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Sensitivity of ballistic deposition to pseudorandom number generators
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Ballistic deposition(BD) serves as a prototype for studies of dynamic scaling phenomena in nonequilibrium
growth processes. In BD, particles are sequentially added to a growing surface at randomly selected positions.
The model is typically investigated by computer simulations where randomness is implemented by pseudo-
random number generatofBRNGS. The implicit assumption that PRNGs adequately represent true random-
ness is tested in this study via a statistical analysis of the width of the BD interface. We study the width of the
interface over time scales orders of magnitude longer than the expected model relaxation time, yet much
smaller than the period of the PRNG, and observe fluctuations which still appear to be correlated. Distinct
dynamic behavior is observed for an implementation with a different PRNG, further indicating a strong
coupling between the model and the PRN@gen with PRNGs that pass extensive statistical ke$tas we
demonstrate a breakdown of basic sampling assumptions, and of the ergodic exploration of phase space.
[S1063-651X98)04405-5

PACS numbes): 05.40+j, 68.70+w, 75.40.Gb, 05.70.Ln

I. INTRODUCTION when the time scale of observation is orders of magnitude
greater than the expected relaxation time of the mo@&sc-

Dynamic scaling phenomena in stochastic nonequilibriunond, values of steady-state quantities averaged over different
systems have attracted increasing attention in recent yeagéts of initial seeds are in statistical disagreement. Third,
[1]. In theoretical models of open systems, the external inaverage values of steady-state quantities, obtained by using
fluences are usually represented by random noise. In confwo distinct pseudorandom number generat®®NGS, are
puter simulations of the models pseudorandom numberd Statistical disagreement. These results lead to the conclu-
(PRNS implement the stochastic process. The use of deterSION that the observed dynamical fl_uctuatlons are not inher-
ministic PRN algorithms necessarily introduces some degre@nt t0 BD, but result from a coupling to the PRNG algo-
of correlation in the produced sequence of PRRIs While  "ithms. o _ .
these correlations are probably irrelevant in most applica- 1h€ manuscript is organized as follows. Section Il pro-
tions, they may in principle couple to the underlying dynam-V'deS the alg_orlthmlc de_ta|ls of the BD model and its imple-
ics of the simulated model, resulting in artificial behaviors. Mentation, with emphasis on the role played by the PRNSs. In

A good example of open nonequilibrium behavior is pro_Sec. [ proba_b|I|ty d|str|but|o_nsl, sampling assumptions, and
vided by growth of aggregates through random addition othe _cqnstr.uctlon.of th_e statistical testg are dlscu_ssed. The
particles. The width of the resulting interface exhibits dy- Statistical inconsistencies of the numerical data with the ba-
namic fluctuations, which have been studied extensivelySiC Sampling and ergodicity assumptions are presented in
analytically, and numericalli3,4]. A particularly simple ec. _IV. Potential implications for the use of _PRNs, pqrt|cu—
model for this phenomenon is ballistic depositi®D) [5]: larly in Fhe context of growth models, are discussed in the
Particles are randomly placed above an aggregate growirfgPhcluding Sec. V.
on a substrate, they descend along a straight vertical path
until they encounter a site on the existing cluster and stick Il. MODEL AND IMPLEMENTATION
there. The random placements of subsequent particles repre-
sent a stochastic process.

We present results of a numerical study of BD in which

Given that the focus of this work is on the unwanted
coupling of PRNGs with the underlying model, it is neces-
; : . X X ... sary to provide details of the numerical simulation in greater
the potential coupling to PRNs is examined via staﬂsﬂcaléemh than usual. Here we shall review the BD algorithm,

tests on the W'.dth of the growing mterfacg. A dynamlc.and its numerical implementation with specific PRNGs.
change in a conjectured steady-state regime is observed, sig-

naling a breakdown of ergodicity. The breakdown is quanti-
fied by demonstration of violations of the basic sampling
assumptions. Statistically relevant inconsistencies occur re- In the BD model of growth, free particles initiated at ran-
peatedly in the data. First, fluctuations statistically inconsisdom positions above a one-dimensional substrate descend
tent with the steady-state distribution are observeden ballistically and stick upon first touching the surface of the

