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Physical limits on the notion of very low temperatures

Juhao Wu and A. Widom
Department of Physics, Northeastern University, Boston, Massachusetts 02115

~Received 15 January 1998!

Standard statistical thermodynamic views of temperature fluctuations predict a magnitude (A^(DT)2&/T)
'A(kB /C) for a system with heat capacityC. The extent to which low temperatures can be well defined is
discussed for those systems that obey the thermodynamic third law in the form lim(T→0) C50. Physical limits
on the notion of very low temperatures are exhibited for simple systems. Application of these concepts to
bound Bose condensed systems are explored, and the notion of bound boson superfluidity is discussed in terms
of the thermodynamic moment of inertia.
@S1063-651X~98!13005-2#

PACS number~s!: 05.30.Ch, 03.75.Fi, 05.30.Jp, 05.40.1j
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I. INTRODUCTION

A problem of considerable importance in low temperatu
physics concerns physical limitations on how small a te
perature can be well defined in the laboratory@1#. In what
follows, we shall consider temperature fluctuations that
fine a system temperature ‘‘uncertainty’’

dT5AŠ~Ts2^Ts&!‹2, ~1.1!

whenever a finite system at temperatureTs is in thermal
contact with a large reservoir at bath temperatureT. Only on
the thermodynamic average do we expect the system
perature to be equal to the bath temperature; i.e.,^Ts&'T.
The fluctuation from this average result@2# has the magni-
tude

S dT

T D'AkB

C
, ~1.2!

whereC is the heat capacity of the finite system, andkB is
Boltzmann’s constant. SinceC is an extensive thermody
namic quantity, one expects the usual small fluctuation
temperature (dT/T)}(1/AN) in the thermodynamic limitN
→`, whereN is the number of microscopic particles. How
ever, in low temperature physics~for systems with finite val-
ues for N!, temperature fluctuations are by no means
quired to be negligible.

For those finite sized systems that obey the thermo
namic third law

lim
T→0

C50, ~1.3!

one finds from Eqs.~1.2! and ~1.3! that

S dT

T D→` asT→0 with N,`. ~1.4!

Equation~1.4! sets the limits on what can be regarded as
ultimate lowest temperatures for finite thermodynamic s
tems; i.e., the temperature must at least obeydT!T.
571063-651X/98/57~5!/5178~6!/$15.00
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In Sec. II, the theoretical foundations for Eq.~1.4! will be
discussed. In brief, the microcanonical entropy of a therm
dynamic system is given by

S~E!5kB ln G~E!, ~1.5!

where G(E) is the number of system quantum states w
energy E. The microcanonical entropy defines thesystem
temperature Ts via

S 1

Ts
D5S dS

dED . ~1.6!

The thermal bath temperature T, which is not quite the sys-
tem temperatureTs , enters into the canonical free energy

F~T!52kBT ln Z~T!, ~1.7!

where the partition function is defined as

Z~T!5Tr~e2H/kBT!5(
E

G~E!e2E/kBT. ~1.8!

The probability distribution for the energy of the system
when in contact with a thermal bath at temperatureT, is
given by

P~E;T!5S G~E!

Z~T! DexpS 2E

kBTD5expS F~T!2E1TS~E!

kBT D ,

~1.9!

as dictated by Gibbs. Thus, the temperatureT ~of the thermal
bath! does not fluctuate while system energyE does fluctuate
according to the probability rule of Eq.~1.9!. On the other
hand, the system temperatureTs(E) in Eq. ~1.6! depends on
the system energy and thereby fluctuates sinceE fluctuates.
It is only for the energyE* of maximum probability
MaxEP(E;T)5Pmax5P(E* ;T) that the system temperatur
is equal to the bath temperatureTs(E* )5T. If the energy
probability distribution is spread out at low thermal ba
temperatures, then temperature fluctuations are well defi
in the canonical ensemble of Gibbs.
5178 © 1998 The American Physical Society
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In Sec. III, temperature fluctuations are illustrated us
the example of blackbody radiation in a cavity of volumeV.
For this case, it turns out that the thermal wavelengthLT of
the radiation in the cavity,

LT5S \c

kBTD , ~1.10!

must be small on the scale of the cavity lengthV1/3; i.e.,
LT!V1/3. For example, in a cavity of volumeV;1 cm3, the
lowest temperature for the radiation within the cavity is
orderTmin;1 K. It is of course possible to cool the conduc
ing metal walls of a cavity with a length scale;1 cm to well
below 1 K. However, this by no means implies that the
diation within the cavity can have a temperature well bel
1 K. The point is that at temperaturesTs,1 K, there are
perhaps only a few photons~in total! in the cavity. The total
number of photons are far too few for the cavity radiati
system temperature to be well defined.

