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Two-dimensional thermosolutal convection with no-slip boundary conditions is studied using numerical
simulations in a periodic domain. The domain is large enough to follow the evolution of phase instabilities of
fully nonlinear traveling waves. In the parameter regime studied these instabilities evolve, without loss of
phase or hysteresis, into a series of confined states or pulses characterized by locally enhanced heat and solute
transport. The wavelength and phase velocity of the traveling rolls within a pulse differ substantially from
those in the background. The pulses drift in the same direction as the convection rolls on which they ride but
more slowly, and are characterized by an exponential leading front and an oscillatory trailing end. Multiple,
apparently stable, states are found for identical parameter values. The qualitative properties of the pulses are in
good agreement with the predictions of a third-order phase equation which accounts for the relation between
wave number and phase velocity, the oscillatory tails and the multiplicity of states. These properties of the
pulses are shown to be a consequence of Shil'nikov dynamics in the spatial dp&ifi63-651X98)04901-0

PACS numbes): 47.20—k, 47.35+i

I. THE PHYSICAL PROBLEM such states in binary fluid convectid]. This system is
closely related to thermosolutal convection but differs from
The dynamics of overstable convection produced by thét in several crucial ways. In binary fluid convection the sta-
competition between stabilizing and destabilizing mechabilizing solute gradient develops in response to the applied
nisms in doubly diffusive systems has attracted much interadverse temperature gradient; no solute is therefore trans-
est. Typical of such systems is thermosolutal convection iported through the system. The traveling waves that are ob-
which this instability usually develops into nonlinear travel- served appear via a subcritical Hopf bifurcation, and very
ing waves. Such waves were studied extensiyg|g] using  close to onset are seen to evolve into patches of traveling
a combination of bifurcation analysis and numerical simula-waves separated by an essentially quiescent fluid. The enve-
tion in two dimensions, employing periodic boundary condi-lope of these waves moves rather slowly and in some experi-
tions with period 2r/k. in the horizontal. Herek. is the = ments may be stationary. A qualitative theory of this phe-
wave number with which the instability sets in. While suchnomenon, based on envelope equations coupled to the
simulations are suitable for the study of the relative stabilityconcentration field, appears to account for most of the ob-
between traveling and standing waves they exclude longserved properties of these confined states. It should be noted
wavelength modes to which such waves can become urthat the subcriticality of the bifurcation is an essential part of
stable. this theory{4], which describes the traveling wave patches in
This paper is devoted to the study of long-wavelengthterms of solitary waves coupled to the large scale concentra-
instabilities of fully nonlinear traveling waves. For this pur- tion field [5]. Such waves are in turn to be viewed las-
pose we employ a relatively large aspect rdfie 64 with ~ moclinic orbits to the origin in an appropriate amplitude
periodic boundary conditions applied ®0, 64 allowing equation, that is, the amplitude increases from zero at
something of the order of 26—32 roll pairs to form in the x=—2 to a maximum and then decreases to zero again as
spatially uniform state, depending on parameters. We findx— + [6]. Such states have also been found in numerical
and describe in detail, a new dynamical traveling wave statesimulations of the full partial differential equations with ex-
consisting of one or more nonlinepulsesor confined states, perimental parameters and are in excellent agreement with
comprising rolls of different wave number, phase velocity,their measured properti¢g].
and amplitude than the background wave train, that travel The confined states that form the subject of the present
more slowly than the background while transporting more ofpaper are quite different. In particular, they connect a uni-
the heat and solute. We provide convincing evidence thafiorm but fully nonlinear wave train at=—« to itself as
these pulses form as a result of a phase instability of th&—o. Consequently, the traditional amplitude equation ap-
background wave train, and describe a qualitative theoryproach is inadmissible; the pulses must be described using a
based on a third-order phase equation that accounts for theieal order parameter, the phase of the wave. We are able to
structure. In particular, we suggest that both single-pulse antbcate numerically a regime in which the phase of the wave
multipulse states are manifestations of Shil'nikov dynamicds apparently conserved, and develop our theory based on
in the spatial variable and thereby account for the observgshase conservation. As discussed further below, the phase is
tion, at fixed parameter values, of multiple, numerically not always conserved and when it is not our theory no longer
stable, pulse states. applies.
Confined states have been the subject of much interest in The recent experimental realization of doubly diffusive
the last several years, motivated largely by the discovery ofonvection by Predtechenslef al. [8] raises the possibility
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that the pulses described below could be observed in an ap- ()
propriately focused experiment. In these experiments the de- 5 0x10% . 100
stabilizing buoyancy force is produced by an imposed con- |
centration gradient of aecondspecies, instead of an adverse 80
temperature gradient. Consequently the Lewis nuniber, 4 !
the ratio of the diffusivities of the stabilizing and destabiliz- 4.0%10 ; 60
ing componentslies typically in the range 0.1-1.0, a param- Ry I @
eter range that forms the focus of the present study. How- ' 40
ever, in the following we retain the traditional thermosolutal 3.0x10% !
terminology. : 20

This paper is organized as follows. In the next section we T
describe the system studied and some of its elementary prop- soxiodl 1 of t
erties. In Sec. lll, which forms the bulk of the paper, we 0246 810 0246810
describe the results of our numerical simulations. In particu- k k

lar, we discuss the properties of the various figldsnpera-
ture, concentration, vorticilyinside the pulses and outside.  FIG. 1. Neutral stability curvesa) Ry vs k and (b) w vs k for

We provide detailed information on the phase velocity, wavel =64.0,Rs=30000.0,0= 1.0, andr=10"*2 Dots correspond to
number, and amplitude of the rolls inside and outside a pulsg‘e dlscre_te modes of the _flnlte domain, yv_h|ch increase in number
at three different Rayleigh numbers, as well as informatior{ Proportion tol’. The Com'n“%’)s'case critical Vg"“es pro"'dgd by
about the speed of propagation of the pulses. We also ddnear stability theory areRy’=25251.76, k!%=4.37, o®
scribe the transport properties of the pulses in both vertical’ 70.66.
and horizontal directions, and compare their transport effi- . . . .
ciency with the background wave train. This information The velocity bo_u_ndary conditions translat_e into the following
forms the basis of the theoretical interpretation of the resultfoundary conditions on the stream function:
advanced in Sec. IV. The paper ends with a brief discussion

of the results and an intimztign of future work. ¥(x,00=0, ¥(x1H)=-m(1),

(6)
3, U (x,00)=0, ¢, ¥(x,11)=0,
Il. THE MATHEMATICAL MODEL

‘with m(t) determined as part of the solution. The absence of

The nondimensionalized equations describing twoG il . i imolies th . ique:- in f
dimensional thermosolutal convection can be written in the>&/'€an invariance implies t an(t).|s unique; in facim(t)
Is the horizontal mass flux resulting from any mean flow

f 1
orm 1] (U(z,1),0) that accompanies the solution:
1
-l 2 2y = _ 4 1 11 r o
—[aV?¥+I(¥,V2¥)]=Rrd,0 R 2+ V4, (D) m(t)zf Uztdz=—= [ dz[ ax . (7
0 I' Jo 0 0z
— 2
HO+I(V,0)=0,¥+V°0, (2 For traveling wavesn(t) #0.
As in earlier studied1] we use the parameter values
43S+ I(V,3)=0¥+17V%3, (3)  0=1.0,7=10 2, with R&=3x 10" andI'=64.0. Figure 1

shows the neutral stability curvB; as a function of the
where ¥(x,z,t) is the stream function,®(x,z,t) and horizontal wave numbek and the corresponding frequency
2.(x,z,t) denote departures of the temperatlireand concen- w(k), both forI'=64.0 andI'=». The dots indicate the
tration S from their linear conduction profiles in the absencediscretized values corresponding to the finite aspect ratio.
of convection, and J(¥,f) denotes the Jacobian For these parameter values, the critittlerma) Rayleigh
a(¥,f)/d(x,z). In terms of the stream function the velocity number, wave number, and oscillation frequency are found
is given by (1,0w) = (—3,¥,0,0,¥). The dimensionless pa- to be
rametersR; and Rg are the thermal and solutal Rayleigh

numbers, respectively; we shall use the former as our bifur- R{”) =25 251.76,

cation parameter. The quantitiesand 7 denote the Prandtl

and Lewis numbers. k©=4.37, 8
Equations(1)—(3) are to be solved in the domairx,g)

e[0,I") X[0,1], for t>0, subject to periodic boundary con- 0 9=70.66.

ditions in the horizontal,

The large value of(?) indicates that the system is far from
(V,0,2)(x,2,1)=(V¥,0,2)(x+T,z1), (4)  the codimension-two point.
With periodic boundary conditions the systd)—(5) is
and no-slip, fixed temperature and concentration boundargquivariant under the group(2 of rotations and reflections
conditions at top and bottom, of a circle. As a consequence of this symmetry the number of
eigenvalues on the imaginary axis is doubled, and two
u=w=6=3=0, z=0,1. (5) branches of solutions, standing wavé®V) and traveling
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waves(TW), bifurcate simultaneously from the conduction achieved in this manner, the resulting fields were used as

solution. Specifically, near onset, starting points for subsequent simulations in which the real
iTkx+ gL (D] il dr(t)] boundary conditions for the stream function were used
V(x,z,t)=ReA.(t)e LY+ Ag(t)e RYIE(2) [0, =0, at z=0,1, with ¥(x,0t)=0, ¥(x,1t)=—ml].
+0(2), 9) Other.soluuons were run fully from random initial data for
checking purposes.
whereA (t) andAg(t) are the(rea) amplitudes of left- and
right-traveling waves, satisfying the equations ll. RESULTS
AR=(A+aAf+bA2+~~)AR, Th(_e nonlinear simulations reporteg) below eép))lore the
Rayleigh number range froRr=1.1R}" to 1.58R}” and
AL=()\+aA§+bAZ+---)AL. (10) cover the regime from just prior to pulse formation to the

regime where phase is no longer conserved and solutions
appear weakly chaotic. We concentrate on the range charac-

A+iQ are the(double eigenvalues of the linear stability terized by phase conservation, and present detailed results

problem. Generically, these equations possess only three pdP" three values ofRy, viz, LIRP, 12RP, and

sistent solutions: the conduction stafe ( Ag)=(0,0), left-  1.27R{.

traveling waves 4,0), and standing waves/v2, A/v2); all The efficiency of convection is megsured by t.he thgrmal

other solutions can be obtained using translations and/or réind solutal Nusselt numbers. We define these dimensionless

flections of these elementary solutions. The stability of thes@umbers as the ratios of the time-averaged vertical heat or

solutions is determined by the real coefficieatsb as de- solute flux to the corresponding conductive flux in the ab-

scribed by KnoblocH9]. With stress-free boundary condi- Sence of convection through a given plarreconst. Specifi-

tions at top and bottorb=0 [1’9]’ this is not S0, however’ Ca”y, we define the thermal and solutal Nusselt nunase-

for the more realistic no-slip boundary conditiof®. Re-  Sities Nr(x,z) andNg(x,z) in dimensionless variables to be

nardy[10] shows that for the parameters employed both TW IT(X,2,1)

and SW bifurcate subcritically at onset. Thus neither branch NT(x,z)=< 0=

is stable near onset. The large-amplitude traveling waves we Jz

find numerically at supercritical Rayleigh numbers probably

acquire stability at finite amplitude via a saddle-node bifur-and

cation followed by the shedding of a branch of modulated

traveling waves, as described in REE1]. Ns(x,z)=< -
Equationg(1)—(3) with boundary condition$4)—(6) were (12)

solved using a hybrid finite-difference and spectral scheme.

