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Physical limits on the notion of very low temperatures
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Standard statistical thermodynamic views of temperature fluctuations predict a magnjt{dder IZ>/T)
~/(kg/C) for a system with heat capacity. The extent to which low temperatures can be well defined is
discussed for those systems that obey the thermodynamic third law in the fogm, §n€= 0. Physical limits
on the notion of very low temperatures are exhibited for simple systems. Application of these concepts to
bound Bose condensed systems are explored, and the notion of bound boson superfluidity is discussed in terms
of the thermodynamic moment of inertia.
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I. INTRODUCTION In Sec. Il, the theoretical foundations for E.4) will be
discussed. In brief, the microcanonical entropy of a thermo-
A problem of considerable importance in low temperaturedynamic system is given by
physics concerns physical limitations on how small a tem-

perature can be well defined in the laboratpty. In what S(E)=kg In T'(E), (1.5
follows, we shall consider temperature fluctuations that de-
fine a system temperature “uncertainty” whereI'(E) is the number of system quantum states with
energy E. The microcanonical entropy defines tegstem
ST=W(Ts—(Ts))?, (1.1)  temperature T via
whenever a finite system at temperatdrg is in thermal 1 ds
contact with a large reservoir at bath temperaflr®©nly on T_s VA 1.6

the thermodynamic average do we expect the system tem-

perature to be equal to the bath temperature; {B)~T.  Thethermal bath temperature, Twhich is not quite the sys-

Tfée fluctuation from this average resilf] has the magni- tem temperaturd@s, enters into the canonical free energy
tude

F(T)=—kgT In Z(T), .7
T kg
T)/” N 1.2 \where the partition function is defined as
whereC is the heat capacity of the finite system, dgdis _ —H/KgTy — —ElkgT
Boltzmann’s constant. Sinc€ is an extensive thermody- Z(M=Tr(e ) EE: F(B)e : (1.8

namic quantity, one expects the usual small fluctuation in

temperature §T/T)oc(1/J/N) in the thermodynamic limitN The probability distribution for the energy of the system,
—, whereN is the number of microscopic particles. How- when in contact with a thermal bath at temperatiiteis
ever, in low temperature physi¢®r systems with finite val-  given by

ues for N), temperature fluctuations are by no means re-

quired to be negligible. I'(E) —-E F(T)-E+TSE)
For those finite sized systems that obey the thermody- P(E;T)= zm) "Rt/ ” keT ’
namic third law (1.9
T"mo C=0, (1.3 asdictated by Gibbs. Thus, the temperafhi@f the thermal

bath does not fluctuate while system eneigyloes fluctuate
according to the probability rule of Eq1.9). On the other
hand, the system temperatufg(E) in Eq. (1.6) depends on

the system energy and thereby fluctuates sidkictuates.
(ﬂ)_}w asT—0 with N< . (1.4 It is only for the energyE* of maximum probability

MaxgP(E;T) =P .=P(E*;T) that the system temperature
is equal to the bath temperatufg(E*)=T. If the energy
Equation(1.4) sets the limits on what can be regarded as theprobability distribution is spread out at low thermal bath
ultimate lowest temperatures for finite thermodynamic systemperatures, then temperature fluctuations are well defined
tems; i.e., the temperature must at least oBERT. in the canonical ensemble of Gibbs.

one finds from Eqgs(1.2) and(1.3) that
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In Sec. lll, temperature fluctuations are illustrated usingEquations(2.4) and(2.5) imply the central result of this sec-

the example of blackbody radiation in a cavity of voluwme  tion:

For this case, it turns out that the thermal wavelengthof

the radiation in the cavity, d¢ 1 1

y ofgellmoglel eo

S
A= ﬁ—c) (1.10

T\ keT) ' If we chooses(E)=1, then Eq.(2.6) reads
must be small on the scale of the cavity lenytH®, i.e., 1 1
A+<VY3 For example, in a cavity of volumé~ 1 cn?, the <T_> =7 2.7

S

lowest temperature for the radiation within the cavity is of
orderT,in~1 K. Itis of course possible to cool the conduct-

