andk>e. Fork  off for largek. The theoretical expressigh9) shows reason-
<€ from Eq. (19) we derive that\=—ex+O(k?). Fork  able agreement with the simulations results for small enough
> e we obtain\ ~ = - (K,,+iK,,)k. There always exists a k. The maximum growth rate reached for intermediate values
root with a large positive real park~k> €. Therefore, for of k exceeds in this case the growth rate of the two-
finite k, the growth ratex (k) may significantly exceed the dimensional acceleration instabilitik€ 0) by more then two
increment of the acceleration instability in two dimensionsorders of magnitude.
(corresponding tok=0): A= —ex=—€(K,,=iK,,). We The long-time evolution of a straight vortex is shown in
can expect that, as a result of such an instability, highlyFig. 3. As an initial condition we used a straight vortex per-
curved vortex filaments will be formed. Hence the “small- turbed by a small broadband noise. As we can see from the
curvature” approximation considered above can be validigure, the length of the vortex line grows. The dynamics
only for finite time. Moreover, one may not expect this in- seems to be very rapidly varying in time, and the line inter-
stability always to saturate in a steady-state configuratiorsects itself many times forming numerous vortex loops. The
with finite curvature(although we will show this possibility long-time dynamics shows, however, a saturation when a
to exisd. In contrast, we suggest that, frequently, reconnechighly entangled vortex state is developed and the total
tion of various parts of the filaments, formation of vortex length of the line cannot grow further due to a repulsive
loops etc, will result in persistent spatiotemporal dynamics ofnteraction between closely packed line segments. The de-
a highly entangled vortex state. We expect a fall off of thependence of the line length on time is shown in Fig. 4. As a
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FIG. 5. Two snapshots of 3D isosurfaces|8f taken in the
regime of spatiotemporal intermittency=0.02c=—0.5. (a) Left
image corresponds to~620 for Fig. 4.(b) Right image corre-
sponds ta~ 740.

ments of vortex lines start to expand spontaneously, pushing
away other vortex filaments and in such a way making sub-
FIG. 3. Instability of a straight vortex filament. 3D isosurfaces stantial vortex free holes around them. Then the instability
of |A(x,y,z)|=0.1 fore=0.02,c= —0.03, are shown at four times: takes over and destroys these almost-straight segments of
50 (a), 150 (b), 250 (c), and 500(d). A similar dynamics is also  fijlament, bringing the system back to a highly chaotic state.
observed for a larger value ef This dynamics can be considered as a three-dimensional spa-
tiotemporal vortex intermittency, which is an extension of
measure of the filament length we used the following spiral intermittency discovered in the context of the two-
quantity:L~S, [ @ (A;—|A(X,y,2)|)dx dy dz where® is  dimensional CGLE in Refl6]. For even smaller values of
the step function®(x)=1 if x>0 and ®=0 otherwise. C<—1 we observed the transition to a highly chaotic state,
A,=0.1 was used as a threshold value to identify the vortexwhich is an analog of “defect turbulence” in the two-
Sy is a constant determined from the condition that for thedimensional CGLE. In this regime small vortex loops nucle-
straight line the above integral coincides with the actualate and annihilate spontaneously, and large vortex filaments
length. We can identify two distinct stages of the dynamicsplay no role in the dynamics.
first, fast growth of the length; second, oscillations of the ~The evolution of a closed vortex loop is shown in Fig. 6.
line’s length around some mean value. Our simulations show that the three-dimensional instability
Strikingly, for small enoughe, we have observed two May prevent the ring from collapse, causing the stretching of
distinct behaviors of the total vortex length depending on théhe loop in the direction transversal to the the collapse mo-
value ofc. Above a critical value, corresponding approxi- tion. However, we have also found that small enough rings
mately to the so-called convective instability range of thetypically collapse, since then the instability described above
two-dimensional spiral ¢.—0 for e—0), the total length does not have time to develop substantial distortions of the
approaches some equilibrium value, and does not exhibit sig-
nificant fluctuations. On the contrary, far<c., the total
length exhibits large nondecaying intermittent fluctuations
around the mean value. Figure 4 demonstrates the two cases.
In Fig. 5 we present snapshots illustrating the structure of the
vortex field in the intermittent case corresponding to the
maximum of the lengtiFig. 5@a)] and the minimuniFig.
5(b)], respectively. One sees that, in this situation, some seg-

t=20 t=100

6000

4000 M"’W : t=120 t=140
/I ‘”/M l‘f\“ V#
O (\‘ Y (/ =

2000

!
!
1
|
.’

