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Sensitivity of ballistic deposition to pseudorandom number generators
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Ballistic deposition~BD! serves as a prototype for studies of dynamic scaling phenomena in nonequilibrium
growth processes. In BD, particles are sequentially added to a growing surface at randomly selected positions.
The model is typically investigated by computer simulations where randomness is implemented by pseudo-
random number generators~PRNGs!. The implicit assumption that PRNGs adequately represent true random-
ness is tested in this study via a statistical analysis of the width of the BD interface. We study the width of the
interface over time scales orders of magnitude longer than the expected model relaxation time, yet much
smaller than the period of the PRNG, and observe fluctuations which still appear to be correlated. Distinct
dynamic behavior is observed for an implementation with a different PRNG, further indicating a strong
coupling between the model and the PRNGs~even with PRNGs that pass extensive statistical tests!. Thus we
demonstrate a breakdown of basic sampling assumptions, and of the ergodic exploration of phase space.
@S1063-651X~98!04405-5#

PACS number~s!: 05.40.1j, 68.70.1w, 75.40.Gb, 05.70.Ln
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I. INTRODUCTION

Dynamic scaling phenomena in stochastic nonequilibri
systems have attracted increasing attention in recent y
@1#. In theoretical models of open systems, the external
fluences are usually represented by random noise. In c
puter simulations of the models pseudorandom numb
~PRNs! implement the stochastic process. The use of de
ministic PRN algorithms necessarily introduces some deg
of correlation in the produced sequence of PRNs@2#. While
these correlations are probably irrelevant in most appl
tions, they may in principle couple to the underlying dyna
ics of the simulated model, resulting in artificial behavior

A good example of open nonequilibrium behavior is pr
vided by growth of aggregates through random addition
particles. The width of the resulting interface exhibits d
namic fluctuations, which have been studied extensiv
analytically, and numerically@3,4#. A particularly simple
model for this phenomenon is ballistic deposition~BD! @5#:
Particles are randomly placed above an aggregate grow
on a substrate, they descend along a straight vertical
until they encounter a site on the existing cluster and s
there. The random placements of subsequent particles re
sent a stochastic process.

We present results of a numerical study of BD in whi
the potential coupling to PRNs is examined via statisti
tests on the width of the growing interface. A dynam
change in a conjectured steady-state regime is observed
naling a breakdown of ergodicity. The breakdown is quan
fied by demonstration of violations of the basic sampli
assumptions. Statistically relevant inconsistencies occur
peatedly in the data. First, fluctuations statistically incons
tent with the steady-state distribution are observed~even
571063-651X/98/57~5!/5044~9!/$15.00
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when the time scale of observation is orders of magnitu
greater than the expected relaxation time of the model!. Sec-
ond, values of steady-state quantities averaged over diffe
sets of initial seeds are in statistical disagreement. Th
average values of steady-state quantities, obtained by u
two distinct pseudorandom number generators~PRNGs!, are
in statistical disagreement. These results lead to the con
sion that the observed dynamical fluctuations are not inh
ent to BD, but result from a coupling to the PRNG alg
rithms.

The manuscript is organized as follows. Section II pr
vides the algorithmic details of the BD model and its imp
mentation, with emphasis on the role played by the PRNs
Sec. III probability distributions, sampling assumptions, a
the construction of the statistical tests are discussed.
statistical inconsistencies of the numerical data with the
sic sampling and ergodicity assumptions are presente
Sec. IV. Potential implications for the use of PRNs, partic
larly in the context of growth models, are discussed in
concluding Sec. V.

II. MODEL AND IMPLEMENTATION

Given that the focus of this work is on the unwant
coupling of PRNGs with the underlying model, it is nece
sary to provide details of the numerical simulation in grea
depth than usual. Here we shall review the BD algorith
and its numerical implementation with specific PRNGs.

A. Ballistic deposition

In the BD model of growth, free particles initiated at ra
dom positions above a one-dimensional substrate des
ballistically and stick upon first touching the surface of t
5044 © 1998 The American Physical Society
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growing cluster. The substrate of lengthL, consists of dis-
crete columns indexed by integer valuesx, with 1<x<L.
The growth interface is defined by the maximum occup
site along each column,h(x,t), whereh(x,t) also takes on
discrete integer values. Starting from a flat interface,h(x,t
50)50 for all x, the surface evolves by sequential additi
of particles to randomly chosen columns. The index num
of particles deposited is denoted byt8, and the deposition
time by t5t8/L. Each deposition event consists of choosi
a column,x(t8), by a call to a PRNG, and updating th
height in that column as follows:

h„x~ t8!,t811…5max@h„x~ t8!21,t8…,

h„x~ t8!,t8…11,h„x~ t8!11,t8…]. ~1!