Spectral decomposition in the horizontal with 16 grid pointsyhere ( ) indicates the time average. The thermal Nusselt

per unit length provided 512 Fourier modes for the spectrahymberN,(x) is then given by

decomposition at eachlevel of the grid. A 33 point equal-

length finite-difference grid in the vertical provided an eco- 1

nomic compromise between the resolution needs of the Nr(x)= fo Nr(x,2)dz. (13

boundary layers and those of the long-range fluxes. We

worked with the equations of motion in their biharmonic |n the simulations reported here no qualitative difference was

form (1)—(3) rather than the more traditional stream- found between the values of the vertically averaged Nusselt

function—vorticity formulation in order to avoi@) inversion  numberN(x) and those oNt(x,z) evaluated at midlayer.

of the Poisson operator, arth) difficulties arising from the  The total thermal Nusselt number is usually defined as
coupling between the stream function and vorticiy2].

Here A>=AZ%+A? is the square of the total amplitude, and

+W(x,z,t)T(x,z,t)> (11

dS(X,z,t)

ot le(x,z,t)S(x,z,t)> :

. N1(x)dx. (14

Nta=

These are associated with the peculiar nature of the boundary 1 (r

o . S . N+=—

conditions for the stream functiow and the initial condi- L) J

tions on the vorticityw, which lacks boundary conditions

[13]. In the biharmonic formulation the specification of both We shall find it convenient to also introduseducedthermal

Dirichlet and Neumann boundary conditions f8rposes no  Nusselt numbers, defined by

difficulty because both are required to supplement the fourth-

order elliptic operatoiV* present in Eq(1). 1 f No(x)d 15
Solutions were first computed with fictitious boundary Jadx) Ja Txjdx (15)

conditions for the stream functioW, namely,¥ =g,¥ =0,

atz=0,1. This allows for larger time steps in the numerical These measure the transport properties of heat in subdomains

code and a fast approach to a stationary solution. Thes& of the overall domain of extert. Solutal Nusselt numbers

boundary conditions cancel the overall lateral fluid transportNg(x), Ng, andNg , are similarly defined.

but the dynamics that result from them are close to the true For a steadily traveling pattern with or without a pulse

ones when the net horizontal transports are small. One simybut no phase slipsall global quantities are time indepen-

lation was run from random initial conditions until the solu- dent. This is not so, however, for the reduced Nusselt num-

tion matured, and then solutions for other valuefRefwere  bers which are modulated because of the passage of rolls into

found by perturbing the previous ones. Once stationarity waand out of the pulse. In addition to the above quantities the



57 CONFINED STATES IN LARGE-ASPECT-RAD. .. 527

local kinetic energy densitf(x,z,t)=3u-u, and the enstro- ground, indicated by subscripgsandb, respectively, such
phy densityZ(x,z,t)=|w|? are used as diagnostics, with  thatAp,+A,=I". The boundary separating these regions is
andZ being the values of the associated integrals over th&efined in terms of the wavelength as measured from
full domain. Herew=VXu is the vorticity. W (x,zt) at z=3; the pulse region is defined as the region
Lateral and vertical fluxes of heat and solute have beeMith less than average wavelength, with the background re-
computed, as have the mean lateral velocity and mass flugion forming the complement.
When the fluid motion attains a statistically stationary re- Roll wavelength\(x): The length of each roll was mea-
gime these quantities become time independent. The wavéured at midlayer and used to define the local semiwave-
length of the convective rolls both inside and outside thdength. A discrete function was thus built whose ordinates
pulses is an important diagnostic of the phase and has bedk€ the midpoint coordinates of each roll and whose abscis-
carefully measured. The propagation speeds of the rolls inSas are twice the measured length of the corresponding roll.
side and outside the pulses were computed by tracking zerdd'e roll wavelength\, (x) was obtained by fitting a continu-
of the stream function¥ at midlayer. The presence of a 0Us curve through these points. The average roll wavelength
“mirror-glide” symmetry [2,14—1§ makes the midline the A, was computed from the continuous fit using the expres-
natural place for these measurements. Finally, moving avesion
ages of several of the fields have been obtained. Such aver-
ages are computed in reference frames moving at the pulse
velocity. This procedure filters out small-scale structures, re-
vealing the pattern of large-scale behavior.

— 1 (T
Ar:f Jo N (X)dx.

The roll wavelength in a pulse was computed using
A. Structure of the fields

— 1
At the lower end of our Rayleigh number regime random Mp=5o L A (X)dXx,
perturbations of the conduction stale=0 =3 =0 evolve P =%

into a spatially uniform traveling wave train; left- and right- \yhere the subportiod, of the pulse regiom , involves rolls
traveling wave trains are equally likely. Although of modestith nearly uniform wavelengths, namely, with wavelengths
amplitude these solutions reveal that béihand X have a \jthin 20% of the relative minimum value in the puléef.
trapezoidal, highly nonharmonic shape that cannot be derjg 1. The wavelength in the background was obtained
scribed quantitatively by a weakly nonlinear expansion neag.om
onset[15,16. In these states all the fields have the “mirror-
glide” symmetry — 1

M p=73— A (X)dXx,
) o Ap Jay

A
X+ =,1-zt (16)

2

f(x,z,t)=—f
whereA, is the background region of the traveling pattern.

Roll phase velocity,(x): A discretized function was
which is a combination of a translation by half a Wavelengthcomputed by measuring the phase Ve|ocity of the points at
in the x direction with a mirror reflection through te=3  midlayer where the stream function vanishes. A continuous
plane[2,14-18. This symmetry persists even at large Ray-interpolation of the sampled values yieldg(x). The aver-
leigh numbers as long as the number of roll pairs is conage roll velocityv,, and the roll velocity within the pulse
served during their time evolution. Associated with thesev_r’p and in the background, , were then computed in an
states small-amplitude long-wavelength modulations wergnalogous way to their wavelength counterparts. These quan-
sometimes observed; these are believed to be long-lived trafties are distinct from the pulse velocity, .
sients.

As the Rayleigh numbeR; is increased propagating 1. Ry=1.19R?
pulses on a background of traveling rolls appear. When the _. .
simulations start from a random perturbation of the conduc- Figure %S) shows a spac_e-t|me plot _Of a one-pulse state at
tion state at these values &; there appear several such Rr=1.19Rt". Only clockwise streamlines are shown. The
domains with different wavelengths and with varying widths pulse travels in the same direction as the background_ travel-
and propagation velocities. During an initial transient regimgnd Tolls, but at a smaller speed: the rolls travel with an
these domains move and recombine until they attain theifVerage speed af,~14.21, while the pulse moves af,
ultimate number. When two such pulses remain after thig=>-88. The complete solution consists of 26 pairs of con-
first stage, their evolution continues until they reach a finavecting rolls with an average wavelength~2.12, but the
equilibrium separation that is preservedth slight modula-  local wavelength inside the pulse,(,~1.31) is seen to be
tions in time as they move, both at the same speed, in thepproximately one-half the wavelength in the background
direction of the background rolls. Simulations carried out(\, ,~2.86). These wavelengths are almost constant, except
with Rayleigh numbers at 1.Rfr°) or above produced states in the vicinity of the interface between the pulse and the
that failed to settle down into a stable coexistence of thébackground. The presence of the pulse thus indicates stable
different domains. coexistence of regions with rolls of different amplitudes, fre-

We now define the quantities that will be used to reportquencies, and wave numbers. The pulse is a moving region
our findings and describe how they were measured. For thigat the rolls have to traverse. In order to do so they shrink
purpose we split the domain into the pulse and the backlaterally, reduce their overall horizontal speed, and spin more
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FIG. 2. Traveling waves and pulses in a sequence of equally spaced snapshots of the streamifiyretionin the full computational
domain, with time increasing upward. Rolls and pulses both propagate right@a@ne-pulse state deT=1.19R(T°) involving 26 roll
pairs,\,~2.12,\, ,~2.86,\, ,~1.31,v,~14.21,v, ,~15.01,0, ,~10.05,0,,~5.88. (b) Two-pulse state foR;=1.23R{ involving 26
roll pairs,\,~2.38,\, ,~3.68,\, ,~1.21,0,~13.11,v, ,~15.05,v, ,~8.57,0,~5.42.(c) Two-pulse state foR;=1.27R{") involving 32
roll pairs,\;~2.45,\; ,~3.43,\; ,=~1.11,0,~10.66,v, ,~12.83,v ,~7.24,v,~4.49.

vigorously until they pass out of the pulse region. For com- Figure 3a) shows a closeup view of the fields. The tem-
parison, atRT=1.15R(T°) (not shown the solution also con- perature contours are smoother than the solute ones; due to
sists of 26 roll pairs but the pulse is absent and the waveits small diffusivity, solute is transported predominantly by
length uniform. Careful numerical investigation indicatesfluid advection with very little diffusion, while the high dif-
that the pulse appears onRe exceeds a well-defined thresh- fusivity of the temperature smoothes out its contours more
old and that the formation process is nonhysteretic. effectively. Plume structures can be seen to form inside the
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FIG. 3. Closeup views of the field structures inside the puls
region (left panel$ and in the backgrounéight panel$ at a par-
ticular instant in time, showingfrom bottom to top the stream
function W, the temperature perturbatié® the concentration per-
turbation 3, the temperaturd, and the concentratioB. (a) Ry

X — 64

=1.19R® . (b) Rr=1.23R . (¢) Rr=1.27R{.
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contour lines inside the pulse are more tightly packed, indi-
cating increased gradients, particularly in the horizontal, and
hence increased vertical velocities. Stronger plumes will thus
be found within the pulse, a fact corroborated by the larger
kinetic energy densities found thefeot shown. Both as-
cending and descending plumes tilt leftward in such a right-
traveling wave. In contrast tRT=1.1ER(T°) (not shown the
solute contours possess clear regions of localized gradient
inversion inside the pulses, indicating a local destabilization
by the solutal field. The temperature also reveals regions of
localized gradient inversion, but mild in comparison to those
of the solute. No such regions of inverted gradients are
present outside the pulse at this value of the Rayleigh num-
ber. Outside the pulse kinetic energy is mostly dissipated in
boundary layers near the top and bottom, where the no-slip
boundary conditions force the velocity to vanish, while in the
pulse region more kinetic energy is dissipated within the
bulk of the fluid, hinting at a more active participation of
internal friction mechanisms between the counterpropagating
upward and downward plumes of fluid.

Figure 4a) shows the Nusselt number inside and outside
the pulse. The values on the right correspond to the averaged
Nusselt numbeN; and to the reduced Nusselt numbers in-
side the pulse Nt ;) and in the backgroundNy ). The
Nusselt numbeN+(x) oscillates vigorously inside the pulse.
When averaging these curves to obtain the reduced Nusselt
number, a larger value is obtained inside the pulse region
than outside, indicating that more efficient transport of heat
takes place inside the pulse. Up to an overall scale the solutal
Nusselt numbeNg(x) behaves in the same way and is omit-
ted. Thus although the region occupied by the pulse is 19%
of the total length of the convection domain, 24% of the total
heat transport and 26% of the total solute transport is accom-
plished within the pulse.

2. Ry=1.23R?

As the Rayleigh number is increased, more pulses are
seen in mature states. FiguréoP shows a state with two
right-traveling pulses aRT=1.23?(T°). The number of roll
pairs in the pattern remains at 26, the same as in the one-
pulse case. The overall portion of the physical domain occu-
pied by the pulses is now 36%, and the local wavelength of
the rolls inside the pulses\( ,~1.21) is roughly 33% of that
of the rolls outside the pulses.(,~3.68). The rolls move
to the right at an average velocity of~13.11, and both
pulses travel to the right with the same velocity~5.42,
approximately 41% of the average velocity of the rolls. Al-
though both pulses are of roughly the same length and re-

Semble the single pulse of the previous case, they are not
equally spaced. The distance between the two pulses seems
to be an equilibrium separation that is unaffected by small
perturbations.

