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Mutual diffusion in a binary mixture under shear flow
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Mass transport in a dilute binary mixture of Maxwell molecules under steady shear flow is studied. The
analysis is made from an exact perturbation solution of the Boltzmann equation through first order in the
concentration gradient. The reference sta&roth order approximatigrcorresponds to the exact recent solu-
tion [Phys. Rev. B52, 3812 (1995] of the Boltzmann equation in the uniform shear flow, which holds for
arbitrary values of the shear rate. The results show that the mass flux obeys a generalized Fick's law where, due
to the anisotropy of the problem, a mutual diffusion tensor is defined. This tensor is a highly nonlinear function
of the shear rate and the parameters of the mix{pagticle masses, concentrations, and force constarte
calculations presented here extend previous results derived in the limit cases of self-diffusion and tracer
particles.[S1063-651X98)02601-4

PACS numbgs): 51.10+y, 05.20.Dd, 05.60-w, 47.50+d

[. INTRODUCTION rather than a scalar can be identified. Our goal is to get the
explicit expression of this tensor in the case of Maxwell mol-
The description of transport processes taking place iecules. Such an expression generalizes previous results de-
fluid mixtures is well established for states near equilibrium.rived in the cases of tagged particleself-diffusion [5-7]
For such states, the Curie principle forbids the coupling beand tracer particlegs,9].
tween fluxes and forces of different tensorial rdifk For In the context of dense fluids, Evans and co-workers
instance, when a fluid mixture is simultaneously subjected t¢10,11] have derived a Green-Kubo formula for the mutual
both weak velocity and concentration gradients, the mas§iffusion tensor in fluids undergoing strong shear. In a simi-
flux (vector quantity that obeys Fick’s law is not affected by lar manner as in equilibrium, the mutual diffusion tensor of a
the presence of the velocity gradigisecond-rank tensorial thermostated shearing steady state is related to fluctuations in
quantity. Nevertheless, beyond the linear domain Curie’sthe steady mass flux. This expression has been used to evalu-
principle does not apply, and the mass flux can be modifieéte the influence of the shear rate on the diffusion tensor in a
by the shear flow even if the concentration gradient is smallbinary Lennard-Jones mixture by means of computer simu-
In order to capture the essential aspects of such a nonlidations[11]. In their simulations they do not observe a sig-
ear problem, we consider a binary mixture in the low densitynificant shear rate dependence of the diffusion tensor. This is
regime as a prototype fluid, which lends itself to a detailedprobably due to the fact that the shear rates considered in the
description by means of the nonlinear Boltzmann equatiorsimulation are not sufficiently large to observe non-
[2]. However, due to the complexity of its collision term, it is Newtonian effects.
a very hard task to get explicit results in far from equilibrium ~ The plan of the paper is as follows. In Sec. Il we give a
situations, especially in the case of multicomponent system&rief summary of the results derived from the Boltzmann
One of the fewinhomogeneoustates for which exact results €quation for a binary mixture under uniform shear flow. Sec-
can be obtained is the uniform shear fldWSPH. In this  tion Il is concerned with the evaluation of the mutual diffu-
state, the only nonzero gradientis, /dy=a=const, where sion tensor. By performing a perturbation expansion around
u(r) is the flow velocity of the mixture. Recently, rheologi- the shear flow solution, we get an explicit expression for the
cal properties(such as the shear viscosity and viscometricmass flux up to first order in the concentration gradient. The
functiong of a dilute binary mixture under shear flow have nonzero elements of the diffusion tensor happen to be non-
beenexactly obtained in terms of the shear rageand the linear functions of the shear rate and the parameters of the
parameters of the mixturg8]. The solution is restricted to Mixture (mass ratio, concentration ratio, and force constant
the Maxwell potentiaL i_e_, partides of Specieands inter- ratios). Fina”y, in Sec. IV the results are discussed and com-
act through a potential of the forh,s= «,sr ~*. Apart from  Ppared with previous simulation results.
the limitation to the interaction considered, the solution ap-
plies to arbitrary values of masses, concentrations, and force
constants. In the particular case of mechanically equivalent
particles(single gag the well-known solution given years  Let us consider a binary mixture. In the low-density re-
ago by Ikenberry and Truesd¢#] is recovered. gime, the evolution of the system is described by the set of
The aim of this paper is to study a diffusion problem in atwo coupled nonlinear Boltzmann equatidi®3:
strongly sheared binary mixture. The physical situation is
such that ararbitrary shear rate coexists with \@eak con-