0 500 1000
t

0

FIG. 4. The dependence of filament lendthon timet. The
solid line corresponds te=0.02¢= —0.03; the dashed line corre- FIG. 6. Sequence of snapshots demonstrating the evolution of a
sponds toe=0.02¢=—0.5. vortex ring fore=0.2 andc=0.2.
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ring. Even in this situation, the ring exhibits a few oscilla- 0:500
tions of the radius. Probably, the oscillations in the collapse

rate in Fig. 2 of Ref[22] are caused by the effect of the 2
acceleration term in the equation of motion, which plays an £
important role even in the stable case.
0.000
IV. LIMITS OF THREE-DIMENSIONAL INSTABILITY 0.06

Reik)

The previous analysis indicates instability of vortex lines
in the limit e—0 for all c. However, it cannot describe the
boundary of the instability in the, e plane since the transi- 002 b= o v o
tion to a stable regime occurs for some finite valuesofn
Orde'r.to obtain.the Stability limit we performed a full I?near FIG. 7. Rex and Im\ as functions ok for e=0.3 (solid line)
;ta}mhty analysis of a straight vortex solution, which is not ;4 .- 14 (dashed lingfor c=0.5.
limited to smallk ande.

The perturbative solution is of the form

0.02

were included in the shooting-matching procedure. Thus the

_ ; numerical matching procedure was applied on a finite inter-
= + + 6+ .
A=IF( W, 0.z Jexplif wt+ 0+ (] (20 val ro<r<r,, wherer, was typically 102, andr, was
Substituting the ansat20) into the CGLE, and performing 9radually increased until the eigenvalae approaches its
the linearization with respect i as before, then separating asymptotic value. Since the unperturbed functiénand

the real and imaginary part f and representing the solu- are known only numerically, we determined them in the
tion in the form same matching routine, solving three nonlinear equations

(for F, F', and¢') and eight first-order linear equatiofthe
Rew °° functionsA; andB, are complex We typically used 5000
( ImW) = )exp[in0+ikz+ A(K)t], (21)  mesh points on the interval of integration.
The spectrum of Re(k) for two values ofe is shown in

we obtain an eigenvalue problem for the eigenvalgk). Fig. 7. A typical localized core eigenmode, corresponding to

Again, we restrict ourself by the analysis of most dangeroudis three-dimensional instability, is shown in Fig. 8. As we
perturbation harmonics with=1. The resulting equations Can see from Fig. 7, Rgk) indeed falls off for largek. As

An(r)
Bn(r)

n=—o

are of the from{compare Eqs(14) and (15)]; _expec_ted from_ the previous analysis, the_ three-dim_ensional
instability persists beyond the two-dimensional core instabil-
R 9 B. iB ity. From Fig. 7, we see that far smaller than about 0.3 one
AA;—K2A;—2| ¢,F2A,+ ' F— — + —21) has Ra (0)<O0 (the core is stable in two dimensionsiow-
or F r ever there is an instability for finitk. The relation between
A(K) the_: eigenvalue prqblem E(Q2_2) and the acceleration insta-
— (eA,+By), bility is presente_d in Appendix B.
+ €2 We systematically tracked the boundary for the three-
dimensional instability from the condition max Re 0. The
. a A, iA; results are shown in Fig. 9. As one can see, the three-
AB;—k?B;+2| c,F?A;+ z/;’Fa— = +— dimensional instability occurs over a much wider parameter
' r range then the two-dimensional core instability. Moreover,
A(K) the typical grpwth rate in three dimensions is much higher
— (eB;—A,), (22) than in two dimensions.
+ € We expect that foc— —« the critical line of the three-
wherec,;=(e+c)/(1+€?) andc,=(1—ec)/(1+€?). The 18—
functionsA; andB; are subject to the boundary conditions: ST T
A, andB, are bounded at=0, and decay exponentially for £ o
[—oo, E
We solved Eqs(22) in the range of wave numbeils 8 ﬁ
numerically using a matching-shooting method with Newton 25
iterations from NAG library, routined02agf. Since Egs. o N
(22) are singular at =0 and the solution is required on an 2 - i’
infinite interval, we applied the following method of solution R
of this rather difficult eigenvalue problem. The functiohs L/
andB; were expanded in a series for-0, and we used the 5 5 10 15