The corresponding fields and Nusselt numbers are shown
in Figs. 3b) and 4b). The two pulses now occupy 36% of
the domain and carry 47% of the heat transport and 50% of

pulse with a characteristic mushroom shape caused by thbe solute transport. The pulses are characterized by large
lateral bending of the upward plumes of heat and solutetegions of localized gradient inversion in the solutal field and

Although the stream function in Fig(& has nearly the same milder ones in the temperature field. No such gradient inver-

number of contour lines inside and outside the pulse tha&ion is observed outside them.
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(top panelgand lateral heat flux densiffpottom panels, continuous
lines and lateral solute flux densitfpottom panels, dotted lings
for Ry=1.23R{?). Left panels correspond to horizontal averages
performed over the whole domain. Centgight) panels depict
these same averages performed only over the piblaekground
region, as indicated by the reference panel at the bottom.

piecewise constant, with relatively sharp transitions near the
pulse boundaries. The rapid albeit smooth transition between
them produces a clear resolution of the pulse boundaries
when the time slices are taken together as in Fig. 6. This is so
for the roll wavelengths as wellkee Fig. 1(b)]. The wave-

FIG. 4. Thermal Nusselt numbers at a particular instant in time.
Vertical lines indicate roll boundarie@otted, and pulse bound-
aries (solid). The bottom panel shows the pointwise behavior of
N+(x) oscillating around the total thermal Nusselt numNgrindi-
cated at the right. In the top panel the numbers on the right indicate
the total Nusselt numbémiddle), and the reduced Nusselt numbers
inside (top) and outsidgbottom) the pulse region. Solutal Nusselt
numbers behave in a qualitatively similar wésee Table | for a
summary. (@ R;=1.19R{”. (b Ry=1.23R. (¢) R;
=1.27R{.

Figure 5 shows the instantaneous profiles of the mean
lateral velocityu(z,t) and lateral heat flux densi+(z,t) at
RT=1.23R(T°), with overbars denoting horizontal averages
over either the whole domain or over the pulse and back-
ground regions. The profiles of the lateral solute flux density
Qs(z,t) are shown as dashed lines in the second set of pan-
els. The left column contains averages computed along the
whole physical domain, the middle column shows averages
computed within the pulse, and the right column those com-
puted in the background regi@headof the pulse. The con-
tour plot of the stream function below the two panels iden-

100} |

. 41504

8.54

0.0

1 542

15.04

10.0¢

8.54

0.0

5.42

20.0[ 0t

10.0f

115.05
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tifies the regions used in the center and right COlumr}wo-pulse state aR;=1.23R{")
averages. The mean lateral veloaitghanges direction three {—o5 27 29. small solid dots

times in the vertical, but the overall mass floxis directed
toward the left.

FIG. 6. The roll phase velocity, as a function of position in a
with 26 roll pairs at three times
indicate computed values. Vertical
lines indicate roll boundarie@otted, and pulse boundarigsolid).

The reference stream function panels correspond to the(ficgt

Figure 6 shows the local phase velocity as a function otom) and last(top) phase velocity plots. Values at the right side of
position in the domain in the form of a space-time plot. Theeach panel arérom top to bottor the average roll velocity in the
pulses are associated with localized deficits in the phase véackground, the roll velocity at the center of the pulse, and the

locity. Like the wavelength the phase velocity is nearly

pulse velocity.
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lengths inside the pulses and outside are nearly constant, an R. = 155 R© N/
. . . T : T

both pulses show a clear difference between their leading ¢, ,
and trailing ends. The presence of the second pulse is nece:
sarily responsible for the larger wavelength of the rolls out-

side the pulse region. Associated with the trailing interfaces
one can now discern small superposed oscillations in both
the local wavelength and phase velodity. Fig. 1Qb)]. The 5
asymmetry between the leading and trailing ends of the
pulses is present in all diagnostic quantities and is character
istic of all the pulses discussed here; it provides the key to
the theory discussed in Sec. IV.

3. Ry=1.27R? : i

Figure Zc) also shows two rightward moving pulses, this t
time for R;=1.27R{”. In this case 32 pairs of convecting
rolls are present with an average wavelength\pf2.45.
Although this state was obtained from the previous one
(Rr=1.2R) by slowly increasing the thermal driving
force, the total number of rolls in the pattern has changed.
Therefore this state of the fluid motionm®ta small pertur-
bation of the previous one. The local wavelength of the rolls
inside the pulsesX; ,~1.11) is still roughly 32% of that
outside them X, ,~3.43), but the pulse spacing is now uni-
form. The average velocity of the rollsis=~ 10.66, and that FIG. 7. As for Fig. 2, but showing a traveling wave Bt
of the pulses i®,~4.49, approximately 42% of the average =1.55R{”). Two nearly stationary pulses are present. Spatiotem-
velocity of the rolls. poral defects form both inside the pulses and in the background;

The shape of the rolls in the central part of the pulsegphase is no longer conserved.
remains quite homogeneous, but the contour lines outside the
pulses appear more disordered, suggestive of lateral erosi@ling wave pattern aRTzl.SER(T") . The pulses are replaced
at the boundaries of the pulses where the stream functioby a couple of almost stationary regions of very small hori-
now attains larger values than inside. The trailing pulse igontal extent that the pulses have to traverse. These “barri-
slightly larger than the leading one but the roll wavelengthsers” serve as phase sinks: two events leading to the disap-
away from the interfaces remain constant and similar in botlpearance of a roll pair can be discerned, one in each
pulses. As in the previous case, the relative pulse separatiotarrier.” In contrast the background region serves as a
remains constant once a stationary regime is achieved.  phase source: two events creating an additional roll pair can

Figures 3c) and 4c) show that the trends observed at be seen in the time interval shown. It appears that the num-
Rr=11R® and R;=1.2R{® are enhanced. The pulses ber of roll pairs remains statistically stationary, with the
are still characterized by strong convection and solute gradirumber of roll-splitting events in the background balanced
ent inversion, but now regions of local gradient inversion inby roll-annihilation events in the slow-moving “barriers.”
the solutal field can also be found outside the pulses. Th&he presence of these spatiotemporal defects in the pattern
tight packing of the convection rolls inside the pulses makesndicates that phase is no longer conserved.
these gradient inversion regions less extended inside the
pulses than outside, where the bent plumes can be ejected 5. Mutated states
horizontally for larger distances, as can be seen in the solutal \ye have found that it is possible to generate multiple,

field Sin Fig. 3(c). Inside the pulses, on the other hand, they,,merically stable states for fixed parameter values by a pro-
are forced to recirculate and the gradient inversion is weakegass we call mutation. In this process selected parts of a

The stream function contours inside the pulses retain theigiaple wave train were compressed while others were ex-
symmetry; outside the pulses the maximum of the streamyanged, with the overall number of roll pairs kept un-
function is displaced Iatera!ly from the.geometric center Ofchanged. Such an initial condition obtained by “gluing” the
the rolls, creating large horizontal gradients¥hand there-  ieces back together was then evolved by time stepping for-
fore large vertical velocities characteristic of strong ascendyard in time. If it was the pulse that was compressed the
ing and descending plumes of fluid. This accounts for the, ;mper of rolls in the pulse decreased rapidly as the system
regions of gradient inversion in the solute outside the p”"sesattempted to recover its equilibrium pulse wavelength. In
and is reflected in larger kinetic energy density there. Thenirast, when the background rolls were compressed a new
two pulses occupy 44% of the domain and transport 54% ofjse would often develop, again on a fast time scale. In all
the heat and 57% of the solute. cases the resulting state was evolved until a numerically
_ o stable final state was reached. In this way different stable
4. Ry=1.55R states could be manufactured for the same parameter values.
For even higher values of the Rayleigh number pulses ofThe new states would typically differ from the original state
constant form are no longer present. Figure 7 shows a travn the overall roll number, the separation of the pulses, and in

55.0 B
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configuration, but three pulses when starting from the nu-
merically stable pattern found f&r=1.15R{® (not shown.

6. Summary of transport properties

The transport properties of the pulses are summarized in
Tables I-Ill. In all cases the total thermal and solutal Nusselt
numbersN; andNg are increasing functions d;. Within
the states sharing the same Rayleigh numbét; (
=1.2R{), the Nusselt numbers increase with the number
of rolls in the state. The same holds for the reduced Nusselt
numbers inside the pulsebl; , and Ng,, but not for the
reduced Nusselt numbers in the backgrouysee Table ),
indicating a gradual increase in convection efficiency inside
the pulses but not in the background region.

ForRr=1.2R!” the two states with 26 roll pairs and two
pulses share almost identical transport properties, being dif-
ferentiated only by the relative size of the pulses and their
mutual separation. Despite these differences the total extent
of the pulse and the background regions is roughly the same
in both cases, with the pulse widths comparable in the first,
and the two background regions comparable in the second.

When phase is conservéas forRr=1.1R® , 1.2R
1.27R(T°)), the pulses are very active dynamical structures
that play a substantial role in convective transport. In this
regime the proportion of the kinetic energy, of the enstrophy,
and also of the vertical heat and solute transports attributed
to the pulses exceeds the relative portion of the domain oc-
cupied by the pulses. Thus pulses enhance the overall trans-
port properties of the systefaf. Table 1l). Moreover, when
two pulses are present, the fraction of the domain they oc-
cupy increases both witR; and with the number of rolls in
the pattern. In contrast, when phase is not consetasdor
Rr=1.31R® and 1.3R{”) the proportional heat and solute
transports by the pulses are comparable to the proportional
extent they occupy in the horizontal, indicating that the pres-
ence of the pulses no longer increases transport efficiency.

In all cases studied the average velocity of the radlg)
decreases with increasing Rayleigh number while the overall
average roll lengthX;) increases. The roll velocity within a
pulse @_r,p) also decreases with increasing Rayleigh number,
while in states corresponding to the same Rayleigh number
(Rr=1.2R) it also decreases with increasing number of
rolls (cf. Table IV). The velocity of the pulses is much less
than the phase velocity of the long-wavelength modulation
seen at small Rayleigh number(=1.13R{"), indicating

0 X — 64 that the pulses are fully nonlinear states.
. , Table Il compares the lateral fluxes of mass, heat, and

FIG. 8. As for Fig. 2, but showing deT=1-2_3?(T°) (@ athree-  gojyte obtained by averaging the horizontal fluxes corre-
pulse state, antb) a two-pulse state, both obtained by mutation of sponding to 50 snapshots spanning five units of time. There
the two-pulse state shown in Fig(tR for the sameRy. The two- g 5 gma| Jateral mass flum, which for the Rayleigh num-
pulse state differs from the 26 roll pair state shown there, althougrﬂ)er values analyzed rang'es betweer.01 and —0.06
it has the same number of rolls. . . . ’

namely, opposite to the motion of the rolls. This lateral mass

- . o . flux originates from an asymmetry and tilting of the rolls.
the number of oscillations in their tails. They may even differtne |ateral transports of heat and solute are also directed

in the ove;gll number of pulses. We show two such states ahard the left in these cases. These lateral fluxes are small
Rr=1.2R7” in Fig. 8 and summarize their properties in when compared to the vertical oness judged by the ratios
Table I. Other stable states have been found by starting fror@T/NT or Qs/Ng), namely, between 60 and 120 times
a stable state and either increasing or decreaB®ngFor  smaller for the heat flux, and between 25 and 60 times
example, aRr=1.18R{” we found a single pulse using the smaller for the solute fluxcf. Tables I and 1. In all cases
numerically stable pattern found fcRTzl.lg?(To) as initial  the lateral transports show large relative deviations and their

TATECERSRCEAS]
S
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TABLE I. The thermal and solutal Nusselt numbers computed for the whole domairN), within the pulsesN ,,Ns ), and in the
background Kt ,,Nsp,). Numbers in parentheses indicate standard deviations.

