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Characterizations of natural patterns
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Labyrinthine patterns are observed in systems as diverse as animal coats, slime mold colonies, fish scales,
and cloud streets. However, even under well-controlled conditions, repetition of an experiment gives structures
with vastly different details. A theoretical analysis of “universal” aspects of patterns requires a quantitative
description that gives similar values for distinct configurations. We introduce a function to characterize the
“disorder” of labyrinthine patterns that is the same for structures generated under identical control parameters.
Furthermore, patterns with different visual characteristics are described by distinct functions.
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PACS numbgs): 05.70.Ln, 82.40.Ck, 47.54r

Reaction-diffusion systeni4], convecting fluid42], and Measures motivated by statistical physics and dynamical
ferrofluids[3] are a few examples of the many uniform, well- systems theory have been introduced to characterize patterns.
controlled experimental systems generating complex labyrin€orrelation length can either be estimated direfflyor de-
thine structures. Even though patterns resulting from the repduced from the decay of the power spectr[@h The com-
etition of an experiment are vastly different in detail, it is plexity of a labyrinthine pattern is reflected in the density of
easy to discern- “Teatures,’ -Common to them. Fulrthermore,the power Spectrum, and the “Spectra| entro@'] iS a pos_
patterns from distinct experiments share many similar charsjhle measure of the disorder. For patterns exhibiting persis-
acteristics. These observations suggest the necessity ffdnt evolution, the dynamics of the field at a point can be
system-independent quantitative characterizations; at a minjjseq as a measure of complexity through the use of
mum, these measures should be similar for distinct structureg yapunov dimension density’[8]. These order parameters
(e.g., Fig. 3 generated under the same external conditions. 4o not take advantage of the local structure of the pattern.

. Figure 1 shows two patterns that are generated by evolv- |t s difficult to determinea priori, a set of measures that
ing distinct random initial fields via the Swift-Hohenberg il yield equal values for patterns generated under similar

equation[4] conditions. We instead impose a weaker requirement on our
characterizations, that they remain invariant underigid

u(x,t) e . motions of the pattern,'i.fa., translations, rotations, aqd reflec-

o1~ Ple=(1+ko V) Ju—wus, (1)  tions [9]. Rather surprisingly, the measures so defined are

identical for distinct patterns such as those of Fig. 1.

The most significant feature of labyrinthine patterns is
constrained by periodic boundary conditions. The intensitythat they are locally striped, in a suitable neighborhood
of the initial random field, and the control paramet®rsk,,  v(x)~sink-x), where the modulug, of the wave vector
and v are the same for the two cases. Each pattern is a congloes not vary significantly over the pattern. Structures gen-
plex labyrinthine array that consists of patches of stripes oérated in experiments and model systems include higher har-
an (almos} uniform width. Globally, domain walls and de- monics due to the presence of nonlinearities. They play no
fects are distributed throughout the structure. Even thougkole in the structure of the pattern, but only contribute to the
the patterns shown are vastly different in detail, it is easy tashape of the cross section of stripes. In order to use the
recognize several common “signatures;” e.g., the mean sizgimplest characterization of patterns, we eliminate the sec-
of a domain, the density of defects, etc. The issue we addresmd and higher harmonics by a suitable use of a window
is, given a scalar fiela (x) [e.g.,u(X,ty) from Eq.(1) ata  function in Fourier space.
given timety] describing a pattern, how one can determine The simplest local field that is derived from(x) and
the form of quantitative measures of this “commonality,” whose value remains the same under all rigid motions is its
and how they can be estimated fran). LaplacianAv(x). Terms such ad"v™(x), though invariant,

are difficult to extract from an incompletely sampled field
(typically given on a lattice The requirement that perfect

*Electronic address: gemunu@uh.edu stripes be assigned a null meas(ifeey are not disordergd
Electronic address: hoffman@qdynamic.ameslab.gov coupled with the local sinusoidal form of théltered pat-
*Electronic address: kouri@uh.edu tern, implies that the lowest-order field relevant for our pur-
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lation of derivatives of a field from values given on a lattice
is a delicate task, especially in the presence of noise. A tech-
nique, referred to as distributed approximating functionals
(DAFs), has been introduced recently, to analytically fit or
approximate a continuous function from known values on a
discrete grid[11]. Unlike typical grid methods, it estimates
derivatives using a range of neighboring poitts40 in our
case; consequently it is much less sensitive to noise.