II. DILUTE BINARY MIXTURE UNDER SHEAR FLOW

centration gradient. Under these conditions, one expects that 9 J ko

. . . ! — +vVv- + —. — +
the mass flux verifies a generalized Fick’s law where, due to 4t fotv- Vit 2 mlfl Julfa,fal+Jud T, T,
the anisotropy of the problem, a mutual diffusion tensor (1a
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J J ) state. For this reason, usually a thermostat force is introduced
5t fat V- Vgt —- m—2f1:~]21[f2,f1]+322[f2.f2], to keep the temperature constah®]. The simplest choice is

(1b)
. . . . Fs=—msaV, (10
wheremg is the mass of a particle of speciss Fs is the
external force acting on particles of specgd ¢ is the one- ,
particle velocity distribution function of species, and WhereVi=v;—ar;. Here, to parallel the results previously
Jsil s, ] is the Boltzmann collision term, which in standard obtained from computer simulation$1], we al_so lncl_ude a
notation read$2] thermostat force of the forril0) to remove this heating ef-

fect [13]. For Maxwell molecules, it is important to remark
that in the USF problem there is an exact equivalence be-
‘Jsr[fSafr]:f dVlj dQ|v—vy|ows(v—vy,0)[fs(v)f(v])  tween the results obtained with and without a thermostat
force[14]. Furthermore, the USF becomes spatially homoge-
—f(V)f (v)]. (2) neous in the frame moving with the flow velocity In this
local frame, the velocity distribution function adopts the

In terms off, the densities of conserved quantitiesass of  fgrm f<(r,v)="f4(V). Under these conditions, Eqg&l) can
each species, total momentum, and total enecgy be de- pe written as

fined. They are given by

d
o= [ avi,, 3 = (@Vit aVOf= i f1, fa] + D 1, ], (1D

2 . . .
and a similar equation fof,. In the particular case of Max-

2
P“:; dvmgvfs= 521 psUs. @ well molecules, Eq(11) can be recursively solved by the
moment method. The key point is that for this interaction the
2 m collision ratego(g, 0) is independent of the relative velocity
nkeT= >, — | dv(v—u)?fs, (50 g, so that the collisional moments of orderonly involve
=1 3 moments of degree smaller than or equaktjat].

Exact expressions for the nonzero elements of the pres-
sure tensor of a binary mixture of Maxwell molecules under
uniform shear flow have been recently obtaij8fl These
elements define the main transport coefficients of the prob-
lem, namely, the shear viscosity and the viscometric func-
tions. They are nonlinear functions of the dimensionless
shear ratea* =a/{ and the parameters of the mixture: the
mass ratigu=m, /m,, the concentration ratio=n, /n, and
= J dvmg(v—u)fs=ps(us—u), (6)  the force constant ratios,,/ k1, andk,,/ k15. Here,l lisa

convenient time unit defined in the Appendix. The explicit
expressions of the partial pressure tensors are also quoted in
the Appendix.

wherekg is the Boltzmann constant. Hemg, is the number
density of species, ps=mgns is the mass density of species
S, p=p1+p2, N=N;+n,, uis the flow velocity of the mix-
ture, andT is the temperature of the mixture. The corre-
sponding balance equations associated with u, and T
define the dissipative flux of mass

momentum(pressure tenspr

2 2 Since the USF state is well characterized through the first
P=> | dvmy(v—u)(v—u)fs=>, P (7)  hontrivial moments, we are now in conditions to study the
s=1 S S S influence of the shear field on the mass flux in a dilute binary

mixture. This will be done in the next section.
and energyheat fluy

2 Ill. DIFFUSION UNDER SHEAR FLOW

mS
= d — - 2 - f . 8
q 521 V2 (v=uv=wits ® We are interested in analyzing the effect of the shear flow

on diffusive motion in the limit of small concentration gra-
From the partial pressure of spec&ne may also define a dients. In this situation, symmetry arguments suggest that the
partial “temperature”T¢ asps= Nk Ts= StrPg. mass flux is still proportional to the concentration gradient