Rr/R{®  Roll pairs  Pulses Nt Nt Nt Ns Ns,p Nsp
1.15 26 0 1.43 1.52
(9.5x107%) (1.4x10°%
1.19 26 1 1.56 1.99 1.46 1.71 2.32 1.56
(47x10°%  (1L.7x10°Y)  (35x107%)  (1.0x10%)  (5.5x1071)  (1.1x107Y)
1.23 2% 2 1.57 2.06 1.39 1.73 2.42 1.48
(2.1x10°%  (1.9x101)  (6.5x1072)  (4.2x10%)  (59x10°1)  (2.0x10'Y)
242 2 1.62 2.13 1.39 1.81 2.54 1.48
(2.7x107%)  (6.5x10°%)  (2.8x10°%)  (5.6x107%)  (2.1x101)  (8.7x107?)
26 2 1.67 2.18 1.38 1.89 2.63 1.47
(3.4x10°%)  (1.2x10°Y)  (6.6x1072)  (7.5x10°%)  (3.7x10°YH)  (2.1x107YH
26%° 2 1.67 2.17 1.38 1.89 2.62 1.47
(2.6x107%)  (8.9x10°%)  (4.6x10°3)  (6.1x107%)  (2.8x10°1)  (1.4x10°Y
33 3 1.88 2.24 1.44 2.20 2.75 1.53
(2.3x10°%  (1.2x10h)  (1.6x107Y)  (5.2x10°%)  (3.7x1071)  (5.2x107Y)
1.27 32 2 1.95 2.40 1.60 2.34 3.05 1.79
(8.9x107%)  (1.3x10°1)  (9.9x10°3)  (2.2x107%)  (4.1x101)  (3.1x107Y
1.31 46 2 2.45 2.55 2.26 3.16 3.41 2.73
(1.8x107%)  (1.0x101)  (2.0x10YH  (2.7x107%)  (3.3x10°1)  (6.3x10°Y
1.35 45 2 2.50 2.58 2.40 3.27 3.53 2.94
(2.4x1072)  (1.3x10°Y)  (1.8x10°Y)  (3.6x1073)  (4.2x101)  (5.6x10°Y)
1.55 254 ? 2.68 3.49
(4.7x107?) (7.3x1073)

&Corresponds to mutated states.

®This two-pulse, 26 roll pair state differs from the one shown in Fig) 2n the relative size of each of the pulses and in the interpulse
separation.

‘Phase is not conserved for these valueRpf The number of roll pairs fluctuates or is not precisely defined; the value reported is the most
frequent in the time interval analyzed.

dPulses are no longer seen for this valueRgf.

dependence on the Rayleigh number remains unclear. subscriptv indicating the velocity at which the observer is
moving. Carefully chosen time averages filter out small-scale
B. Anatomy of a pulse features of the fields and reveal their long-range components.

In particular, the time averages recorded by an observer co-

Thus far we have characterized our solutions either by, qying with the pulses allows one to infer what the pulses
means of snapshots at particular instants of time or by meangq actually “seeing” when they drift along the domain.

of horizontal averages. We now describe the properties of A geries of 50 to 100 consecutive snapshots of the fields
comoving time averages of temperature, solute, stream fungyag taken at equal time intervals of 0.1, spanning from five
tion, and vorticity, as well as of the thermal and total buoy-y, ten units of time. These fields were suitably shifted and
ancy forces defined by then averaged together. ThusFifx,z,t) represents any of

FO=R0, f¥=-R, fe=fl+f9=RO0O-Rey. e fields, then

a7 n
F(X,2) ! f i= t,z,t)dt ! >F t,z,t)
X,2)),=— x—vt,z,t)dt~ — X—vt;,z,t).
Time averaging of spatiotemporal patterns has proved to be a{ (x.2)), T Jo (x=v ni=1 (x=vtj.2
successful tool in analyzing complicated pattern-forming (18

systems. In some cases it can reveal regular structures under-
lying disordered ones, even well into spatiotemporally cha-The resulting structures were further smoothed with a ta-
otic regimeg17]. Indeed Barteret al.[16,7] have used time pered low-pass filter.
averages of fields to deduce the role played by the concen- Figure 9 shows the time-averaged fieldsRgt= 1.23R(T°)
tration field in holding together two different coexisting do- (with 26 roll pairs in the pattejnas seen by a comoving
mains. observer traveling at the pulse velocity=5.42. The aver-
Time averages can be performed in the laboratory framege reveals clearly the pulse location. The temperature and
or from the reference point of a moving observer. The formesolute time averages possess smooth gradient variations,
provide essentially the same information as the instantaneodsom T=S=1 at the bottom, ta'=S=0 on top. Inside the
horizontal averages of the preceding section, and will not b@ulse region, the vertical gradients of temperature and solute
considered further. We denote the latter ¢y, , with the  are smaller at midlayer than in the surrounding fluid. Those
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TABLE II. The ratioA,/T" denotes the fraction of the domain occupied by the pulses. Shown also are the
fractions of the kinetic energl,/E and enstrophy,/Z within the pulse regions relative to those guantities
for the whole domain, and the proportion of the vertical heat flux carried by the pulses compared to the total,
namely,Nt ,A,/N;I", and the analogous proportion of the vertical solute flux. Numbers in parentheses
indicate standard deviations.

Rr/R{®  Roll pairs  Pulses A, /T E,/E Z,1Z NrpAp/NiI NgoAp/Nsl
1.19 26 1 0.19 0.29 0.32 0.24 0.26
(6.3x10°%  (7.9x10°%) (3.2x10°% (2.1x10%) (6.1x10°?)

1.23 22 2 0.27 0.45 0.49 0.35 0.37
(6.4x107%) (1.1x10°3) (1.2x10°%) (3.3x10°%) (9.3x107?)

242 2 0.31 0.51 0.55 0.41 0.44
(8.1x10°% (1.7x107%) (2.6x107% (1.2x107%) (3.6x107?)

26 2 0.36 0.56 0.61 0.47 0.50
(8.3x10°%)  (1.6x10°%) (4.4x10°% (2.5x10%) (6.9x10°?)

26*P 2 0.36 0.57 0.61 0.47 0.50
(1.4x107%) (2.3x10°%) (4.2x10°% (1.9x10°%) (5.4x10°?)

33 3 0.54 0.72 0.75 0.65 0.68
(1.2x107%) (4.2x10°% (5.1x107%) (8.3x1073) (9.0x107?)

1.27 32 2 0.44 0.60 0.63 0.54 0.57
(8.5x107°%) (1.3x107%) (1.3x107%) (2.9x107%) (7.6X107?)

1.31 46 2 0.63 0.62 0.65 0.66 0.68
(2.2x10°%) (3.5x107%) (3.2x107%) (3.8x107%) (7.1X107?)

1.35 45 2 0.54 0.51 0.55 0.56 0.59

(1.6x1072) (2.1x10°2) (1.9x10°%) (3.4x10°%) (7.2x10°?)

&Corresponds to mutated states.

®This two-pulse, 26 roll pair state differs from the one shown in Fig) i the relative size of each of the
pulses and in the interpulse separation.

‘Phase is not conserved for these valueR-of The number of roll pairs fluctuates or is not precisely defined;
the value reported is the most frequent in the time interval analyzed.

same gradients are, however, very large close to the top ardockwise vortex on top and a counterclockwise one at the
bottom boundaries, accounting for the larger reduced Nusséltottom.
numbers inside the pulses. For ease of comparison the total It is not surprising to find a cluster of vortices traveling
and thermal buoyancy force fields, as in ELj?), are plotted  with the pulses. We should recall that in all cases more effi-
using the same set of isobuoyancy contours. Thermal andent transport was achieved in the pulse region: the back-
solutal (not shown buoyancy forces possess rather feature-ground might have stronger plumes, but the ones inside the
less profiles, much like the temperature and solute averagegulse are closer together. The plumes provide a coherent
except for a couple of pronounced maxima and minima thaimeans for transporting both heat and solute. These transports
reveal the location of the pulse. Both combine to give adepend on the correlation between the vertical component of
complicated structure to the total buoyancy force in the puls¢he velocityw and the temperature and solutal fieldsand
region. S. The pulses are therefore regions of enhanced correlation
The stream function panel in Fig. 9 shows an averagdetween these fields and also of enhanced coherence among
long-range flow that circulates along the whole domain fromthe plumes. The resulting spatial nonuniformity implies the
right to left, with streamlines wiggling up and down through presence of large-scale horizontal gradientsvadind hence
the bulk of the fluid. This is a familiar property of traveling the presence of large-scale vorticity. These vortices cannot
wave streamlines in the comoving frarf8]. In the labora- be seen in Fig. 2 because they are much weaker than the
tory frame the magnitude of the lateral mean flow spanningonvection rolls.
the domain was too weak to reveal itself readily in the stream
fu_nction contour plotscf. Fig. 3(p)]. The striking feature of IV. PHASE EQUATION APPROACH TO THE PULSE
this averaged stream function is the presence of groups of FORMATION PROBLEM
vortices signaling the position of the pulses. There are two
pairs of vortices for each pulse, one at the leading edge of the The pulses described in Sec. lll were found to be very
pulse and the other at the trailing edge, each pair with onstable against random noise perturbations added to the fields
vortex above and one below midlevel in the domain. Theduring the numerical simulation. When two pulses were
vortex pair at the trailing edg@n the lef} is the strongest of present, their separation and propagation speeds were unaf-
the two, with the one at the top rotating counterclockwisefected by this type of perturbation, as long as the noise in-
and the lower one clockwise, both embraced by the flowtensity remained below certain threshold values. When the
lines of the long-range flow. The pair at the leading edge isoise level is set above the threshold the pattern is destroyed
weaker and covers a larger extent of the pulse area, with and the process of roll formation resumes almost from
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TABLE lIl. Time-averaged lateral mass flux, the lateral heat fluQy which represents the vertical
integral of Q+(z), and similarly the lateral solute fluRs. Numbers in parentheses indicate standard devia-

tions.

Ry /R{® Roll pairs Pulses m Qr Qs
1.15 26 0 —2.77x1072 —1.47x10°2 —4.70x10°2
(9.1x107%) (4.7x10°%) (1.5x10°%)
1.19 26 1 —4.26x1072 —2.12x1072 —6.64x10°2
(1.2x1073) (5.3x1073) (2.6x107?)
1.23 2% 2 —3.17x 102 —1.54x10°2 —4.84x10°2
(8.2x1079) (1.2x107?) (6.3x107?)
242 2 —3.58x10 2 —1.67x10°2 —5.16x102
(3.3x10°9) (1.6x107?) (7.3x107?)
26 2 —3.95x 10 2 —1.99x10 2 —6.27x10°2
(8.4x107%) (5.3x1073) (2.1x107?)
26%P 2 —3.95x 1072 —1.99x10°2 —6.29x10°2
(2.6x1073) (1.2x107?) (5.4x107?)
33 3 —5.64x10°2 —2.72x1072 —8.45x10°2
(4.4x1073) (2.4x107?) (1.1x10° Y
1.27 32 2 —4.31x 10 2 —2.54x10°2 —8.82x10°2
(4.3x1073) (2.1x107?) (7.7x107Y
1.31 46 2 —2.95x10 2 —1.44x10°2 —4.45x10°2
(2.4x1079) (1.8x107?) (6.2x1072)
1.35 4% 2 —1.03x1072 —5.54x10°3 —1.56x10°2
(2.4x1073) (1.1x1073) (4.0x1072)
1.55 2% ? 5.88x10°? 2.94x10°2 9.47x10°?
(4.5x1073) (9.9x1073) (2.5x107?)