In Sec. IV, a confined system ofN atoms obeying idea
gas Bose statistics is discussed. Such systems can be
condensed, and are presently~perhaps! the lowest tempera
ture systems available in laboratories. In the quasiclass
approximation, the free energy is computed in Sec. V. Qu
tions concerning bounds on ultralow temperatures are
plored. Whether or not such Bose condensed atoms can
hibit superfluid behavior is discussed in Sec. VI. T
superfluid and normal fluid contributions to the moment
inertia are computed. In the concluding Sec. VII, anoth
simple system with fluctuation limits on ultralow temper
tures will be briefly discussed.

II. THEORETICAL FOUNDATIONS

Let f(E) denote some physical quantity that depends
the energyE of a physical system. If the system is in conta
with a thermal bath at temperatureT, then the thermody-
namic average may be calculated from

^f&5(
E

P~E;T!f~E!, ~2.1!

where the probabilityP(E;T) has been defined in Eq.~1.9!.
Using the ‘‘summation by parts’’@3,4# formula

(
E

]

]E
@P~E;T!f~E!#50, ~2.2!

i.e., with a strongly peakedP(E;T),

2(
E

P~E;T!S df~E!

dE D5(
E

f~E!S ]P~E;T!

]E D , ~2.3!

one finds

2kBK df~E!

dE L 5kB(
E

f~E!S ]P~E;T!

]E D . ~2.4!

Employing Eqs.~1.6! and ~1.9!,

kBS ]P~E;T!

]E D5S 1

Ts~E!
2

1

TD P~E;T!. ~2.5!
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Equations~2.4! and~2.5! imply the central result of this sec
tion:

2kBK df

dEL 5 K S 1

Ts
2

1

TDf L . ~2.6!

If we choosef(E)51, then Eq.~2.6! reads

K 1

Ts
L 5

1

T
; ~2.7!

i.e., on average, the reciprocal of the system temperatur
equal to the reciprocal of the thermal bath temperature. Th
with fluctuations from the mean

Df5f2^f&, ~2.8!

DS 1

TD5
1

Ts
2 K 1

Ts
L 5

1

Ts
2

1

T
, ~2.9!

Eq. ~2.6! reads

2kBK df

dEL 5 K DS 1

TDDf L . ~2.10!

If we choose in Eq.~2.10! the functionf to be

f5S 1

Ts
D and 2S df

dED5
1

Ts
2 S dTs

dE D5S 1

Ts
2CD

~2.11!

@whereC5(dE/dTs) is the system heat capacity#, then

K DS 1

TD 2L 5K 1

Ts
2 S kB

C D L . ~2.12!

The standard Eqs.~1.1! and~1.2! follow from the more pre-
cise Eqs.~2.7! and ~2.12! in the limit of small temperature
fluctuations; i.e.,

^~DT!2&'S kBT2

C D if dT5A^~DT!2&!T. ~2.13!

The conditiondT!T is required in order that the canon
cal thermal bath temperature be equivalent to the micro
nonical system temperature. If the microcanonical and
nonical temperatures are not equivalent, then the statis
thermodynamic definition of temperature would no longer
unambiguous. This raises fundamental questions as to
physical meaning of temperature. The view of this work
that in an ultralow temperature limit, wherebydT;T for
sufficiently smallT, the whole notion of system temperatu
is undefined, although the notion of a thermal bath tempe
ture retains validity.

III. BLACKBODY RADIATION EXAMPLE

The heat capacity of blackbody radiation in a cavity
volume V with the walls of the cavity at temperatureT is
given by @5#
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C~blackbody!5kBS 4p2

15 D S V

LT
3D , ~3.1!

whereLT is given by Eq.~1.10!. From Eqs.~1.2! and~3.1! it
follows that the radiation temperature of a blackbody cav
of volumeV is

S dT~blackbody!

T D'AS 15

4p2D S LT
3

V D'0.6AS LT
3

V D .

~3.2!

In order to achieve a well defined radiation temperature
side the cavity,dT(blackbody) must be small on the scale
T or equivalentlyLT!V1/3. As stated in Sec. I, this implie
a minimum temperature ofTmin;1 K for a cavity of V
;1 cm3.