The USF state is macroscopically characterized by a corfut @ shear-rate-dependent mutual diffusion tensor can be
stant densityng, uniform temperature, and a linear profile of identified. As stated in the Introduction, the evaluation of this

thex component of the flow velocities along tiedirection: ~ t€NSOr is the main goal of this paper. To this end, let us

assume that we perturb the USF state by introducing a weak
Usi=U=a;lj, a;=adydy, 9) concentration gradienVv. On phys_ical grounds, we also

assume that the total densitp is constant so that

a being the constant shear rate. The shear flow produceén;=—Vn,. These are the usual experimental conditions

viscous heating so that the temperature increases in tim#or measuring the mutual diffusion coefficient at equilibrium.

From a computer simulation point of view, it is desirable toIn this case, the corresponding steady Boltzmann equations

measure the transport properties of the mixture in a steadfpr the mixture are given by
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J J v, so that the concentration gradient not only induces a mass
- W(aijVﬁaVi)f1+(Vi+aijr1)Ef1 flux but it also disturbs the linear shear flow. The solution to
: : Eqg. (15 is
=94 f1,F1]+ 324 F1, 151, (12
- . . wo_ s 3K 9 oo 1
and similarly forf,. In the following we will focus on the Ui = pa\ K a ar; kj - (17)

properties of species 1. The corresponding properties for

SpeCies 2 can be eaSi|y obtained by Changing the indices. We are interested in Computing the mass ﬂg* across

Since the concentration ratio is slightly nonuniform, wetne system. Taking into account the relatits), the mass
solve Eq.(12) by means of a perturbation expansion aroundfyx at this order can be written as

the uniform shear flow state. In this expansion, the different
aproximations are nonlinear functions of the shear rate. 1) @ N "
Therefore, we write J1 :mlf dwiit—puP=7"—p,u™, (19
0 £(1

f=f i+ (13 where]{V is the mass flux defined with respect to the La-
wheref{¥ is of orderk in V» but retains all the orders ia. ~ 9rangian frame moving with the unperturbed velocity
The zeroth-order approximatidiy®) corresponds to the USF uf®=ayr;. The quantity] i can be obtained from the Bolt-
distribution but taking into account now the local depen-ZMann equatiori14) after multiplying it bym;V; and inte-
dence of the densitias, . Although the explicit form off ()~ 9rating overV. Thus, one finds that
is not known, only the knowledge of its second-degree mo-

ments(related to the pressure tenp@ necessary to getthe g, {0+ 4TV + p)\lz"(lli): Phaz put— ip&oi}(’
mutual diffusion tensor. Here, we will restrict our calcula- ‘ oMMyt mymy arg =
tions to first order in the expansion. In this approximation, (19
and assuming that the system has reached a stationary stat . , .
9 y y W(?iere)\lz is defined in Eq(Al) and we have used the rela-
one gets .
tion [15]
- i(ai'V' + avi)f(11)+(vi+ai'r')if(10):‘](lll)+‘](112) ph12 ~
v, B "G, | awmv oo = - 222 G )
(14 112
(20)
where (=3¢ [, f0]+ 3o [ £, {9, . .
Some remarks follow from the structure of the balance! € solution to Eq(19) is
equations associated with E¢L4) and its counterpart for 1 a
f$U. First, the mass balance implies thegfr;(9n, /dr;) =0 TW=— /5”(_ ik
and consequentlyn, /dx=0. This means that, in order to ' a+ (N go/mymy)pl a+(Np/mimy)p
maintain the mixture in a steady state, the concentration gra- P N 1op
dient must be orthogonal to the direction of the shear flow. x| — <10k>j_ Lpuf(l) _ (21)
On the other hand, the total momentum balance equation ary =T mmy
leads to . -
From Egs.(17), (18), and (21), one can write the explicit
B w1 expression of{!). After some manipulations, it is easy to
Ayl FauT=— 2 kaik ; (15  show that the mass flux can be cast in the form of a gener-
alized Fick’s law:
whereu®) is the first order perturbation to the velocity of the 5
mixture, i.e., . m;myn
ji'=——"Dij5;Mm (22
p arl
1 2
1)_ (1) . e . .
u' )—;Sgl f dvmgViEg™, (16)  with the mutual diffusion tensor given by
andP® is the total pressure tensor in the uniform shear flow _ kgT (1+uv)(1+0)? 1 ajk
state. According_to E_q(15), only in the case that the total Dij TN\ Wy T o+ B ko * +8
pressure tensor is uniform the velocity field is not perturbed
by the presence of the concentration gradient.attO, J o wv
P{?=nkgT&;; = const, sou™=0. For nonzero shear rates, X 5P;|((j)+ Ay |~ 1+—MAij : (23
there are only two limit cases for whid® is constant: the