asymptotic expansion far—oo. We replaced the boundary
conditions atr =0 andr— o by new boundary conditions at FIG. 8. Ré; and ImA; (solid lineg and R&, and InB;
sufficiently smallr and sufficiently large,. The boundary (dashed linesas functions ofr, obtained from numerical solution
values were obtained from the corresponding asymptotic exef Egs. (22) for €=0.3,c¢=0.5, andk=0.2, corresponding to.
pansions, while the unknown parameters of these expansions0.0163+i0.122.
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The structure of the amplitude equations can be uncov-
ered from the following consideration. The growth rafg)
is symmetric with respect tk: A (k) =A(—K). Therefore, at
the transition point two modes withy and—Kk., correspond-
ing to counterpropagating waves of opposite helicity, simul-
taneously become unstable. In genefa(k)=Im\(k)#0.
Thus at lowest order we shall obtain two coupled one-
dimensional Ginzburg-Landau equations for counterpropa-
gating waves with the amplitudedd and V. Close to the
threshold the structure of these equations becomes universal:

ey

0.8

0.6

0.2

0.0

>
-~ -
"*-‘-.._44‘.—0—'*

0.0

e
15

04 0.6 0.8
€ AU +v,0,U=N(ko)U+39pN (ko) 92U
FIG. 9. Stability limits in thregsolid line) and two dimensions

(dashed ling obtained from linear stability analysis. Symbols rep-
resent the limit of the two-dimensional instability, obtained by di- _ 1.2 5 ) )
rect numerical simulation of the CGLE from R¢6]. Vortex lines ﬁtv_vpﬁzv_)\(kc)v+ 29N (Ke) 97V — (a1|V| +a2|U| )V,
and two-dimensional spirals are stable to the right of the respective (23
lines.

—(ay|U[?+a,|V|*)U,

wherev,=d,)(k;), anda; anda, are complex constants.
dimensional instability again approaches w0 line, simi- ~ The coefficients of the linear problem can be determined
larly to the two-dimensional core instability lif&]. How-  from the solution of the eigenvalue probldigs.(22)]. To
ever, our numerical matching procedure failed to convergdletermine the coupling coefficients, ,, some additional
for this region of the parameters, since the critical modeanalysis is required. In principle, they can be extracted from

becomes less localized for— — . three-dimensional simulations.
System(23) has been studied intensively in various phys-
V. WEAKLY NONLINEAR ANALYSIS ics contexts(see, e.g., Refd.27-29). It exhibits diverse

types of dynamic behaviors, including traveling waves, do-

Our numerical simulations near the stability boundary ofmain walls, sinks, shocks, and spatiotemporal chaos. Thus, in
the three-dimensional instability have revealed a striking reour interpretation, this chaotic behavior corresponds to slow
sult: the instability saturates, leading to the formation of anonperiodic spatiotemporal deformations of the helicoidal
stable traveling helix solutiofsee Fig. 10 The pitch of the  structure of the vortex line.
helix is determined by the most unstable wavelength, and the Equations(23) are simplified drastically if one of the
radius of the helix vanishes when approaching the stabiliticounterpropagating waves is suppressed, which is the case
boundary. The existence of the stable helix solution can béor Rea;>Rea,. Then this system is reduced to a single
considered a result of saturation of the Hopf bifurcation,one-dimensional complex Ginzburg-Landau equation, which