A. Ballistic deposition
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growing cluster. The substrate of lendth consists of dis- order bits to higher order bits; thus the higher order bits are

crete columns indexed by integer valueswith 1<x<L. influenced by two source@he algebraic operation and the
The growth interface is defined by the maximum occupiedcarries and are expected to be less correlated.
site along each columm(x,t), whereh(x,t) also takes on As the system evolves, the variance of the surface heights,

discrete integer values. Starting from a flat interfau, t 55, is calculated at selected times. Statistical errors are con-
=0)=0 for all x, the surface evolves by sequential additionsidered[8], and the associated standard emgt is also re-

of particles to randomly chosen columns. The index numbeforded. The values of the surface heigltsntained in a

of particles deposited is denoted by, and the deposition ©One-dimensional array of length) are the only essential

time byt=t'/L. Each deposition event consists of choosingdat@ for these calculations. . .
a column,x(t'), by a call to a PRNG, and updating the The onset of the asymptotic regime is estimated by the

height in that column as follows: conservative criterion of a “relaxation” time~10L%', with
z'=1.6. This estimate is conservative since the exponent
h(x(t"),t’+1)=ma{ h(x(t")—1t"), employed exceeds the expected value of the dynamic scaling
exponentz=23/2, and this time is well beyond a qualitative
h(x(t"),t")+Lhx(t")+1t")]. (1)  judgment of the time required for saturation{tff. Account-

ing for the measured growth rate, this relaxation time corre-

Thus the deposited particle occupies the highest empty sitsponds to an average surface heigiQtr,)=20LZ'. Exploring
with one or more occupied nearest neighbor sites; this mimthe asymptotic regime requires extensive computer power for
ics the process of cluster aggregation. The stochastic procefi®e larger lengths investigated. All simulations were imple-
in this model is the random choosing of successive columnsnented on desktop workstations, with the shortest length

While the resulting aggregates are compact, their interfaceystems requiring a few hours of run time, the longest requir-
is rough, with fluctuations that are expected to be self-similaing on the order of five days.
at all scales. The width of the growth interfage(t) on
average increases following a power law behavior until C. Randomness and PRNGs
reaching a steady asymptotic value, the magnitude of which
depends on the underlying substrate dizé\ good measure
of £_(t) is the variance of the surface heighfb(x,t)},

PRNGs are algorithms for deterministically generating a
string of bits, resembling a completely uncorrelated, and
hence “random” string. Knowing the past and present val-

1L ues should give no information as to future outcomes of a

204\ — w12 truly random variable. Hence “deterministic randomness” is
t)=— h(x,t)—h(t)]7, 2 . . . .
& Lxgl [h(xH=h(V)] @ inherently unattainable. PRNGs are at best a practical substi-

tute, and should be generally tested for the absence of unde-

wherem is the mean height of the surface at time sired correlations. While two-point correlations can be

It was originally pointed out by Family and Vicsdi] readily examined, there are a multitude of other subtle effects
that the scaling forms for the growth and saturation of thethat are not in practice possible to measure. When consider-
width of the growing interface can be described by a dy-ing which tests for correlations to conduct, it is advisable to
namic scaling ansatz, similar to that applicable to criticalinclude both the standard statistical tests, as well as physi-
systems. Kardar, Parisi, and Zhafi¢PZ) [7] introduced an cally motivated ones directly related to the particular model
analytic theory describing the evolution of fluctuations onbeing implementedsee the example in the final paragraph of
growing surfaces, which has been successfully applied t¢his section. It is also necessary to verify that any observed
several growth models. One consequence of KPZ theory igynamic behavior is inherent in the simulated model, and not
that the steady-state behavior for the interface fluctuations iartificially introduced to the system by the PRNGs. Several
one dimension should resemble a random walk; e(t physical models have been shown to couple to correlations in
—o0)oc| 12, PRNGs[9-11]; we shall provide evidence that BD also be-
longs to this category.

Preliminary simulations with a simple PRNG resulted in
various anomalies which will not be discussed in detail here,

Substrates of lengths=127, 255, 511, 1023, 2047, and but one example is the occurrence of repeated patterns of
10 007 are considered. At each update, a PRN is generatedrface configurations. Having identified the PRNG as the
corresponding to a column along the substrate. A particle ifikely culprit, we decided to use more sophisticated PRNGs.
added to that column at a height described by @4.Peri-  Several were tested, and two were selected: “rardgha
odic boundary conditions are applied. The only subtlety is infeedback shift register, employing a primitive trinomial of
mapping the PRN uniformly to a value between O dnd degree 6412] (a “c-library” subroutine call, and “ran2)”
—1, which is achieved as follows: The least significant bitswhich combines pseudorandomness produced by two distinct
of the PRN are shifted off, leaving a number between 0 andnultiplicative congruential generators, and has been shown
2"—1, with n chosen such that"2is the integer closest to, to reduce certain serial correlations inherent to each genera-
but greater tharL. The PRN is rejected if it falls in the tor separately13].
interval betweerk. and 2'— 1. Variants on this scheme were  Extensive tests for correlations in the PRN sequences
tested(including use of all the bits of the PRNyet similar  were conducted, with emphasis on tests directly relevant to
results were obtained. The scheme described above was chihe BD growth algorithm. One such test is for any bias in the
sen because the algorithms that generate subsequent PRiNsxt relevant call. If the next growth site in a neighborhood
involve algebraic operations which cause carries from loweis biased to the left- or right-neighboring column of the last