The most useful for applications have been a class of
DAFs for which the order of accuracy of the fit is the same
both on and off the grid(This is in contrast to interpolation,
which forces the fit to be exact on the grid, but always leads
to interwining about the function off the grid, thus leading to
inaccurate estimation of derivativgesTheir most general
derivation is via a variational principlg12], yielding
Opae(X) =21 (X, %) 9(Xy), wherek labels the grid points,
g(xy) are the known input values of the functigmhich may
contain noisg For suitablel (x,x,), the function and its de-
rivatives are evaluated to a comparable accufd®}. This
proves crucial for the estimation of the disorder function.

The calculations presented are carried out using the “Her-
mite DAF” [13], defined by

i

1
j—!sz(Z), ()

o2 M/2
106X) =1 (X=X )= — —= >, (—Z

o 27 =0

wherez= (x—xy)/ov2, Ais the lattice spacing, and,(z) is

the nth Hermite polynomial. The Gaussian weigbf width

o) in Eqg. (3) makesl (x,—x,) highly banded, reducing the
computational cost of applying the DAF to data. The DAF
representation of derivatives of a function known only on a
grid is given by

d'g d
(&r) DAF(X)=§ T (X0 9(%0), (4

which can be evaluated either on or off the grid. In the con-

FIG. 1. Two patterns generated by evolving random initial stateginuum limit, the derivative of the DAF equalgxactly the
via the Swift-Hohenberg equation for 1600 time units. The paramDAF of the derivative[13]. The calculations reported were
eters used werP=0.1, e=0.2, v=2, andk,=1. The initial states done on a grid with~ 10 points per stripe, withr/A=4.0,
consisted of white noise whose intensity varied between 0 angnqnm =12, while the sum of Eq4) ran over 20 grid points
1073. Periodic boundary conditions were imposed on the squargyn each side ok. With this choice of parameters, the re-
domain of 256256 lattice points, the length of whose sides arequired derivatives are obtained to similar accuracy as the
(48m/ko). DAF approximation of the function itselfL3].

) ) ) The DAF approximation to a function that is sampled on
pose is A+ko)v(x)'. The_ famlly of measures, referred to as 4 square grid X,,y,) can be obtained using the two-
the “disorder function,” is defined by dimensional extensioh((X,y), (Xm.Yn)) = x (X Xm) 1 (Y. Vr)

2 of the approximating identity kern¢ll4]. Thus to estimate
[daj(A+kpv(x)|? 2 (say d?v/dx?, Eq.(4) needs to be applied in thedirection
kP (Jo)f (with I =0) and along thex direction (with | =2). (The ap-
plication of the DAF operators in the two directions com-
where ([v(x)[) denotes the mean db(x)|, and &B8) has  mute and can be carried out in any order.
been normalized so that the “intensive variables(3) For a perfect set of stripes the functiéifB)=0. A do-
= 8(B)/[da are scale invariant. The mome@tis restricted main wall contains curvature of the contour lines and varia-
to lie between 0 and 2 for reasons discussed below. Locdlons of the stripe width; consequently it will contribute to
deviations of the patterns from stripédue to curvature of disorder.8B) for a single domain wall is a monotonically
the contour line§9,10]) contribute to&(B) through the La- increasing function of the anglebetween the stripes of the
placian, while variations of the width of the stripes contrib- two domains. Thug(8) provides information absent in char-
ute via the choice of a “global’ky. acterizations such as the correlation length. The disorder
The critical requirement for a good estimate &f3) is a  function for a target pattern(x)=a cosfgr) is known[9],
sufficiently accurate determination of the Laplacian. Calcu-and is used to estimate the accuracy of the numerical algo-

o(B)=(2-p)
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FIG. 3. Two patterns generated by evolving a random initial
state via the Swift-Hohenberg equation for 2400 time units. The
parameters used for the integration w&e=0.01, e=0.4, v=2,

: . . andky,=1/3. The initial states consisted of white noise whose in-
0 0.5 1 15 B 2 tensity varied between-10"2. The length of each side of the
(b) square is (48/kp).