Thus the deposited particle occupies the highest empty
with one or more occupied nearest neighbor sites; this m
ics the process of cluster aggregation. The stochastic pro
in this model is the random choosing of successive colum

While the resulting aggregates are compact, their interf
is rough, with fluctuations that are expected to be self-sim
at all scales. The width of the growth interfacejL(t) on
average increases following a power law behavior u
reaching a steady asymptotic value, the magnitude of wh
depends on the underlying substrate sizeL. A good measure
of jL(t) is the variance of the surface heights,$h(x,t)%,

jL
2~ t !5

1

L (
x51

L

@h~x,t !2h~ t !#2, ~2!

whereh(t) is the mean height of the surface at timet.
It was originally pointed out by Family and Vicsek@6#

that the scaling forms for the growth and saturation of
width of the growing interface can be described by a d
namic scaling ansatz, similar to that applicable to criti
systems. Kardar, Parisi, and Zhang~KPZ! @7# introduced an
analytic theory describing the evolution of fluctuations
growing surfaces, which has been successfully applied
several growth models. One consequence of KPZ theor
that the steady-state behavior for the interface fluctuation
one dimension should resemble a random walk; i.e.,jL(t
→`)}L1/2.

B. Algorithmic details

Substrates of lengthsL5127, 255, 511, 1023, 2047, an
10 007 are considered. At each update, a PRN is gener
corresponding to a column along the substrate. A particl
added to that column at a height described by Eq.~1!. Peri-
odic boundary conditions are applied. The only subtlety is
mapping the PRN uniformly to a value between 0 andL
21, which is achieved as follows: The least significant b
of the PRN are shifted off, leaving a number between 0 a
2n21, with n chosen such that 2n is the integer closest to
but greater thanL. The PRN is rejected if it falls in the
interval betweenL and 2n21. Variants on this scheme wer
tested~including use of all the bits of the PRN!, yet similar
results were obtained. The scheme described above was
sen because the algorithms that generate subsequent
involve algebraic operations which cause carries from low
d
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order bits to higher order bits; thus the higher order bits
influenced by two sources~the algebraic operation and th
carries! and are expected to be less correlated.

As the system evolves, the variance of the surface heig
jL

2 , is calculated at selected times. Statistical errors are c
sidered@8#, and the associated standard errorsj2 is also re-
corded. The values of the surface heights~contained in a
one-dimensional array of lengthL) are the only essentia
data for these calculations.

The onset of the asymptotic regime is estimated by
conservative criterion of a ‘‘relaxation’’ timet;10Lz8, with
z851.6. This estimate is conservative since the expon
employed exceeds the expected value of the dynamic sca
exponent,z53/2, and this time is well beyond a qualitativ
judgment of the time required for saturation ofjL

2 . Account-
ing for the measured growth rate, this relaxation time cor
sponds to an average surface height,h(t)520Lz8. Exploring
the asymptotic regime requires extensive computer power
the larger lengths investigated. All simulations were imp
mented on desktop workstations, with the shortest len
systems requiring a few hours of run time, the longest req
ing on the order of five days.

C. Randomness and PRNGs

PRNGs are algorithms for deterministically generating
string of bits, resembling a completely uncorrelated, a
hence ‘‘random’’ string. Knowing the past and present v
ues should give no information as to future outcomes o
truly random variable. Hence ‘‘deterministic randomness’’
inherently unattainable. PRNGs are at best a practical su
tute, and should be generally tested for the absence of u
sired correlations. While two-point correlations can
readily examined, there are a multitude of other subtle effe
that are not in practice possible to measure. When consi
ing which tests for correlations to conduct, it is advisable
include both the standard statistical tests, as well as ph
cally motivated ones directly related to the particular mo
being implemented~see the example in the final paragraph
this section!. It is also necessary to verify that any observ
dynamic behavior is inherent in the simulated model, and
artificially introduced to the system by the PRNGs. Seve
physical models have been shown to couple to correlation
PRNGs@9–11#; we shall provide evidence that BD also b
longs to this category.