B. Algorithmic details
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FIG. 1. The empirical steady-state distribution functlé(ff) obtained for both PRNGs. The solid line corresponds to the theoretical
distribution function for a random walka(=1/2), the dashed line to a one-parameter fit with 0.45, wherex is the roughness exponent,
as plotted on(a) a linear scale(b) a log-log scale.

added particle, a thinner growth interface results. If it is bi- A. The steady-state distribution
ased towards the same column, a wider interface is gener- tpere js a unique, steady-state distribution, for the overall

atgd. No discrepancigs were found with any of t.he tests, Jidth of the growth interfacd?(gf). Itis shown in Fig. 1, as
brief summary of which is included her€l) Spatial and determined by sampling 350 realizations with different initial

temp_oral Fom_mer tr_ansfo_rms of the sequence of PRNS_ Weleeds for each PRNG; each realization was evolved to the
consistent with white noise power spectrums, suggesting ng

; : mptotic regime and? was m red. Each realization
two-point correlations(2) Measurement of the number of asymptotic regime and was measured. Each realizatio

calls to each column, and waiting times between subsequeM\fas furthgr evqlve(_nll_iflqr t;ar:tautotc orrelation tlmets, d@le(\éV; S’t
calls to the same column, were consistent with Poisson st neasured again. IS 1alter step was repeate IMES.

tistics. (3) No spatial bias for the subsequent calls, as dis ence the histogram shown in Fig. 1 was constructed with

. 7x10* data points for each PRNG. The data obtained by
cussed above, was .d.etecté@. No bias was detected when both PRNGs converge to the same empirical distribution, to
the space was partitioned into sublatticés). Autocorrela-

. . . well within statistical error. We will denote the average value
tion functions for natural surface height observables were . qistribution by, and its standard deviation lay. For
decaying simple exponentials. The reader is referred to fandont) the values o'btained are =35.87 anda=26.85.

previous manuscript for detaild4]. For ranZ) the values obtained aje=35.74 ando=20.58.
Each independent observation &f, in the asymptotic re-
1. PROBABILITY DISTRIBUTIONS gime, should be an 1ID random variable sampled from this
distribution.

We first obtain the unique steady-state probability distri- . - .
bution for £&2(t> 7). Once this distribution is known, each Befo_re p.roc_eed_lng (o the ;tansucal tests, we briefly com-
, L o pare this distribution to previous ones obtained for growth
independent measgremen_tgff_(t>r) can be considered an ogels. The complete distribution function naturally con-
independent, identically distributediD) random variable,  tains much more information about the system than just the
drawn with the associated probability. Using only this gen-average value OEE- The KPZ equation, as well as other
eral assumption of unbiased sampling, we construct statistbxacuy solvable models in one dimensidts,16), give rise
cal tests which show that implementations which are identito steady-state distributions which are identical to those of a
cal, except for use of different PRNGs, result in differentrandom walk. The random walk distribution is expected to
values for average quantities of the growth interface; impledescribe the BD model as well, assuming that it falls in the
mentations with the PRNG studied most extensively in thisKPZ universality class. The theoretical distribution for the
work lack steady-state behavior; data obtained by averagingverall width of a random walk, with periodic boundary con-
over several independent implementations are inconsisteulitions, was calculated recentl§7] and is shown in Fig. 1,
with the underlying distribution. overlaying the empirical BD distribution. There is a slight,

