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Critical lines of the Yang-Lee edge singularity of Ising ferromagnets on square, triangular,
and honeycomb lattices
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We extend our previous approach to determine the critical lines of the Yang-Lee edge singularity of Ising
ferromagnets on square, triangular, and honeycomb lattices by considering the zeros of the Ising partition
function on elementary cycles of these lattices. It is found that the critical lines have the properig’s’® as
T—T.+ andBhy— 7/2 asT—x. Using the asymptotic formulas valid in the high-temperature limit and the
zero-field limit we obtain the functional form of the critical linfg51063-651X98)02005-4

PACS numbegps): 05.50+q, 75.40.Cx, 75.10.Hk, 64.60.Cn

I. INTRODUCTION n-vector models and quantum Heisenberg madd], as
well as in the relation with conformal invariance in two di-
In 1952, Yang and LeEl] opened a new way to the study mensiong14] and in the relation with the critical behavior of
of phase transitions. They called attention to the zeroes of thieranched polymergl5], etc.
grand partition function in the complex fugacity plane. They Unlike the critical exponents, the critical lines are not
showed that in the thermodynamic limit the zero distributionuniversal and depend on temperature, detailed lattice struc-
approaches the positive real axis and gives the transitioture, and interaction strengths. Unfortunately, it is difficult to
point. In application to the ferromagnetic Ising model, theyobtain the critical line and little is known about the actual
considered the zeroes of the partition function in the complexorm of ho(T) since the Ising model in a magnetic field has
magnetic plane and proved the famous circle theorem. Theot been solved exactly so far except for the one-dimensional
Yang-Lee circle theorem states that the zeroes of the partlsing ferromagnet and the 2D Ising model on the Kagome
tion function in the complex magnetic plane are distributediattice [16]. Kurtze and Fishef13] analyzed high-field and
on a unit circle. The theorem asserts that the critical line ohigh-temperature series for ferromagnetic Ising models to
an Ising ferromagnet is locatedta& 0 for T<T,. Later this  obtain the asymptotic formula fdr,(T), which is valid for
theorem was extended to many ferromagnetic systems, suell Ising models.
as higher-order Ising mod¢R], Ising models with multiple Recently, we introduced an approa¢h?7] for two-
spin interactions, the quantum Heisenberg md@3) the  dimensional Ising models. By considering the zeroes of the
classicalXY and Heisenberg modé#], and some continu- Ising partition functions on elementary cycles of square, tri-
ous spin system$5]. Ruelle [6] extended the theorem to angular, and honeycomb lattices, we obtained the exact zero-
noncircular regions. Le¢7] presented a generalized circle field critical conditions. Making use of Griffiths’ smoothness
theorem to the asymmetric transitions and further to a conpostulate[18], we extended the zero-field results to the
tinuum system. nonzero-field case and obtained accurate closed-form ap-
Above the critical temperaturd,>T., the zeroes do not proximations of the critical lines of isotropic and anisotropic
come close to the redl axis in the thermodynamic limit and Ising antiferromagnets on square and honeycomb lattices.
the free energy is not analytic n There exists a gap on the Our results are in good agreement with the numerical results
imaginaryh axis, where zeroes are void. Since the gap sizebtained by other means.
depends on the temperature, one can envision a critical line Since the Yang-Lee edge singularity behaves like an or-
h=ihy(T) (herehy is rea) along which the free energy be- dinary critical point there are good reasons for extending our
comes singularF~ (h—ihg)? (hered is a critical exponent  approach to this case also. In this paper, we extend our ap-
[8]. This singularity was termed the Yang-Lee edge singuproach to obtain closed-form approximations to the critical
larity by Fisher. Fishef9] proved that the edge singularities, lines of the Yang-Lee edge singularities of Ising ferromag-
representing the zeroes lying closest to the real axis of theets on square, triangular, and honeycomb lattices.
field, are closely analogous to the conventional critical points  This paper is organized as follows. In Sec. Il we discuss
and that the relevant scaling laws are applicable. Furtherthe Yang-Lee edge singularity of a ferromagnet with the Cu-
more, the universality should hold for them too and the na+ie point. We use the Griffiths’ equation of state to obtain the
ture of these singularities is independent of the detailed latequation of edge singularity, valid near the zero-field critical
tice structure and depends only on the dimensionality and theemperature. In Sec. Il we consider the exact solution of the
symmetry property of the order parameter. one-dimensional Ising ferromagnet. From this we derive the
Since the Yang-Lee edge singularity has the most imporequation of edge singularity and obtain its asymptotic form
tant influence on the equation of state of a ferromagnet, ther@ the high-temperature limit. In Sec. IV we consider the
have been many studies on it. These include the Yang-Leexact solution of the two-dimensional Ising ferromagnet at
edge singularity in the Ising modgl0], in the hierarchical h=i(w/2)kT obtained by Yang and Lee. We derive the criti-
model [11], in the spherical model[12], in the classical cal field in the high-temperature limit. In Sec. V we briefly
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review our basic approach developed previously and refine tors increase rapidly for higher-order coefficieats Using

for the 2D lIsing ferromagnets. In Sec. VI we apply this ap-

only ag anda; in Eq. (5), we obtainhy=1t1%%0.442%T, in

proach to isotropic Ising ferromagnets on square, triangulathe limit T—T.+.
and honeycomb lattices and obtain closed-form approxima- Using the numerical results of Essam and Huf2e, we
tions to the critical lines on these lattices. In Sec. VIl we givecalculatea, anda; for some lattices: For a triangular lattice,

a summary of the paper.