&Corresponds to mutated states.

®This two-pulse, 26 roll pair state differs from the one shown in Fig) i the relative size of each of the
pulses and in the interpulse separation.

‘Phase is not conserved for these valueRof The number of roll pairs fluctuates or is not precisely defined;
the value reported is the most frequent in the time interval analyzed.

dPulses are no longer seen for this valueRef.

scratch, without memory of its past state. In contrast, whemhe simulations indicate a uniformly moving pulse, moving
an existing state is mutated in the manner described in Sewith speedv,. The modulation in wave number and fre-
[Il A 5 the system usually relaxes into a new stable state. Theuency thus takes the form

numerical evidence thus favors the coexistence of multiple

stable states. In this section we seek to elucidat¢he na- o(X,1)=@(X—=vpt). (20)
ture of an individual puls€its shape, propagation speed,

etc), (b) the origin of the double-pulse states described inThus
Sec. lll, and(c) the apparent multiplicity of pulse states al-

luded to above. a=k+e¢’, OQ=ow+v,e’, (21

_ _ where the prime denotes differentiation with respect to argu-
A. Kinematics ment, i.e.,¢’ = del J§, £=x—v,t. Since the simulations in-
In all three cases discussed in detail in Sec. Il the phaséicate thatp(x,t) is defined for all &,t) we have the kine-
of the pattern was found to be conserved, that is, the numbeénatic relation
of convecting rolls stayed constant through time, without
merging or splitting of rolls. Our theoretical approach takes (7_q+ ﬂ_
this observation as its starting point. We think of the travel- gt ooax
ing wave in the formW¥ (kx— wt+ ¢(X,t),z), where ¢(x,t)
is thephaseof the wave. For a uniform wave train the phasethat expresses conservatiorvedveq 19]. In the frame of the
is constant. However, a spatially dependent phase providesfalse this relation takes the form
convenient description of honuniform wave trains with wave

(22

numberq(x,t) and frequency)(x,t) that depend on posi- Jq aq Q)
. — v, —+—=0. (23
tion, at “PoE o€
ks Ie Q= Ie (19 If |g—k|<1,|Q—w|<1 while the pulse interfacedeading
9 ax’ o’ or trailing) haveO(1) thickness the appearance of the pulse
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TABLE IV. Comparison of computed pulse velocity, with values predicted from the jump condition
(25). See Sec. Il A for symbol definition. When phase is conserved, typical measurement uncertainties for
wavelengths and phase velocities &r8.01, and for pulse velocities 0.02.

Rr/R{”  Roll pairs  Pulses A Moo Nr.p v, Urb Orp vf)m) a vf,p) b
1.15 26 0 2.00 15.15 11.65

1.19 26 1 212 286 1.31 1421 15.01 10.05 5.88 5.86

1.23 22! 2 220 372 142 1403 1527 9.33 5.66 5.66

24 2 228 365 126 1346 15.02 8.69 5.37 5.38

26 2 2.38 3.68 1.21 13.11 15.05 8.57 5.42 541

26e 2 238 371 1.19 13.11 15.07 8.52 5.44 543

3 3 244 365 1.20 11.66 15.11 8.46 5.39 5.21

1.27 32 2 245 3.43 1.11 10.66 12.83 7.24 4.49 4.57

1.31 46 2 227 333 0.99 7.55 11.77 5.99 3.63 3.54

1.35 45 2 232 3.03 0.92 6.97 10.06 5.14 3.29 3.01

Measured pulse velocity values.

®Predicted pulse velocity values.

‘Corresponds to small-amplitude long-wavelength modulations.

dCorresponds to mutated states.

€This two-pulse 26 roll pair state differs from the one shown in Figp) 2h the relative size of each of the
pulses and in the interpulse separation.

Phase is not conserved for these valueBef The number of roll pairs fluctuates or is not precisely defined;
the value reported is the most frequent in the time interval analyzed.

is very abrupt and can then be viewed ashack Suppose vpAq=AQ, (24)
that such a shoctagain leading or trailingforms até= &, in
the pulse frame. Integrating across the shock and noting th%%erequq* —q~, AQ=0"—Q" represent the jumps in

the shock is, by construction, stationary yields the “Jump” (he wave number and frequency across the shock. We can
condition rewrite this relation in the more convenient form

Ry = 1.23 RY Ao — At

TN N

(25

wherev=Q/q is the local phase velocity and=2/q the
local wavelength. The predictions from this formula are
compared with measured valuesiwgfin Table IV. Since the
pulses do not move completely rigidgheir widths mea-
sured by tracking regions whekg(x) <\, exhibit small os-
cillations due to the passage of rolls in and out of the pulse
the values ob, computed from Eq(24) are not completely
time independent. Consequently the values\of andu_nb
listed in Table IV represent the average of their instanta-
neous values, measured frame by frame. Similarly, the mea-
sured pulse velocity , also represents a time average. None-
theless the average of the instantaneous valuesy of
computed from the jump conditio(25) using the instanta-
neous values ok, , andv, , shows remarkable agreement
with the pulse velocity measured directly.

B. Dynamics

FIG. 9. Time-averaged fields in a frame traveling to the right The phasep of the waveW (kx— wt+ ¢(x,t),z) satisfies
with the pulse velocity foRy=1.23R{” . Shown are the averaged an evolution equation called a phase equation. This equation
temperature(T)Up, stream functior‘(\lf)vp, total buoyancy force  fgllows from a gradient expansidid,e<1, d;¢<1) and the
(fg)y,» and thermal contribution to the total buoyancy force symmetries of the underlying wave train. In the present case
(f§"),, . obtained from 100 snapshots spanning ten units of timeGalilean symmetry is absefibecause of the no-slip bound-
The beginning¥ field is included to specify the change in the ary conditions imposed a=0,1); consequently the wave
vertical scale. The corresponding time average of the solutal contrain has only two symmetries, a continuous translation sym-
centrationS is similar to that of the temperatufe and has been metry,
omitted. The solutal contribution to the total buoyancy force
(f&?),, closely resembles-(f{”), and has also been omitted. p— ¢+const, (26)
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indicating the fact that the absolute value of the phase isional and consequently admits only time-independent states
arbitrary, and the discrete “mirror-glide” symmetf2,14— in the long time limit. This is also the case in the closely
16]. If the wave train has period2k this symmetry acts by related Chapman-Proctor equatioty€b=e=h=0) [25].

With appropriate boundary conditions all these equations
have steady pulselike solutions, as discussed in detail by
Deissler, Lee, and Bran®3]. However, because they have
variational structure all stable pulses are necesssuibcriti-
Consequently the mirror-glide symmetry haseffect onthe  cal. This is because the equilibrium connected by the pulse
structure of the phase equation. The most general evolutiomyst itself be stable. As a result the pulse formation process

ar
V—=T, o—et (27

equation for the phase is therefore is hysteretic In nonvariational systems this is not necessarily
d0 d0 o Po e PR the case. Indeed pulses hgve been opserved at supercr_itical
i L——a—-b—-—= ——d(—) parameter values in experiments on binary fluid convection
gt "9 ox Ix* x> ax* 2 [26]. Moreover Schpf and Kramei[27] found stable pulses

2 3 2 .2 in the complex Ginzburg-Landau equation witll@stabiliz-
dp I do dp\“ @ . . . . . .
—2e — ——f| —| —3g| —| —% ing cubic nonlinearity at supercritical values of the bifurca-
IX X X Ix| X tion parameter, while in systems with a nonzero group ve-

provided the basic state is only convectively, but not abso-
lutely, unstable. This is the regime of interest in the present
(29 connection.
From Eg. (29) we see immediately that infinitesimal

correct to fourth order in spatial derivatives, [Z0]. Herec, phase perturbations obey the dispersion relation
is the group velocity of the perturbations at onset in the

laboratory frame. This equation typically exhibits solutions a2 ~O% i hO24 ...

in the form of spatiotemporal chaos, called phase turbulence $=aQ Qi HiQ(C—bQ ), 3D
[21]. Such spatiotemporal chaos occurs whenad<1, and , )

is to be distinguished from the appearance of “phase S“ps,wherego(;,t)~<2xp(st—|Qx)..Thus phase perturbations grow
at which the phase description breaks down. These typicalljyh€naQ”—cQ"+--->0. Since the anticipated instability is
occur for larger values a. As already mentioned, the pres- Of 10ng wavelengthQ<1) we suppose tha andc are both
ence of phase slips invalidates the phase description; this RPSitive. The observed pulses are the outgrowth of the result-
not so when phase turbulence is present. In order to mod#ld convective instability(0<a<2.12/bc, if bc,>0, 0
the parameter regimB;=(1.19-1.27R{® in which stable ~<a< if bc;<0, whenc=0). We have seen that the insta-
pulses are observed, and phase turbulence absent, we restfifty evolves into a fully nonlinear pulse moving with speed
the range of possible behavior by imposing the requiremerftp- Even though the phase equati@9) was obtained by a
that the right side of Eq(28) be in conservation form, i.e., dradient expansion we shall find it to be useful asadel

Po\2  de Po L locity pulses can also be stable in the supercritical regime,

NG X X3 X

d=f=1=0. h=k. Thus even for the fully nonlinear pulses for whicp=0O(1) seen
' ' in the simulations. A steadily moving pulse moving with

de de dj speedv, to the right satisfies the equation

—tCy—=——, (29

ot ox X

I [(cq—vp)@+aps+be,+Cco +e<p2+g<p3+h(p @
where £ g9 p 4 &€ 343 ¢ 4 2443
+---]=0. (32
j=a@ytboyyt Coxyyt e‘Pi"' g‘P>3<+ hoypyxt -+
(30 Thus

The motivation for studying Eq29) instead of Eq(28) is ) 3

threefold. First of all, it allows us to make contact with re- V@+tae:+be i+ Cosetepetgeethepeet---=0,

lated work on confined states arising through phase instabili- (33

ties of periodic patterns of steady rollg2,23. Second, it

allows us to reduce the number of coefficients in the descripwherev=cy—uv, and the constant of integration has been set

tion. Finally, the phase equation in the pulse frame can béo zero. In the following we think of Eq33) as anonlinear

integrated once, yielding a third-order equation for the pulseeigenvalue problem for the speedand hence for the pulse

shape. Given the fact that the observed pulses are charactspeedv,,. As discussed further below the formulation of the

ized by a monotonic rise and an oscillatory trailing end suchthoundary conditions for this problem depends on whether it

a description is theninimal one consistent with the observa- is posed on the whole real line or on a fin{{geriodig do-

tions. Moreover, as discussed further below, the observethain. If, in addition, the number of roll pairs in the perturbed

pulse shapes are completely consistent with such a thirdand unperturbed wave trains is unchanged as a result of the

order description. formation of the pulse, there is no net phase julpacross
Several special cases of EQ9) have already been stud- the domain; this is not so if the number of roll pairs differs.

ied. For steady rolls the corresponding equatiog=(b=h The remaining boundary conditions for E@3) are either