Preliminary simulations with a simple PRNG resulted
various anomalies which will not be discussed in detail he
but one example is the occurrence of repeated pattern
surface configurations. Having identified the PRNG as
likely culprit, we decided to use more sophisticated PRNG
Several were tested, and two were selected: ‘‘random~ !,’’ a
feedback shift register, employing a primitive trinomial
degree 64@12# ~a ‘‘C-library’’ subroutine call!, and ‘‘ran2~ !’’
which combines pseudorandomness produced by two dis
multiplicative congruential generators, and has been sho
to reduce certain serial correlations inherent to each gen
tor separately@13#.

Extensive tests for correlations in the PRN sequen
were conducted, with emphasis on tests directly relevan
the BD growth algorithm. One such test is for any bias in t
next relevant call. If the next growth site in a neighborho
is biased to the left- or right-neighboring column of the la
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FIG. 1. The empirical steady-state distribution functionP(jL
2) obtained for both PRNGs. The solid line corresponds to the theore

distribution function for a random walk (a51/2), the dashed line to a one-parameter fit witha50.45, wherea is the roughness exponen
as plotted on~a! a linear scale,~b! a log-log scale.
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added particle, a thinner growth interface results. If it is
ased towards the same column, a wider interface is ge
ated. No discrepancies were found with any of the test
brief summary of which is included here.~1! Spatial and
temporal Fourier transforms of the sequence of PRNs w
consistent with white noise power spectrums, suggesting
two-point correlations.~2! Measurement of the number o
calls to each column, and waiting times between subseq
calls to the same column, were consistent with Poisson
tistics. ~3! No spatial bias for the subsequent calls, as d
cussed above, was detected.~4! No bias was detected whe
the space was partitioned into sublattices.~5! Autocorrela-
tion functions for natural surface height observables w
decaying simple exponentials. The reader is referred t
previous manuscript for details@14#.

III. PROBABILITY DISTRIBUTIONS

We first obtain the unique steady-state probability dis
bution for jL

2(t.t). Once this distribution is known, eac
independent measurement ofjL

2(t.t) can be considered a
independent, identically distributed~IID ! random variable,
drawn with the associated probability. Using only this ge
eral assumption of unbiased sampling, we construct stat
cal tests which show that implementations which are ide
cal, except for use of different PRNGs, result in differe
values for average quantities of the growth interface; imp
mentations with the PRNG studied most extensively in t
work lack steady-state behavior; data obtained by avera
over several independent implementations are inconsis
with the underlying distribution.

The tests focus on the width of the growth interface in
steady-state regimejL

2(t.t). We shall discard the time ar
gument in favor of a compact notation, and henceforth
note this variable byjL

2 . When it is necessary to deal wit
shorter times, the explicit time argument is included. T
discussion also focuses on theL5127 system size. We wer
able to explore the asymptotic regime for orders of mag
tude beyond the conjectured model relaxation time only
this shortest length investigated due to practical limits
computational resources. For theL5127 system, adequat
statistics could be obtained for times as large ast51000t.
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A. The steady-state distribution

There is a unique, steady-state distribution, for the ove
width of the growth interface,P(jL

2). It is shown in Fig. 1, as
determined by sampling 350 realizations with different init
seeds for each PRNG; each realization was evolved to
asymptotic regime andjL

2 was measured. Each realizatio
was further evolved for ten autocorrelation times, andjL

2 was
measured again. This latter step was repeated 200 tim
Hence the histogram shown in Fig. 1 was constructed w
73104 data points for each PRNG. The data obtained
both PRNGs converge to the same empirical distribution
well within statistical error. We will denote the average val
of this distribution bym, and its standard deviation bys. For
random~ ! the values obtained arem535.87 ands520.85.
For ran2~ ! the values obtained arem535.74 ands520.58.
Each independent observation ofj2, in the asymptotic re-
gime, should be an IID random variable sampled from t
distribution.

Before proceeding to the statistical tests, we briefly co
pare this distribution to previous ones obtained for grow
models. The complete distribution function naturally co
tains much more information about the system than just
average value ofjL

2 . The KPZ equation, as well as othe
exactly solvable models in one dimension@15,16#, give rise
to steady-state distributions which are identical to those o
random walk. The random walk distribution is expected
describe the BD model as well, assuming that it falls in t
KPZ universality class. The theoretical distribution for th
overall width of a random walk, with periodic boundary co
ditions, was calculated recently@17# and is shown in Fig. 1,
overlaying the empirical BD distribution. There is a sligh
but systematic disagreement between the BD histograms
the theoretical distribution for the random walk. The data
numerical implementations of the KPZ equation~and for
solid-on-solid growth models! have been successfully fitte
to the random walk distribution@17,18#, confirming that this
distribution does indeed describe systems in the KPZ univ
sality class.

