PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Macroscopic surface tension in a lattice Bhatnagar-Gross-Krook model of two immiscible fluids
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We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann
models of immiscible fluids, may be extended to a two component, two-speed two-dimeriBidnaline-link
(Q9 lattice Bhatnagar-Gross-Krook fluid. For two-dimensional, microcurrent-free planar interfaces between
the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the
two fluids. Extending our analysis to curved interfaces, we propose a scheme for incorporating the influence of
interfacial microcurrents that is based upon general symmetry arguments and is correct to second order in
lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second-order influence
upon the macroscopic behavior of the model. We find good agreement between our calculations and simulation
results based on the microcurrent stream function and surface tension results from the pressure tensor or
Laplace law[S1063-651X98)03801-X

PACS numbes): 47.11+j, 47.55.Dz, 47.55.Kf, 68.16:m

I. INTRODUCTION fluids is therefore of interest. In this paper an analysis similar
to that of Gunstenseat al.[7,8] is applied to calculate the
Formation of emulsions from multicomponent immiscible tension in the interface generated between two D2Q9 BGK
fluid mixtures is a complex problem of considerable technofluids.
logical and theoretical importance. The utility of traditional ~ The model is presented in Sec. . In Sec. lll we present
numerical methods is inhibited by advection of suspendedhe analysis of the static properties of two prototypical
drops and marked departures in Shape before burst_ As I&ILG BGK based interfaces. The results are used to pl’ediCt
result, there is increasing interest in the study of rheologica$urface tensiofi) in a plane interface from which symmetry
problems by lattice Boltzmanii—5] and, most recently, dis- Precludes any microcurreriSec. IV) and (b) in interfaces
sipative particle dynamics techniq{i]. where these circulations are presédec. V). For clarity, all
Of the one-componenlattice Boltzmann schemes avail- Possible commonality with the work of Gunstenseirel. is
able, that which is algorithmically the simplest draws its in-maintained. In Sec. VI we present details of simulations of
Spiration from the work of Bhatnagar, GrOSS, and Krook OnOUI’ D2Q9 SCheme, WhiCh.are used to obtain mechanical and
the Boltzmann equation of statistical physics. The eponyl-aplace law surface tension measurements. The results and
mous lattice Bhatnagar-Gross-KrookBGK) scheme has conclusions are presented in Sec. VII and VIII, respectively.
isotropy and Galilean invariance directly embedded into a
technique that benefits from a simple collision step and has
been shown to recover single-phase hydrodynarfdcs]. Il. MODEL

For these reasons we construct the two-component latticeé o model is a BGK scheme similar to that usedhbut

Boltzmann immiscible lattice-gad BILG) model described paseqd on a square lattice that supports link density propaga-
in Sec. Il upon a particular variant of the BGK scheme and;jo at two speeds and designated D2Q9. Figure 1 and Table
not the Ilnearlzeq lattice Boltzmar)n algpnthm pf Previous| serve to define the nine D2Q9 lattice velocitigiaiks) N

work [7]. The variant used is two-dimensional with nine lat- 50 the associated indexing used in this work: we note that
tice links and is thus designated D2QS] Cy is a rest direction. The densities that populate the lattice

Multicomponent immiscible Iat_tice Bo_ltzmann tec_hnique_sare designated red or blug,(x,t) [B;(x,t)] denoting the red
allow one to calculate flows of viscous incompressible ﬂ”'d[blue] density at positiorx, time t moving in direction.

mixtures by solving the dynamics of colliding and propagat-y,iti-component fluid behavior arises when segregation is

ing particles on a regular lattice using a Boltzmann-typejynsed upon such densities by a generalization of the BGK
equation[1-3] subject to the additional influence of a color- c%,Iision to three steps.
se

based segregation rule. Recently, the method has been usedg;yot the usual BGK collision step redistributes achro-

to simulate deformation and burst in droplets under shear ip, .+ic density

two dimensiond8,9] and sheared phase separation in three

dimensiong 10]. The growing literature on the method has

been reviewed by Rothmann and Zalegkl]. N;(X,t)=Ri(x,t) +Bji(x,t) )
It has been argued that small-scale fluid velocity circula-

tions, induced at an interface by the phase segregation rules,

are endemic in LBILG simulations8]. The influence of such to links using the scalar collision operater which controls

microcurrents upon the macroscopic behaviour of LBILGfluid shear viscosity through,5]
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1 ) 3 where o is a surface tension paramet@ontrolling the am-
plitude of perturbations, angl is the angular orientation of
link i (Fig. 1), and 6;(x,t) is the direction of acolor field
f(x,t), defined by

f(x,t)=2, [Ri(x+¢,H)—Bj(x+¢ )]G, (5)
! <

where the underline denotes a vector quantity. We have also
introduced into Eq(4) a concentration factor Cx,t),