which is thus of supercritical nature. is of the form(in a moving frame
Although we have never observed saturation of the accel-
eration instability in two dimensions, here the situation is U= (ky)U+ 232N 02U —a,|U|?U. (24)

different, since the most unstable mode has a different spatial
structure than the acceleration mode in two dimensions. Thgye estimated the parameters of Eg4) from our linear
helix near the stability limit can be described in the frame-gnalysis and simulation§see Fig. 1(b)]. We obtained

work of a weakly nonlinear analysis for the relevant Order)\(kc)%o.02095l—i0.1431,&i)\(kc)/2=0.311—i0.5315, and
parameter, which characterizes the local helicity of the Vor'alzag(l—i0.3675), where, is a parameter which can be

tex line. scaled out. For this set of parameters of the one-dimensional
CGLE (c=-0.3675 ancb= —0.5315/0.31% — 1.708), the
homogeneous solution to E@Q4) is stable, which implies
the stability of a traveling helix solution. However, we can
expect that for other sets of parameters of the three-
dimensional CGLE, the parameters of E&4) may fall into
the unstable region, e.g., the range of amplitude turbulence.
This would imply chaotic oscillations of the helix. We ex-
pect that these weakly nonlinear equatiq®8) may also
serve as building blocks for the understanding of weak vor-
tex turbulence in the CGLE in a certain region of parameters.
(@) (b) An interesting question in this context is the following:
Could the helixes form a bound state similarly to spiral
FIG. 10. (a) Stable traveling helix solution, obtained numeri- Waves? One could imagine a stable double-helix state, simi-
cally for e=0.3 andc=0.5. (b) The coordinates of the vortex line 1ar to the DNA molecule. We have performed a preliminary
x(t) (solid line and y(t) (dashed ling as functions of time for ~numerical investigation of the double-helix configuration.
some fixedz. A supercritical character of the bifurcation is appar- The results presented in Fig. 11 indicate that the double helix
ent. is unstable: the outer helix expands, whereas the inner helix
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manifestation of acceleration effects, similar to the situation
in the CGLE.

Recently, the amplitude equation governing the dynamics
of an elastic rod was derivd@3]. The structures of solutions
found in Ref.[33] are remarkably similar to those of the
CGLE. It is plausible to assume that, in some distinct range
of the parameters, the equations of motion of the twisted
elastic rod can be reduced to the equations for the vortex line

FIG. 11. Sequence of snapshots demonstrating the breakdown df CGLE. We also speculate that our results are relevant for
a double helix forr=0.5 ande=0.25.(a) t=60, (b) t=120, andc)  inviscid hydrodynamics. In the limit db,c—c, Eq. (1) re-
t=240. duces to the defocusing nonlinear Salinger equation

(NSE), which is a paradigm model for compressible inviscid
shrinks. However, we cannot exlude the possibility for exis-hydrodynamics. Although the vortex lines are stable in the
tence of a stable double helix in soniarrow) parameter framework of the NSE, the corrections arising from the
range of the CGLE. CGLE cause their destabilization and stretching.