case of mechanically equivalent particlesu=1,
K11= K2o= K12) [ 7] and the tracer limitii;<<n,) [9]. In both
casesP{))=nkgTF(a*), F(a*) being a nonlinear function 1 a2t g

of the constantshear ratea*. Beyond these limit cases the A :_( Sik— _'k)_pskcj(o), (24)
pressure tensor depends on space through its dependence on

where
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FIG. 1. Plot of the reduced diagonal element of the difusion FIG. 2. Plot of the reduced off-diagonal element of the difussion

tensor Dy,=D,,/D, vs the reduced shear rata*=a/{ for tens_or __DXY:_DXY/DO vs the reduced shear ra!E*=a/g for ,
K11= Kpy= K15, and several values of the concentration ratio <11~ K22~ K12, and several values of the concentration ratio
v=n,/n, and the mass ratig=m, /m,: (&) v=3, u=10; (h) = MN/Nz and the mass ratipx=m, /m,: (@ r=3, u=10; (b)
»=3, u=0.1, (c) the mixture considered in Ref11], i.e., =1, v=3, u=0.1, (c) the mixture considered in Refl1], i.e., v=1,
#=0.48; and(d) u=1. #=048; andd) p=1.

and we have introduced Othe gimensionless quantitieg we have plotted the reduced diffusion tengyr=D;; /Dy
af=aw/{, a*=al{, andP}(O=P{inksT. Furthermore, as a function of the reduced shear raaé for v=3,
K11= K2o= K12, and several values of the mass ratio. Al-

_ v (A p)(Atur) though we have only considered>1, the corresponding

2 u(l+v) ’ (25 behavior forv<<1 can be easily inferred when one takes into
account that the diffusion tensor is invariant under the
Yip V(1+ p) changesu—u ", vv~ 1 andky;< kyy. In the region of
= T1¥y (260 shear rates analyzed, non-Newtonian effects are important
since, for instance, a&* =5 in the case oju=1, the shear
and y,,=0.648 is defined in the Appendix. viscosity is about 88% smaller than its Navier-Stokes value.

Equations(22)—(24) represent the major result of this pa- We observe that in general the influence of the shear flow on

per. They provide an explicit expression of the mutual diffu-theé mass transport is quite important. Figure 1 shows that the
sion tensor of a dilute binary mixture of Maxwell molecules value ofD,, decreases relative to its value in the absence of
under shear flow. The components of this tensor give all théhear for all shear rates. Consequently, the shear flow inhib-
information on the physical mechanisms involved in theits the mass transport along the direction of the gradient of
mass transport in a strongly sheared mixture. They have beehe flow velocity § axis). Furthermore, this inhibition be-
derived keeping the first order in the gradient of concentracomes more significant when the mass ratio is different from
tion, but no restriction on the values of the shear rate, tha than in the case of identical particleself-diffusion. The
mass ratio, the concentration ratio, and/or the force constarhear flow induces cross effects in the diffusion of particles.
ratios have been considered. In the limits of tagged particleshis is measured by the off-diagonal elemany,. It gives

