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Fluctuational phase-flip transitions in parametrically driven oscillators

M. I. Dykman, C. M. Maloney, V. N. Smelyanskiy, and M. Silverstein
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824

~Received 17 December 1997!

We analyze the rates of noise-induced transitions between period-two attractors. The model investigated is
an underdamped oscillator parametrically driven by a field at nearly twice the oscillator eigenfrequency. The
activation energy of the transitions is analyzed as a function of frequency detuning and field amplitude scaled
by the damping and nonlinearity parameters of the oscillator. Both fourth- and sixth-order nonlinearities are
taken into account. The parameter ranges where the system is bistable and tristable are investigated. Explicit
results are obtained in the limit of small damping, or equivalently, strong driving, including scaling near
bifurcation points.@S1063-651X~98!15405-3#

PACS number~s!: 05.40.1j, 02.50.2r, 05.20.2y, 32.80.Pj
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I. INTRODUCTION

Nonlinear systems driven by a sufficiently strong perio
field often display period doubling@1#. The two emerging
stable periodic states are identical, except that they
shifted in time by the period of the field 2p/vF . This feature
is a consequence of the symmetry with respect to transla
in time by 2p/vF , and it attracted attention to such system
as elements of digital computers@2#. Period doubling has
found numerous applications, in particular in parametric a
plifiers. In the presence of noise, there occur fluctuatio
transitions between the period-two attractors, which co
spond to phase slip of the system byp. In spite of its impor-
tance, the problem of phase-flip transitions remains larg
unexplored theoretically. On the experimental side, inte
in such transitions has been renewed recently, because
were observed for electrons oscillating in a Penning trap@3#,
and also investigated, for an analog electronic circuit@4#, in
the context of stochastic resonance@5#.

Motivated by these observations, in the present paper
develop a theory of escape rates from period-two attract
The analysis is done for the simplest generic model that
plays period doubling: an underdamped oscillator parame
cally driven by a force at nearly twice the oscillator eige
frequencyv0 @6#. This model applies, in particular, to axia
vibrations of an electron in a Penning trap@3#. Much work
on a parametrically excited oscillator has been done in
context of squeezed states of light; cf. Ref.@7#. We analyze
escape due to classical fluctuations, which were substa
for the systems investigated in Refs.@3,4#.

A parametrically excited oscillator is an example of a s
tem away from thermal equilibrium. Such systems usua
lack detailed balance@8#, they are not characterized by fre
energy, and escape rates depend on the system dynamic
the noise that gives rise to fluctuations in the system. In
important and quite general case where the noise is Gaus
there has been developed a technique which reduces
problem of calculating escape rates to a variational prob
@9#. The solution of this problem describes the optimal p
along which the fluctuating system is most likely to mo
when it escapes. Such path is often called@10# the most
probable escape path. The minimal value of the variatio
571063-651X/98/57~5!/5202~11!/$15.00
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functional gives the exponent in the expression for the
cape rate.

An advantageous feature of period doubling in an und
damped oscillator is that it occurs for comparatively sm
amplitudesF of the driving force, where the nonlinearity o
the oscillator is still small: the anharmonic part of the pote
tial energy is much less than the harmonic one,v0

2q2/2,
whereq is the oscillator coordinate. In this case, the quan
ties of interest are the amplitude and phase of the vibrati
at the frequencyvF/2'v0 . They vary only a little over the
time ;vF

21 . The corresponding dynamics is affected
Fourier components of the noise within a narrow band c
tered atvF/2. Essentially, this means that, in the analysis
the dynamics of slow variables, the noise may be assume
be white. A similar situation arises@12# in the problem of
transitions between the stable states of forced vibrations
resonantly driven underdamped oscillator.

Below, in Sec. II, we discuss the phase portrait of a driv
Duffing oscillator~with the fourth-order nonlinearity! in the
rotating frame. We then derive the properties of noise
slow variables. For low noise intensities, we formulate a
solve numerically the variational problem for the activati
energy of escape from period-two states. In Sec. III, expl
expressions are provided for the escape rates in the vicin
of the bifurcation points where there emerge period-two
tractors ~a supercritical bifurcation! or unstable period-two
states. The analysis in Sec. IV refers to comparatively str
driving, where the motion inslowvariables is underdamped
Explicit analytical results for escape activation energies
obtained in limiting cases and compared with numerical
sults. In Sec. V the role of sixth-order nonlinearity is di
cussed, and the activation energies are found near bifurca
points, and also in the range where sixth-order nonlinearit
strong and the motion inslow variables is underdamped
Section VI contains concluding remarks.

II. ESCAPE RATES: GENERAL FORMULATION

A. Phase portrait in slow variables

To set the scene, we will first discuss the phase portrai
a parametrically driven underdamped oscillator. A simp
phenomenological equation of motion is of the form

d2q

dt2
12G

dq

dt
1v0

2q1gq31qF cosvFt5j~ t !. ~1!
5202 © 1998 The American Physical Society
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HereG is the friction coefficient,g is the nonlinearity param
eter, F is the amplitude of the regular force, andj(t) is a
zero-mean noise,̂j(t)&50. We assume that the amplitude
of the vibrations are not too large, and therefore only
fourth-order term in the coordinateq is taken into account in
the oscillator potential energy~the Duffing model!. In the
problem of period doubling, the effect of the cubic ter
comes to renormalization of the parameterg ~cf. Ref. @6#!.
Generalization of the results to the case where, for spe
reasons@3,11#, g is numerically small, and it is necessary
allow for the term}q5 in the equation of motion, is dis
cussed in Sec. V.

We consider resonant driving, so that the oscillator eig
frequencyv0 is close tovF/2,

G,u2v02vFu!v0 . ~2!