(@)
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Slightly beyond the onset of the three-dimensional insta- APPENDIX A: LIMIT OF NONLINEAR SCHRO  DINGER
bility, we found stable traveling helix solutions, which bifur- EQUATION
cate supercritically from the straight vortex. Qualitatively 1. Adjoint mode
similar helixes have recently been observed experimentally
in heart tissue$30]. Note that the acceleration instability in
two dimensions is subcriticdl6]. Unstable helix solutions
can maybe serve as building blocks for a weakly nonlinea
theory of three-dimensional vortex turbulence.
Let us now discuss implication of our result for the well-
known phase turbulence problem in CGLE. As was found in
Ref. [31], in two dimensions phase turbulence is never a AAI—Z
global attractor, since it is unstable with respect to invasion
by defect turbulence. However, in three dimensions we may
expect that at least in the region of parameters away from the 1 9 i AI
stretching instability, the vortex rings collapse and the phase ABI+2 E 07—r(rt,b’FAI)——2 =0. (Al)
turbulence regains its stability. But inside the three- r
dimensional instability region, we may speculate that there iﬁ-
always a possibility for creation of a large enough vortex
loop which will expand and invade the phase turbulence.
Our result could be verified in experiments with autocata- - —
lytic chemical reactions in gels in the regime of oscillatory dwli—2evl,=0, (A2)
instability. The limit of a large dispersiob>b, can prob- where
ably be achieved by doping with additional chemicals, thus
changing the relative mobility of reacting components. w
Persistent entangled vortex configurations are known I1=f radr FAJ{
from numerical simulations of excitable reaction-diffusion 0
systemg[16,19. Our preliminary investigation of reaction-
Qiﬁusion §ystems shows_ that the undgrdamped core dynam- = fwr dr[F,AIJF(FW +iF/r)BI]. (A3)
ics here is also responsible for long-lived vortex loops and 0
persistent entangled vortex configurati@g]. In this case,
the expansion of the vortex loops is not necessarily related terom Eq. (A2), we readily obtain the friction coefficient
a “negative line tension” of the filament, but again is the [compare with Eq(8)]

In order to derive the friction coefficient in Eq. (16), we
have to fulfill the solvability condition. In Sec. Il, this was
one numerically. The solvability condition means the or-
hogonality of the right-hand side of E(L5) to the adjoint
mode of Eq.(15). The adjoint equations are of the forms

19 iB]
cF2Al+ — —(ry'FBh - r—zl

op2gT—
rF or 2F°B;=0

he solvability condition of Eqs(15) can be expressed in
terms of functionsA] andB] :
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x=-2l,/y. (A4) Al w
| o o] =Cl 7 |eXR—WKa(ukor),  (ALD)
For arbitraryc the localized adjoint modes! andB] can 1

be determined only numericall$]. However, forc—«, i.e.,
in the limit of the perturbed NSE, the adjoint mode, and
can be calculated fully analytically. Far—o the selected
wave numbek, vanishegsee, e.g., Ref.25]), the solution
approaches the vortex solution of NSE, and E41) be-
comes self-adjoint. We introduce a small parameierl/c
<1 and assumg> €. Equations(Al) read

R F2 19 iB!
t_ ol At = 9 ' 1 2pt_
AAT-2 MA1+rF —(TW/'FB) r2)+2F BI=0,
ABI+2 19 "EA! —iAI =0 A5
1 F o T¥'FA) =2 |=0 (A5)

For u=0, Egs.(A5) are self-adjoint, and the localized a

translation mode

(AB)

(Q%) z(—li:F,/r)'

whereC is a constant determined from the matching with the
inner solution Eq(A6). Forr—c the functions decay expo-
nentially: Al, BI~exd —2ulkr}/r*2 since y—kor. The
solutions(A6) and (A11) match in the intermediate region
r>1 and ukor<<1. ExpandingK,(ukqr) for small argu-
ments, we findC=—i uk.

2. Friction coefficient

To calculate the integral6A3) we introduce the cutoff
Ro=1/(nko)>1 and split the interval of integration into two
parts: 0<r<R, and Ry<<r <. In the first interval we use
the inner representation of the eigenfunctipig. (A6)], and
in the second one the outer representafigg. (A11)]. For

d- the inner interval we obtain
joint eigenmode conincides with the complex-conjugated

. R
|'1=f "r2dr FF'=by+ uInRy
0

1= fOR°rdr[(F')2+(F/r)2]=b1+|nR0, (A12)

In order to evaluate Eq$A4) we take into account that for

any 1#0 the functionsA] and B decay exponentially for whereb, andb, are some constants. From the outer integra-
r—oo. Therefore, Eq(A6) can be considered an approxima- tion for I,, we have[using ¢’ —k,F—1 for r—o=, see Eq.
tion valid within a finite interval 6<r <R,, where the cutoff (A3)]
Ro>1 will be determined from the matching condition with
the outer asymptotics of the solution. Hor~ we can sim- o o ) N )
plify Egs. (A5) using thatF2—1— u/r?+---, ' —k, and |2“f r(ko+i/r)drBy~—0.884-In(Rouko) —10.666/u.