and tracer particles we recover previous results derived fofhe transport of mass along theaxis due to a concentration
the self-diffusion(7] and tracer diffusion tensofS], respec- g adient parallel to thg axis. This element is negative and,

tively. ; (o i e eimilare
, _ independently of the mass ratio, its shape is quite similar:
D Ifkthf/ abseglc.e ththe Sheallrdf';ld.:(o)’ Df‘fi._. Dodij.  there is a region of values @f* for which —D,, increases
bot_heB Chna)\lr% aﬁlré%stkg mr:;tjf?{)lﬁl] ulisl:?tnhg?rﬁolrcelegf:c?(;\r/sr] with the shear rate while the opposite happens for larger
y P 9 : ' shear rates. Once the shear-rate dependence of the elements

ing to Eq.(23), D,,=Dy,=D,,=0, in agreement with the P S . :
symmetry of the problem. Since no concentration gradienff the diffusion tensor has been studied, it is also interesting

exists along the direction, the only relevant components are 0 analyze the global .TlﬁeCt of t?\? sr;;aar field on the mﬁss
Dy,=D,,. andD,,. Notice that the equality,,~Ps., transpo_rt. In order to i ustrate this effect, we assume that
implies thatD,,=D,,. This fact is probably a consequence anS/a_z—o and.plot the magnitude of the mass qux*reIatlve

of the particular interaction considered since only for Max-{©0_ its  Navier-Stokes  value, —namely, ®,(a*)=

well molecules thery andzz elements of the pressure tensor li£(a*)|/[j{"(0)|. This is done in Fig. 3 for the same cases
are equal. For non-Maxwell molecules, recent simulation re@s in previous figures. We see that, for not too larges shear
sults performed in the case of a single dilute hard sphere gastes(saya*=1), the presence of shear flow enhances the
show that these elements are in general diffefg&nL Thisis  total mass flux when the deffect species are lighter than the
also consistent with the simulation results obtained for aexcess species while the opposite happens when the mass
Lennard-Jones mixtuffel 1], whereD,,>D,,. In Figs. 1 and ratio is larger than one. Anyway, in the limit of large shear
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20 - . - . . T - . - ments D,,=D,, and D,, are the relevant transport
coefficients. While the diagonal elements are even functions
of the shear rateD,, is an odd function. In general, they
exhibit a highly nonlinear dependence on the shear rate and
the parameters of the mixture. The diagonal element3; pf
can be interpreted as generalizations of the conventional mu-
tual diffusion coefficient since they conjugate iltle compo-
nent of the mass flux vector with théh component of the
concentration gradient. The off-diagonal elemBg{, can be
seen as a generalization of a nonlinear Burnett coefficient as
it measures cross-coupling effects. With respect to the de-
pendence of such elements on the shear rate, we conclude
e that the net effect of the shear flow on the mass transport is
*0 2 4 6 8 10 to produce an inhibition of the transport of particles along
a the direction of the gradient of the flow velocity @xis). In
the case of thex direction, —D,, presents a maximum at a
FIG. 3. Plot of the magnitude of the mass flux relative to its given value of the shear rate. These results show that diffu-
Navier-Stokes valueb,=|j{"(a*)|/[j{"(0)| vs the reduced shear sion under shear flow is a very complex problem due basi-
ratea* =a/{ for k1= k5= k12, and several values of the concen- cally to the anisotropy induced in the system by the presence
tration ratio v=n;/n, and the mass ratigz=m;/m,: (8 v=3, of the shear field.
n=10; (b) v=3, ©=0.1, (c) the mixture considered in Refl1], It is apparent that the derivation of explicit expressions
i.e., v=1, u=0.48; and(d) u=1. for the transport properties involved in a nonequlibrium
problem may be useful for interpreting computer simulations
rates, [j{P(a*)|/|j{"(0)| ~a* ~¥® so that the mass flux is results. In this context, recently Sarman, Evans, and Baran-
significantly reduced with respect to its Navier-Stokes valuel\fa' [11] have performed simulations in a strongly shearing
as the shear rate increases. _ennard-Jones binary mixture to evaluate the mutual diffu-
sion tensor by means of a Green-Kubo formul@]. To the
best of our knowledge, this is the only computer experiment
IV. DISCUSSION in which mass transport under shear flow has been analyzed.
They considered an equimolar Lennard-Jones mixture at two