In this case it is convenient~cf. Ref. @6#! to analyze the
oscillator motion in the rotating frame. We change to slo
dimensionless timet5Gt and slow dimensionless variable
q1 andq2 , respectively:

q~ t !5S 4vFG

3ugu D 1/2Fq1 cos
vFt

2
2q2 sin

vFt

2 G ,
dq

dt
52S vF

3G

3ugu D
1/2Fq1 sin

vFt

2
1q2 cos

vFt

2 G . ~3!

Following the standard procedure of the method of av
aging ~cf. Ref. @1#!, and neglecting fast oscillating term
which depend on the oscillator amplitude and contain a f
tor exp(6invFt/2) with nÞ0, one obtains the equations o
motion for q1 andq2 in the forms

q̇1[
dq1

dt
52q11

]g

]q2
1j1~t/G!, t[Gt,

~4!

q̇2[
dq2

dt
52q22

]g

]q1
1j2~t/G!,

wherej1,2(t/G) are random forces proportional toj(t), and

g~q1 ,q2!5 1
2 ~q1

21q2
2!@V2 1

2 ~q1
21q2

2!sgng#1 1
2 z~q2

22q1
2!.
~5!

In what follows we assume thatg.0; the caseg,0 can be
described by replacingV→2V and qi→2q32 i ~i 51 and
2!.

Except for the random force, the motion of the oscilla
as described by Eqs.~4! is characterized by two dimension
less parameters: the scaled frequency detuningV and the
scaled fieldz,

V5@~vF/2!2v0#/G, z5F/2vFG. ~6!

For z,1 or for V,2(z221)1/2, the oscillator~4! in the
absence of noise has only one stable state,q15q250:
period-two oscillations are not excited. The valuez51 gives
the threshold field amplitudeF th52vFG for their excitation.
The phase portrait of the oscillator in variablesq1 andq2 , in
the range where the oscillations are excited, is shown in
1.
e
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-

r-

-

r
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For z.1, with the increasingV there first occurs a pitch
fork bifurcation forV52(z221)1/2. This is a supercritical
period-doubling bifurcation: the stable stateq50 @q
[(q1,q2)# becomes unstable, and there emerge two sta
statesqst

(1,2) which are symmetric with respect toq15q2

50; see Fig. 1~a!. These states correspond to stable perio
vibrations which are shifted in phase byp. The vibrational
amplitudea5uqstu increases monotonically with the increa
ing V @see

FIG. 1. Trajectories and separatrices of the oscillator in the
sence of noise in slow variablesq1 and q2 for ~a! z51.5 andV
50.5, where the stable states of the oscillator are period-two att
tors; and~b! for z51.5 andV51.5, where the steady stateq50 is
also stable. The positions of the stable states and the saddle p
are denoted by the lettersai ands, respectively.~c! The dependence
of the dimensionless amplitude of the stable~solid line! and un-
stable~dashed line! period-two vibrations onV for z55.0.
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Fig. 1~c!#. The results of the asymptotic analysis based
Eqs.~4! apply for not too large amplitudesa,

Ga2,uvF22v0ua2!vF . ~7!

As V goes through the value (z221)1/2, there occurs the
second pitchfork bifurcation of the stateq15q250: this
state becomes stable again, and there emerge two uns
statesqu

(1,2) , which are also symmetric with respect to th
origin, and correspond to unstable period-two vibrations
the oscillator. As seen from Fig. 1~b!, the phase plane of th
oscillator is such that, forV.(z221)1/2 the domains of at-
traction to the stable statesqst

(1) andqst
(2) are separated by th

domain of attraction to the stable stateq50.

B. Fluctuations of slow variables

In the presence of noise, the amplitude and phase of
oscillator are fluctuating. The fluctuations are determined
the noisej(t) in Eq. ~1! that drives the oscillator. In man
cases of physical interest, this noise is Gaussian. It m
originate from the coupling of the oscillator to a thermal ba
@which also gives rise to the friction force in Eq.~1!#, or it
may be due to an external nonthermal source. A zero-m
Gaussian noise is characterized by its power spectrum

Fv„j~ t1t8!,j~ t !…5f~v!5E
2`

`

dt8eivt8^j~ t1t8!j~ t !&.

~8!

For a stationary noise the power spectrum~8! is independent
of time. In what follows we assume that the functionf~v! is
smoothnear the oscillator eigenfrequencyv0 .

Even though the noisej(t) is stationary, the random
forcesj1,2(t) in Eq. ~4!, which give rise to fluctuations of the
slow variables, are nonstationary, generally speaking. F
Eqs.~1!, ~3!, and~4!, one obtains the following expression
for their power spectra:

Fv@j j~ t1t8!,j j~ t !#5
3ugu

4vF
3G3 (

ak561
fS v2

1

2
avFD

3@11~21! jexp~ iavFt ! ~ j 51,2!,

Fv@j1~ t1t8!,j2~ t !#52
3i ugu

4vF
3G3 (

a561
afS v1

1

2
avFD

3@11exp~ iavFt !#. ~9!

The dynamics of the slow variablesq1,2 is characterized
by the time scales;1/G, 1/uvF22v0u. We assume that the
power spectrumf~v!5f~2v! varies only slightly in the
whole frequency range whereuv2vF/2]&G, vF22v0u
@and this range does not correspond to a deep minimum
f(v)]. It follows then from Eq.~9! that for the characteristic
frequenciesuvu&G, uvF22v0u, the spectra of the diagona
correlatorŝ j i(t)j i(t8)& have both time independent comp
nents and components that oscillate quickly in time, wher
the power spectrum of the cross-correlator ofj1 and j2 is
quickly oscillating in time. Therefore, in the analysis of th
effect of the noise on the slowly varying functionsq1,2, in
the spirit of the averaging method, one can assume tha
n
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noise componentsj1(t) and j2(t) are asymptotically inde-
pendent of each other; one can also leave out the te
}cosvFt in the power spectra of the diagonal correlato
Corresponding analysis can be also done for a microsc
model of noise resulting from coupling to a bath~see Ref.
@12#!; rigorous mathematical results on the method of av
aging in noise-driven systems were discussed in Ref.@13#.

It follows from the arguments discussed above that
random functionsj1(t) and j2(t) are asymptotically inde-
pendent zero-mean Gaussian white noises,

^j i~t/G!j i~t8/G!&'D d̃ ~t2t8!, i 51,2,
~10!