Z pr(X,t) — pa(X,1)|
C(x,t)y=1— , (6)
X,t)+ X, t
; p 5 prOXE) + p(X,b)]
Y where pr(x,t) [pg(X,t)] denote the total of the refblue]

densities at the node with position The incorporation of
FIG. 1. Lattice link vectorgbold lines used in the lattice BGK  the concentration factd®) into the perturbation makes evo-
model for the reported simulations. Links indexed by odd values ofution outside the interfacial region exactly the same as in the
i subtend an angle of 45° to the horizontal. The angfe26.56°.  monophasic model and removes the possibility of surface
The angular intervals into which the color field direction must betension being activated byne-colordensity gradients, as is
resolved in order to produce an unambiguous prioritization of linkthe case in the ‘“classical” immiscible lattice gdfL.G),
directions are each delimited by one solid and one dashed line. where the presence of an interface induces changes that may
be “felt,” in the case of interactions between droplets, at
distances of several lattice units. Thus the range of interac-
: @ tonsis likely to be reduced by the use of the rules encapsu-
lated in Egs.(4)—(6), which may prove advantageous for
In the second collision step the local lattice fluid pressurecertain applications.
tensorP ,4(x,t), approximated1,7] by In the third and final step, nodal colpg(x,t), pr(X,t) is
allocated to link densities in that distribution which maxi-

_ mizes the work done bycolor flux q(x,t)=Z;[R;(x,t)
P“ﬁ(x’t)_Ei Ni(XD)CiaCip ®) —Bi(x,t)]¢ against the direction of(x,t) [7]. Clearly, to
achieve maximum segregation as much (telde) as possible
is rendered anisotropic at interfacial sites by accumulatinghould color the density on the link of largest(smallest
(denuding density on links perpendiculaiparalle) to an  projection onto the direction of(x,t). As the multi-speed
interface tangentThe interfacial sites are those that include nature of our lattice affects any prioritization of links for
nonzero densities of both colorsThe motivation for this  color allocation, an unambiguous hierarchy for red popula-
step is found by reference to the parent lattice-gas techniquemn of links 1-9 requires thaft(x,t) be resolved into the 16
(see, e.g., the work of Rothmann and Kell&i) and is @  angular intervals identified in Fig. 1. Then, for example, the
process not without foundation in hydrodynam[d]. To  prioritization of links 1-9 that results whef{x,t) is found
achieve this redistribution we follow Gunstensenal. and {5 jie in angular interval8 is, in descending orderi
adjustN;(x,t) at mixed nodes by applying a density and =3 452 9,6,1,8,7. The need to resofifa,t) into 16 inter-
momentum conserving perturbation vals emerges as one attempts to determine which of finks
=2 or 5 isthird most favorable for red occupation, for such
prioritization can be made only after determining the direc-
tion onto which short link 2 and long link 5 have equal
projection. The latter is specified by the angle=26.56°.
Symmetry then requires that the positive quadrant is resolved

2
—

w

p=—

6

AN;(x,t)=0C(x,t)cod2[ 6;(x) — 6;1}, (4)

TABLE I. Angular orientations and components of the D2Q9
lattice velocity vectors. NA denotes not applicable.

i Cix Cy c2 0, cos(2) !nto the four- angular intervalg shoWﬁig. 1). Note that link .

i =9 (resh will always have priority 5. The propagate step in
1 -1 1 2 135 0 which all densities are translated by the appropriate velocity
2 0 1 1 90 -1 vector is carried out in the usual way on each red and blue
3 1 1 2 45 0 density.
4 1 0 1 0 1 In an immiscible lattice-gas cellular automatpn], the
5 1 -1 2 —45 0 color field cannot influence the outcome mbnochromatic
6 0 -1 1 -90 -1 collisions. Thus sites of high average color purity are rela-
7 -1 -1 2 —135 0 tively unaffected by the presence of a color field. It is this
8 -1 0 1 180 1 fact and the need to promote a tractable model that motivate
9 (resh NA NA 0 NA NA our inclusion into the perturbation of the additional factor

C(x,t).
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7 Pressure tensor contractions, analogous to those in Eq.
w (7), are obtained using E@3) as usual:
/) P00 =2 Nicy, ®)
N
Pr(x =2 Nicf, ©)

wherec;t (c;y) denotes that component gftangentialnor-
mal) to the interface:

N Y
Interface cin(X)=|clcod 6= 0), cir(x)=|c]sin(6;—6). (10)
FIG. 2. Coordinate system used in the region of a planar interFollowing Ref.[7], Eq. (7) is considered as an average over
face. M, adjacent, long integration lines=const and then cast as
a discrete summation over lattice nodes in #drea A so-
IIl. ANALYSIS OF THE MODEL defined(Fig. 2
Throughout we assume there to be sufficient local flatness %
for the mechanical definition of surface tensidr?]: 3= fw: [Pn(W) = Pr(w)]dw
* cog 6)
s= [ (Pytw —PrtwJaw @ L2 S S N, 1
i 0 xeA i

to be applicable, wheres measures distance normal to the in which the summation or is over allxe A and we have
plane of the interface(Fig. 2), i.e., we assume that introduced, following Eq(10) and the notation of Ref7],
Pn(w)— P1(w) quickly, asw increases. We postulate that —

the principal modification necessary to account for interfacial Ui(x)=(ch—cF)=c’cog 2(6,— 0)]. (12
curvature derives solely from the phenomenological inclu- _

sion of the microcurrent. We consider the structure of theNote that while it is independent of (Sec. Vj, the factor

steady-statenterface and therefore omit the timéfrom all  cos(@)/M, in Eq. (11) is retained for the sake of compatibility

quantities throughout the following analysis. with the work of Ref.[7]. N;(x) devolves, for D2Q9, into
Consider a stable planar interface, separated about a welkquilibrium and nonequilibriumparts[4,5]:
defined line, a situation, if that line is appropriately selected

(parallel with a lattice link directiort;), has sufficient tran- N™"Fx)=N;(x) —Nqu), (13
sitional symmetry (parallel to the interfageto preclude
variation between adjacent interfacial sites’ color gradient NEYU) = (14 3U,Ci0— SUgUa+ 3UULCICip), (14)

f(x,t). The latter{coinciding with the interfacial normal and
thereby the direction of the contour of integration in Eg).

= -
may therefore be characterized by the constant afgleb- 316‘0’ = 1357
tended at the horizontal axis (Fig. 2. These assumptions ti=y sp, 152468 (15
are justified by such a situation being readily realizable in 4, i=9.

appropriately initialized lattice Boltzman(i.B) simulations
[7], but note that interfacidluctuations(indigenous in any  \ye note that the dependence
class of direct simulation employing discrete particlase

present in the parent ILG techniq{i€3,14). However, even

in the context of the ILG, a calculation, founded on assump
tions similar to ours and performed within the Boltzmann
approximation[1], may be employed to calculate surface

Tqu) arises only through
the x dependence of the velocity field; howevak, " will
depend uporx through both the velocity and its gradients.
Using Egs.(12) and(13), Eqg. (11) may be rewritten as

tension from a prediction of the structure of the ensemble- S = cos6) > D NS{u)U(x)

average interface at steady stgltd]. Adler, d’'Humieres, and Mo X 7

Rothman also demonstrafé4] that ILG interface fluctua- cos(e_)

tions broadly obey classical statistics, but, importantly for n NG ) U (x 16
the present work, similar fluctuations in the interfacial be- Mo 2x: Z U0, 18

havior of lattice BGK(LBGK) interfaces are not observed

for the cases we consider here. We return to this point in Se¢he two contributions to which we proceed to treat sepa-
IV. Although some similar effect might be inserted deliber- rately. Using Eqs(14) and(15), we find by evaluation with
ately, the absence of such fluctuations from LBGK calcula-a standard computer algebra package, and confirmed by di-
tions is what originally motivated the modgf]. rect evaluation, that
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Interface

DIDIRUS(DIVIEIEDY puZcog2[ 6,(x)— 6]}, (17)

where we have introduce#,(x) such that *\\ / \ e
. ’ N
Uy=u cog 6,(x)], uy=u sin 6,(x)] a \\,,L
and we have used the componentscotiefined in Table . SR
To deal with thesecondterm on the right-hand side of Eq. \/<
(16) we follow Gunstenseret al. and appeal to the lattice e N
Boltzmann equation for the BGK algorithm, appropriately : h .
modified to account for the presence of interfacial achro- P
matic density perturbations and adapted to the steady state Z N4 i //
7 X
7 3 \\\
N;(X+¢) =N;(x) — oN"*¥x) + AN;(X). (18 y
y=y +1

Noting, for a closed lattice, that,N;(x+¢)=2,N;(x) and
using Eq.(4), one obtains after some algebra

o o FIG. 3. Symmetry of populations in a vertical interface. This
> NIeYx)U; = — > C(x)> cog2(6,—6)]U, figure shows a lattice excerpt containing several mixed nodes of
X i @ x [ which two have been highlightg@pen circlegin an interface cen-
tered on the dashed line. Nodes to the left are predominantly red
_g [6—2 005{40_)]2 C(x), (19) (pr>pg) while, in the stable interface, those to the right are pre-
w X dominantly blue pg>pg). Note that color populations in nodés
andB are equivalent under color reversal and rotation through 180°.
which we note has the expected fourfold rotational symmeThe dotted line indicates the initial interface.
try. Incorporating Eqs(17) and(19) into Eq. (16) yields an

xpression for macr i rf nsion: . . .
expression for macroscopic surface tensio scales and have no physical influence on surface tension.