IV. CONFINED IDEAL BOSE GAS

The grand canonical free energy of an ideal Bose ga
determined by the trace@6#

J~T,m!5kBT tr ln~12e~m2h!/kBT!, ~4.1!

whereh is the one boson Hamiltonian and

dJ52SdT2Ndm ~4.2!

determines the number of bosonsN. If the one boson parti-
tion function is defined as

q~T!5tr~e2h/kBT!, ~4.3!

then the free energy obeys

J~T,m!52kBT(
n51

` S 1

nDqS T

nDenm/kBT. ~4.4!

The mean number of bosons is

N~T,m!5 (
n51

`

qS T

nDenm/kBT, ~4.5!

and the statistical entropy is given by

S~T,m!52S J~T,m!1mN~T,m!

T D
1kBT(

n51

` S 1

n2Dq8S T

nDenm/kBT, ~4.6!

whereq8(T)5$dq(T)/dT%.
Of considerable theoretical@7,8# experimental@9–11# in-

terest is the bound boson in an anisotropic oscillator po
tial,

h52S \2

2M D¹21S 1

2D M r•v̂2
•r2S \

2D tr~v̂ !, ~4.7!

where
y

-

is

n-

v̂25S v1
2 0 0

0 v2
2 0

0 0 v3
2
D . ~4.8!

Equations~4.3! and ~4.7! imply

q~T!5)
j 51

3 S 1

12e2\v j /kBTD . ~4.9!

The heat capacity may be defined by

C5TS ]S

]TD
N

, ~4.10!

which must be calculated numerically.
Shown in Fig. 1 is a plot of the heat capacity~in units of

NkB! versus temperature~in units of the critical temperature
Tc! for the case ofN523103 andN523106 particles. We
choose, for experimental interest@12#, the frequency eigen-
values (v1/2p)5(v2/2p)5320 Hz, and (v3/2p)518 Hz.
For finiteN, there is strictly speaking no Bose-Einstein co
densation phase transition. The critical temperatureTc is
therefore defined as that temperature for which the heat
pacity reaches the maximum valueCmax5C(Tc). Although
phase transitions are defined in mathematics only in the t
modynamic limitN→`, for all practical purposes, a quas
classical approximation of Eq.~4.1! in the form

J~T,m!5kBTE E S d3rd3p

~2p\!3D
3 ln~12e@m2h~p,r !#/kBT! ~quasiclassical!,

~4.11!

where

h~p,r !5
p2

2M
1

1

2
M r–v̂2

–r ~4.12!

FIG. 1. The heat capacity~in units of NkB! is plotted as a
function of temperature~in units ofTc! for N523103 atoms~dot-
ted curve! andN523106 atoms~solid curve!.
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does yield a Bose-Einstein condensation phase trans
whose heat capacity is sufficiently accurate for values oN
;105 or higher. Thus, we regard recent experiments on B
atoms confined in a magnetic bottle to be probing a phys
Bose-Einstein ordered phase. Let us consider Eq.~4.11! in
more detail.

V. QUASICLASSICAL BOSE CONDENSATION

In order to evaluate Eq.~4.10! we employ the quasi-
classical form@13,14# of Eqs.~4.3! and ~4.11!; i.e.,

q~T!5E E S d3rd3p

~2p\!3De2h~p,r !/kBT5)
j 51

3 S kBT

\v j
D5S kBT

\v̄
D 3

,

~5.1!

where v̄5(v1v2v3)1/3. From Eqs.~4.4! and ~5.1!, it fol-
lows that Eq.~4.11! evaluates to

J~T,m!52\v̄S kBT

\v̄
D 4

(
n51

` S 1

n4Denm/kBT. ~5.2!

From Eqs.~4.2! and ~5.2!, the number of particles obeys

N~T,m!5S kBT

\v̄
D 3

(
n51

` S 1

n3Denm/kBT ~m,0!. ~5.3!

With the usual definition of thez function:

z~s!5 (
n51

` S 1

nsD , Re~s!.1, ~5.4!

the Bose-Einstein condensation critical temperature is

Tc5S \v̄

kB
D S N

z~3! D
1/3

. ~5.5!

The nonzero number of bosons~below the critical tempera
ture! in the condensate state is given by

N0~T!5NH 12S T

Tc
D 3J ~T,Tc!. ~5.6!