) il walls of v with a lenath scatel i I i.e., on average, the reciprocal of the system temperature is
Ing metal walls of a cavily with a fength scaré. cm to we equal to the reciprocal of the thermal bath temperature. Thus,
below 1 K. However, this by no means implies that the ra-

o o . with fluctuations from the mean
diation within the cavity can have a temperature well below

1 K. The point is that at temperaturdg<<1 K, there are Adp=d— (), 2.8

perhaps only a few photor{s total) in the cavity. The total

number of photons are far too few for the cavity radiation 1 1 1 1 1

system temperature to be well defined. A( ) =_ - <_> =——c, (2.9
In Sec. IV, a confined system df atoms obeying ideal Ts Ts T

gas Bose statistics is discussed. Such systems can be Bose

condensed, and are presentperhaps the lowest tempera- Ed- (2.6) reads

ture systems available in laboratories. In the quasiclassical db

-l ag

T Ts

approximation, the free energy is computed in Sec. V. Ques- — < A(E) A¢>. (2.10
tions concerning bounds on ultralow temperatures are ex- T

plored. Whether or not such Bose condensed atoms can ex-

hibit superfluid behavior is discussed in Sec. VI. Thelf we choose in Eq(2.10 the function¢ to be

superfluid and normal fluid contributions to the moment of

dE

inertia are computed. In the concluding Sec. VII, another . 1) g (98t (dTs) (1
simple system with fluctuation limits on ultralow tempera- T, dE/ T2\dE/ \TZC
tures will be briefly discussed. (2.1)
Il. THEORETICAL FOUNDATIONS [whereC=(dE/dT,) is the system heat capacityhen
Let ¢(E) denote some physical quantity that depends on 1\2 1 (kg
the energ)E of a physical system. If the system is in contact <A(? > = <T7 (E) > : (212
S

with a thermal bath at temperatufie then the thermody-

namic average may be calculated from The standard Eq41.1) and(1.2) follow from the more pre-

cise Egs.(2.7) and (2.12 in the limit of small temperature

<¢>:; P(E;T)¢(E), (21  fluctuations; i.e.,
o . : : kgT?
where the probability?(E;T) has been defined in E¢L.9). AT)2 %( B ) it sST=V(ATID<T. (2.1
Using the “summation by parts73,4] formula (AT’ C (AT9=T. (213
J . . The conditiondT<T is required in order that the canoni-
; E[P(E'TW(E)]_O’ 22 cal thermal bath temperature be equivalent to the microca-
nonical system temperature. If the microcanonical and ca-
i.e., with a strongly peakeB(E;T), nonical temperatures are not equivalent, then the statistical

thermodynamic definition of temperature would no longer be

unambiguous. This raises fundamental questions as to the

physical meaning of temperature. The view of this work is

that in an ultralow temperature limit, whereyT~T for

one finds sufficiently smallT, the whole notion of system temperature
is undefined, although the notion of a thermal bath tempera-

_ks<@> :szE: (,‘b(E)( ﬂP(E;T)). (2.4 ture retains validity.

IP(E;T)

o [dBE)|
-2 P(E,T)(T)—é ¢(E)( e ) (2.3

dE JE

. ll. BLACKBODY RADIATION EXAMPLE
Employing Eqgs.(1.6) and(1.9), CKBO ©

The heat capacity of blackbody radiation in a cavity of
JPED) (1 1 P(E:T) 2.5 volume V with the walls of the cavity at temperatufie is
Bl GE T(E) T ’ ' given by[5]
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471_2 \Vj 11
C(blackbody = kB(l_S) (E) , (3.2 10l
whereA is given by Eq(1.10. From Egs(1.2) and(3.1) it
follows that the radiation temperature of a blackbody cavity
of volumeV is r