D5~3ugu/2vF
3G2!f~vF/2!.

The function d̃ (x) is d like: it is large in a narrow domain
uxu!1, and its integral is equal to 1.

It follows from Eqs.~4! and ~10! that the motion of the
oscillator on the slow time scale is Brownian, i.e., the slo
variablesq1,2(t) are components of a two-dimensional Ma
kov process. The quantityD gives the characteristic intensit
of the noise in the equations of motion forq1 andq2 . If the
oscillator is coupled to a thermal bath with a correlation tim
much smaller than 1/v0 , so that the oscillator performs
‘‘truly’’ Brownian motion and the random forcej(t) in Eq.
~1! is d correlated, with intensity 4GkT, we have D
56ugukT/vF

3G. We note, however, that the dynamics
slow variables can be described as Brownian motion e
where this description does not apply to the motion of
initial oscillator, i.e., where the correlation time of the the
mal bath is*1/v0 . In this latter case, the friction force in
Eq. ~1! is also retarded, but the retardation may be neglec
in the equations of motion for the slow variables~cf. Ref.
@12#!.

C. Variational problem for the escape rate

If the dimensionless noise intensityD is small, then most
of the time the oscillator is fluctuating in a small vicinity o
one or the other stable stateqst

(n) ~in what follows we setn
51 and 2 for the stable states of period-two vibrations, a
n50 for the stationary stateq50 where it is stable!. Only
occasionally does there occur a large fluctuation which
sults in a transition to another stable state. The probab
Wn of such fluctuations is exponentially small, and its depe
dence on the noise intensity is given by the activation la
Wn}exp(2Sn /D) ~see Ref.@9# for a review!. In fact, to loga-
rithmic accuracy,Wn is determined by the probability den
sity of the least improbable realization of the forcej(t/G)
which results in the corresponding transition. Therefore, o
may expect that the quantitySn is given by the solution of a
variational problem. This problem is of the form~cf. Refs.
@12,13#!

Wn5C exp~2Sn /D !, Sn5min Sn„q~t!…@q5~q1,q2!#,

Sn„q~t!…5E
2`

`

dt L~ q̇,q!, L~ q̇,q!5 1
2 @ q̇2K ~q!#2,

~11!

q~t!→qst
~n! for t→2`, q~t!→qu for t→`,

where the components of the vectorK are given by the right-
hand sides of the equations of motion~4!,
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K1~q!52q11
]g

]q2
, K2~q!52q22

]g

]q1
. ~12!

The solution of the variational problem~11! q~t! de-
scribes the optimal, or most probable escape path from
nth stable state. This path is instantonlike~see Ref.@14#!. It
starts at the stable stateqst

(n) for t→2`, and for t→` it
approaches the unstable statequ on the boundary of the do
main of attraction toqst

(n) ~having reached the boundary, th
system makes a transition to another stable state with a p
ability ; 1

2!. It follows from Fig. 1 that, for2(z221)1/2

,V,(z221)1/2, where the only stable states are period-t
attractors, escape from one of them means a transition to
other. ForV.(z221)1/2, escape from one of the period-tw
attractors means a transition to the stationary state, w
period-two vibrations are not excited, except in the case
extremely small damping, where the separatrices in Fig. 1~b!
come close to each other near saddle points, so that the
tance between them is less than the diffusion length. F
the state where period-two vibrations are not excited,
system makes fluctuational transitions into one or the o
period-two attractor.

The most probable realization of the noise is related to
optimal fluctuational path via Eq.~4!, j(t/G)5q̇2K . Opti-
mal fluctuational paths are physically real; they have b
observed in experiment~see Ref.@15#!.

The activation energiesSn , as defined by Eq.~11!, de-
pend on two dimensionless parameters of the driven osc
tor: the scaled field strengthz and the scaled frequency de
tuning V ~6!. In the general case,Sn may be calculated
numerically as action of the conservative system with
LagrangianL(q̇,q). Direct algorithms based on the solutio
of the corresponding Hamiltonian equations were discus
in Refs.@10,16# in the analysis of escape rates for fluctuati
systems of other types. For the system investigated in R
@12,16#, an alternative algorithm, based on the initial gue
and subsequent iterations of the solution, was also used,
the results on the transition rates were compared with an
experiments@17#. In the present problem we used a dire
method which combined algorithms@10,16#. We note that, if
the initial fluctuating system is away from thermal equili
rium, the pattern of extreme Hamiltonian paths of the au
iary problem~11! generically displays singularities; in pa
ticular there arise caustics. However, physically meaning
optimal fluctuational paths, which form a subset of the e
treme paths, avoid caustics@18#. In our numerical analysis o
extreme paths, we observed singularities which can be f
understood based on the general topological results@18#, and
we will not discuss them in the present paper.

The dependence ofS15S2 on z for several values ofV is
shown in Fig. 2. It follows from this figure that the activatio
energy of escape increases with the increasing fieldF}z,
and S1,2}z for large z. This behavior will be analyzed in
more detail below in Sec. IV.

III. ACTIVATION ENERGY OF ESCAPE IN VICINITIES
OF BIFURCATION POINTS

Explicit expressions for the activation energiesSn can be
obtained in several limiting cases. In the range of compa
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tively small nonlinearity~7!, the oscillator may experienc
two bifurcations with the varying field frequency, as se
from Fig. 1. In the vicinity of a bifurcation point, one of th
motions of the system near the emerging stable state~s! be-
comes slow: there arises a ‘‘soft mode’’@19#. Correspond-
ingly, fluctuations near a bifurcation point have univers
features@20# ~see also Ref.@12#!. For systems that display
period doubling, the analysis of dynamics near supercrit
and subcritical bifurcation points was discussed earl
based on the normal form of the equation of motion for t
slow variable with account taken of additional weak drivin
@21# or noise~see Ref.@22#, and references therein!. How-
ever, escape rates were not considered in these papers.