The tests focus on the width of the growth interface in thebut systematic disagreement between the BD histograms and
steady-state regimef(t> 7). We shall discard the time ar- the theoretical distribution for the random walk. The data for
gument in favor of a compact notation, and henceforth denumerical implementations of the KPZ equati¢and for
note this variable by? . When it is necessary to deal with solid-on-solid growth modeJshave been successfully fitted
shorter times, the explicit time argument is included. Theto the random walk distributiofl 7,18, confirming that this
discussion also focuses on the=127 System size. We were distribution does indeed describe Systems in the KPZ univer-
able to explore the asymptotic regime for orders of magnisality class. _ _ _
tude beyond the conjectured model relaxation time only for A betterfit is obtained by following a phenomenological
this shortest length investigated due to practical limits or@PProach, introduced by Ra and Plischk¢18]. The width-
computational resources. For the=127 system, adequate of the growth interface in the steady state can be obtained
statistics could be obtained for times as largea4000r. from the structure factorS(k):(ﬁ(k)ﬁ(—k)), as gf
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=b~13,.,3K), whereh(k) is the Fourier transform df(x) 0.10 '
(and hence&k=2mm/L, wherem is an integer, andb is a
constant with dimensions of inverse width squared. Assum- 0.08 - _
ing that{h(x)} is continuous, and Gaussian distributed with ax=§
a kernel given byS(k), the probability distribution for the o x <E2
width is calculated af18] 0.06 | T
P(X) —— Gaussian
i d\ |, bS (k) oa | |
P(éf):j e —————. () oo
—ie2T k%0 N +bS (k)
002} & 1

For self-similar fluctuations, the power spectrum behaves as 7
S(k)e|k| =7, where y is related to the standard roughness 0.00 L%
exponentae by y=2a+d, whered is the dimension of the 0.0 200 400 60.0 100.0

substrate.
Figure 1 shows the phenomenological distribution func- FIG. 2. The distribution function for the individual samples,
tion for the parameter value af=0.45, alongside the ran- P(¢?), the distribution for the average ovisi=20 samplesP (&),
dom walk distribution function ¢=0.5), and the numerical and a Gaussian approximation to the distribution for the average.
data. Figure (a) shows these functions plotted on a linear
scale, Fig. 1b) on a log-log scale. The phenomenologicalthe nth cumulant of the distributionP(£?) simply by
distribution shown is obtained by summing the residues o((gf)n>cz (NP1 ()™, .
the first 45 poles in the contour integral of B§). The sum Dealing explicitly with the first two cumulants of the
of the residues for the first 18 poles converges to the identipropapility distribution of the average,
cal distribution throughout the regime considered, indicating
that the result is essentially exact. The phenomenological _ 1
distribution captures certain aspects of the numerical data <§E>:<_ N§E,i> =
with more fidelity than the random walk distribution. The =1
value of «=0.45 is smaller than the KPZ prediction ef N 5 N 5
=1/2, but is consistent with previous values of the roughness, 77,2, _ 1, 1 2> O
(E)De=2 (| gE 2 (&)=
Cc

N N
1.
= ﬁ<§L,i>:Ma (4)

2.

exponent reported in numerical studies of B06,14,15. = - N2&L
In regard to the statistical tests discussed in the remainder (5)

of this manuscript, the relevant result presented in this sec-

tion is that both PRNGs converge to the same statistical disfhus each independent observationg_ﬁfis a random vari-

tribution. The discrepancies with random walk behavior will gple drawn from a distribution with meam and variance

not be further considered in this manuscript. o2IN= 12,

As N increases in value, higher order cumulants go to
zero, and the distribution approaches a Gausgamequired
by the central limit theorenii19]). The functionP(&7) is
'Thown in Fig. 2, along with the numerical data fo¢&?)

B. Distribution of averages

We are concerned with the consistency between indepe
dent measurements, and introduce the statistical tests th('ﬂreviously shown in Fig. X and a Gaussian distribution
follow in ordgr to test thigor more accurately to evaluate the /.o meanu and variance’?, for N=20.
lack of consistency The tests assume approximately Gauss-
ian distributed variables. Although a single measurement of >
the width of the interfacéFig. 1) is not a Gaussian variable, C. The x“ distribution
realizations is Gaussiafvia the central limit theorefil9)). — Gayssian distributed about the mearof the empirical dis-
In simulations one typically considers average quantitiesyibytion, with a variance? (see Fig. 2 Hence the normal-
which also necessitates knowing the probability distribution: ; 2 ;
of the average. Our simulations are Mfindependent real- ized difference & .’“)/V shou!d _be a _random vangble
o T . sampled from a unit normal distributiofi.e., a Gaussian
izations, so the relevant distribution is that of the width Ofdistribution with mean of zero, and unit varianc&he sum

. . 2 ]
the interface averaged oveM independent samplesi  of squares oM independently distributed unit normal ran-

