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Characterizations of natural patterns
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Labyrinthine patterns are observed in systems as diverse as animal coats, slime mold colonies, fish scales,
and cloud streets. However, even under well-controlled conditions, repetition of an experiment gives structures
with vastly different details. A theoretical analysis of ‘‘universal’’ aspects of patterns requires a quantitative
description that gives similar values for distinct configurations. We introduce a function to characterize the
‘‘disorder’’ of labyrinthine patterns that is the same for structures generated under identical control parameters.
Furthermore, patterns with different visual characteristics are described by distinct functions.
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PACS number~s!: 05.70.Ln, 82.40.Ck, 47.54.1r
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Reaction-diffusion systems@1#, convecting fluids@2#, and
ferrofluids@3# are a few examples of the many uniform, we
controlled experimental systems generating complex laby
thine structures. Even though patterns resulting from the
etition of an experiment are vastly different in detail, it
easy to discern ‘‘features’’ common to them. Furthermo
patterns from distinct experiments share many similar ch
acteristics. These observations suggest the necessity
system-independent quantitative characterizations; at a m
mum, these measures should be similar for distinct struct
~e.g., Fig. 1! generated under the same external condition

Figure 1 shows two patterns that are generated by ev
ing distinct random initial fields via the Swift-Hohenbe
equation@4#

]u~x,t !

]t
5D@e2~11k0

22¹2!2#u2nu3, ~1!

constrained by periodic boundary conditions. The intens
of the initial random field, and the control parametersD, k0 ,
andn are the same for the two cases. Each pattern is a c
plex labyrinthine array that consists of patches of stripes
an ~almost! uniform width. Globally, domain walls and de
fects are distributed throughout the structure. Even tho
the patterns shown are vastly different in detail, it is easy
recognize several common ‘‘signatures;’’ e.g., the mean s
of a domain, the density of defects, etc. The issue we add
is, given a scalar fieldv(x) @e.g.,u(x,t0) from Eq. ~1! at a
given time t0# describing a pattern, how one can determ
the form of quantitative measures of this ‘‘commonality
and how they can be estimated fromv(x).
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Measures motivated by statistical physics and dynam
systems theory have been introduced to characterize patt
Correlation length can either be estimated directly@5# or de-
duced from the decay of the power spectrum@6#. The com-
plexity of a labyrinthine pattern is reflected in the density
the power spectrum, and the ‘‘spectral entropy’’@7# is a pos-
sible measure of the disorder. For patterns exhibiting per
tent evolution, the dynamics of the field at a point can
used as a measure of complexity through the use
‘‘Lyapunov dimension density’’@8#. These order parameter
do not take advantage of the local structure of the patter

It is difficult to determine,a priori, a set of measures tha
will yield equal values for patterns generated under sim
conditions. We instead impose a weaker requirement on
characterizations, that they remain invariant under allrigid
motions of the pattern, i.e., translations, rotations, and refl
tions @9#. Rather surprisingly, the measures so defined
identical for distinct patterns such as those of Fig. 1.

The most significant feature of labyrinthine patterns
that they are locally striped, in a suitable neighborho
v(x);sin(k–x), where the modulusk0 of the wave vector
does not vary significantly over the pattern. Structures g
erated in experiments and model systems include higher
monics due to the presence of nonlinearities. They play
role in the structure of the pattern, but only contribute to t
shape of the cross section of stripes. In order to use
simplest characterization of patterns, we eliminate the s
ond and higher harmonics by a suitable use of a wind
function in Fourier space.