Finally, the entropy below the critical temperature,

S~T!54kBz~4!S kBT

\v̄
D 3

5NkBS 4z~4!

z~3! D S T

Tc
D 3

~T,Tc!,

~5.7!

obeys the thermodynamic third law lim(T→0) S(T)50. The
heat capacity in the Bose-Einstein condensed phase is
given by

S C

NkB
D5S 12z~4!

z~3! D S T

Tc
D 3

'10.81S T

Tc
D 3

~T,Tc!.

~5.8!

Employing Eqs.~1.2! and ~5.8! we find that the tempera
ture uncertainty below the critical temperature obeys
on

e
al

en

S dT

T D'S 0.3

AND S Tc

T D 3/2

~T,Tc!. ~5.9!

Thus, forN;105 one may safely consider the temperature
the ordered phase to be well defined in the rangeTc.T
.Tmin , where Tmin;0.05Tc . The open question as t
whether the ordered phase is a superfluid may now be c
sidered.

VI. SUPERFLUID FRACTION OF THE BOUND BOSON
SYSTEM

The notion of a superfluid fraction in an experimen
Bose fluid~such as liquid4He! may be viewed in the follow-
ing manner: Suppose that we pour the liquid into a ve
slowly rotating vessel and close it off from the environme
The walls of the vessel are at a bath temperatureT, and the
vessel itself rigidly rotates at a very small angular veloc
V. In the ‘‘two-fluid’’ model @15,16#, the normal part of the
fluid rotates with a rigid body angular velocityV, which is
the same as the angular velocity of the vessel. On the o
hand, the superfluid part of the fluid does not rotate. T
superfluid exhibits virtually zero angular momentum for su
ficiently smallV. The total fluid moment of inertia tensorÎ

is defined by the fluid angular momentumL5 Î –V ~as V
→0!. We here take the limitV→0, to avoid questions con
cerning the effects of vortex singularities on the superflu
The normal fluid, which rotates along with the rotating ve
sel, contributes to the fluid moment of inertia. The sup
fluid, which does not rotate with the vessel, does not cont
ute to the moment of inertia. Thus, thegeometricmoment of
inertia,

Î i j
geometric5E d3r r̄~r !~r 2d i j 2r i r j !, ~6.1!

where r̄(r ) is the mean mass density of the fluid~at rest!,
overestimates thephysical moment of inertia eigenvalue
when the fluid is actually a superfluid. The normal fluid co
tributes to the moment of inertia and the superfluid does
do so in the limitV→0. Below, we consider in detail the
moment of inertia of the bound Bose gas.

For the bound Bose system, we consider a mesosc
rotational state@17# with a thermal angular velocityV. The
rotational version of Eq.~4.2! reads

dJV52SdT2Ndm2L–dV, ~6.2!

whereL is the bound boson angular momentum. Eq.~4.11!
gets replaced by

hV~p,r !5
p2

2M
1

1

2
M r–v̂2

–r2V–~r3p!, ~6.3!

so that Eq.~5.1! now reads

qV~T!5E E S d3rd3p

~2p\!3De2hV~p,r !/kBT

5@q~T!/ADet~12v̂22V̂2!#, ~6.4!
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where the matrixv̂2 is written in Eq.~4.8! and

V̂25S ~V2
21V3

2! 2V1V2 2V1V3

2V1V2 ~V1
21V3

2! 2V2V3

2V1V3 2V2V3 ~V1
21V2

2!
D . ~6.5!

From Eqs.~4.4! and ~6.4!, it follows that

JV~T,m!5@J~T,m!/ADet~12v̂22V̂2!#, ~6.6!

The fluid moment of inertia tensor has the matrix elemen

Î i j 5 lim
V→0

S ]Li

]V j
D

T,m

52 lim
V→0

S ]2JV

]V i]V j
D

T,m

. ~6.7!

Equations~4.8!, ~6.5!, ~6.6!, and ~6.7! imply ~in the unor-
dered phase!

Î 52J~T,m!S S 1

v2
2 1

1

v3
2D 0 0

0 S 1

v1
2 1

1

v3
2D 0

0 0 S 1

v1
2 1

1

v2
2D D

~T.Tc!. ~6.8!

In the unordered phase, obeying Eq.~5.2!, one finds that Eq.
~6.8! is precisely what would be expected from a norm
fluid with geometric moment of inertia

Î i j 5E d3r r̄~r !~r 2d i j 2r i r j ! ~T.Tc!, ~6.9!

wherer̄(r ) is the mean mass density of the atoms.
In the ordered phase (T,Tc), the moment of inertia of

the particles over and above the condensate is given by
~6.8! with m50, i.e.,
l

q.