A betterfit is obtained by following a phenomenologica
approach, introduced by Ra´cz and Plischke@18#. The width
of the growth interface in the steady state can be obtai
from the structure factorS(k)5^ĥ(k)ĥ(2k)&, as jL

2
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5b21(kÞ0S(k), whereĥ(k) is the Fourier transform ofh(x)
~and hencek52pm/L, wherem is an integer!, and b is a
constant with dimensions of inverse width squared. Assu
ing that$h(x)% is continuous, and Gaussian distributed w
a kernel given byS(k), the probability distribution for the
width is calculated as@18#

P~jL
2!5E

2 i`

i` dl

2p i
elj2

)
kÞ0

bS21~k!

l1bS21~k!
. ~3!

For self-similar fluctuations, the power spectrum behaves
S(k)}uku2g, whereg is related to the standard roughne
exponenta by g52a1d, whered is the dimension of the
substrate.

Figure 1 shows the phenomenological distribution fun
tion for the parameter value ofa50.45, alongside the ran
dom walk distribution function (a50.5), and the numerica
data. Figure 1~a! shows these functions plotted on a line
scale, Fig. 1~b! on a log-log scale. The phenomenologic
distribution shown is obtained by summing the residues
the first 45 poles in the contour integral of Eq.~3!. The sum
of the residues for the first 18 poles converges to the ide
cal distribution throughout the regime considered, indicat
that the result is essentially exact. The phenomenolog
distribution captures certain aspects of the numerical d
with more fidelity than the random walk distribution. Th
value of a50.45 is smaller than the KPZ prediction ofa
51/2, but is consistent with previous values of the roughn
exponent reported in numerical studies of BD@4,6,14,15#.

In regard to the statistical tests discussed in the remain
of this manuscript, the relevant result presented in this s
tion is that both PRNGs converge to the same statistical
tribution. The discrepancies with random walk behavior w
not be further considered in this manuscript.

B. Distribution of averages

We are concerned with the consistency between indep
dent measurements, and introduce the statistical tests
follow in order to test this~or more accurately to evaluate th
lack of consistency!. The tests assume approximately Gau
ian distributed variables. Although a single measuremen
the width of the interface~Fig. 1! is not a Gaussian variable
the probability distribution of the average width over ma
realizations is Gaussian~via the central limit theorem@19#!.
In simulations one typically considers average quantit
which also necessitates knowing the probability distribut
of the average. Our simulations are ofN independent real-
izations, so the relevant distribution is that of the width
the interface averaged overN independent samples,jL

2

5( i 51
N jL

2/N.
We can construct the actual distribution function for t

average overN IID samples,P(jL
2), from its Fourier trans-

form denoted byP̃N(k) ~and usually referred to as the cha
acteristic function!. The characteristic function of the ave
age is related to the characteristic function of the individ
samples@ P̃(k)# by P̃N(k)5@ P̃(k/N)#N. The characteristic
function is the generator of the cumulants of the distributi
and thenth cumulant of the distributionP(jL

2) is related to
-

as

-
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the nth cumulant of the distributionP(jL
2) simply by

^(jL
2)n&c5 (1/Nn21) ^(jL

2)n&c .
Dealing explicitly with the first two cumulants of th

probability distribution of the average,

^jL
2&5K (

i 51

N
1

N
jL,i

2 L 5(
i 51

N
1

N
^jL,i

2 &5m, ~4!

^~jL
2!2&c5(

i 51

N K S 1

N
jL,i

2 D 2L
c

5
1

N2(i 51

N

^~jL,i
2 !2&c5

s2

N
[n2.

~5!

Thus each independent observation ofjL
2 is a random vari-

able drawn from a distribution with meanm and variance
s2/N[n2.

As N increases in value, higher order cumulants go
zero, and the distribution approaches a Gaussian~as required
by the central limit theorem@19#!. The functionP(jL

2) is
shown in Fig. 2, along with the numerical data forP(jL

2)
~previously shown in Fig. 1!, and a Gaussian distributio
with meanm and variancen2, for N520.