_sN g2
=ZiZ1&0/N. o _ dom variables, denoted by,
We can construct the actual distribution function for the L
average oveN 11D samples,P(gf), from its Fourier trans- 5 M (gf’i—,u)z
form denoted byPy(k) (and usually referred to as the char- XSS:Zl 2 ' ©®)

acteristic function The characteristic function of the aver-

age is related to the characteristic function of the individuakg|iows a y? distribution withM degrees of freedof9]. If
samples[P(k)] by Py(k)=[P(k/N)]". The characteristic the y2 statistic is sufficiently large, it is unlikely that all
function is the generator of the cumulants of the distributionyalues in the sum are approximately unit normal distributed.
and thenth cumulant of the distributionﬁ’(gf) is related to  The 2 test quantifies how unlikely; the test determines the
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probability that a number of valugéS or greater is drawn —(gE)Myz)/\/2v2/M. An independeny? distributed random
from a x? distribution withM degrees of freedom. We de- variable [with 2(M —1) degrees of freedomis fg(M,l)
note this test as thqZ test and use it to determine the =S2/(v’IM) + 82/ (v*IM). The't statistic to compare two
probability of the hypothesis that all the valueségfin the  independent data sets is thus

conjectured steady-state regime were sampled independently
from the same underlying distributidshown in Fig. 2.

(a1 (Dm0

When performing a simulation one uses the values of the 2M=1)= ) (8)
average and standard deviation obtained in the simulation as \/(S§+S§)[1/(M —-1)]
estimates of the average and standard deviation of the distri-
bution function. In order to use the sample averdg@y If the t statistic is sufficiently large, it is unlikely that the

=(=,& )/M in place of u, and the weighted variance ratio of the sample mean to the sample variance is an accu-
S2I(N—-1)=3N,(¢2;— €3)?[N(N—1)] in place of ¢/N  rate estimator of the ratio of the theoretical mean to the the-
=12 we refer to the test. Note that these values obtainedoretical variance. The t‘test” measures the probability that
from our simulations should be unbiased estimatorg @hd @ value the size of thestatistic or greater is drawn from the
2, respectivel\f19], and represent more accurately the errorappropriatet distribution[19]. In summary, theTy_; test
bars obtained. using theT_, statistic measures the level of validity for the

hypothesis that each sample in a set was drawn from the
D. Thet distribution same underlying distribution. Th&;,, ) test using the
B . i . . Tom-1) statistic measures the level of validity for the hy-

_ Studentz [20] first discussed the error introduced b32’ €S-pothesis that samples in two distinct sets were drawn inde-
timating o° with the sample standard deviatios pendently from the same underlying distribution. This latter
=>N(&,— €)?N, and suggested thetest as an alterna- test compares average values generated by the two distinct
tive statistical tesf20]. Note thats?/(o?/N)=s?/v? follows  sets.
a x? distribution withN—1 degrees of freedoitthe degrees
of freedom are reduced by 1 as there is one constraint on the
random variables: the mean value is equaip. Following
“Student” we can construct a statistic from the ratio of a  The final class of statistical tests employed deals with
unit normal distributed random variablg to an indepen- extreme values found in sets of IID random variables. The

dently x? distributed random variablé?_, with N—1 de- ~ €xtrema found in our data appear to present the largest de-

E. Distribution of extrema

grees of freedom: viation from the theoretical distribution. Of course, when
dealing with extrema there is a selection effect, for which
z one has to correct. The probability of obtaining a particular
N1 T—. value for the minimum in a set d¥1 11D random variables
Vin-2/(N=1) can be readily calculated §21]

We label this variabld_ 1, as its probability density should — r - = M-1

follow a t distribution withN—1 degrees of freedorf.9]. P(Xmin=X)=Mp(£{=X) L p(&0)déL SN C)
The unit normal distributed random variable we are inter-

ested in isZ=(§f—,u)/v. The x? distributed random vari-

able isfﬁ,_1=szlv2. Thus the correspondingstatistic is Likewise the probability for obtaining a particular value for

the maximum in a set oM IID random variables can be
(?_M)/V (?_ ) readily calculated ag21]
L L
VI (N=1)]  sI(N-1)

N-1 (7)
_ X _ _\M-1
T . p(xmax=x>=Mp<§E=x>( f p(ff)d§f) . (10
We likewise define a secoridstatistic, useful for compar- -
ing two independent data sets. Consider two independent sets
of M 1ID samples drawn from a probability distribution with The original probability distribution for the average width,

meany and variance”® (i.e., two independent sets bf 11D P(£7), along with the distributions for the minimum and the
realizations o). There are thus two independent measurethe maximum in a set ofl = 10 independent observations,
ments of the average value over tiellD samples, denoted are shown in Fig. 3.