If the parameters of the nonlinear oscillator are close t
bifurcation point, one can either solve the variational pro
lem ~11! explicitly or reduce the system of equations of m
tion ~4! to the equation for the slow variable in the norm
form, which allows one to find not only the exponent, b
also the prefactor in the expression for the escape rate
Ref. @20#.

The equation for the slow variable~the variableQ! can be
derived from Eq.~4! by appropriately rotating the coordi
nates:

Q5q1 cosb1q2 sin b, P52q1 sin b1q2 cosb,

~13!

tan 2b52VB
21 , VB57~z221!1/2.

Here VB is the bifurcation value of the dimensionless fr
quency detuning; see Fig. 1~c!.

For uV2VBu→0 the dimensionless relaxation time of th
variable Q goes to infinity, whereas that ofP is 1

2 , and
thereforeP(t) follows the slow variableQ(t) adiabatically.
Fluctuations inP can be neglected compared to fluctuatio
in Q. Using the adiabatic solution forP ~i.e., neglectingṖ
and the noise term in the equation forṖ!, we obtain the
following equation forQ:

FIG. 2. Activation energiesS[S15S2 for phase-slip transitions
between period-two attractors of a driven Duffing oscillator as
tained by solving numerically the variational problem~11! ~solid
lines!. The dependence ofS on the scaled field amplitudez
5F/2vFG is shown for four values of the dimensionless frequen
detuning V5@(vF/2)2v0#/G. The dashed lines show the low
damping~largez! asymptotes.
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Q̇52
dU

dQ
1J~t!, ^J~t!J~t8!&5D d̃ ~t2t8!,

~14!

U~Q!5VB@ 1
2 ~V2VB!Q22 1

4 z2Q4#, VBuV2VBu!1.

It is seen from Eq.~14! that, near the bifurcation poin
VB52(z221)1/2, the system has either one stable state~for
V,VB! or two symmetrical stable states~for V.VB ; cf.
Fig. 1!. The escape rates from the symmetrical states are
same, and are given by the Kramers expressions@23#

Wn5~&/p!uVBu~V2VB!exp~2Sn /D ! ~n51,2!,
~15!

Sn52@U~Q~u!!2U~Q~n!!#5uVBu~V2VB!2/2z2

~Q(1)52Q(2) andQ(u) are the values of the coordinateQ in
the stable and unstable states; clearly,S15S2!.

Rate~15! is the rate at which there occur phase-slip tra
sitions between the period-two stable states forV close to
VB52(z221)1/2. Equation ~15! applies for exp(2Sn /D)
!1. The activation energySn is quadratic in the distanc
uV2VBu to the bifurcation point along the axis of the scal
driving field frequency,V. For a givenuV2VBu, the depen-
dence ofSn on the dimensionless fieldz is determined by the
factor (z221)1/2/z2.

For 0,V2(z221)1/2!1, Eq. ~15! describes the rate o
transitions from the stable stateqst50, Qst50 to any of the
period-two stable states. The transitions occur via the ap
priate unstable period-two state~the one on the boundar
between the domain of attractions to the stable period-
state and the stateq50!.

IV. SMALL-DAMPING LIMIT

A. Motion in the absence of dissipation

Of special interest, particularly from the viewpoint of e
periments on trapped electrons@3,11#, is the case where th
scaled field amplitudez is large enough so that the dissip
tion terms2q1 and2q2 in the right hand sides of the equa
tions for slow variables~4! are comparatively small. In the
neglect of these terms and the random force, Eqs.~4! de-
scribe conservative motion of a particle with the coordin
q1 and momentumq2 , and with the Hamiltonian function
g(q1 ,q2) @Eq. ~5!#. This particle moves along closed traje
tories shown in Fig. 3. It is convenient to describe this m
tion using scaled coordinate and momentumX andY:

X5q1 /z1/2, Y5q2 /z1/2,

dX

d t̃
5

]G

]Y
,

dY

d t̃
52

]G

]X
, t̃ 5zt, ~16!

G~X,Y!5z22g~z1/2X,z1/2Y!5
1

2
~m21!X21

1

2
~m11!Y2

2
1

4
~X21Y2!2, m5

V

z
.

The conservative motion~16! depends only on one pa
rameter,m5V/z, which characterizes the interrelation b
tween the frequency detuning and the field strength. T
he

-

o-

o

e

-

e

shape of the effective energyG(X,Y) for two different val-
ues ofm is shown in Fig. 4. The trajectories in Fig. 3 are ju
the cross sections of the surfaceG(X,Y) by the planesG
5const. The extrema of the surfaceG(X,Y) are the fixed
points of the system.

For m,21 the surfaceG(X,Y) has one extremum. It is
located atX5Y50, and corresponds, with dissipation tak
into account, to the stable state with no period-two vibratio
excited. For 21,m,1, the function G(X,Y) has two
maxima atX50, Y56(m11)1/2 ~they correspond to two
period-two attractors!, and a saddle point atX5Y50. For
m.1, in addition to the above maxima the functionG(X,Y)
has a minimum atX5Y50 ~the maxima and the minimum
correspond to the stable states of the oscillator!, and two
saddle points atX56(m21)1/2, Y50. The extreme values
of G, which correspond to the stable states~enumerated by
the subscriptsn50, 1, and 2! and the unstable periodic state
~denoted by the subscriptu!, are given by the expressions

G1,25
1
4 ~m11!2, Gu50 for m,1,

~17!

G050, G1,25
1
4 ~m11!2, Gu5 1

4 ~m21!2 for m.1.

We note that form.1 the trajectories surrounding the stat
at X50, Y56(m11)1/2 in Fig. 3 become horse-shoe

FIG. 3. Trajectories of the conservative motion~16! for ~a! m
50.5 and ~b! m52.0. The values of the Hamiltonian functio
G(X,Y) are shown near the trajectories. The dots show the p
tions of the elliptic and hyperbolic points.
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like for large enoughG12G, and also that for 0<G<Gu
there are coexisting ‘‘internal’’ and ‘‘external’’ trajectorie
with the sameG.