C. The x2 distribution

Each independent realization ofjL
2 is approximately

Gaussian distributed about the meanm of the empirical dis-
tribution, with a variancen2 ~see Fig. 2!. Hence the normal-
ized difference (jL

22m)/n should be a random variabl
sampled from a unit normal distribution~i.e., a Gaussian
distribution with mean of zero, and unit variance!. The sum
of squares ofM independently distributed unit normal ran
dom variables, denoted byxSS

2 ,

xSS
2 5(

i 51

M
~jL,i

2 2m!2

n2
, ~6!

follows ax2 distribution withM degrees of freedom@19#. If
the xSS

2 statistic is sufficiently large, it is unlikely that al
values in the sum are approximately unit normal distribut
The x2 test quantifies how unlikely; the test determines t

FIG. 2. The distribution function for the individual sample
P(jL

2), the distribution for the average overN520 samples,P(jL
2),

and a Gaussian approximation to the distribution for the averag
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probability that a number of valuexSS
2 or greater is drawn

from a x2 distribution with M degrees of freedom. We de
note this test as thexSS

2 test and use it to determine th
probability of the hypothesis that all the values ofjL

2 in the
conjectured steady-state regime were sampled independ
from the same underlying distribution~shown in Fig. 2!.

When performing a simulation one uses the values of
average and standard deviation obtained in the simulatio
estimates of the average and standard deviation of the d
bution function. In order to use the sample average^jL

2&M

5(( i 51
M jL,i

2 )/M in place of m, and the weighted varianc
s2/(N21)5( i 51

N (jL,i
2 2jL

2)2/@N(N21)# in place of s2/N
5n2, we refer to thet test. Note that these values obtain
from our simulations should be unbiased estimators ofm and
n2, respectively@19#, and represent more accurately the er
bars obtained.

D. The t distribution

‘‘Student’’ @20# first discussed the error introduced by e
timating s2 with the sample standard deviations2

5( i 51
N (jL,i

2 2jL
2)2/N, and suggested thet test as an alterna

tive statistical test@20#. Note thats2/(s2/N)5s2/n2 follows
a x2 distribution withN21 degrees of freedom~the degrees
of freedom are reduced by 1 as there is one constraint on
random variables: the mean value is equal tojL

2). Following
‘‘Student’’ we can construct a statistic from the ratio of
unit normal distributed random variableZ to an indepen-
dently x2 distributed random variablef N21

2 with N21 de-
grees of freedom:

TN215
Z

Af N21
2 /~N21!

.

We label this variableTN21 , as its probability density should
follow a t distribution with N21 degrees of freedom@19#.
The unit normal distributed random variable we are int
ested in isZ5(jL

22m)/n. The x2 distributed random vari-
able is f N21

2 5s2/n2. Thus the correspondingt statistic is

TN215
~jL

22m!/n

As2/@~n2!~N21!#
5

~jL
22m!

As2/~N21!
. ~7!

We likewise define a secondt statistic, useful for compar
ing two independent data sets. Consider two independent
of M IID samples drawn from a probability distribution wit
meanm and variancen2 ~i.e., two independent sets ofM IID
realizations ofjL

2). There are thus two independent measu
ments of the average value over theM IID samples, denoted
by ^jL

2&M ,i , for i 51,2 ~as defined earlier, but note the add
tional indexi , used to designate the data set!. Likewise there
are two independent measurements of the variance oveM
samples, denoted bySi

25( j 51
M (jL

2
,i , j2^jL

2&M ,i)
2/M , for i

51,2. The difference between two independent observat
of average values is a random variable which converges
Gaussian distribution with mean of zero and varian
2n2/M , in the limit of largeM . Hence an approximately un
normal distributed random variable isZ5(^jL

2&M ,1
tly

e
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ri-

r

-

he

-
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-
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a

e

2^jL
2&M ,2)/A2n2/M . An independentx2 distributed random

variable @with 2(M21) degrees of freedom# is f 2(M21)
2

5S1
2/(n2/M )1S2

2/(n2/M ). The t statistic to compare two
independent data sets is thus

T2~M21!5
~^jL

2&M ,12^jL
2&M ,2!

A~S1
21S2

2!@1/~M21!#
. ~8!