=0) is of B—E type in the phase equation classification of that bothe, and ¢, vanish ast— * (unbounded domajn

Kuramoto[24]. The resulting equation has a Liapunov func- or that both are periodic with peridd (bounded domain
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C. Pulses as homoclinic orbits does so as a decaying exponential without superposed oscil-
We begin with the eigenvalue proble(83) on the real lations. Thus the pul;e shape is intrinsically asymmetr.ic:
line, and use it to draw a number of general conclusiondVNen vp<cg the leading edge of the pulse is monotonic
about the pulse shape and other properties. To this end V\Yéhﬂe its trailing gdge is an exponentially dgcreagng oscilla-
setc=1 and rewrite Eq(33) as a dynamical system th We tion. The opposite is the case whep>c,, in which case

write x for ¢, so that Eq(33) becomes the pulse leads with an oscillatory precursor. In céise
which applies for largefv|, e.g., forvy<cgy (v,>¢q), the
x'=y, oscillatory tail (precursoy is absent, with the interface re-
placed by a monotonic one. The pulse remains generically
y' =z, (34  asymmetric, however. These conclusions continue to hold

when 0<|b|<1 and
7' =—vx—ay—bz—ey’—gy’—hyz
4/,L2b

with the prime denoting?/d¢. This dynamical system de- S1=—2u— 942712
u-tv

scribes the spatial structure of the wave number modulation
which is given byy(¢) in the present notation. It is this

+0(b?),

guantity that can be compared with our simulations. It is a B 5u2+ 12 b
dissipative system, S23= M~ 9.7+ 22
ox' oy’ 9z’ 3ul—v? ub
-_ = 4+ —=—p- +ij r 2 .
x Ty T T (39 |14 g 25,2 O (39

with a single equilibrium at the origin corresponding to the
unperturbed wave train.

Equation(34) is in the form of a particular codimension-
three bifurcation probleri28]. Whenv =a=b=0 the fixed
point (0,0,0 of Eq. (34) has three zero eigenvalues; the pa-
rameters,a,b can therefore be thought of as unfolding pa-
rameters that “unfold” this triple zero degeneracy. The
pulses that are of interest correspond to homoclinic orbits o
Eq. (34) that start from the origin af= — and return to it
at £= +o. The excursion of such an orlfin £ space away

The numerical simulations provide valuable information
about the pulse shape, and in particular about the wave num-
ber and frequency modulation due to the presence of a pulse.
In Fig. 10 we show the wavelengths and phase velocities of
the convection rolls aR;=1.1R{”, Rr=1.2R®, and
Rr=1.27R{" at one instant in time. Observe that the wave-
Ength and phase velocity curves have similar appearance.

oth inside the pulses and outside the phase velocity and
wavelength distributions are piecewise constant, with fairly
th éapid transitions between two sets of values, and both curves

from the origin defines the shape of the pulse. Evidently, ;
question of whether such pulses exist is a global one HOV\[_esemble one another. For pulses on the real line the phase
i {alocity is defined amv=Q(x,t)/q(x,t) while the wave-

ever, a necessary condition for the existence of a pulse is th - L
(0,0,0 is a generalized saddle # with at least one unstable %(ength)\=2w/q(x,t). For smalle” it then follows that
eigenvector and at least one stable one.

The linearization of Eq(33) around the origin yields the v—v.=(0g— 1) A (39)
characteristic equation PTRAE0 TR,

s’+bs’+astv=0, (36 wherev, and\, are the phase velocity and wavelength of

the background uniform wave train, i.eypo=w/k, \g
=2a/k. Thus the phase velocity and wavelength are related
linearly when phase gradients are small. Singeg-v,>0
)(See Table IV Eq. (39) indicates that the two curves should
match without reflection. Figure 10 supports these conclu-
sions; departures from the linear relation visible with in-
(LﬁeasingRT are not surprising since the phase gradients in-
crease with increasinBy .

The comparison of Fig. 10 with the long-wavelength
theory thus clearly favors our cage with v>0. The single
pulse present dR;= 1.1§R(T°) leads with a monotonic front

a=12-3u2>0, 2u(p+1?)=0. (37) while i'.rs trailing edge decays gxponentially at'a_l different

rate, with small superposed oscillations clearly visible. In the

This case applies whanand hence are not too large, and case of the two pulses found B,=1.2R{ both pulses
is the case of greatest interest to us. Note, in particular, thdtave the same structure, with the oscillatory tail of the lead-
sgrnu=sgrv. Thus, whenv>0, the origin has a one- ing pulse decaying towards negatigeefore turning into the
dimensional stable manifold and a two-dimensional unstabléeading front of the trailing pulse. ART=1.27R(T°) these
one; the opposite is the case whex 0. Hence whenn>0  oscillations are even more prominent, suggesting ghas
(i.e., vp<cg) the trajectory leave$0,0,0 at {&=—= as an decreasing withR; and hence that the pulse velocity be-
exponentially growingscillation; when it returns ag—o it ~ comes closer to the linear group velocity.

where, for phase instabilityg>0. Thus if Rs>0 the solu-
tion grows with increasing but it decays with¢ if Res<0.

To construct a pulse both types of solution are necessar
Thus wherv >0 we need eitheb<<0 orab—uv <0 (or both
and wherny <0 we need eitheb>0 orab—v>0 (or both.
The simplest situation arises when the phase modulations a
only weakly dispersive so thdt=0. The sum of the eigen-
values s,,S,,53 is then zero, and hence eith€) s;=
—2u, Spz=pxiv, or (i) s;=—p1, S=—p2, S3=M

+ us. In the former case
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bation must be zero. On a finite but periodic domain the

a - (o) ) . :
(a) Ry = 1.19 Ry observed conservation of phase during the evolution of the

2000 phase instability likewise implies thafle, dé= ()
v 10.00 10.05 —¢(0)=0. As can be seen from Fig. 10 the condition
¥ 5.85 fggog dé=0 defines a backgroundhe underlying uniform
g'gg 2 86 wave train that differs from the background wave number

k, defined by the condition thatp,—kp|<1 in the largest
possible fraction of the domain<Oé<I". Relative to this
background [ ¢(¢.—k,)dé=A>0, and hencek,=—A/T

<0. The wave number shik, is finite because the phase
perturbation is distributed over a finite domain and not the
whole line; k, vanishes ad’—o. Relative to the shifted
background a pulse represents a net phase change, measured
by A. In the following we therefore relate the observed
pulses to solutions of Eq33) on 0<¢<TI" with the bound-

ary conditionsp(0)=0, ¢(I')=A, ¢, ande,, both periodic,
with A determined from Fig. 10. Similar issues were encoun-
tered already by Deissler, Lee, and Brd@@] in their study

of confined states described by phase equations with varia-
tional structure.

A 2.00

1.00 1.31

D. Determination of the dispersion relation

In this section we use the shape of the pulse wings in Fig.
10 to determine the coefficien&/c, b/c, andv/c in the
dispersion relatior{31) on the assumption that the observed
pulses approximate the homoclinic pulses described in the
preceding section. In view of the finite ardaand theO(1)
wavelength modulation in the observed pulses it is necessary
that we first redefine the background wave number as dis-
cussed above. To determine the dispersion relation govern-
ing small wave number perturbations about this background
we fit each interpulse region to a curve of the form

f(x)=ap+a;x+ a,eM*+ e*2[az;coq o,x) + bssin(o,x)],
(40

FIG. 10. Profiles of roll velocities and wavelengths as a function
of position in the domain at one instant in time. The profiles travel

almost rigidly to the right with speedl, . Vertical lines indicate roll connecting the leading edge of one pulse to the trailing end

boundariegdotted, and pulse boundarigsolid). The dots corre- of the preceding one. In cases Where multiple pulses were
Jpresent we focused on thargest interpulse region. We

spond to computed values of wavelengths and phase velocities. V . . ) L
ues at the right of the phase velocity panels are, from top to botton-1'0S€ this approach instead of studying each pulse wing in-

the phase velocities in the background and inside the pulse, arfdividually because the characteristics of adjacent pulses typi-
pulse velocityv, . Values at the right of the wavelength panels arecally overlap. Even in the one-pulse case, where one would
(top) the roll wavelengths outside the pulse abottom inside the ~ €Xpect that the extent of the background region would make
pulse.(@ Ry=1.19R® . (b) Ry=1.23R . (¢) Ry=1.27R{. the leading and trailing pulse ends disconnected, the wig-
gling of the trailing end propagates all the way up to the
However, despite this superficial agreement with the long!eading end. In all cases the fitted valueagfwas very close
wave theory, the relation between the theoretical descriptioto the measured wavelength of the rolls in the background.
of a pulse on the real line and a train of periodic pulses sucAhe parametea; turned out to be zero in all the fits except
as obtained in our numerical simulations is not straightforin the one-pulse casd%zl.lg?({’)) in which a slight slope
ward. This is because in a finite domain with periodic bound-of the background is present, representing a wave number
ary conditions the pulse is a fully nonlinear state everywheregradient between the pulse and its periodic image. The fitted
even in the wings of the pulse the wave number modulatiowvalues of\;, \,, ando, provide estimates of the quantities
about the putative background state does not vanish. Thus, Res,, and Ins,, respectively, and hence of the rosts
the use of periodic boundary conditions has important impli-s,, s, of the characteristic equatiqB6). Table V lists these
cations for the correct definition of the background state. Taestimates. Such estimates improve with the interpulse sepa-
see this note that on the real line the definitionggk,t) as  ration. In a successful fit,<0, A ,>0. From these eigenval-
the perturbation to the phase of a spatially uniform waveues we can obtain values af b, andv. To check on the
train and its localized nature imply thdf’ ¢, dé= () consistency of these results we use the observed pulse speed
—¢(—=)=0. Thus the area under the wave number perturv, to deduce fromv the group velocityc,. Table VI lists the
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TABLE V. Exponential fits to the largest interpulse intervals, These results parallel a recent measurement of the phase dif-

computed by fitting the functiof40) to the measured data by least fusion coefficient for traveling wall modes in rotating con-
squares techniques. Numbers in parentheses indicate standard gection[29]. See alsd20].

viations. The last column in Table VI lists the values of the group
velocity deduced from the values ofin the previous col-
Rr/R{" S1 Res Ims, umn with the help of the results listed in Table IV. The rough
1.19 —0.82 1.36 0.90 consistency of these values is reassuring, and supports our
(0.0 (0.43 0.61) interpretation of the pulse formation process as the conse-

guence of a long-wavelength phase instability and its de-

1.23 (004832 (01'35&2 (01;1%5 scription using the third-order phase eq_uaniﬁﬁ). Note that
12% _(') 7 1'75 1 12 such consistency could not hold if we fitted each pulse sepa-
' © iD © 'SD © 41) rately. Such individual fits would yield a value _ofbut this
10 _(‘) 92 1'63 0 4 value would reflect the speed of the pulse only in the absence
' : : ‘ of all others. In fact the pulse pairs travel together with a
0.14 0.29 (0.48 common(constank speed, determined by the pulse-pulse in-
1.28 —1.02 151 118 teraction, and it is this speed that is determined by fitting the
(0.19 (0.65 (1.28 largest interpulse interval. This proviso applies to the single
1.27 —0.75 1.17 0.76 pulse as well: because of the use of periodic boundary con-
(0.09 (0.69 0.77) ditions a single-pulse state is in fact a periodic train of

equally spaced pulses. Such a pulse train has a different

aTwo-pulse mutated state with 26 roll pairs. - . .
P P speed than an isolated pulse of identical shape.