The simplest local field that is derived fromv(x) and
whose value remains the same under all rigid motions is
LaplacianDv(x). Terms such asDnvm(x), though invariant,
are difficult to extract from an incompletely sampled fie
~typically given on a lattice!. The requirement that perfec
stripes be assigned a null measure~they are not disordered!,
coupled with the local sinusoidal form of the~filtered! pat-
tern, implies that the lowest-order field relevant for our pu
5146 © 1998 The American Physical Society
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57 5147CHARACTERIZATIONS OF NATURAL PATTERNS
pose is (D1k0
2)v(x). The family of measures, referred to a

the ‘‘disorder function,’’ is defined by

d~b!5~22b!
*dau~D1k0

2!v~x!ub

k0
2b^uv~x!u&b , ~2!

where ^uv(x)u& denotes the mean ofuv(x)u, and d~b! has
been normalized so that the ‘‘intensive variables’’d̄(b)
5d(b)/*da are scale invariant. The momentb is restricted
to lie between 0 and 2 for reasons discussed below. Lo
deviations of the patterns from stripes~due to curvature of
the contour lines@9,10#! contribute tod~b! through the La-
placian, while variations of the width of the stripes contri
ute via the choice of a ‘‘global’’k0 .

The critical requirement for a good estimate ofd~b! is a
sufficiently accurate determination of the Laplacian. Cal

FIG. 1. Two patterns generated by evolving random initial sta
via the Swift-Hohenberg equation for 1600 time units. The para
eters used wereD50.1, e50.2, n52, andk051. The initial states
consisted of white noise whose intensity varied between 0
1023. Periodic boundary conditions were imposed on the squ
domain of 2563256 lattice points, the length of whose sides a
(48p/k0).
al

-

lation of derivatives of a field from values given on a latti
is a delicate task, especially in the presence of noise. A te
nique, referred to as distributed approximating function
~DAFs!, has been introduced recently, to analytically fit
approximate a continuous function from known values o
discrete grid@11#. Unlike typical grid methods, it estimate
derivatives using a range of neighboring points~;40 in our
case!; consequently it is much less sensitive to noise.

The most useful for applications have been a class
DAFs for which the order of accuracy of the fit is the sam
both on and off the grid.~This is in contrast to interpolation
which forces the fit to be exact on the grid, but always lea
to interwining about the function off the grid, thus leading
inaccurate estimation of derivatives.! Their most general
derivation is via a variational principle@12#, yielding
gDAF(x)5(kI (x,xk)g(xk), where k labels the grid points,
g(xk) are the known input values of the function~which may
contain noise!. For suitableI (x,xk), the function and its de-
rivatives are evaluated to a comparable accuracy@12#. This
proves crucial for the estimation of the disorder function.

The calculations presented are carried out using the ‘‘H
mite DAF’’ @13#, defined by

I ~x,xk!5I ~x2xk!5
D

s

e2z2

A2p
(
j 50

M /2 S 2
1

4D j 1

j !
H2 j~z!, ~3!

wherez5(x2xk)/s&, D is the lattice spacing, andHn(z) is
the nth Hermite polynomial. The Gaussian weight~of width
s! in Eq. ~3! makesI (xl2xk) highly banded, reducing the
computational cost of applying the DAF to data. The DA
representation of derivatives of a function known only on
grid is given by

S dlg

dxl D
DAF

~x!5(
k

dl

dxl I ~x,xk!g~xk!, ~4!

which can be evaluated either on or off the grid. In the co
tinuum limit, the derivative of the DAF equals~exactly! the
DAF of the derivative@13#. The calculations reported wer
done on a grid with;10 points per stripe, withs/D54.0,
andM512, while the sum of Eq.~4! ran over 20 grid points
on each side ofx. With this choice of parameters, the re
quired derivatives are obtained to similar accuracy as
DAF approximation of the function itself@13#.

The DAF approximation to a function that is sampled
a square grid (xm ,yn) can be obtained using the two
dimensional extensionI „(x,y),(xm ,yn)…5I X(x,xm)I Y(y,yn)
of the approximating identity kernel@14#. Thus to estimate
~say! d2v/dx2, Eq. ~4! needs to be applied in they direction
~with l 50! and along thex direction ~with l 52!. ~The ap-
plication of the DAF operators in the two directions com
mute and can be carried out in any order.!