If the t statistic is sufficiently large, it is unlikely that th
ratio of the sample mean to the sample variance is an a
rate estimator of the ratio of the theoretical mean to the t
oretical variance. The ‘‘t test’’ measures the probability tha
a value the size of thet statistic or greater is drawn from th
appropriatet distribution @19#. In summary, theTN21 test
using theTN21 statistic measures the level of validity for th
hypothesis that each sample in a set was drawn from
same underlying distribution. TheT2(M21) test using the
T2(M21) statistic measures the level of validity for the h
pothesis that samples in two distinct sets were drawn in
pendently from the same underlying distribution. This lat
test compares average values generated by the two dis
sets.

E. Distribution of extrema

The final class of statistical tests employed deals w
extreme values found in sets of IID random variables. T
extrema found in our data appear to present the largest
viation from the theoretical distribution. Of course, whe
dealing with extrema there is a selection effect, for whi
one has to correct. The probability of obtaining a particu
value for the minimum in a set ofM IID random variables
can be readily calculated as@21#

p~xmin5x!5Mp~jL
25x!S E

x

`

p~jL
2!djL

2D M21

. ~9!

Likewise the probability for obtaining a particular value fo
the maximum in a set ofM IID random variables can be
readily calculated as@21#

p~xmax5x!5Mp~jL
25x!S E

2`

x

p~jL
2!djL

2D M21

. ~10!

The original probability distribution for the average widt
P(jL

2), along with the distributions for the minimum and th
the maximum in a set ofM510 independent observation
are shown in Fig. 3.

IV. RESULTS OF STATISTICAL TESTS

We applied the statistical tests outlined above to the d
obtained from our simulations. Results for thex2 test are
reasonable, however, the results for thet test and for the
extremal values are highly unreasonable. Thus specific si
lations may give highly anomalous results, inconsistent w
the theoretical distribution.
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A. Comparison of data at different times
„in the asymptotic regime…

In the asymptotic regime, the width of the interfa
should saturate to a steady-state value. The average ov
independent samples,jL

2, for an implementation with ran
dom~ !, is recorded at selected subsequent times, and a pl
these data is shown in Fig. 4. All of the values shown sho
be equal within statistical error, but there are large diff
ences. In fact the greatest difference between two value
over four standard errors in magnitude. To quantify the s
nificance of this difference, we apply the statistical tests d
cussed in Sec. III, to this data set.

The xSS
2 statistic, defined in Eq.~6!, is calculated, but is

not large enough to be significant: the probability that
null hypothesis of steady-state behavior is valid is 24%,

FIG. 3. The probability distribution for the average widt
P(jL

2), along with the distribution for the minimum and the max
mum in a set ofM510 independent observations ofjL

2.

FIG. 4. The average width of the growth interface,jL
2, as ob-

tained for 20 independent samples using random~ !, shown at se-
lected subsequent times in the asymptotic regime. The horizo
line corresponds to the average value^jL

2&M of the M510 data
points in this figure, with the associated error bar plotted at
extreme end of the line. Note that the expected relaxation tim
less thant523104, and that the logarithmic scale spans rough
103t.
20

of
d
-
is
-
-

e
s

determined by thexSS
2 test. We denote this as a pass at t

24% confidence level~CL!, or likewise a fail at the 76% CL.
In other words an event with this magnitude is expected
occur one in four times, therefore a pass at the 24% CL
not an unreasonable result.

The TN21 test for steady-state behavior, however, do
manifest discrepancies. Eight of the ten points pass theTN21
test above the 20% CL. But two points fail at the 94% C
with one of these points continuing to fail at the 99.98% C
An event that fails at the 99.98% CL is expected to occ
only twice in 10 000 times, we observe it once in ten tim
indicating that the null hypothesis is highly suspect.

To ensure that the data sample shown in Fig. 4 is no
statistical fluke, and to establish the repeatable and consis
absence of steady-state behavior, many more indepen
samples were generated. A total of 200 independent rea
tions were simulated, and the value ofjL

2 was measured for
each realization at all of the times recorded in Fig. 4. T
Gaussian distributed random variablejL

2 is constructed by
splitting the 200 independent realizations into subsets oN
520 and calculating the average of each subset. Hence t
are ten subsets, each one of the random variablejL

2 sampled
at the ten times shown in Fig. 4, for a total of 100 realiz
tions of jL

2 in the conjectured steady-state regime. We re
to each subset as a data set throughout the remainder o
manuscript. ThexSS

2 test is applied independently to each
the ten data sets. TheT2(M21) test can be applied to an
combination of two independent data sets. TheTN21 test is
applied independently to each of the 100 realizations ofjL

2.
By conducting the statistical tests on the additional data
we show that the results obtained for the original data set
systematic, as discussed below.