B. Escape rates

The effect of small dissipation in Eqs.~4! is to transform
the closed trajectories in Fig. 3 into small-step spirals wh
wind down to the corresponding stable states~cf. Fig. 1!. The
motion can be described in a standard way in terms of s
drift over the energyg toward the stable state~cf. Ref. @1#!.

The random force which drives the system away from
stable state should ‘‘beat’’ this drift. It would be expecte
that the optimal fluctuational path corresponds to energy
fusion away from the stable state. A solution of the vari
tional problem~11! for small dissipation was obtained i
Ref. @12# for a different form of the functiong(q1 ,q2). Al-
ternatively, one can use an approach of the type of that ba
on the Fokker-Planck equation, and suggested by Kram
@23# in the analysis of escape of underdamped thermal e
librium systems, and later applied@24# to the system inves
tigated in Ref.@12#. In this approach, one derives from Eq
~4! an equation forġ and then performs averaging of th
dissipation and diffusion rates in this equation over the
riod of vibrations with a giveng in the absence of dissipatio
and noise. The dissipation rate ofg is determined by the
expression2@q1(]g/]q1)1q2(]g/]q2)#, with an accuracy

FIG. 4. The Hamiltonian functionG(X,Y) @Eq. ~16!# ~a! for m
50.5, where the functionG has two maxima~which correspond to
period-two attractors, with account taken of dissipation! and a
saddle point atX5Y50, and ~b! for m52.0 whereG has two
maxima, a minimum atX5Y50, and two saddles which corre
spond to unstable period-two vibrations, with account taken of
sipation.
h

w

e

f-

ed
rs
i-

-

to the correction}D ~here the overline means an averagi
over the vibration period!. The diffusion coefficient forg is
given by D@(]g/]q1)21(]g/]q2)2#. The resulting first-
order equation forg can be solved to give the following
expression for the activation energy of escape from the s
n:

Sn52zE
Gn

Gu
dG

M ~G!

N~G!
, M ~G!5EE

A~G!
dX dY,

~18!

N~G!5 1
2 EE

A~G!
dX dY ¹2G~X,Y!.

Here the values ofGn ~n51 and 2! andGu are the extreme
values ofG(X,Y) @Eq. ~17!#. The double integrals are take
over the areasA(G) limited by the trajectoriesG(X,Y)5G
in Fig. 3 which surround thenth center. The expressions fo
M (G) andN(G) were obtained from the expressions for t
drift and diffusion coefficients forg using the Stocks theo
rem, with account taken of Eqs.~16!, as was done in Ref
@12#.

Using the explicit form ofG(X,Y) for the Duffing oscil-
lator ~16!, one obtains

N~G!5EE
A~G!

dX dY@m22~X21Y2!#. ~19!

The expressions forM (G) andN(G) @Eqs.~18! and~19!#
can be further simplified by changing to polar coordina
X5R cosw and Y5R sinw. Solving Eq. ~16! for R2 in
terms ofG andw, and integrating overR2, one then obtains
that, in the problem of escape from the period-two attract
@n51 and 2 in Eq.~18!#,

M ~G!5E dw f ~G,w!,

N~G!52E dw~m22 cos 2w! f ~G,w!, ~20!

f ~G,w!5@~m2cos 2w!224G#1/2 ~G>Gu!.

The limits of the integrals overw are determined from the
conditionsf (G,w)>0 andm2cos 2w.0.

In the problem of escape from the stable state atq50 for
m.1, we haveG<Gu ~see Fig. 4!, and

M ~G!5E
0

p

dw R2~G,w!,

N~G!5E
0

p

dw R2~G,w!@m2R2~G,w!# ~G<Gu!,

~21!

R2~G,w!5m2cos 2w2@~m2cos 2w!224G#1/2.

C. Explicit expressions for escape rates in limiting cases

The expressions for the activation energies in the und
damped limit are simplified in several ranges of the sin
parameter of the systemm. We will start with m close, but
not too close, to the bifurcation pointsm561, so that damp-
ing of the vibrations with a giveng @Eq. ~16!# is small com-

-
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pared to the vibration frequency;u(vF/2)2v0u ~we are
talking here about vibrations of the slow variablesq1 and
q2 , which are much slower than the vibrations at the os
lator eigenfrequencyv0!. We note that the dynamics of th
system in the corresponding parameter range is not desc
by the theory of Sec. III, which applies much more closely
the bifurcation points where the slow motion of the system
overdamped.

As the increasingm goes through the valuem521, the
maximum of the functionG(X,Y) at X5Y50 becomes a
saddle point from which there are split off two maxima ofG
corresponding to period two attractors~see Fig. 4!. With the
further increase inm, for m51 the pointX5Y50 becomes
a minimum ofG(X,Y) from which there are split off two
saddles ofG. Escape from the emerging stable states is
termined by small-radius orbitsG(X,Y)5G. For such orbits
M (G)/N(G)'1/m in Eq. ~18!, and therefore

S15S2'z~m11!2/2, 0,m11!1,
~22!

S0'z~m21!2/2, 0,m21!1.

For smallumu, the only stable states are period-two attra
tors, and form50 one obtains, after straightforward calc
lations,

S15S25S 4

p
21D z ~m50!. ~23!

This case corresponds to the exact resonance betwee
driving field frequency and doubled frequency of sma
amplitude eigenvibrations of the oscillator,vF52v0 .

In the limit of large m, the activation energy of escap
from period-two attractors@Eq. ~18!# is determined by orbits
with Gu5(m21)2/4<G<G1,25(m11)2/4. These orbits
have a shape of narrow arcs on the (X,Y) plane. It is seen
from Eq. ~20! that, for such orbitsM (G)/N(G)'1/m, and

S15S2'2z, m@1. ~24!

One can also show from Eq.~21! that

S0'zm, m@1. ~25!

In the general case of arbitrary values of the param
m5V/z, the activation energiesS15S2 and S0 could be
found by evaluating the integrals~18!, ~20!, and~21! numeri-
cally. The results are shown in Fig. 5, and also by das
lines in Fig. 2.