The problem of diffusion of particles in a fluid under . . ; .
shear flow has been a subject of interest in the last few year§jlﬁcerent densities and the parameters in the potential were
chosen to model an argon-krypton mixture. Although the

Usually, theoretical analysis as well as nonequilibrium com-

puter simulations have been restricted to the special case heon dnea;rﬂ#(g?]e;ttfell#d tTgsmzrlleaztitrsgpnvear?gtr)ws(e)?tthlgo:)u;n d
which all the particles are mechanically equivaldself- ’ P P y

diffusion). This situation involves only single-particle mo- simulation, we have applied our results o this type of mix-

tion and is therefore somewhat simpler to treat. In this pape ret. Specifically, \t/ve Pf‘k:le t"’.‘ktemzl’ ,uf='0|.48', Z?Ind smﬁe
we have investigated the influence of shear flow on the masa € wo components of the mixiure are fairly simiiar we have

flux in a binary mixture constituted by particles mechanically fS% as;un;ed tga‘tll,; K??: K12 Acco[jdmg totLth lt)r:ahawor |
different Specifically, we have considered a dilute binary0 ij dispiayed n the figures, we observe that the genera

mixture of Maxwell molecules described by the BoltzmannShear'rate dependence of the diffusion tensor agrees qualita-

equation. The system is in a steady inhomogeneous sta. ely well wit.h the simulation results, at least for the lowest
characterized by a constant pressure and temperature, no gnsity cons_|der_eﬂ11]. As a matter of fact, for smlel shear
uniform partial densities of each species and a linear profiléates' for thls*m|xture one has thElyy~1—0.9§21_ and

of the x component of the flow velocity along thedirec- Dyy~—2.2147. l_\levert_heless, as far as quantitative effects
tion. We are mainly interested in the physical situation wheré'® concerned, smyla’upn results predict an influence of the
a weak concentration gradient simultaneously coexists with €1 flow on the diffusion tensor more modest than the one

strong shear rate. Under these conditions, the mass flux Ptained here, especially in the case of the diagonal ele-

still a linear function of the concentration gradient although gments. Perhaps these discrepancies are due to the fact that

shear-rate-dependent mutual diffusion tensor rather than th shear rates appIied.in the simulation are not Iarge enough
scalar can be defined. The explicit determination of this ten{O clearly observe nqn[mear effects. For |r.1$.tance, if one ex-
sor has been the goal of this paper. It is important to remarffaPolates our  definition of the  collision — frequency
that our description has not been restricted to specific valueé:[ZKBT/ Y1{M1 +My) Do to dense flmdﬂs], one can es-

of the parameters of the mixtulenass ratio, concentration tmate that the range of shear rates con5|der¢d here is much
ratio, and force constant ratjoand progress has been pos- larger than the one used in computer simulations. As an al-

sible here due to previous results derived in the limit cases demative to overcome the d|_ff|cult|es assou_ated W'th mo-
self-diffusion[7] and tracer particleg9]. lecular dynamics simulations in the low-density regime, one

The Boltzmann equation has been solved by means of ould perhaps use the direct simulation Monte Carlo method

perturbation expansion around the uniform shear flow stat .19]' which has been shown to be fruitful in the past years.