The xSS
2 statistic defined by Eq.~6! was calculated for

each data set. The data sets all pass this test at greater
the 20% CL. Yet sufficiently many realizations ofjL

2 fail the
TN21 test, to bring the null hypothesis of a steady-state i
question. Fourteen of the 100 IID realizations ofjL

2 fail the
TN21 test at the 90% CL, which in itself would not allow u
to reach conclusions. However, as the CL criterion is tig
ened beyond acceptable standards a surprising numbe
points still fail. At the 99% CL, five of the 100 points fail
These five points also fail at the 99.8% CL. At the 99.98
CL, three points fail. Finally, at the 99.995% CL, one of th
100 points fails. The meaning of the 99.98% CL is that pro
ability theory predicts the occurrence of two such events
of 10 000. Instead we observe three such events out of
Likewise the 99.995% CL corresponds to five events out
100 000. We observe one such event out of 100. Extre
‘‘tail events’’ thus occur with a frequency which is mor
than two orders of magnitude greater than the laws of pr
ability would indicate.

We now turn to a discussion of the average asympto
value of each data set ofM510 events~i.e., each set consist
of the random variablejL

2 sampled at ten consecutive time
in the asymptotic regime!. The value of̂ jL

2&M generated by
each set of data is not consistent with the other sets. The
values range from̂jL

2&M533.0561.31 to 37.3961.34 @22#.
Randomly picking pairs of data sets to compare using
T2(M21) test, we find several instances where the null h

tal

e
is
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pothesis~that the two sets of data being compared w
sampled independently from the same underlying distri
tion! fails at the 96% CL. Thus separate runs of a simulat
frequently give statistically inconsistent results.

When allN5200 samples are combined into one data s
the average quantities are consistent with the empirical
tribution function shown in Fig. 1:^jL

2
,N5200&M535.65

60.24. In addition, this data set of the average over 200
samples passes thexSS

2 test at the 97% CL. However, for th
data sets of averages overN520 IID realizations, the dispar
ity in average asymptotic values obtained shows that s
pling a subset of 20 IID samples is not consistent with
empirical distribution. The values for averages and varian
obtained from the subsets are not unbiased estimators o
empirical distribution function. Furthermore, the statistic
tests discussed so far reject the hypothesis of steady-
behavior, even at time scales orders of magnitude gre

than the conjectured model relaxation time oft;10Lz8.
Thus there is no steady-state behavior for the data gene
with random~ !; instead there is an asymptotic dynamic b
havior.

B. Comparison of extrema with the steady-state distribution

In the preceding section the occurrence of many extre
tail events was established. In this present section we s
that the occurrence of tail events can skew the average va
obtained.

Comparing the data shown in Fig. 4 to the expected pr
ability distribution, shown in Fig. 2, it is observed that th
data points are skewed to the left side of the expected di
bution. Eight of the ten points are below the mean valuem

535.87 and the lowest value,jL
2

min525.18, is in the left
hand tail with less than 0.32% of the total area of the pr
ability distribution function. The probability of obtaining
particular value for the minimum in a set ofM IID random
variables is described in Eq.~9!. Using this formula we cal-
culate the probability that the minimum ofM510 IID ran-
dom variables drawn from the distribution shown in Fig. 2
less than or equal tojL

2
min525.18 is only p(x<xmin

525.18)53.6%.
Again we wish to determine if the first data set is a flu

event, so a statistical analysis based on all ten data sets
tained with random~ ! is warranted. We find that three of th
ten data sets have minima which come from the extreme
hand tail of the distribution, andp(x<xmin),6% for each.
As the probability distribution for the minimum,p(xmin), is
known ~see Fig. 3!, we can construct the probability for ob
serving three such low probability events~from the left hand
tail of the distribution! out of a total of ten events, and fin
this probability to be 1.7%. As such, we can state at the 9
CL that such results would not be obtained by random s
pling.

A similar analysis can be carried out with respect to
maxima. In line with the observation that the data in Fig
are skewed to the left side of the expected distribution,
find several values for maxima which are questionably lo
The analogous probability for the maximum value in a se
M IID random variables is given by Eq.~10!, and plotted in
e
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Fig. 3. Maximum values for four of the ten data sets a
much smaller than expected, with each having probabi
p(x<xmax),12%. The probability of observing four suc
low probability events~from the left hand tail of the distri-
bution! out of a total of ten events is 1.9%. Again we ca
state at the 98% CL that such results would not be obtai
by random sampling.