bTwo-pulse mutated state with 24 roll pairs.
‘Two-pulse mutated state with 22 roll pairs.
E. Pulse multiplicity and the Shil'nikov mechanism

resulting values of, b, v, andcy. There is no indication The inference that Eq29) possesses a homoclinic orbit
that a higher-order characteristic equation would lead to awf saddle-focus type for appropriate values of the coefficients
improvement in these fits. of the nonlinear terms has a number of additional conse-

In all cases the fitted values of are positive, implying quences. A general theory of the dynamiics¢) when such
that the pulse(or pulse pair travels more slowly than the orbits are present is due to Shil’'nik@80]; its elaboration by
group velocitycy for long-wavelength perturbations. More- Glendinning and SparroW31] is particularly useful. The
over, in these cases the fitted valuesia@re positive, imply-  theory defines a quantit§ (the eigenvalue ratjoas
ing that the basic wave train imstablewith respect to long-
wavelength phase instabilities, as hypothesized. A significant S=— Res, (41)
source of error arises from fits that put too much weight on Sy
points that are contaminated by nonlinear effects; this prob-

lem increases with decreasing interpulse distance and hen%%d shows that a homoclinic orbit to a fixed point with

becomes particularly acute _for multipulse s_tates. In suci;l is generically simple and isolated. On the other hand, if
states the double-pulse solution of the dynamical sy8n 6<1, the orbit coexists with an uncountable nhumber of non-

with the appropriate period may not approach the Origi;ti)eriodic orbits as well as a countable number of periodic
closely enough to sample the linear dispersion relation th rbits of arbitrarily large periods. Although all these orbits

describes its behavior in its vicinity. Consequently we expec : .
. . . . rrespond to different spatial states they do not resemble the
that the values of the dispersion relation coefficients deduce . L
Observed pulselike states. However, Glendinning and Spar-

from the corresponding fits will be less accurate than thoserzow show that for parameters near those required for the
obtained in the single-pulse case. This may account for so P 4

m . . ) - .
of the scatter in the coefficient values, particularly dn formation of the prlmary(smg!e-pulsaa homoclinic orb|t
there are other parameter values., values ob) for which

double-pulse homoclinic orbits are present. These ho-

TABLE V1. The values of the dispersion relation coefficieats  moclinic orbits(called secondary by Glendinning and Spar-

b, andv in Eq. (36) obtained from the fitted values of the eigen- o) start out as if to form a single pulse but miss the origin

valuess. the first time around, and so spiral away from it again, form-
ing a second pulse. Only after a second large-amplitude ex-

Rr/Ry” a b v €9 cursion from the origin do they connect to the origin. Such
1.19 0.42 ~1.90 221 8.09 solutions(see Fig. 11 are exactly of the form of our two-
1.23 0.91 —291 278 8.20 pulse states. Note that our approach predicts that a double
1.2% 1.79 —2.78 310 854 pulse should move at constant speed given by the corre-
129 0.22 _235 294 8.31 sponding eigenvalue, maintaining constant separation be-
1.0%F 0.61 200 373 939 tween the two pulses. As suggested in Fig. 11 there is in fact
197 0.21 160 1.46 595 a countably infinite number of such double-pulakso triple-
pulse eto. states which accumulat@xponentially on the
&Two-pulse mutated state with 26 roll pairs. parameter valuey* say, at which the primary one-pulse
®Two-pulse mutated state with 24 roll pairs. homoclinic orbit is present. These orbits differ in the number

“Two-pulse mutated state with 22 roll pairs. of turns each makes around the origin: the outer ofes
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J oU drawn in Fig. 11 which correspond to the peribdand its
1 integer fractionsI'/N, N=1,2, ... . As thewavelength

S t curve A (v) approaches the primary homoclinicityt it is

>3 cut by the dashed lines. The intersection with the FH&

) indicates the presence of a single-pulse state with péridd

at the corresponding. This state can be replicated forming

D H an N-pulse state that fits within the full peridd Such mul-

D : tipulse states are characterized by equal separation between

N

7

200 W . P o0 WP

the constituent pulses. Figure 11 also shows one of infinitely
many subsidiary homoclinicities corresponding to the forma-
tion of double pulses. The speed of such pulses corresponds
to the intersection of the correspondingv) loci with the
line I'. These double-pulse states are fundamentally different
because while they still move rigidly with the speed given by
this intersection their separation will be uneven. Moreover,
as indicated in Fig. 11, the different double states formed this
Vv way will have different numbers of oscillations in their tails
and will propagate with slightly different speeds than pairs of
identical pulses. Figures(l?) and 8b) illustrate two distinct
FIG. 11. The modulation wavelength vs v showing the cre-  solutions, both with 26 roll pairs and two pulses with uneven
ation of single- and multiple-pulse states near the primary hofulse separation. In a similar way one can construct a variety
moclinic connection ab* (corresponding to a single pulse on the of three-pulse statdsee Fig. 8)]. However, recent theoret-
real ling, satisfying the Shil'nikov conditiod<1. ical work [34] indicates that such constructions are not of
finite codimension; in particular, on the real line three-pulse
—v* large perform few turns and hence correspond tostates can be produced hbybitrarily small changes in the
double pulses with few oscillations iq separating them, eigenvalue ratia>. Consequently any attempt to describe the
while the inner ones perform more and more such oscillaobserved three-pulse states by a truncated dynamical system
tions as their eigenvalue approaches™* (see Fig. 1L The  of the form(34), i.e., a truncated phase equation, is doomed
double-pulse homoclinic orbits accumulate wh at a geo-  to fail.
metric rate given by, cfl32], In the theory the casé=3 is a degenerate one because
the linearization about the origin is divergence-free. This is

Unt1 27 27 the case for the Kuramoto-Sivashinsky equafi®8]. In the
—=exX _T+O(b) =exp — +0(b) |,

v —a+ 342 present case when dispersidn#0) is included we find that
n
(42 1 b )
5=§ 1—2— +0O(b%). (44)
wherev* =2u(a+4u2). In contrast the saddle-node bifur- K

cations(see Fig. 11 accumulate at the rate Thus the Shil'nikov mechanism is generic in the present
problem only in the presence of dispersion.
Un+1 T
=—ex;{ _T+O(b)>

Un

F. Pulse solutions of the phase equation

- The conclusions we have drawn so far are predicated on
- —exp( _ —M+O(b)), (43) the presenceof a homoc_llmc orbit of sgddle-focus type in
Va+3u? Eqg. (29) when the coefficients of the linear terms take the
values deduced from the observed pulse shapes. But whether
It should be noted that no similar behavior occurs in ¢@$e such an orbit is present is clearly a function of the nonlinear
in which only the primary one-pulse orbit is presentvt, terms. It is a simple matter to show that for some choices of
cf. [33]; asv—uv* the period of a periodic array of pulses the coefficients the requisite homoclinic orbit cannot exist.
increases monotonically with no “horseshoe” formation, For example, whew >0, b<0 (and A=0) this is the case
much as in cas€é) with §>1. for all h<0. Evidently a more detailed theory would start
Thus far we have discussed the consequences of havingwdath known (calculated values of the coefficients,... h,
homoclinic orbit to a saddle focus satisfying the Shil'nikov and ask for what valuéor value$ of v do such orbits exist.
condition 0< §<1. This theory applies on the real linex Such a theory would not only predict the shape of the pulse
< §é<+0o0. Our numerical simulations use a finite albeit largebut also its speed, rather than simply looking for consistency
domain with periodic boundary conditions. Consequently,n the general picture. Since we are not in a position to com-
true homoclinic pulses cannot form, and our pulse stateplete this program we simply confirm that the phase equation
must be interpreted as periodic states with a long but finit€29) is capable of describing pulse states of the type de-
period. In particular, the plethora of nonperiodic trains ofscribed in Sec. lll. To this end we have solved the nonlinear
pulses that coexist with the primary pulsewdt cannot be eigenvalue problem(33) on a finite domain of lengti
realized in our periodic geometry. Among the periodic states=64 with a discretized one-dimensional mesh using an itera-
present ab* only those with the correct period can be real-tive Newton-Raphson-Kantorovich sche®6] of high ac-
ized. We indicate this process by the dashed horizontal linesuracy in both theL, norm of ¢, and the corresponding
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1.00[ . . . We have taken the point of view that the states found in
(a) : the numerical simulations of Eq$l)—(5) are stable, al-

though this is in fact something that is extremely hard to
$:0.50 - ] demonstrate, both mathematically and numericébgcause

of the very long horizontal diffusion times across the do-
main). Any stability discussion divides naturally into two
parts, the stability of a single-pulse state, and the stability of
¢ a periodic train of pulses. Assuming that only one pulse is
present per period one first examines the stability of this state
with respect to perturbations with the same wavelength; sub-
sequently one can examine the stability with respect to per-
(5) turbations with periods that are increasing multiples of the
§ 350 basic period. Unfortunately the stability properties of ho-
o moclinic pulses on the whole real line are not easily estab-
lished, even in dissipative systerf87]. In fact we expect
2.00 . . l that most such states will prove to be unstable, possibly in-

0 16 32 48 64 cluding the one shown in Fig. 1&. Usually stable pulses on

X the real line require that the equilibrium state that is con-

nected by the pulse is stable; otherwise the pulse inherits the
instability of the equilibrium. Thus stable pulses are usually

posed phase jump=3.63x 2. The eigenvalue =6.20 implies a subcritical. In our case this argument suggests that stable
pulse speed ,~1.88. (b) The instantaneous local wave number pulses should only be observed when the phase diffusion

q(x)=2m/\(x) computed from Fig. 1@) for comparison witia). ~ Coefficient—a is positive. While this is so for the Eckhaus
instability, in dispersive systems, such as the one considered

] ) o here, stable pulses can be present even when the basic equi-
eigenvaluey. For the linear coefficients we used the valuesiiprium is unstable, provided that the instability is only con-
deduced from the pulse shape in Sec. IV®70.4, b= yective. In fact the theory described above applies equally
—1.9,c=1.0; in an effort to model the single pulse observedwell for a negative as for positive. The only difference is
atR;=1.19R{” we usedp(0)=0, ¢(I')=A, as the bound- that whena<0 the quantityx in Eq. (37) must be suffi-
ary conditions, withp,, ¢, periodic andA determined from  ciently large. It follows that must also be sufficiently large
Fig. 10@). The result shown in Fig. 13) is for e<0 and and hence that the pulse spegg will differ substantially
g>0 for which homoclinic orbits to a nonzero background from the group velocitycy. In fact this is the case for the
wave number are possible. The figure shows a single pulse pulses we have foun¢see Table IV. However, we have
terms of the wave number modulatias.(£), riding on a been unable to find any signature of the required hysteresis
sloping background corresponding to a nonuniform backin the pulse formation process and consequently favor the
ground wave number. In Fig. 19 we show, for compari- choicea>0. Assuming that a single pulse per wavelength is
son, Fig. 10a) redrawn in terms of the local wave number. stable the stability of a whole train of such pulses may then
For the parameter values chosen, the solution of the phad¢ described as in Ref§38,39. One finds that instability
equation yields a broader pulse than realized in the simulghat leads to pulse bunchin@.e., a nonuniform train of
tion. As discussed in Sec. IV D the wave number gradienPulses depends on the dispersion relation giving the pulse
was found to be an essential part of the fitting proceflice ~ SPeedv,, as a function of the basic period or wavelength.
(40)]. The asymmetry of the pulse in Fig. (B2 is similar to Unfortunately since all our calculations were done with the
that of the observed pulse, while the corresponding eigensame aspect ratib =64 we have no information about this
valuev =6.20 yields a pulse speeg that is about one-third dispersion relation and hence about the stability properties of
of the observed one. whole trains of pulses.