o Consider a steady-state planar interface parallel to short lat-
> pu?cog 2[ 6,(x) — 6]} tice links along thez axis in which color is symmetrically
x separated(Fig. 3), so cosf)=1. Translational symmetry
o along thez axis implies an absence of any microcurrent and
[6—2cog46)]>, C(X). (200  a color gradient (x)=f(y)y. It is appropriately illustrative
X of the notable stability of the LB techniques in general that
- — . — the direction of the color field in the final steady state is free
Reminding the reader that caiM, is independent od, we of any fluctuations. For purposes of verification),/the direction

][frgarklthfitt E_I(_qH(ZO) for i(ta’w) IS qt()rrgcrt]ttg al(lj o.r(cjier.s Ofl of the color field measured from simulation showed no mea-
iuid velocily. The second term on 1S right-hand Side IS réla-g,, .5|q departure from this assumption. Note, however, that
tively straightforward to evaluate if we remember tig{tx)

. even for the plane geometries considered here, cellular au-

vanishes at pure, noninterfacial sites. No simplification IStomata based ILG simulations would contdinctuatingin-
evident in the first term of Eq20), however, and the posi- terfaces, even at “steady state.”

tional summation must be evaluated ovenailA. Notwith- For these initial lattices, we consider that the stable inter-

standing, to leading order in its contribution t0X(0,w) &t ¢a0e cannot be centered on a single layer and will require a

phractlfcal values ofr (/see Srtlac. Vil is sm'ﬁll.hln tgns regime,  inimum thickness of two layers, say=Y, andyo+ 1, and
It ere %Te%(k(,"“’)w‘.f w, where \r/]ve re(;]aEt abT ethermlnes a color distribution symmetrical under color reversal, corre-
attice fluid kinematic viscosity through E(). To the same sponding to a concentration given by

order of approximation, Gunstensenal. reported an analo-

gous dependence of théir upon their LBILG collision pa- C(X)=C(8(y—Yo)+ 8(y—Yyo—1)), (21)
rameterh 1, where\ is the eigenvalue of the LBILG colli-

sion matrix that determines the simulated fluid kinematic

Cco 6_
S(o,0)= I\jl(o)

T cos{a_)
Moﬂ)

viscosity. whereC is a constant. If there are no microcurrenis; 0
everywhere and the expression for the surface tension re-
IV. SURFACE TENSION IN PLANE INTERFACES duces to

A. Plane interface parallel to the z axis
40C

Throughout this and subsequent sections we take a mi- s _ S(V=V) + S(V—Va—1
crocurrent to be an interfacial effect resulting in a nonzero (o,0) Mow z=1, Mg vy [oy=Yo)+6(y=Yo~1)]
mass flux across a line parallel to a static interface and we do
not consider further microcurrents defined in alternative :8‘7(: 22)

terms, which produce no mass flux on mesoscopic length o)
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At steady state, when the color content of each node must be Interface
constant between successive steps, links connecting two
mixed sites should contain, at each end, counter-propagating ’\ ‘ ‘ .
equal densities of each color. If it is further assumed that | N TN N
achromatic link densities depart only negligibly from their J \/_\ :
restequilibrium valued;, the value of the constadt in Eq. | Al ,\/J,‘/B
(21) may be calculated. = D \'
Each interfacial site connects to three other mixed nodes : / I \\ S N
and three monochromatic sites in tliedirection and with 3 /\

two equivalent sites in the direction(Fig. 3). We assume in | [ e TN e N\
! i 5 T b’
N /

the following that the sites are pure red fpy, and pure
blue fory>yy+ 1. For diagonal, “speed 2,” link$=3,5 in
y=Y, interacting with linksi=7,1 iny=yy+1:

Rs(Y0.2)=B3(Y0.2) = Rs(Y0.,2) =Bs(Y0.2) = 3t1= 73p0.

Ri(Yo+12)=Bi(Yo+12)=Rs(yo+12)=Bs(yo+12)