Î excitation5z~4!\v̄S kBT

\v̄
D 4

3S S 1

v2
2 1

1

v3
2D 0 0

0 S 1

v1
2 1

1

v3
2D 0

0 0 S 1

v1
2 1

1

v2
2D D

~T,Tc!. ~6.10!

The question of superfluidity concerns the magnitude
the moment of inertia of those particles within the conde
sate. ForT,Tc , we use the notation thatÎ denotes the mo-
ment of inertia of the excited bosons, andĴ represents the
moment of inertia of the Bose condensate. If the momen
inertia of the particles in the condensate were zero, then
condensate particles would all be ‘‘superfluid.’’

Let c0(r ) be the normalized@*d3r uc0(r )u251# Bose
condensation state. From the geometric viewpoint, the m
ment of inertia of the condensate would be given by

Ji j
geometric5N0E d3r uc0~r !u2~r 2d i j 2r i r j !; ~6.11!

i.e.,

Ĵgeometric

5
\N0

2 S S 1

v2
1

1

v3
D 0 0

0 S 1

v1
1

1

v3
D 0

0 0 S 1

v1
1

1

v2
D D .

~6.12!

ThephysicalBose condensate moment of inertia tensor is
reality
n

Ji j
physical5N0(

k
S ^c0u l i uck&^cku l j uc0&1^c0u l j uck&^cku l i uc0&

ek2e0
D , ~6.13!

wherel52 i\(r3¹). One may derive Eq.~6.13! by treating the rotational couplingDh52V–l to second order perturbatio
theory in the energyDe0(V) asV→0. Equation~6.13! evaluates to

Ĵphysical5
\N0

2 S S ~v22v3!2

v2v3~v21v3! D 0 0

0 S ~v12v3!2

v1v3~v11v3! D 0

0 0 S ~v12v2!2

v1v2~v11v2! D
D . ~6.14!
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If there exists an axis of symmetry, then the condens
moment of inertia corresponding to that axis vanishes. Fo
experimental example, ifv15v2Þv3 , then the 3 axis is an
axis of symmetry andJ33

physical50 as implied by Eq.~6.14!. In
this sense, for the ideal Bose gas, the superfluid fractio
the same as the condensate fraction in Eq.~5.6!,

hsuperfluid~T!5H 12S T

Tc
D 3J . ~6.15!

If we were to employ an axis that is not a symmetry axis, i
if the angular momentum about that axis were not conserv
then even the superfluid would give some contribution to
moment of inertia.

Finally, including the scattering length will have som
effect on the magnitude of the superfluid fraction. A lo
review of many different methods for computation for inte
action effects has been given in@18#. An unusual two phase
equilibrium point of view towards Bose condensation in
teracting systems has been noted in@19#, which has achieved
a certain amount of success for the case of liquid4He.

VII. CONCLUSIONS

We have employed the heat capacityC in the relationship

S dT

T D'AkB

C
~7.1!

in order to place lower bounds on possible system temp
tures. The minimum system temperatures were estim
based on the notion that the temperature is ‘‘well define
only if temperature fluctuations are smalldT!T. The third
s

an

et
te
n

is

.,
d,
e

a-
ed
’’

law of thermodynamics, in the form lim(T→0) C50, dictates
that the conditiondT!T is harder to achieve as the temper
ture is lowered.

For example, one may achieve low temperatures by a
batic demagnetization@20#. The thermodynamics of the
method is well illustrated by a system ofN noninteracting
two level particles, each with possible energies

E656D. ~7.2!

Such a physical system might consist ofN nuclear one-half
spins in a magnetic field. The mean energy of such a sys

E52ND tanh~D/kBT!, ~7.3!

implies a heat capacityC5(]E/]T) given by

C5NkBS ~D/kBT!

cosh~D/kBT! D
2

. ~7.4!

The temperature fluctuation of a system of noninteract
two-level particles follows from Eqs.~7.1! and ~7.4! to be

S dT

T D'S 1

AND S cosh~D/kBT!

~D/kBT! D . ~7.5!

Thus, for a system ofN;106 two level particles, it is
only possible to achieve a temperature as low asTmin
;0.2(D/kB). For a system ofN;106 trapped bosons, a
shown in this work, it is possible to achieve a temperature
low as Tmin;0.05Tc . It is evident on the grounds of tem
perature fluctuations alone that the bound boson systems
the more likely example for the very lowest temperatur
Indeed, this has turned out to be true in the laboratory.
n,
tt.

,

p.
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