C. Comparison of data from distinct PRNGs

To determine if the source of the observed asympto
dynamic behavior resides in the PRNG random~ !, results
using a second PRNG, ran2~ !, were also analyzed. ran2~ ! is
substantially slower than random~ !, hence the comparison i
based on 20 independent samples for each PRNG~i.e., we
use only the initial set of data for random~ !, shown in Fig. 4
@22#!.

For the shortest length scale implemented (L5127), the
time-series data for ran2~ ! are self-consistent. The data pa
the x2 test, theTN21 test, and the tests for extremal value
However, at longer length scales the data for ran2~ ! fail sev-
eral statistical tests, making ran2~ ! also suspect in simula
tions of BD. The tests performed at the longer length sca
were adequate to show statistical inconsistencies@23#, how-
ever, not with the high level of rigor demonstrated by t
tests on the data at the shortest length scales@24#.

A direct comparison of data generated by the two diff
ent PRNGs forL5127 is shown in Fig. 5. There are 18 se
of points that can be directly compared, including eig
which were sampled att,t. The T2(M21) test for consis-
tency between the two values at each time fails at the 9
level for three out of the 18 sets of points. Most striking
the direct comparison of average asymptotic values obta
for each PRNG,̂ jL

2&M ,random533.0561.31 and^jL
2&M ,ran2

537.0660.80. A T2(M21) test for the equivalence of th
asymptotic averages of the data sets for random~ ! and ran2~ !
fails at the 99% confidence level~the exact probability of

FIG. 5. The average width of the growth interface as obtain
by 20 independent samples for each PRNG. The horizontal l
correspond to the respective average asymptotic val

^jL
2&M ,randomand^jL

2&M ,ran2, with the corresponding error bars plo
ted at the extreme end of each line.
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failure isp50.996). Hence use of different PRNGs can yie
statistically distinct values for averages.

The statistical tests reject the hypothesis that the
PRNGs sample the same underlying distribution, despite
fact that the asymptotic distributions shown in Fig. 1 agr
There is a unique steady-state distribution which is obtai
in the limit of large numbers of independent samples. Ho
ever, sampling of this distribution is nonstochastic, in th
each sample average is not an unbiased estimator of
asymptotic distribution. Likewise the standard error for ea
sample does not lead to an unbiased estimator for the s
dard deviation of the asymptotic distribution.

V. DISCUSSION AND CONCLUSIONS

The original impetus for this study was an in-depth inve
tigation of BD at long length and time scales. However,
encountered many features in the data that could not be
ily explained; most notably, non-self-affine surface fluctu
tions. After searching for various corrections to scalin
which necessitated obtaining better statistics and explora
of longer times into the growth, the coupling to PRNGs b
came apparent, and motivated the detailed statistical ana
described in this manuscript.

It should be noted that there are discrepancies betw
values of the scaling exponents for BD reported in the lite
ture @4,6,14,15#. At this point, we can only speculate th
these discrepancies are due to the differences in the im
mentations of BD. Conclusions about the scaling expone
can only be reliably reached once difficulties with PRNs
resolved.

In retrospect, it is not surprising that the BD algorithm
more sensitive to correlations in PRN sequences than s
m
s,
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dard Monte Carlo~MC! simulations. In standard MC, com
parison to the Boltzmann probability causes rejection
PRNs at pseudorandom points in the sequence; hence a
ond independent source of pseudorandomness influence
dynamics. In BD, all PRNs are used in the sequence p
duced~with the exception of the very few cases discussed
Sec. II B!. Similarly, in restricted solid-on-solid models o
growth~where physical constraints cause rejection of PRN!,
the scaling exponents and the random walk distribution p
dicted by KPZ theory are recovered with great precision
numerical simulations@17,25#.

We have demonstrated that computer implementation
BD can couple to certain PRNG algorithms. Results stati
cally inconsistent with general sampling assumptions a
with the ergodic exploration of phase space were observ
Exploration of accessible phase space is not decoupled f
the initialization of the PRNG. In addition, driving the dy
namics of the system with different PRNGs results in sa
pling different areas of phase space. In conclusion, BD i
sensitive physical test of correlations in pseudorandom
quences. In general, PRNG algorithms can couple to mo
of stochastic, nonequilibrium phenomena. One must ens
that observed dynamical properties are inherent in the n
equilibrium model itself and not an artifact of coupling
PRNGs.
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