— lt _ 1
=2l1= 72P0;
- . . : . p [R
and similarly for the speed 1 link=4 in y=y, interacting
with link i=8 iny=yg+1: T B
Ra(Y0,2)=B4(Y0.2) = 3t,= 15p0, R
Rg(Yo+1,2)=Bg(Yo+1,2)=15p0, D_ B
: . . . _ . R
wherepq is the achromatic density of the interfacial lattice [ |

node and we have used identitid%). With this information b D D
the color density of the nodes in=y, may be calculated:
FIG. 4. (a) Populations in a diagonal interface. This figure

pe(Yo,2)=B3(Yg,2) +Ba(Yg,2) +Bs(Yg,2) shows a lattice excerpt containing several mixed nodes of which
three have been highlightédpen circlegin the interface centered
=(5+ 75+ 15)Po=13P0, on the dashed line. Nodes above the dashed line are predominantly
red (pr>pg), While, in the stable interface, those below are pre-
pr(Y0,2)=po— ﬁpoz %Po, dominantly blue pg>pg). Populations in node& andB are again

equivalent under color reversal and rotation through 189)°Initial
whence, from Eq(6), C= % This value forC, on insertion distribution of color for the simulation of a diagonal interface on the
into Eq. (22), gives, for our model of a horizontal interface square D2Q9 lattice showing the periodic images of the red diago-
parallel to the short D2Q9 lattice links, a macroscopic surnal layer in the box corners. Regions markedB) correspond to

face tension red (blue) mass. Distanc® =27 lattice units.
S (0,0)= 4o 23) R4(A)=B4(A)=Rg(A)=Be(A)=3t,=15p0, (24)
' 3w’
while for link 5 in sectionaa’ connecting to a pure blue
B. Plane diagonal interface node
For a steadydiagonalplane interface separated in a line Rs(A)=0, Bs(A)=t;=35pg, (25)

parallel to the longer lattice link€-ig. 4) two different (but

simply related cross-interface density profiles occur. How- \yhere we have again used identitigs). Densities for the
ever, the macroscopic surface tension can be calculated withixed B node are easily obtained from the symmetry argu-

a small modification. In the simplest case of an interfacenents already rehearsed. The color density of the mixed
constituted by mixed S|te§,B in adjacent Sectionﬁa',bb' nodes in the diagona| interface is therefore

(Fig. 4 densities atA, {Ri(A),B;(A)}, and those atB,
{Ri(B),B;(B)}, are equivalent under combined color rever-
sal and a two-fold rotation. If the achromatic densities are PB
again assumed to depart negligibly from their rest equilib-

rium valuest;, the simplest distribution of color through this 5 s

diagonal interface may be deduced. For links in the only Pr(A)=po— 36P0= 36P0; (27)
(mainly red mixed node in sectioma’ (Fig. 4), connecting

to the mixed mainly blue node in twob’ sections, postcol- Whence, from Eq(6), C=1; for both theA and B mixed
lision densities are sites. Settingd=45° and noting that there is ah anda B

(A)=Bs(A)+B4(A)+Bs(A)=(35+ 15+ 15) po= 35_6/201)
26
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mixed site on any horizontal line crossing a diagonal inter(#,|r|/R) must have the fourfold rotational symmetry of the
face, it follows from Eq.(20) that the macroscopic surface |attice. Hence Eq(20) becomes

tension is ,
cog 69) “ —
400 = 2 u(LIrlR%p cos2(0,00 0]}
S(o,0)=———. (29 o
"o o cog 0) —
+——"[6—2c0%46)]> C(X). (30)
Mow X

The preceding analysis of flat interfaces between static fluids
neglects perturbation-induced departures from equilibriuml.his result
rest density, the validity of which assumption increases Witi‘BGK modél
decreasing perturbation amplitudeand is supported from

the results of Sec. V. It should be noted that this assumptio
implicitly restricts the principal analytical results of this sec-
tion [Egs. (23) and (28)] to apply when the induced macro-

scopic surface tension is small. Note also that due to th

it should be noted, applies only to the D2Q9
through the assumed form of the equilibrium
distribution function defined in Eq$14) and(15) and intro-
Buced by Qian, d’'Humieres, and Lallemaf. Clearly, the
potential for anisotropy entailed in the second term therefore
applies only to the model under consideration here and the

> . . ctual extent of any anisotropy in surface tension may be
absence of local curvature in the interface no dengtes- d y Py y

; . etermined only afte€(x) is known. To interpret Eq(30)
surg change between the bulk fluids separated by the mteri-n the presence of curvature, we consider an interfacial ele-

face is to be expected. Moreover, the fact that, for the presenit ot of lengthRA ¢ from a large circular drop of radiu®
model in the case of, e.g., the vertical interface alongzhe subtending a small anglké at the drop center. This element
direction, the population of link 4 may, on general grounds’vve assume to be locally flat and contained within an area
be different from that of links 3 and 5 allows for density to efined byM - lona horizontal lattice lineg— const. Then
be constant through the interface. We now consider the effeq —RA 0ycog@ \?vhence cosalM _1URAG. The r'nagni

0o~ ’ 0— . -

of microcurrents that are precluded by symmetry in plana - V0
P y sy ymnp tude of the positional summation in the second term of Eq.

interfaces. (30) will be proportional toRA# and a formok,/w is as-
sumed. With respect to the first term, we take the microcur-