For a perfect set of stripes the functiond(b)50. A do-
main wall contains curvature of the contour lines and var
tions of the stripe width; consequently it will contribute
disorder.d~b! for a single domain wall is a monotonicall
increasing function of the angleu between the stripes of th
two domains. Thusd~b! provides information absent in cha
acterizations such as the correlation length. The disor
function for a target patternv(x)5a cos(k0r) is known @9#,
and is used to estimate the accuracy of the numerical a
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rithms. For target patterns, the integral in the numerator
verges as (22b)21, and leads to limiting the range o
b(,2), and to the introduction of the prefactor in Eq.~2!.
The effects of noise on the calculations are minimal. F
example, addition of 10% white noise typically changesd~b!
by less than 2%. The effects of distinct characteristics o
pattern~e.g., domain walls, defects, variations of the stri
width, etc.! contributing to disorder are separated using d
tinct momentsb.

The measuresd~b! were derived by insisting that they b
invariant under rigid motions of a labyrinthine pattern.Are
these limited restrictions sufficient to yield characterizatio

FIG. 2. The curvesd̄(b) for patterns generated at two differe
sets of control parameters. The lower bunch consists of curves
four patterns at the first set of control parameters~Fig. 1! while the
upper bunch consist of those for a second set of control param
~Fig. 3!. ~b! shows the same plots with a logarithmic vertical sca
i-

r

a

-

s

that can delineate the observed ‘‘commonality’’ in distin
patterns generated under identical conditions?Surprisingly,
it appears to be the case. Figure 2 shows the disorder f
tions for several patterns. The curves bunched at the bot
show d~b! for four structures~two of which are shown in
Fig. 1! generated at fixed control parameters.d~b! appears to
have captured the commonality of these distinct patte
Patterns generated in the Gray-Scott model@16# and in a
vibrated layer of granular material@17# exhibit similar prop-
erties@15#.

The next question is ifd~b! can differentiate between
‘‘visually distinct’’ patterns. Figure 3 shows two structure
obtained from Eq.~1! for a second set of control parameter
They have characteristics that differ from patterns of Fig.
e.g., they contain smaller domains and a larger density
defects.d~b! for four such patterns are bunched together
the upper curves in Fig. 2. The significant separation of
two sets of curves~e.g., the values ofd~1! between the two

or

ers
.

FIG. 3. Two patterns generated by evolving a random ini
state via the Swift-Hohenberg equation for 2400 time units. T
parameters used for the integration wereD50.01, e50.4, n52,
and k051/3. The initial states consisted of white noise whose
tensity varied between61022. The length of each side of the
square is (48p/k0).
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57 5149CHARACTERIZATIONS OF NATURAL PATTERNS
sets of curves is about 25 times larger than the average
ference between curves within a set! confirms the ability of
d~b! to quantify the differences of the two groups of patter

The disorder function quantifies the characteristics o
labyrinthine pattern using the local curvature of the cont
lines and the wavelength variations, which typically increa
with the ~visual! disorder of a pattern. Thus,d~b! is able to
quantify ~Fig. 2! the observation that patterns of Fig. 3 a
more disordered that those of Fig. 1.

Labyrinthine patterns are observed in a wide range of s
tiotemporal systems. Normal regions in the intermedi
state of a type I superconductor@18# and the speckle pattern
formed by laser light reflected off a metal surface@19# are
two examples. One may inquire if the former can be used
deduce properties of the superconductor, or if the latter
be used to quantify the roughness of a metal surface o
microscale. What is required to address such issues is c
acterizations that depend on external parameters but
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‘‘configuration independent.’’ Properties of labyrinthine pa
terns such as the observed organization of numerically g
erated patterns@6# and the onset of spatiotemporal dynami
in reaction-diffusion systems@9# have proven amenable t
such analyses. The disorder function is a continuum of m
sures~analogous to generalized dimensions in chaotic s
tems @20#! to characterize labyrinthine patterns. Compl
patterns whose local structure consists of other planfo
such as hexagons or squares can also be characterized
the disorder function.
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