It is seen from Fig. 5 thatS15S2 is quadratic in (m11)
for small m11, and monotonically increases with the i
creasingm. For largem, the activation energyS1,2 saturates
at '2z @Eq. ~24!#. On the other hand, for constantV5mj,
S1,2 becomes linear as a function ofz for large z, with the
slope given by Eq.~23!; cf. Fig. 2. It is seen from the com
parison of the asymptotic and exact results for the esc
rates in Fig. 2 that the small-damping, or equivalently lar
field, limit applies starting with comparatively smallz.

The scaled activation energyS0 /z is quadratic inm21
for small m21, and then monotonically increases with t
increasingm. It is seen from Fig. 5 thatS1.S0 for m&4.0.
Respectively, for suchm the escape rates from the perio
l-

ed

s

-

-

the

er

d

pe
-

two attractors areexponentially smallerthan from the state
where the vibrations are not excited. As a consequence,
stationary population of the period-two attractorsw15w2 is
exponentially larger than the populationw0 of the steady
state:

w15w25~W0/2W1!w0 , w1 /w0}exp@~S12S0!/D#.
~26!

For larger frequency detuning (V5mz), the steady state
becomes more populated, in agreement with the intuit
physical argument that, as the field is detuned further aw
from the resonance, it is less likely that the period-two
brations will be excited, for the same field intensity.

V. EFFECTS OF SIXTH-ORDER NONLINEARITY

In the experiments@3#, because of the structure of th
electrostatic field in the trap for an oscillating electron, t
sixth-order anharmonic term in the Hamiltonian of the ele
tron vibrations could be relatively large~in fact, the fourth-
order term could be relatively small!, while higher-order
terms remain much smaller than both the fourth- and six
order terms@11#. The advantage of suppressing the four
order term is that the amplitude of the period-two vibratio
becomes larger. When the sixth-order anharmonicity is ta
into account, the equation of motion takes the form

d2q

dt2
12G

dq

dt
1v0

2q1gq31lq51qF cosvFt5j~ t !.

~27!

For model~27!, the equations of motion in the rotatin
frame are again of the form~4!, but now the function
g(q1 ,q2) is given by the expression

g~q1 ,q2!5
1

2
V~q1

21q2
2!2

1

4
~q1

21q2
2!2 sgng

2
r

6z
~q1

21q2
2!31

1

2
z~q2

22q1
2!, ~28!

r55lF/9g2.

FIG. 5. The dependence of the escape activation energyS1

5S2 ~lines 1! and S0 ~lines 2! on the scaled frequency detunin
m5V/z[2vF@(vF/2)2v0#/F in the limit of comparatively large
fields or small damping,z@1.
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We have neglected the renormalization}g2 of the nonlin-
earity parameterl: this renormalization is substantial wheng
is not small, in which case the role of the sixth-order anh
monicity is insignificant, or the whole approximation o
small-amplitude vibrations does not apply. The dimensi
less parameterr characterizes the ‘‘strength’’ of the sixth
order nonlinearity.

For V very close to the bifurcation values7(z221)1/2,
escape from the small-amplitude stable state~s! is determined
by motion with smallq1

21q2
2. Clearly, this motion is deter

mined by thelowest-orderanharmonicity, and therefore ne
ther this motion nor the bifurcation values of the paramet
are affected by the higher-order nonlinear terms.

In what follows we will investigate the effect of the term
}l in Eq. ~27! on the escape rates in the case of we
damping, which is of utmost interest for the experiment@11#.
In the neglect of dissipation and fluctuations, the motion
the oscillator@Eq. ~27!# in the rotating frame can be de
scribed by Eqs.~16!, with the effective energyG(X,Y) of
the form

G~X,Y!5
1

2
~m21!X21

1

2
~m11!Y22

1

4
~X21Y2!2

2
1

6
r~X21Y2!3, m5

V

z
. ~29!

For r.0 @i.e., for gl.0 in Eq. ~27!#, the phase portrai
of the conservative motion@Eqs. ~16! and ~29!# remains
qualitatively the same as that shown in Figs. 3~a! and 3~b!
for r50, as does the topological structure of the surfa
G(X,Y) in Fig. 4. The centers which correspond to t
period-two attractors lie on theY axis in Fig. 3, they are the
projections on the (X,Y) plane of the maxima of the functio
G(X,Y). The saddle points ofG(X,Y) correspond to the
unstable states, and lie on theX axis.

If the motion in the rotating frame is underdamped, th
the expression Eq.~18! for the activation energy of escapeSn
still applies in the presence of sixth-order nonlinearity, b
now the functionsM (G) and N(G) have to be calculated
with account taken of the explicit form ofG(X,Y) in Eq.
~29!. In particular,

N~G!5EE
A~G!

dX dY@m22~X21Y2!23r~X21Y2!2#.

~30!

The functionsM (G) and N(G) can be written as single
integrals over the polar angle~cf. Sec. IV B!. In the problem
of escape from period-two attractors, we obtain that, sim
to Eq. ~20!,

M ~G!5 1
2 E dw@R1

2 ~G,w!2R2
2 ~G,w!#,

N~G!5 1
2 E dw@N1~G,w!2N2~G,w!#, ~31!

N6~G,w!5mR6
2 ~G,w!2R6

4 ~G,w!2rR6
6 ~G,w!.

HereR6(G,w) are the external~1! and internal~2! radii of
the trajectoriesG(X,Y)5G which surround the centers co
r-

-

s

k

f

e

n

t

r

responding to the period-two attractors~cf. Fig. 3!. They are
given by the real roots of the equation

1

6
rR6

6 1 1
4 R6

4 2
1

2
~m2cos 2w!R6

2 1G50,

G1,2.G.0 for m,1, G1,2.G.Gu for m.1.
~32!

HereG15G2 are the values ofG in the period-two attractors
@the maxima of G(X,Y)#, and Gu[Gu15Gu2 are the
saddles ofG(X,Y),

G1,25
2@116r~m11!#1@114r~m11!#3/2

24r2 ,
~33!