V. SURFACE TENSION IN CURVED INTERFACES rent activity to decay rapidly away from the interfatan

eassumption supported by the results of Figaid this will

Microcurrents are normally induced close to an interface”; id finit tributi 1o the first i v f
by the segregating effect of the surface tension &)6,15; yield finite contributions to the Tirst summation only from a
@gmber of sites proportional in number to tR& 6 and the

only in the presence of suitable symmetry, such as the cas . ) . .
considered in Sec. IV, will the microcurrents be absent. Thé’?loc'ty at all of these sites we take to be determined prin-

presence of interfacial curvature and a gradient in the colo ipally by o The positional summaﬂo_n in the first term in
field mean makes it impossible to argue on general ground 9. (30) wil thegefore also pe propgrnonalltﬁAb’ Anciwe
that an interfacial microcurrent should be absent from thé?SSUme a form’k, . For the interfacial tension of a drop we
rest interface. Its influence will be felt principally through therefore find

the first term in Eq(20). The magnitude of the microcurrent o

velocity close to the interface has been obsef&ii5] to be S(o,w)=0%k + — ks, (31)

of the form @

in which for small values of the perturbation parameter
u=u(x)o. (29 the dominant contribution is from the second term and hence

For circular interfaces in two-dimensional simulations of
static (say red drops, the interfacial microcurrent pattern
must conform with the rotational symmetry of the underlying
lattice and two complementary, counterrotating microcurrent
cells must occupy any lattice quadrant, the maximum veloc-
ity in each occurring close to the generating interféery. In order to make a comparison with the calculations for
6). In fact, the maximum value of the surface tension inducplane interfaces we construct an effectively infinite system
ing perturbation occurs for the maximum valuelfin Eq.  and thus periodic boundaries were used all around a square
(12) at =45°, accounting for the fact that the microcurrent lattice and retained for all other simulations reported here. A
circulation close to the interface is radial along the diagonakuitable box size and equilibration time were determined on
bisectors of each quadrafftig. 6). Moreover, on grounds of the basis of stability. For all the data presented, sites were
lattice symmetry and hydrodynamiéshich must ultimately initialized to achromatic densitg,=1.8 with rest equilib-
govern the microcurreiht one expects the extent of a mi- rium link densities of 0.8, 0.18, and 0.045 for speed O, 1, and
crocurrent cell to be determined by lattice extremities anc? links, respectively, the initial color being allocated so as to
drop radiusR. We approximate the flow in a microcurrent produce a particular interface configuration.

cell outside the interface with a uniform rotation such thatits Results were obtained for plangs const, interfaces on a
outermost streamline touches the interface and has a velocify20x 120 lattice containing a red vertical layer sandwiched
determined principally byr. We then write the microcurrent between two blue fluids. The initial interface lay between
velocity field u(x)=u(f,|r|/R) in Eqg. (25 and note that consecutivey planes of nodes and the red layer was defined

E(J,w)E% K,. (32)

VI. SIMULATION
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TABLE Il. Calculated and measured values of the Laplace law lci|
surface tension. Calculated values are derived from E2§.and S(o,w)= > (E [Pn(D)=P1(D+Py(I+¢)
(28). For the planar horizontal interfacer (w)=(5x10"%,0.91), !

while for the planar diagonal interfaces simulatdd,w)=

(5X1074,0.91). —P1(I+c)1|, (34)
Interface Calculated Measured Calculated Measured
orientation 3(o,w) 3 (o,w) C C . L .

wherel denotes position on a lattice line perpendicular to the
horizontal ~ 7.3%10°% 7.37x10°3 0.166 0.15 interface and we use Eq&) and(9) to obtainPy(l),P+(1).
diagonal 1.7%10°% 1.73x10°3 0.28 0.28 Figure 5a) shows, on the same axes, hormalized variation

of color and pressure tensor contractipRy(l)—P+(1)]
through the vertical interface described in Sec. lll. For the
corresponding case of a diagonal interfad€égs. 5b) and
?(c)] color is not, as expected, symmetrically distributed
about the maximum value d®\(l)—P+(l); Figs. §b) and

5(c) represent sections of the interface along adjacent diago-

by pr(x,y)=1.8 and 0, 3%y<81. The diagonal interface
was constructed by initializing as red those nodes which la
on the lattice of Fig. &) with y coordinates such that

z—26<y=<z+ 26, with the periodic images of this red layer X . . .
y P g y nals (Fig. 4) that are interrelated by a rotation a@fradians

incorporated in the lattice cornerig=ig. 4(b)]. An equilibra- q | | h its of Fi h |
tion time of 15 000 updates was allowed for both plane in-2N¢ & COlor reversal. For the results of Fig. 5 the BGK col-
terface orientations and the steady-state density distributiolS10N Parameter=0.91 was used in conjunction with sur-

was measured through the interfacial region. Also measurefiC€ tension perturbationsr=0.005 [Fig. @] and
o=0.0005[Figs. §b) and §¢)].