FIG. 2. The curves(p) for patterns generated at two different that can delineate the observed “commonality” in distinct
sets of control paran_1eters. The lower bunch cqnsists of curves foéatterns generated under identical conditior8@rprisingly,
four patterns at thg first set of control parametgiig. 1) while the it appears to be the case. Figure 2 shows the disorder func-
ffons for several patterns. The curves bunched at the bottom
show &(B) for four structures(two of which are shown in
Fig. 1) generated at fixed control paramete¥g3) appears to
rithms. For target patterns, the integral in the numerator dihave captured the commonality of these distinct patterns.
verges as (28) !, and leads to limiting the range of Patterns generated in the Gray-Scott modd] and in a
B(<2), and to the introduction of the prefactor in Eg).  vibrated layer of granular materifl7] exhibit similar prop-
The effects of noise on the calculations are minimal. Forerties[15].
example, addition of 10% white noise typically changés) The next question is if(B) can differentiate between
by less than 2%. The effects of distinct characteristics of d'visually distinct” patterns. Figure 3 shows two structures
pattern(e.g., domain walls, defects, variations of the stripeobtained from Eq(1) for a second set of control parameters.
width, etc) contributing to disorder are separated using dis-They have characteristics that differ from patterns of Fig. 1;
tinct momentsg. e.g., they contain smaller domains and a larger density of

The measures(8) were derived by insisting that they be defects.&(8) for four such patterns are bunched together on
invariant under rigid motions of a labyrinthine patteAre  the upper curves in Fig. 2. The significant separation of the
these limited restrictions sufficient to yield characterizationstwo sets of curvege.g., the values o8(1) between the two

(Fig. 3). (b) shows the same plots with a logarithmic vertical scale.
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sets of curves is about 25 times larger than the average dif-configuration independent.” Properties of labyrinthine pat-
ference between curves within asebnfirms the ability of terns such as the observed organization of numerically gen-
&(B) to quantify the differences of the two groups of patterns.erated patterngg] and the onset of spatiotemporal dynamics
The disorder function quantifies the characteristics of an reaction-diffusion systemf9] have proven amenable to
labyrinthine pattern using the local curvature of the contourisuch analyses. The disorder function is a continuum of mea-
lines and the wavelength variations, which typically increasesyres(analogous to generalized dimensions in chaotic sys-
with the (visua) disorder of a pattern. Thu$(p) is able to  tems [20]) to characterize labyrinthine patterns. Complex
quantify (Fig. 2) the observation that patterns of Fig. 3 are patterns whose local structure consists of other planforms

more disordered that those of Fig. 1. _ such as hexagons or squares can also be characterized using
Labyrinthine patterns are observed in a wide range of spane disorder function.

tiotemporal systems. Normal regions in the intermediate

state of a type | superconduc{di8] and the speckle patterns ~ We have benefited from discussions with M. Golubitsky,
formed by laser light reflected off a metal surfdd®] are M. Gorman, R. E. Jones, I. Melbourne, and H. L. Swinney.
two examples. One may inquire if the former can be used td his research was supported by the Office of Naval Research
deduce properties of the superconductor, or if the latter cafG.G), the Ames Laboratory of the Department of Energy
be used to quantify the roughness of a metal surface on @.H.), the National Science FoundatiéR.K.), and the En-
microscale. What is required to address such issues is chagrgy Laboratory of the University of Housto{G.G. and
acterizations that depend on external parameters but af2.K.).
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