The knowledge of the pressure tensor of the mixture in the
pure shear flow stafe8] allows one to get an explicit expres-

sion of the diffusion tensobj; in the first order of the ex- Partial support from the DGICYTSpain through Grant
pansion. According to the geometry of the problem, the eleNo. PB94-1021 and from the Junta de Extremadi@ndo
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APPENDIX Piyy Pi;; Ma?+N (A3)
In this Appendix, we give the explicit expression of the p p Ra’+S’
partial pressure tensét;. Let us introduce the gquantities
1/2 P Q
m, mg ixy _
= s =— a, (A4)
Nrs 1-6977< Krs m+mg (A1) p Ra’+S
1/2
= MeMs P Ka?+L P
N= 2.6177( Krs mm (A2) 1xx _ 3 i ) 1,yy’ (A5)
p Ra*+S p
and the effective collision frequency=2n\1,/(m;+m,).
We define ! as the time unit and we will use the dimen- where
sionless quantitiea* =a/{, and o* = a/{. Henceforth, we
will omit the asterisks. In terms of the mass rajig the M=2B15(A15A21— A11A2), (AB)

N=48Apa*+24 a*[2 A1x(B11+Byy) —Bia Arit Az 1+ 12 a’[ Ay BE,+ B3, + 4 B11Bo) — ABiy( Ay + By |
+B1oA11(Az— B1i— 2 Byy) — B1aAg(Boot 2 Byy) + BEA] +6 a B1iBiaAjAz— AroAsr+ AgiBiot AByy
—2A11B2o— 2 ApBaz— AgB11) + B A1iBart AsBort AziBoo) + B1aBoo A1iAzo— Az~ ArzBoi— A1iB2)
+2A12B11B2A Bt Boo) |+ 3(B12B21— B11B22) [ Bia( AjoAz1— A11Az)) + B1a(B1oA2— ArB2))
+B1aAA11B2—B1A2) ], (A7)

Q=—24A10°+12 a®[B1o A1+ 2 Agp) — Ao B11+2 Boy) ]+ 6 a2 B1o( A1pAz1— AriAsy) +AxB1o( 3By + Bay)
~AA(BS,+2B11B) + B1ad2 A1iBrr— 2 ApiBio— ApBo) 1+ 3[ApAB 1o Bryt Boo) — AxB1iBi( A~ Byy)

+ B (A11B21— AxiB1) A1B11(B1Bor+ B3) + A1B1oBos Boy— Azy) + B1Bod ApB1i—AsiB1o) ], (A8)
K=8 a?Aip+8 a( A1 B ApBi12) +2 A B1:Bo1+ B?) =2 AyB1y(B1y+Byy), (A9)
L=3 (A1~ B[4 a®+2 a(By;+Byy) +B1By—BiByl?, (A10)
R=8 a?(A1,= A11) +8 a[ B1y(Az1— Azp) + By Arp— A1) 1+ 2 B1o( Ap1— Agp) (B11t+ Bap) +2 (A= Ar) (B1Bor + 522(2), )
All
S=3(2a—Ay+ A+ By~ B[4 a®+2 a(Byy+ Byy) + B11By— BBy ]2 (A12)
|
Here, we have introduced the coefficients while the remaining coefficients are obtained by the adequate
changes f—pu~t, v—v 1 y;o 7). The consistency
A _Yu ¥ ptl " 1 (A13) condition 3trP=nkgT leads to a sixth-degree algebraic
U2 v+l u 2u(v+1)’ equation in« that, in general, must be solved numerically.
This can be written as
1 v
A=z ——, Al4
272 v+1 (Al4) ab+ Cga®+Cyua?+ Cya®+ Cra?+ Cia+Cy=0,
(A17)
Bui=An+ ﬂ, (A15) . . .
v+1 where the coefficient€,; are nonlinear functions &, u, v,
v11, and yq,. Their explicit expressions are very large and
B A v (A16) will not be included here. The largest real root of E417)
127 A2™ Y121 gives the physical solution to the thermostat parameter
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On the other hand, in the diffusion problem, the pressure tensor depends on space through its explicit depemdamte on
througha(v). The derivativeda/dv can be formally obtained from E@gA17) by derivating such equation with respectito

namely

Ja

a°9,Cs+ a*9,Cy+ a®9,Cs+ a9,Cp+ ad,Ci+3,Co

P

6a°+5a*Cs+4a°C,+3a?Cy+2aC,+Cy

(A18)

In this way, the elements of the mutual diffusion tensor can be analytically given in termsagfand the parameters of the

mixture.
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