by <§E>M,i , fori=1,2 (as defined earlier, but note the addi-

tional indexi, used to designate the data)séikewise there

are two independent measurements of the variance Mver IV. RESULTS OF STATISTICAL TESTS

samples, denoted b’ =3M,(&f i i~ (&m,)?/M, for i We applied the statistical tests outlined above to the data
=1,2. The difference between two independent observationsbtained from our simulations. Results for tiyé test are

of average values is a random variable which converges to gasonable, however, the results for théest and for the
Gaussian distribution with mean of zero and varianceextremal values are highly unreasonable. Thus specific simu-
2v%/M, in the limit of largeM. Hence an approximately unit |ations may give highly anomalous results, inconsistent with
normal distributed random variable isZ=((& )y, the theoretical distribution.
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0.2 ' ' ' determined by theg test. We denote this as a pass at the
N = 24% confidence levelCL), or likewise a fail at the 76% CL.

\ ox=t In other words an event with this magnitude is expected to
=== X=Xmin occur one in four times, therefore a pass at the 24% CL is
X = Xmay not an unreasonable result.

The Ty_4 test for steady-state behavior, however, does
manifest discrepancies. Eight of the ten points pas3the
test above the 20% CL. But two points fail at the 94% CL,
with one of these points continuing to fail at the 99.98% CL.
An event that fails at the 99.98% CL is expected to occur
only twice in 10 000 times, we observe it once in ten times,
indicating that the null hypothesis is highly suspect.

To ensure that the data sample shown in Fig. 4 is not a
statistical fluke, and to establish the repeatable and consistent
absence of steady-state behavior, many more independent
samples were generated. A total of 200 independent realiza-

FIG. 3. The probability distribution for the average width, tions were simulated, and the value &f was measured for
P(£7), along with the distribution for the minimum and the maxi- gach realization at all of the times recorded in Fig. 4. The

P(x) 9.1}

mum in a set oM =10 independent observations &f. Gaussian distributed random variatdg is constructed by
A. Comparison of data at different times splitting the 200 [ndependent realizations into subsethl of
i . . =20 and calculating the average of each subset. Hence there
(in the asymptotic regime —
are ten subsets, each one of the random varigbkampled

In the asymptotic regime, the width of the interface 4 the ten times shown in Fig. 4, for a total of 100 realiza-
should saturate o a s_tzeady—state value. The average over ﬁgns ofg_f in the conjectured steady-state regime. We refer
independent samplegy, for an implementation with ran- 4 each subset as a data set throughout the remainder of the
dom(), is recorded at selected subsequent times, and a plot @f script. TheZs test is applied independently to each of
these data is shown in Fig. 4. All of the values shown shoul he ten data sets. The test can be applied to any
be equal within statistical error, but there are large diﬁer'combination of twb indeZ:E)MeBé)ent data sets. The ; test is
ences. In fact the greatest difference between two valuesis =~ BN
over four standard errors in magnitude. To quantify the sig—applled mdclapendently.tol each of the 100 rea_lll_zatlomSLof
nificance of this difference, we apply the statistical tests disBY ccr)‘nducr:mgr:he sta?shcgl t.estg fon tﬂe add_molngl data sets
cussed in Sec. IIl, to this data set. wets OWt't att ; resu tsdobtallme or the original data set are

The x3; statistic, defined in Eq(6), is calculated, but is sys_rﬁmazlc, ist' |ts_cu§s$ det?wiz 5 lculated f
not large enough to be significant: the probability that the € Xss Statistic defined by Eq(6) was caiculated for

ach data set. The data sets all pass this test at greater than

null hypothesis of steady-state behavior is valid is 24%, a < R 4
the 20% CL. Yet sufficiently many reahzaﬂonsﬁﬁ fail the
' Tn-1 test, to bring the null hypothesis of a steady-state into

question. Fourteen of the 100 IID realizations&gffail the
1 Tn-1 test at the 90% CL, which in itself would not allow us
L i to reach conclusions. However, as the CL criterion is tight-
[ ened beyond acceptable standards a surprising number of
l points still fail. At the 99% CL, five of the 100 points fail.
These five points also fail at the 99.8% CL. At the 99.98%
! —{ CL, three points fail. Finally, at the 99.995% CL, one of the
L] 100 points fails. The meaning of the 99.98% CL is that prob-
: ability theory predicts the occurrence of two such events out
1 of 10 000. Instead we observe three such events out of 100.
Likewise the 99.995% CL corresponds to five events out of
100 000. We observe one such event out of 100. Extreme
. ‘ ‘ “tail events” thus occur with a frequency which is more
20104 10° 10° 107 than two orders of magnitude greater than the laws of prob-
time, t ability would indicate.