Gu5
2@116r~m21!#1@114r~m21!#3/2

24r2 ~m.1!.

The limits of the integrals overw in Eq. ~31! are determined
from the condition that Eq.~32! has two real roots,R2

,R1 . The corrections to the functionsM and N for weak
sixth-order nonlinearity are discussed in the Appendix.

For the case of escape from the attractor with zero vib
tion amplitude~q50!, the functionsM (G) and N(G) have
the forms

M ~G!5 1
2 E

0

2p

dw R2
2 ~G,w!,

~34!

N~G!5 1
2 E

0

2p

dw N2~G,w!, m.1, Gu.G.0,

where the functionsR2(G,w) andN2(G,w) are defined by
Eqs.~31! and~32!; in the range 0,G,Gu Eq. ~32! has only
one real rootR2 .

A. Activation energies near bifurcation points

For underdamped systems with sixth-order anharmo
ity, the analysis of the activation energies of escape for
rameter values close, but not too close to the bifurcat
points is similar to that in Sec. IV C. In the range 0,m11
!1, the centers which correspond to the period-two attr
tors are close to the saddle point at the origin. In this c
R6!1 in Eqs.~32!, and the terms withX21Y2 in Eq. ~30!
can be neglected. These terms can also be neglected in
problem of escape from the stable stateX5Y50 for 0,m
11!1, since in this case the hyperbolic points are clo
to the stable state. Therefore, in both cas
M (G)/N(G)'1/m ~cf. Sec. IV C!, and it follows from Eq.
~18! that the activation energies of escape are

S15S2'2zG1 , 0,m11!1,
~35!

S0'2zGu, 0,m21!1.

Here, we have taken into account thatG(0,0)50.
It follows from the explicit expressions for the effectiv

energiesG15G2 and Gu @Eq. ~33!# that, for weak sixth-
order nonlinearityr!1, or just very close to the bifurcation
points, so thatr(m221)!1 ~but the effects of dissipation
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are still small!, expressions~35! go over into the asymptotic
expressions for the activation energies~22!, with the scaling
Sn}(m221)2.

Strong sixth-order nonlinearity

The activation energies~35! as functions of the distanc
m221 to the bifurcation points display an interesting beha
ior for large sixth-order nonlinearity,r@1, in the range
wherem221!1 butr(m221)@1. It follows from Eqs.~33!
and ~35! that in this range

S1,2'
2
3 z~m11!3/2r21/2, m11!1, r~m11!@1,

~36!

S0' 2
3 z~m21!3/2r21/2, m21!1, r~m21!@1.

The dependence on the distance to the bifurcation p
m221, as given by Eq.~36!, is described by the power law
with the exponent32 . In contrast, for weak sixth-order non
linearity ~22! the exponent is equal to 2. Equations~33! and
~35! describe both limiting behaviors and the crossover fr
one of them to the other.

B. Strong sixth-order nonlinearity: general case

For strong sixth-order nonlinearity,r@1 andr(m221)
@1, it is convenient to rescale the dynamical variables,

X̃5r1/4X, Ỹ5r1/4Y, G̃5r1/2G,
~37!

G̃5 1
2 ~m21!X̃21 1

2 ~m11!Ỹ22 1
6 ~ X̃21Ỹ2!3,

and the noise intensityD @Eq. ~10!#,

D̃5r1/2D5
~5lF !1/2

2vF
3G2 f~vF/2!. ~38!

The maximal and saddle values ofG̃, G̃1,2, andG̃u , re-
spectively, are given by the simple expressions

G̃1,25
1
3 ~m11!3/2,

~39!

G̃u50 for 21,m,1, G̃u5 1
3 ~m21!3/2 for m.1,

whereas the expressions for the trajectories in polar coo
natesR̃,w ~whereR̃[r1/4R! are of the forms

R̃6
2 ~G̃,w!52~m2cos 2w!1/2 cosFu~G̃,w!7p

3
G ,

~40!

u~G̃,w!5arccos@3G̃/~m2cos 2w!3/2#.

With account taken of Eq.~40!, expressions~31! for the
functionsM̃5r21/2M , Ñ5r21/2N in the problem of trajec-
tories which surround the period-two attractors take the fo

M̃ ~G̃!5E dw@3~m2cos 2w!#1/2 sin@u~G̃,w!/3#, ~41!
-

nt

i-

Ñ~G̃!52E dw~2m23 cos 2w!@3~m

2cos 2w!#1/2 sin@u~G̃,w!/3#.

For the trajectories that surround the zero-amplitude s
X̃5Ỹ50 we obtain, from Eqs.~34! and ~40!,

M̃ ~G̃!5E
0

2p

dw@m2cos 2w#1/2 cosFu~G̃,w!1p

3
G ,

~42!Ñ~G̃!52E
0

2p

dw~2m23 cos 2w!

3@m2cos 2w#1/2 cosFu~G̃,w!1p

3 G16pG̃.

The expression for the escape activation energ
S̃n5r1/2Sn has the same form as Eq.~18! for Sn , with G,
M , and N in Eq. ~18! replaced byG̃, M̃ , and Ñ, respec-
tively. The escape rate in the variables with tilde has
same form as in Eq.~11!,

Wn5C exp~2 S̃n /D̃ !, S̃n5r1/2Sn . ~43!

It follows from Eqs.~28!, ~37!, and~43! that, in the limit of
large sixth-order nonlinearity, the fourth-order nonlinear
parameterg drops out of the expressions for the activati
energiesS̃n , the reduced noise intensityD̃, and the escape
rates. This is in agreement with Eq.~36!, which shows ex-
plicitly that Sn}r21/2 for larger, and thereforeS̃n5r1/2Sn is
independent ofg.

For large frequency detuning,m@1, it follows from Eqs.
~18!, ~41!, and ~42! that the activation energiesS̃1,2 and S̃0
are of the forms

S̃1,2'zm21/2, S̃0'zm1/2 ~m@1!. ~44!