X6l
3 3 pd
ST (blackbody _ /[ 15 ﬁ 06 ﬁ . !
T 4m?)\ V Y
(3.2 A1
3 L
In order to achieve a well defined radiation temperature in-
side the cavityT(blackbody) must be small on the scale of
T or equivalentlyA+<V'3, As stated in Sec. I, this implies 1F
a minimum temperature of ,,~1K for a cavity of V 0 e
~1 CI'TT?’ 00 02 04 06 08 10 12 14 16 18 20 22
) (T/T)
IV. CONFINED IDEAL BOSE GAS FIG. 1. The heat capacitfin units of Nkg) is plotted as a

function of temperaturén units of T,) for N'=2x 10* atoms(dot-
The grand canonical free energy of an ideal Bose gas ifed curvg and V'=2x 10° atoms(solid curve.

determined by the tradé]

2
E(T,u)=kgT tr In(1—e#~M/keT) (4.2 i @ 00
w?=| 0 w5 O |. 4.8
whereh is the one boson Hamiltonian and 0 0 o2
3
dE=—SdT-Ndu (4.2) Equations(4.3) and (4.7) imply
determines the number of bosans If the one boson parti- 3 1
tion function is defined as
qm=11 (W—m) (4.9
q(T)=tr(e”"keT), 4.3 _ _
The heat capacity may be defined by
then the free energy obeys o
C= T( i (4.10

E(T,u)=—ksT>, (%)q(%) e"w/keT, (4.4)
=t which must be calculated numerically.

Shown in Fig. 1 is a plot of the heat capacity units of
NKkg) versus temperatur@n units of the critical temperature
T.) for the case ofV=2x 10° and N'=2x 10° particles. We
)enl’«/kBT, 4.5 choose, for experimental intergst?], the frequency eigen-

values @/27) = (w,/27)=320 Hz, and {3/27)=18 Hz.
For finite V, there is strictly speaking no Bose-Einstein con-

The mean number of bosons is

T
N(T,,u)zgl al

and the statistical entropy is given by densation phase transition. The critical temperatiieis
_ therefore defined as that temperature for which the heat ca-

S(T. )= _(Z(T’“H/’“MT'“)) pacity reaches the maximum val@,,,=C(T,). Although
' T phase transitions are defined in mathematics only in the ther-

modynamic limitA/— oo, for all practical purposes, a quasi-
T) enulkgT (4.6) classical approximation of E@4.1) in the form

[}

+kBTE (iz)

) d3rd3p
whereq’ (T)={dq(T)/dT}. =M= BTJ f 2nh)’
Of considerable theoreticf?,8] experimenta[9—-11] in-

. . . . . _ —h(p,r)]/kgT H H
terest is the bound boson in an anisotropic oscillator poten- XIn(1—el#~NPVkeT) (quasiclassical
tial, (4.1

%2 1
h=— ( )V2+

where

h
oM > Mr - @2 ( )tr(w) (4.7

2

p 1 ~
h(p,r)= o+ =Mr-w?-r (4.12

where 2M 2
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does yield a Bose-Einstein condensation phase transition
whose heat capacity is sufficiently accurate for valuesvof
~10° or higher. Thus, we regard recent experiments on Bose

5181

3/2
—°> (T<T.).

T (5.9

-

atoms confined in a magnetic bottle to be probing a physical

Bose-Einstein ordered phase. Let us consider (BEd.D) in
more detail.

V. QUASICLASSICAL BOSE CONDENSATION

In order to evaluate Eq4.10 we employ the quasi-
classical form13,14] of Egs.(4.3) and(4.1)); i.e.,

d3rd3p ke T kgT) 3
- [ (e o= (-

hw
(5.2
where o= (w;w,w3)*3. From Egs.(4.4) and (5.1), it fol-
lows that Eq.(4.11) evaluates to

\
E(T, m——ﬁ#;ﬂ) >

w n=1

1
nu/kgT
(n4)e B, (5.2
From Egs.(4.2) and(5.2), the number of particles obeys

1
MT,pu)= (Hg)e“M’kBT (u<0). (5.3

kgT
ho ) nzl
With the usual definition of the function:

,  Re(s)>1, (5.9

o3[

(5.9

the Bose-Einstein condensation critical temperature is
N )1/3

. (q N
¢ ks /\4(3)

The nonzero number of bosofiselow the critical tempera-
ture) in the condensate state is given by