through the interface was quantiBy— P+, using Egs.(8) X :
and (9). These measurements, in conjunction with a simple Figure 6 shows the microcurrent structure gengrated at the
discrete approximation to the mechanical definiti@y, al-  Surface of a red drop through the stream functipfx,y)
lowed the planar interfacial tension to be evaluated. calculated by a process of numerical integration after Eq.
Links within a circular, central portion of radit® of an (33). The mlcrocurrents.are seen to be conS|§tent with the
otherwise blue 158 150 lattice were initialized red to form a Symmetry of the unde_rlylng lattice and the maximum pertur-
circular drop. Different combinations of surface tension per-bat'pn' The range of influence of the mlqocu_rrent for a pe-
turbation parametes and BGK collision parameten were  Hodically bounded drop on a 150150 lattice is shown in
used to generate stable drops with the values nbw being ~ Fig- 7, Which charts the variation df, flow speed, against
chosen so as best to recover classical hydrodynamic behaviBPrmalized distance form the drop centef/R for several
[16]. Laplace law measurements were used upon these drojf@/Ueés of parametar. As a quantitative assessment we note
to obtain surface tensioB(a,w) from the gradient of pres- that EQ.(31) predicts that a graph di (o, w)/o against b
sure differencelp=Ap/3 [4,5] as a function of R for 15 will have an ordlnal |ntercep(grad|_en1 frqm which constant
<R<40. The steady-state value Bfwas obtained from the X1 (kz) may be inferred. AccordinglyFig. 8), %(o,w)/o

drop inertia tensof8]. was obtained from Laplace’s laysee Sec. V)l applied to
In order to observe the influence of microcurrent activity droPs With 0.5 ©=<2.0 ando=0.025. With the latter value
from circular interfaces the stream function of perturbation parameter the number of data points neces-

sary to apply linear regression reliably entails significant pro-
cessing, but yields values of 30.55 and 1.26 Kprandk,.
Y Hence, foro=0.025, the microcurrent contribution to the
. uy(x,y")dy’ (33 macroscopic surface tension in our model is seen to approxi-
mate to that arising from the second term in E2{l) and we
infer an estimated upper limir=<0.025 such that, for the
particular model of the present study, the influence of a mi-
crocurrent upon the macroscopic surface tension is of de-

!

tﬁ(x,y):fy

was calculated from the velocity field along with the corre-
sponding pressuréattice density field. The variation with C
normalized distance from the drop centterr/R, of velocity ~ Cr€asing importance.

modulus averaged over an annular lattice sample concentric Figure 9 concentrates upon values of 0.802<0.0125,
with the drop center, radius yields a quantitative measure well below this upper limit, and shows results for surface

of microcurrent activity and a test of the assumptions maddeNSion=(o,w) for 1.5<w=1.9 plotted against the quotient
in deriving Eq.(31). ol w; these results for the surface tension are derived from

Laplace law measurements described above. The continuous
line represents a linear regression fit to this data and although
unconstrainedo pass through the origin, the fit generates an
intercept that lies well within one standard deviation of zero
Consistent with the assumptions made in Sec. Il, quiesand a gradient that identifids, [Eq. (32)]. Obtained from
cent color mixing in appropriately initialized plane interfaces Eq. (20), Eq. (23) is valid for a flat horizontal interface at
was confined to layers of two sites. Table Il shows the closeest. Based as it is on the mechanical definition of surface
agreement between calculated and measured interfaciednsion[12] [Eqg. (20)], we interpret only with respect to
quantities for both cases of planar interface considered. Thequilibrium (res) fluids and the velocity dependence entailed
measured values of surface tension were obtained directly its first term, we suggest, should be regarded as arising
from a trapezium rule approximation to E@): only from that flow present in a rest simulation: the mi-

VII. RESULTS
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wl p~ N
MO anrspnesr ™

FIG. 6. Stream function for steady circulation pattern developed
by a drop of radius 40 lattice units placed centrally on a square
lattice. The flow pattern is observed to be stable after approximately
-0.2

4000 time steps. The results were obtained for the same simulation
13 14 15 16 17 .
(© s parameters as Fig(8&.

crocurrent. Nevertheless, a useful check on @2§) may be
FIG. 5. (a) Normalized variations across a vertical interface, performed by applying a uniform shear of increasing rate

with S measured in lattice units. The dottédhshedl line connects  parallel to the flat vertical layer- 10<y=<10 on a 6X 60

calculated blue(red densities and symbols mark corresponding lattice (See the discussion above and Fig.tBe shears being
measured values. The solid line corresponds to the valueof