It is clear from the asymptotic expressions~36! and ~44!
that the activation energy of escape from the period-two
tractors S̃1,2 is a nonmonotonicfunction of m, i.e., of the
frequency detuningvF22v0 . The decrease ofS̃1,2 for large
m can be understood as follows. As we mentioned above,
effective reciprocal ‘‘temperature’’ of the distribution of th
system over the energyG, which is given byM /N5M̃ /Ñ, is
determined by the ratio of the rates of the drift and diffusi
of the oscillator overG ~for a Brownian particle this ratio is
indeed equal to 1/kT!. The drift coefficient is linear in the
characteristic velocitiesẊ and Ẏ of the oscillator in the ro-
tating frame, whereas the diffusion coefficient is quadratic
this velocity. Therefore when the velocity is large, the ra
M /N becomes small. This happens for largem, since here
the characteristic time scale for the motion with a givenG is
set by the reciprocal frequency detuning 1/uvF22v0u, and
thus the ratioM /N}1/uvF22v0u}1/m. On the other hand
the energy intervalG12Gu for largem is increasing withm
sublinearly if the sixth-order nonlinearity is dominating~and
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linearly, if the fourth-order nonlinearity is dominating!.
Therefore, for larger andm, the activation energy decreas
with the increasingm.

The position of the maximum ofS̃1,2 and the overall de-
pendence ofS̃n on m can be obtained by numerical integr
tion of Eqs.~18!, ~41!, and ~42!. The results are shown in
Fig. 6. It follows from the data in Fig. 6 and Eq.~26! that, in
the rangem.1, the period-two attractors are populated mo
than the coexisting stable stateq50 up to m'2.3. For
higher m the probability to find the system in the state
period-two vibrations is exponentially small.

VI. CONCLUSIONS

In the present paper we considered the rates of fluc
tional transitions between coexisting vibrational states of
underdamped oscillator driven parametrically at nearly tw
its eigenfrequency. Activation energiesSn have been ob-
tained for the transitions from period-two attractors~n51
and 2!, and also from the stable state of period-one vibratio
(n50) where this state coexists with stable period-o
states. We have analyzed numerically the dependence oS1
(S15S2) on the dimensionless parameters of the system,
scaled field amplitudez5F/F th and the frequency detunin
V5@(vF/2)2v0#/G ~the threshold value ofF for the onset
of period doubling isF th52vFG!.

For comparatively large field amplitudes or small dam
ing G, the appropriately scaled activation energies beco
functions of one dimensionless parameter. For weak si
order nonlinearity the exponentsSn /D in the expression for
the transition rates scale aszsn(m)/D, with m5V/z. The
function s1(m)5s2(m) is seen from Fig. 5 first to increase
and then saturate with the increasingm, whereass0(m) is a
monotonically increasing function. Therefore in the limit
small noise intensity~small effective temperature! D, the

FIG. 6. The dependence of the escape activation energieS̃1

5 S̃2 ~line 1! and S̃0 ~line 2! on the scaled frequency detuningm
5V/z[2vF@(vF/2)2v0#/F in the limit of comparatively large
fields or small damping,z@1, for large sixth-order nonlinearityr

@1. Inset: S̃1 near the bifurcation point; the asymptotic behav
~36! is shown by the dashed line.
e
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globally stable state for largem is the period-one state,s0

.s15s2 , whereas for smallerm the system is most likely to
be in the period-two states. For parameter values close to
bifurcation points mB561 the functionssn(m) for the
emerging stable states are equal to (m2mB)2/2.

For strong sixth-order nonlinearity, the exponentsSn /D

scale with the field amplitude and frequency asz s̃n(m)/D̃,

with effective temperatureD̃5r1/2D}F1/2D. Close to the

bifurcation points, the functionss̃n(m) are given by the ex-
pression 2(m2mB)3/2/3. In contrast to the case where th

sixth-order nonlinearity is small, the functions̃1(m)

5 s̃2(m) is nonmonotonic.
It follows from the above results that there is a bro

range of the amplitude and frequency of the driving fie
where the stationary populations of the period-two states
much larger than the population of the period-one state, e
though this latter state may be dynamically stable. There
narrow~with a width;D! line in the parameter space whe
the activation energiesS15S2 andS0 are close to each other
and therefore the stationary populations of all states are
the same order of magnitude. To some extent, this line
similar to the line of first-order phase transition in extend
systems~cf. Ref. @12#!. An interesting feature of the presen
system is that, because of the symmetry of period-two sta
at the corresponding dynamical ‘‘phase transition’’ there
threerather thantwo equally populated states. New types
dynamical ‘‘critical’’ effects may be expected in the corr
sponding parameter range.

We note that the symmetry of period two attractors can
lifted if the system is additionally driven by a field wit
frequency close to the oscillator eigenfrequencyv0'vF/2.
As a result, relative populations of the attractors can be
nificantly changed even by a comparatively weak field. T
suggests that in a broad range of the scaled parameters o
strong fieldz andV, a parametrically driven nonlinear osci
lator should display stochastic resonance with respect
field at frequency close tovF/2.
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APPENDIX: WEAK SIXTH-ORDER NONLINEARITY

For rz!1 the zeroth-order inrz values M (0)(G) and
N(0)(G) of the functionsM (G) andN(G) in Eqs.~31! and
~34! are given by Eqs.~20! and~21!, respectively. In the case
of period-two attractors, to the first order inrz the functions
M andN have the forms



f

5212 57DYKMAN, MALONEY, SMELYANSKIY, AND SILVERSTEIN
M ~G!'M ~0!~G!1M ~1!~G!, N~G!'N~0!~G!1N~1!~G!,
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~1!~G!524rzE
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n

-
gn
el

.
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an
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rz

6 E
w1

w2
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~0!~G,w!…7#

2m@„R1
~0!~G,w!…51„R2

~0!~G,w!…5#%/ f ~G,w!.

HereR6
(0) are the radii of the orbits with a givenG evalu-

ated for r50. The anglesw1,2 in Eqs. ~A1! and ~A2! are
calculated to zeroth order inrz, and are given by the zeros o
the functionf (G,w) defined in Eq.~20!.
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