T 3
No(T)= N[ ( )) (T<T,). (5.6

Finally, the entropy below the critical temperature,

(kBT)3 (4{(4))<T)3
S(T)=4kgl(4)| —=| =Nkg| == || 7| (T<To),
fiw Te

{(3)
(5.7

obeys the thermodynamic third law lif. oy S(T)=0. The

heat capacity in the Bose-Einstein condensed phase is then

given by

C\ [12(4)\[T\® T\
(/\TBH HE) )(T_) mlo'sj(i) (T=To.
(5.8)

Employing Egs(1.2) and(5.8) we find that the tempera-

ture uncertainty below the critical temperature obeys

Thus, forA'~10° one may safely consider the temperature of
the ordered phase to be well defined in the rafige-T
>Tmin, Where T.,i,~0.05T.. The open question as to
whether the ordered phase is a superfluid may now be con-
sidered.

VI. SUPERFLUID FRACTION OF THE BOUND BOSON
SYSTEM

The notion of a superfluid fraction in an experimental
Bose fluid(such as liquid*He) may be viewed in the follow-
ing manner: Suppose that we pour the liquid into a very
slowly rotating vessel and close it off from the environment.
The walls of the vessel are at a bath temperaiyrand the
vessel itself rigidly rotates at a very small angular velocity
Q. In the “two-fluid” model [15,16, the normal part of the
fluid rotates with a rigid body angular veloci®, which is
the same as the angular velocity of the vessel. On the other
hand, the superfluid part of the fluid does not rotate. The
superfluid exhibits virtually zero angular momentum for suf-

ficiently smallQ. The total fluid moment of inertia tensor

is defined by the fluid angular momentum=1-Q (as Q
—0). We here take the limif2—0, to avoid questions con-
cerning the effects of vortex singularities on the superfluid.
The normal fluid, which rotates along with the rotating ves-
sel, contributes to the fluid moment of inertia. The super-
fluid, which does not rotate with the vessel, does not contrib-
ute to the moment of inertia. Thus, theometricmoment of
inertia,

T?jeome"iczf dPrp(r)(r2s;—rr)), (6.1

wherep(r) is the mean mass density of the flut resj,
overestimates thghysical moment of inertia eigenvalues
when the fluid is actually a superfluid. The normal fluid con-
tributes to the moment of inertia and the superfluid does not
do so in the limitQ2—0. Below, we consider in detail the
moment of inertia of the bound Bose gas.

For the bound Bose system, we consider a mesoscopic
rotational statd17] with a thermal angular velocit§2. The
rotational version of Eq(4.2) reads

dEo=—-SdT-Ndu—L-dQ, (6.2
wherelL is the bound boson angular momentum. Eq11)
gets replaced by

|02 1
ho(p,r)= + 2Mr w2 r—Q-(rxp), (6.3
so that Eq.(5.1) now reads
3,43
T)_J J d I’d 7hﬂ(p,r)/kBT
(27h)3
=[q(T)/VDet(1- 0 20?)], (6.4)
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. N . . . 4
where the matrix»? is written in Eq.(4.8) and fexcitation_ §(4)ﬁ#k3_1>
(Q3+0)  —0Q,  —0,04 N
a2=| —0.0, (03+0) -0,05 |. (65 13 0 0
—0105 ~005  (0§+0)) v @
1 1
From Egs.(4.4) and(6.4), it follows that X 0 wi + wg 0
] ] 92N 1 1
Ea(T,w)=[E(T,n)/VDetl-w20%], (6.6 0 0 5+ —
w; W3
The fluid moment of inertia tensor has the matrix elements (T<T,). 6.10
i — lim i - lim FEq 6.7 The question of superfluidity concerns the magnitude of
PSR RTOY T 00! 99,00, . : the moment of inertia of those particles within the conden-
- z - N2

sate. FofT<T., we use the notation thatdenotes the mo-

Equations(4.8), (6.5, (6.6), and (6.7) imply (in the unor- ment of inertia of the excited bosons, aﬁdepresents the
dered phase moment of inertia of the Bose condensate. If the moment of
inertia of the particles in the condensate were zero, then the