_ _ — We now turn to a discussion of the average asymptotic

FIG. 4. The average width of the growth interfagg, as ob-  yajye of each data set & = 10 eventsi.e., each set consists

tained for 20 independent samples using randorshown at se- f the random variablg_f sampled at ten consecutive times

lected subsequent times in the asymptotic regime. The horizontaq . . —.
line corresponds to the average vaKzﬁ)M of the M=10 data "M the asymptotic regime The value of ) generated by

points in this figure, with the associated error bar plotted at theeach set of data is not consistent with the other sets. The ten

extreme end of the line. Note that the expected relaxation time i¥alues range fronﬁf_fmz33.05t 1.31 to 37.3%1.34[22].

less thanr=2x 10%, and that the logarithmic scale spans roughly Randomly picking pairs of data sets to compare using a
1037, Tom-1) test, we find several instances where the null hy-
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pothesis(that the two sets of data being compared were '
sampled independently from the same underlying distribu- 50
tion) fails at the 96% CL. Thus separate runs of a simulation
frequently give statistically inconsistent results.
When allN=200 samples are combined into one data set,
the average quantities are consistent with the empirical dis- 40
tribution function shown in Fig. 1:(& n-200m=235.65 -
+0.24. In addition, this data set of the average over 200 11D a0
samples passes théstest at the 97% CL. However, for the
data sets of averages owér 20 IID realizations, the dispar-
ity in average asymptotic values obtained shows that sam-
pling a subset of 20 IID samples is not consistent with the
empirical distribution. The values for averages and variances
obtained from the subsets are not unbiased estimators of the 20 Sz 7*  10° 10 10 10
empirical distribution function. Furthermore, the statistical time, t
tests discussed so far reject the hypothesis of steady-state _ _ _
behavior, even at time scales orders of magnitude greater FIG. 5. The average width of the growth interface as obtained
. . . ; y 20 independent samples for each PRNG. The horizontal lines
than the conjectured model relaxation time of10L*.  corespond to the respective average asymptotic values,
Thus there is no steady-state behavior for the data generatggry . anq(e2), . with the corresponding error bars plot-
with randont); instead there is an asymptotic dynamic be-ieg at the extreme end of each line.
havior.
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B. Comparison of extrema with the steady-state distribution Fig. 3. Maximum values for four of the ten data sets are

In the preceding section the occurrence of many extremewuch smaller than expected, with each having probability
tail events was established. In this present section we sho(X=<Xns) <12%. The probability of observing four such
that the occurrence of tail events can skew the average valuésw probability eventgfrom the left hand tail of the distri-
obtained. bution) out of a total of ten events is 1.9%. Again we can

Comparing the data shown in Fig. 4 to the expected probstate at the 98% CL that such results would not be obtained
ability distribution, shown in Fig. 2, it is observed that the by random sampling.
data points are skewed to the left side of the expected distri-
bution. Eight of the ten points are below the mean value C. Comparison of data from distinct PRNGs