_ 1 lin generated in the usual manngB,9]. Setting #=0 and
—Pr. The achromatic density in use wag=18, =091, and g (x)=7/2 for smallo, we may omit the second term from
0=0.005. (b) Normalized variations across a diagonal mterface,Eq_ (20) and

sampled alon@a’ (Fig. 4). The parametes is related to the coor-

dinatey throughs=v2y. After (a) lines connect calculated points
and symbols show results obtained from S|mulat.|0n. Th.e sphd line S(o,0)~— —— 2 u2= —p 2 u(y)z. (35)
corresponds to the value Bfy— Pt . The achromatic density in use Mo X =-10

was pg=1.8, ®=0.91, ando=0.005. As expected, this plot does

not show the same color-reversal symmetry as in the case);of Figure 10 shows the results of plottinty(o,w), obtained

instead the color distribution is related to that displayecjnSee  from Eq. (34), as the ordinate against summatic
Sec. IV B. (c) Normalized variations across a diagonal interface, = 5 y=20

o y:_mu(y)z, obtained for a small range of shear rates, as
sampled alongb’ (Fig. 4). Other parameters are the same aJn  {he “apscissa, with the expected linear trend emerging. At

y=20
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o ) ) FIG. 9. Plot of3(o,w)/o (measured in lattice unijtsagainst
FIG. 7. Variation of|u|, microcurrent flow speed measured in (dimensionless 1/w for 0.5<w=2.0. The former were obtained
units of lattice spacing per time step, against normalized distancgq, Laplace’s law applied to drops with=0.025 and 15R
from the drop centefr|/R for several values of parameter(see <40 on a 156 150 lattice.

key). Note the approximately linear trend in peak flow activity with

o, which occurs close to the interface. . . . L .
face tension and cross-interfacial color distributions for this

ller sh tes tf tant itivecontributi f1h model are in good agreement with those values calculated
smaller shear rates tiieonstant, positivecontribution ot the ¢, ) analysis of our algorithm, for both plane horizontal and

first term in Eq.(20) begins to become apparent. Itis impor- iagonal microcurrent-free interfacial orientations. The dif-

i
tant to note that, for the reasons set out above, we do ncﬂerence between the two expressions suggests an
claim that Fig. 10 represents more than an interesting prop-

. = F'“Torientational-dependent anisotropy in the model's surface
erty of Eq.(2_0)_, Eqs.(20)_ a_nd (??0) resting on definitions in tension and the effect of this upon shape in drops simulated
which a static interface is implic[tL2].

by this method is currently under study. We have deduced,
on general grounds, the structure of the microcurrent circu-
VIII. CONCLUSIONS lation generated by circular drops and compared these with
measurements. These measurements demonstrate that the

We have presented a method by which the interface gensimple theory successfully accounts for the broad structure of
erating algorithm of Gunstenset al, itself an extension of  the microcurrent flow field. The analysis allows us to de-
the automaton-based algorithm of Rothman and Kélflér  yelop an expressiofEq. (31)] for the surface tension of a
may be successfully extended to a D2Q9 lattice BGKgrop and this expression demonstrates that the microcurrent
scheme and generalized to promote both tractability and COKrelocity field might be expected directly to influence the
respondence with the progenitor cellular automaton techpodel's surface tension. For small values of paramettire
nigue. As Table Il shows, simulation measurements of Surggrrections are only found to be second ordes-iand this is

0.5 . 11— : -
~%
34 o 0
o R
25 1 T 0.5 1
AT
+. +
2 4 » 17
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3 e W -15 A
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25 4
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34
0 T T T T T T T T 35 r T T T .
0 0.25 05 0.75 1 1.25 1.5 1.75 2 0.664 0.665 0.666 0.667
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FIG. 8. Simulational measurements of the Laplace law surface FIG. 10. X(o,w) [measured in lattice units obtained from Eq.
tension(o,w) (measured in lattice unitsor 0.00l<0<0.0125, (34)] as ordinate against summatiS@zEﬁz,olou(y)2 (dimensions
1.5=w=<1.9 as a function of quotient/w (where o and w are  of lattice units squaredor a vertical interface exposed to a uniform
dimensionless The continuous line is a linear regression fit to the shears parallel to the vertical interfacelO<y<10 placed on a

data. 90X 60 lattice.
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substantiated by the measurements summarized in Fig. §roximate or numerical solution of the equations of creeping
Any attempt quantitatively to assess the approximate theorftow, which should fully account for the microcurrent struc-
of microcurrent contribution presented here will require sub-ture. Although our general arguments yield a qualitative in-
stantial quantities of data and should be undertaken only akight into the origin of the microcurrent, such a calculation
ter a more rigorous analysis of the contribution of the firstwould provide the most useful check on our understanding of
term in Eq.(31). The undertaking would be facilitated by a this phenomenon and hence upon the ability of the method in
calculation of the steady microcurrent flow field as an ap-the area of its most important potential application.
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