The phase equatiof29) exhibits a rich variety of pulse- Finally, it is of interest to note that the phase equation
like solutions which will be described elsewhere. The formu-examined by Janiauet al. [20] also exhibits the formation
lation of the pulse formation problem on a finite domain ©f pulses, although in a rather limited parameter regime lo-
facilitates the location of such solutions, but requires thecated astride the Benjamin-Feir instability boundary and very
specification of the phase jum across the domain. The close to it. In the equation studied here the _pulse formation
finite size of the domain tends to suppress phase turbulencBfOCess appears to be more robust, while its special form
and extends the parameter regime in which the phase equégcilitates analytical approach.
tion exhibits pulselike solutions.

0.00 I L

5.00 i T j

FIG. 12. (a) Solution ¢.(&) of the phase equatiof83) with a
=0.4,b=-1.9, c=1.0, e=—800, g=820, h=700, and an im-

V. DISCUSSION AND CONCLUSIONS

G. Stability considerations In this paper we have initiated a study of the mechanisms

Thus far we have not addressed the stability properties dhat lead to the formation of confined states in two-
the various states identified above as solutions of the phasimensional large-aspect-ratio thermosolutal convection. Nu-
equation(29). We plan to give a detailed discussion of thesemerical simulation of the Boussinesq equations describing
and of the multiplicity of pulselike solutions to E(R9) else- the system in a two-dimensional periodic domain with real-
where. However, the following remarks can be made. istic boundary conditions revealed the existence of a plethora
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of confined states, both single pulse and multipulse, all of Despite the success of our approach we caution that the
which were found to travel rigidly on top of a uniform train phase approach has an important shortcoming. Formally it
of fully nonlinear traveling waves. All of our pulses traveled applies only to states with weak phase gradients. In our
in the same direction as the underlying wave train but did spulses wave number changes of order one were common.
more slowly, sometimes substantially so, and appeared to bEhus our states are outside the regime in which the equation
created spontaneously as a result of a phase instability. Ishould hold. It appears, however, that phase conservation is a
particular, no finite-amplitude perturbations were required tcsufficiently strong constraint that the phase equation provides
form these pulses, and no evidence of hysteresis in thed reliable model even outside its formal range of validity.
formation was uncovered. The pulses lead to the appearance Another approach to the present problem would be to
of spatially nonuniform wave trains in which patterns with consider a pulse as the bound state of two fronts, with the
differing phase velocities, amplitudes, and wavelengths copulse width determined by the minimum of the potential be-
exist stably. They are characterized by a larger degree afyeen thentif one exist3. The small oscillations observed in
coheren_ce between the vertical velocity and the thermal anghe widths of the pulses during their propagatisee Sec.
solutal fields and as a result transport more heat and soluig/) could then be interpreted as oscillations about the mini-

than the background state. Consequently, the process gf,m of this potential. Although such oscillations should de-
pulse formation can be interpreted as an attempt by the Sy%’ay with time, we have found them to be long lived. Al-
tem to maximize heat and solute transport within the con- ’

g A : though the most likely explanation of such oscillations
straint imposed by phase conservation, i.e., a fixed numberct ased on their frequengys that they are an effect of the
rolls.

We have focused on the Rayleigh number regimef'mte size of the rolls we cannot exclude the possibility that

11RO < Ry<1.27R% within which pulse formation is ini- they are the consequence of self ex0|te.d oscillations of such
. ) ' .bound statescf. [40]). This approach, which offers scope for
tiated but the phase of the pattern remains well defined. This S ! .

more realistic model of the confined states described here,

regime allows one to employ the techniques of phase dynam% planned for a future paper.

ics, one of the few analytical means available to us for un- ™ he fi b . f
derstanding confined states that develop on top of a highly 1€ Present paper represents the first observation of con-
ned states in thermosolutal convection. These confined

nonlinear state. We have used this approach to gain substa o S g
tial insight into the properties of these pulses and their mulStates are distinct from the ones found in binary fluid con-
tiplicity. These pulses appear to be well described by a thirdVection. The latter occur very close to onset and consist of
order phase equation. This equation is a particularly simpléocalized packets of traveling waves on an otherwise undis-
case of the phase equation describing the evolution of longurbed background. They also differ physically. In binary
wavelength Benjamin-Feir instability of traveling waves fluid mixtures there is no net concentration transport, only
[20]. To our knowledge this important special case has notoncentration migration in response to the applied tempera-
hitherto been studied. We have found, using our phase equéuire gradient. Thus the concentration is ultimately pumped
tion, that the pulse shape is given by a third-order nonlineahorizontally, out of the packet, where it creates regions of
eigenvalue problem, with the eigenvalue determining thenegative buoyancy. As a result the packets travel much more
pulse speed. The theory makes predictions about the pulstowly than might otherwise be expected. However, because
shape that are consistent with the results of our simulationshese states are found near onset they are still accessible to
These include the fact that pulses traveling more slowly thamlescription by weakly nonlinear thedy]. In contrast, in the

the group velocity should have oscillatory tails, and that thehermosolutal system solute is transported in the vertical. As
local wavelength and phase velocity should be linearly rea result there is very little tendency towards the kind of con-
lated. In addition we verified a general expression relatingentration braking that is so important in binary fluids. Re-
the pulse speed to the wavelengths and phase velocitiegnt developments in experimental techni§Blesuggest that
within the pulses and without. We interpreted the oscillatorythe pulses described here should be amenable to experimen-
tail of the pulses in terms of a homoclinic orbit to a saddletal study. The physical considerations just alluded to also
focus satisfying, under mild assumptions on the phase diffusuggest that any small-amplitude subcritical localized states
sion and dispersion coefficients, the Shil'nikov condition 0 present near onset of oscillatory thermosolutal convection
<6< 1. Using standard theory we established the presencshould travel faster and have different stability properties
on the real line, of a great number of coexisting pulse andhan the corresponding ones in binary fluid convection. How-
nonpulse states, and applied this result to establish the exisver, for our parameter values there is an additional differ-
tence on a periodic domain of not only single pulses but als@nce as well. The subcritical traveling waves present at these
of two different types of doubléand triple eto. pulses, all of parameter values havesacondunstable eigenvalue: they are
which move rigidly at constant speed given by the eigen-unstable with respect to standing waves, which also bifurcate
value of an appropriate nonlinear eigenvalue problem. Thessubcritically. Consequently we do not expect localized pack-
included periodic two-pulse states in which the pulses arets of traveling waves near onset in our system, although the
identical and their separations equal, and others in whiclpossibility of small-amplitude confined states standing
they are not. We exhibited examples of such pulses in th&vaves cannot be excluded.

numerical simulations, obtaining them by a process we In their study of localized traveling waves in binary fluids
called “mutation” in which selected parts of the pulse were near onset Bartest al. [7] showed that the localized states
culled and replicated to create an initial condition of the de-drifted with a small group velocity in the propagation direc-
sired kind. Time integration forward in time was then used totion of the phase of its TW components; in the comoving
check their stability. frame these states were found to be time periodic. Different
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localized states differed only in the width of the central parttered out, revealing the dynamics on the scale spanning the
of the pulse while the leading and trailing en@dthough  full horizontal width of the domain and involving large-scale
differeny were found to be the same in all the simulationsvortices that drift with the pulses. The pulses owe their ex-
performed. The velocity, temperature, and concentration prdstence to an interaction between the order one convective
files could not be described by one common amplitude sinccale and this large scale. .

their widths and shapes were different. The velocity and tem- We should remark that traveling wave thermosolutal con-
perature amplitudes in the center of the localized states wer¢éection has not hitherto been simulated with no-slip bound-
only slightly smaller than in the extended states at the sam@y conditions, even in domains with basic period of order
values of the parameters. However, the local Wavelength@e roll wavelength. Here, however, our results do not differ

and phase speeds of the rolls increased monotonically as th%rtﬁ?g;y[ {rg])mlrfhoz(;ié’ublg'nteﬁe b\yellg?;irttmaﬁld f?ermblg?gure
moved from the trailing toward the leading end. The fre- : P ' y P

ields are observed to have similar structure and strength to

guency of the traveling waves in such a pulse was found t ' i . ) ;
be about half the Hopf frequency at the onset, a much large 0S€ In comparable stationary states in pure—ﬂwd convec-
' n, with the temperature wave phase shifted slightly rela-

value than in an extended state, indicating a larger concen!© ) .
tration contrast between adjacent rolls and a greater meathv?j tto the vetlocny wave, Ci[tl]' Inhqogtrat\st to ;he ;/glohC|ty
lateral concentration flux for the localized states than for thé?''C €Mperature components, which at our Rayleigh num-

extended ones. The wavelength in the pulse was only abo [)S vr\:_erre]lnearl)r/]harmo_nlc, The SOI'“:taI c?:nponen_gwlas f?.?nd
10% smaller than in an extended state of similar frequency.0 € ighly nonharmonic, with an aimost trapézolaal profie,

Bartenet al. found that the mean buoyancy force in SuChlndicative of nearly homogeneous solute within each roll,
convection is dominated by the concentration contributio separated by a thin boundary layer that sna!<e§ alternately
rather than the thermal one. A phase shift between the co setween the top and bottom of the layer. This is a conse-

centration wave and the velocity wave which takes place ifluence of the “mirror-glide™ symmeiry which in tum is a

the central part of the localized state drove a mean concerfonsequence of imposing identical boundary condltlon_s at
the top and bottom of the layer. The lateral mean flow in a

tration circulation extending over the whole localized state. ” rai found 1o b  ord f

This in turn induced a large-scale concentration redistribu-u.rt]I grm waI\I/e trr?m vtvr?s cr)]un OI e_tsev;e;ﬂ orders OA magl]
tion. Ahead of the leading front this concentration redistripy-"tUd€ smaller than the pnase velocity of thé wave. A sma
tion produces a barrier that weakens the mean buoyan t significant mean lateral convective heat flux, ranging be-

force, thereby impeding a rapid invasion of the conductive h?ﬂeg (t).OOG\thhand 2:01|‘NTI' I'St gefn;ehrattfeld.dby tgethphtase
region by convection. On the other hand, the different width !t between e_\;]er Ica \'/Ie OC'?’ 0 f N g' an O?fl) e5m-
of the concentration and temperature pulses appear to gRérature wave, with a similar solute flux, between d

hance the buoyancy under both fronts and thereby stabiliz@nd 0.038ls, generated by the phase difference between the

the localized state against invasion by the conduction star&onvection and the solutal wave. Such mean flows and fluxes

The mean concentration flux decreases with decreasing fril€e aiso found in simulations of binary fluid mixturg].
guency(increasingRy) and with it the concentration redis-
tribution. This weakens the barrier and increases the forward
drift motion of the localized state. Larger frequencies This work was supported in part by the National Science
strengthen the barrier and the forward drift velocity of theFoundation under Grant Nos. DMS-9406144 and ECS-
pulse into the quiescent regime is reduced. These results a8217394, and by the National Aeronautics and Space Ad-
in good agreement with the experimental results of Kolodneministration under Grant No. NAG5-2256. E.K. thanks
[41] and with the analytical theory of Rieck&]. We have JILA, University of Colorado, Boulder, Colorado, for finan-
identified similar large-scale communication in thermo-cial support. We are grateful to Keith Julien for assistance
solutal convection using moving averages. In the referencaith the NRk package, and to Michael Proctor for helpful
frame moving with a pulse the small-scale dynamics are filcomments.
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