1 1 condensate particles would all be “superfluid.”
22 0 0 Let o(r) be the normalized [d3|yo(r)|?=1] Bose
2 3 condensation state. From the geometric viewpoint, the mo-
- _ 1 1 ment of inertia of the condensate would be given by
Il=—E(T,un) 0 2t — 0
w; W3 )
1 1 Jigjeomet”c:/\/oj d3r|po(D)2(r?8;—rirp);  (6.11
0 0 >+ —
w1 @3 ie.,
(T> Tc) ] (6.8) :‘]geometric
In the unordered phase, obeying E§.2), one finds that Eq. i+ i 0 0
(6.8) is precisely what would be expected from a normal wy; W3
fluid with geometric moment of inertia _ﬁ/\/o . ( 1 . 1 .
R o N 2 w1 w3
Iij:f d3rp(r)(r25ij—rirj) (T>TC), (69) 1 1
0 o [Ey _)
w1 W2

wherep(r) is the mean mass density of the atoms. 6.12
In the ordered phaser&T,.), the moment of inertia of '

the particles over and above the condensate is given by E@he physicalBose condensate moment of inertia tensor is in

(6.8 with =0, i.e., reality

JiF}hySicalz./VbE (<¢O||I|¢K><¢K||]|¢O>+<¢O||]|¢K><¢K|lI|lp0> ,

€.~ €0

(6.13

wherel=—i#(rxV). One may derive Eq6.13 by treating the rotational couplirgh= — Q- to second order perturbation
theory in the energy €5(2) asQ—0. Equation(6.13 evaluates to

( (wz—w3)2 0 0

w03(wy+ w3)

h N

_ 2
2

w103(w1+ 03)

0 . (6.19

( (0)1_602)2

010(w1+ 0))

0 0
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If there exists an axis of symmetry, then the condensatgaw of thermodynamics, in the form lig_oy C=0, dictates
moment of inertia corresponding to that axis vanishes. For athat the conditionST<T is harder to achieve as the tempera-
experimental example, ib; = w,# w3, then the 3 axis is an ture is lowered.

axis of symmetry and3y*“?= 0 as implied by Eq(6.14. In For example, one may achieve low temperatures by adia-

this sense, for the ideal Bose gas, the superfluid fraction ibatic demagnetizatiorj20]. The thermodynamics of the

the same as the condensate fraction in (), method is well illustrated by a system &f noninteracting
two level particles, each with possible energies

T 3
7]:;uperflui((-r):[]—_(-l-_c ] . (6.19 E.=%A. (7.2
Such a physical system might consist/gfnuclear one-half

If we were to employ an axis that is not a symmetry axis, i.e..>=~"" = field. Th f h
if the angular momentum about that axis were not conservecP!nS IN @ magnetic field. The mean energy of such a system,

then even the superfluid would give some contribution to the £=—NA tani(A/KgT), (7.3
moment of inertia.

Finally, including the scattering length will have some implies a heat capacit¢ = (9&/dT) given by
effect on the magnitude of the superfluid fraction. A long )
review of many different methods for computation for inter- C=AMNk (A/kgT) )
action effects has been given|ih8]. An unusual two phase Bl cosi{A/kgT)/) -
equilibrium point of view towards Bose condensation in in-
teracting systems has been notedl1ifl], which has achieved
a certain amount of success for the case of licflie.

(7.9

The temperature fluctuation of a system of noninteracting
two-level particles follows from Eqg7.1) and(7.4) to be

VII. CONCLUSIONS

7

(7.9

i (coshA/kBT)
NI (ATKgT)

Thus, for a system ofV~10° two level particles, it is
oT kg only possible to achieve a temperature as low Tas,
T/ N (7.1 ~0.2(A/kg). For a system ofNV~1CP trapped bosons, as

shown in this work, it is possible to achieve a temperature as

in order to place lower bounds on possible system temperdew as T,;,~0.05T.. It is evident on the grounds of tem-
tures. The minimum system temperatures were estimateperature fluctuations alone that the bound boson systems are
based on the notion that the temperature is “well defined”the more likely example for the very lowest temperatures.
only if temperature fluctuations are small <T. The third Indeed, this has turned out to be true in the laboratory.

We have employed the heat capadityn the relationship
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