0

. R
t

19 iB!
Forr'B)-—
r

r oar

In order to evaluate the integr]l, we need the next order of
the functionAir to compensate for the logarithmic divergence
of the inner integral. From Eq(A5) we obtainAl=u(B]
+iB1/r?). Thus we have

Io—fwrzdr
o
Ro

0.4
~ —0.884u — uIn(Rouko) — —.
(A8) kg

AAI-2 +2BI=0

1
—Al+
M

oo (re AT

ABl+2 Fﬁ(rlﬂ Al)_r_z =0. (A?)
[

1+r—2 Ky (ukor)explukor)

From the first Eq(A7) we can explicitly expresAI in terms —ipko

of BI, because — for all terms in the first EQ(A7) ex-
ceptAl/u andB]. In the first relevant order we obtain

(A14)
Al=puB]

Substituting now Eq(A8) into the second equatiofA7),
and dropping higher-order terms, one has

Combining now the outer and inner expansions, we see that
R, drops out. The friction coefficient is of the form:

—1In( ko) +C,—i0.666/u
— uIn( ko) +Co—i0.4K uk3)

1 1 2u 9
a331+7ar51—r—251+7&—r(r¢B}):o. (A9) =— (A15)

Equation(A9) is reduced to Bessel's equation by the substi- .

tutionBi=S exp(— u), leading to where ¢,;=b;—0.884 andcy=by—0.884u. Now, using
1 ' Hagan's expression for the selected wave num®gfin our

scaling of the CGLE parameters, one firklg=2u ~%exp

1 1 : .
92S+ —9:S— u?kg+ — | S=0. (A10)  [—m/(2u)—y—0.098. We finally obtain
r
It has the localized solutio®=K(ukor). Thus the out 13.3 m i
s th =Ka(ukor). Thus the outer x~——exp ———2y—0.196|| 1+ —
solution is of the form: M?’ J7 0.8
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3.45 T A F
~——exp ——|(1+3.92). (Al6) B = B3)
K H BO/ Fy' +— (
r
The real part of the friction coefficient is always negative,
which implies the instability of the spiral core in two dimen- at first order ine, we obtain
sions and a stretching instability in three dimensions.
iF
APPENDIX B: RELATION BETWEEN ACCELERATION { AT w| F¥'++ B4
INSTABILITY AND STABILITY PROBLEMS B =X\ (B4)
— F’

The result of Sec. Il for weakly curved vortex filaments
can be formally derived from the linear stability problem 1he equations have an exact solution corresonding to the
[Eq. (22)] through systematic expansion éiup to second “family mode,” which exists fore=0:
order. The eigenvalue problem fer< u is of the form
AD NET)
( ) i 7( ) (®9

=(Ne+k?) A+ By, B rE

Aa -2 Lrea gl B 1B
172 F A i )

At second order ire, we obtain equations

. ) a A iA; ,
' 2 AV +K3)F - rF 0
(B1) [A@ 2 B
i o i - Hgal= i RS BT
Now we expand EqB1) in . The solution is represented in B O iF —A
the form ( )| Fo T
A, A AL (B6)
(Bl) :(B<°> Telgm) T These equations have a bounded solution if the solvability
condition is satisfied. It is easy to see that E(B6) are
A=exP+ NP .. (B2)  identical to Egs.(15) if we take into account~N\,dw
. — =\v and k=k?. The solvability condition implies that
We considek~O(e), and denot&k=k/e. (A\D)2+ y(\D+Kk2) =0. The last term in EqYB6) can be

At zeroth order ine we simply obtainl (A®,B(™)=0,  omitted, since it generates a nonsingular solutitamily
where L is the right hand side of Eq¢B1). Clearly the mode, compare EqB5)]. Thus we reproduce the result for a
solution is the translation mode weakly curved vortexEq. (19)].
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