=35.87 and the lowest value in=25.18, is in the left To determine if the source of the observed asymptotic
hand tail with less than 0.32% of the total area of the probyynamic behavior resides in the PRNG randpnresults
ab|I|_ty distribution funct|or_1._The probablllty of obtaining a using a second PRNG, raf)2 were also analyzed. rafRis
particular value for the minimum in a set & IID random  gypstantially slower than randeim hence the comparison is
variables is descrl_ped in E). U;mg this formula we cal- pased on 20 independent samples for each PRING we
culate the probability that the minimum &1 =10 IID ran-  yse only the initial set of data for rand¢mshown in Fig. 4
dom variables drawn from the distribution shown in Fig. 2 is[22]).
less than or equal tofﬁminz 25.18 is only p(X=<Xmin For the shortest length scale implementéd=(127), the
=25.18)=3.6%. time-series data for raf are self-consistent. The data pass
Again we wish to determine if the first data set is a flukethe x? test, theTy_; test, and the tests for extremal values.
event, so a statistical analysis based on all ten data sets obowever, at longer length scales the data for (arail sev-
tained with randorf) is warranted. We find that three of the eral statistical tests, making ran2also suspect in simula-
ten data sets have minima which come from the extreme lefions of BD. The tests performed at the longer length scales
hand tail of the distribution, ang(x<xX;) <6% for each. ~Were adequate to show statistical inconsisten@&} how-
As the probability distribution for the minimunp(x.,y,), is  €Ver. not with the high level of rigor demonstrated by the
known (see Fig. 3 we can construct the probability for ob- tests on the data at the shortest length sdalds _
serving three such low probability everiteom the left hand A direct comparison of data generated by the two differ-
tail of the distribution out of a total of ten events, and find €Nt PRNGs fol.=127 is shown in Fig. 5. There are 18 sets
this probability to be 1.7%. As such, we can state at the 9899f points that can be directly compared, including eight
CL that such results would not be obtained by random samwhich were sampled at<r. The T, -1, test for consis-
pling. tency between the two values at each time fails at the 90%
A similar analysis can be carried out with respect to thelevel for three out of the 18 sets of points. Most striking is
maxima. In line with the observation that the data in Fig. 4the direct comparison of average asymptotic values obtained
are skewed to the left side of the expected distribution, wdor each PRNG,(%E)M,randof 33.05-1.31 and(§E>Myran2
find several values for maxima which are questionably low.=37.06+0.80. A T, 1) test for the equivalence of the
The analogous probability for the maximum value in a set ofasymptotic averages of the data sets for randend ran2)
M IID random variables is given by E¢10), and plotted in  fails at the 99% confidence levéthe exact probability of
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failure isp=0.996). Hence use of different PRNGs can yielddard Monte CarldMC) simulations. In standard MC, com-
statistically distinct values for averages. parison to the Boltzmann probability causes rejection of

The statistical tests reject the hypothesis that the twd®RNs at pseudorandom points in the sequence; hence a sec-
PRNGs sample the same underlying distribution, despite thend independent source of pseudorandomness influences the
fact that the asymptotic distributions shown in Fig. 1 agreedynamics. In BD, all PRNs are used in the sequence pro-
There is a unique steady-state distribution which is obtaineduced(with the exception of the very few cases discussed in
in the limit of large numbers of independent samples. How-Sec. Il B. Similarly, in restricted solid-on-solid models of
ever, sampling of this distribution is nonstochastic, in thatgrowth (where physical constraints cause rejection of PRNs
each sample average is not an unbiased estimator of thbe scaling exponents and the random walk distribution pre-
asymptotic distribution. Likewise the standard error for eachdicted by KPZ theory are recovered with great precision in
sample does not lead to an unbiased estimator for the stanumerical simulation$17,25.

dard deviation of the asymptotic distribution. We have demonstrated that computer implementations of
BD can couple to certain PRNG algorithms. Results statisti-
V. DISCUSSION AND CONCLUSIONS cally inconsistent with general sampling assumptions and

L ) . . with the ergodic exploration of phase space were observed.
_ The original impetus for this study was an in-depth inves-gxp|oration of accessible phase space is not decoupled from
tigation of BD at long length and time scales. However, Wethe injtialization of the PRNG. In addition, driving the dy-
encountered many features in the data that could not be eagamics of the system with different PRNGs results in sam-
ily explained; most notably, non-self-affine surface fluctua-pjing different areas of phase space. In conclusion, BD is a
tions. After searching for various corrections to scaling.sensitive physical test of correlations in pseudorandom se-
which necessitated obtaining better statistics and exploratioauences_ In general, PRNG algorithms can couple to models
of longer times into the growth, the coupling to PRNGs be-of stochastic, nonequilibrium phenomena. One must ensure
came apparent, and motivated the detailed statistical analysigat observed dynamical properties are inherent in the non-

described in this manuscript. . . equilibrium model itself and not an artifact of coupling to
It should be noted that there are discrepancies betwegbRNGs.

values of the scaling exponents for BD reported in the litera-
ture [4,6,14,19. At this point, we can only speculate that
these discrepancies are due to the differences in the imple-
mentations of BD. Conclusions about the scaling exponents
can only be reliably reached once difficulties with PRNs are The work at MIT was supported by the NSF Grant Nos.
resolved. DMR-93-03667 and DMS-95-96217, and by DARPA Con-

In retrospect, it is not surprising that the BD algorithm is tract No. DABT63-95-C-0130. We have benefited from dis-
more sensitive to correlations in PRN sequences than stagussions with Y. Kantor, M. Smith, and N. Margolus.
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