Il. THE YANG-LEE EDGE SINGULARITY
OF A FERROMAGNET

ap=1.0818 anda;=0.9143, andh,=t'%%.452%T,. For
three-dimensional Ising modelg=5/16 andy=5/4. For a
simple cubic lattice, a;=0.9436, a;=0.4851, andh,
=t?5'9 506%T,; for a face centered cubic lattice,
=1.0248,a,=0.5885, anch,=t?>'90.520%T,; for a body

It is interesting to ask whether a ferromagnet with the.qntered cubic latticea,=1.0097, a,=0.5758, andh,

Curie point has the Yang-Lee edge singularity. Here We_ 25/16) 51 46T -
show that a ferromagnet satisfying Griffiths’ analyticity does _ :

have the Yang-Lee edge singularity.
If a ferromagnet has Griffiths’ analyticity19], then near
the critical point, the equation of state can be written as

h(M,t)

kT,

nzo an|t|y72,BnM2n+1, (1)

where 8 and vy are critical exponents, andis the reduced
temperature=(T—T.)/T.. If we approach the critical point
enough, we can consider only the lowest two terms:

h(M,t
(kT )=ao|t|7M+a1|t|7‘2BM3, 2
C
and thus we obtain
dh 2842
™M = (ag|t|”+3ay|t| " M*)kT,. ©)
T

Above the critical point,ag>0 and a;>0. At the phase
transition point we must havedk/dM)+=0, whose non-

trivial solution is
1/2
a
M =i(—0) It]#.

3a, 4)
Substituting Eq(4) into Eq. (2) we obtain the critical mag-
netic field,

23232

h=ih0:|W2—|t|ﬁ+ych.
1

)

We identify Eq.(5) with the Yang-Lee edge singularity.
Since Griffiths’ analyticity is a general property of a ferro-
magnet with the Curie point, we see thaty ferromagnet
with the Curie point has the Yang-Lee edge singularfitye

., for a diamond lattice,a;=0.8532, a;
0.3895, anchy=1t2>190.486kT,.

lll. 1D ISING FERROMAGNET

The partition function of an Ising model in the presence of
a magnetic field is given by

> ex{ﬁz

{Si} uy

where S==*1, K;; are the interaction strengths, angl
=1/kT. The sum overij) runs over nearest neighbors on
the lattices. We consider the ferromagnetic ceige>0.

In order to best illustrate the Yang-Lee edge singularity,
let us consider the 1D Ising ferromagnet. The exact solution
[23,24 gives the free energy,

F/IN=—K— B~ tn[coshBh+ (sint?Bh+ e~ 4#K)1/2]
)

and the magnetization,

3 sinh Bh
~ (sinkBh+e 2B 12

®

Thus we have

(‘9'\/') B coshph B sinh h coshgh
oh T_(sinhzﬁh+e*4BK)1/2_ (sinfEBh+ e *FK)372:
©)

The phase transition conditiongtf/ oM )+=0, requires that
sinfBh+e *f<=0. This equation does not have a real solu-
tion except ath=0 andT=0. Soh must be complex and
purely imaginary, namelyh=ih,. The critical line is given
by

28K

sin Bho=e" (10

Yang-Lee edge singularity is a general aspect of critical pheExpanding Eq(7) aroundih, we obtainF ~ (h—ihg)2 near

nomena and it is more general than the circle theorem.

the critical line. It is easy to verify that in the limi—oo,

Essam and Huntd20] used the series expansion methodEq. (10) yields

and obtained a few coefficients of thath derivatives of the

free energy with respect to magnetic field for ferromagnetic

Ising models. Gaunt and Donml21,22 used these coeffi-
cients to calculate some coefficiersg for ferromagnetic

Ising models with the aid of the inversion method. For a

square lattice Ising ferromagnet, they obtairsgg= 1.0387,
a,;=0.8479,a,=0.7495,a,=0.6801, a,=1.1376, andas
=6.7041. The estimated errors akEg{ay)=0.001, E(a;)
=0.004,E(a,) =0.03, ande(a3)>0.1, respectively. The er-

Bho— 72— (4BK)Y2+ 2(BK)32+O(T~%?).  (11)

The critical line is plotted in Fig. 1.

IV. EXACT CRITICAL FIELD IN THE
HIGH-TEMPERATURE LIMIT

Though the 2D Ising model in the absence of magnetic
field was solved exactly by Onsagi?5], its behavior in a
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2= 2[€2F(K1+Ka)  g2B(K1~K2) 4 = 26(K1—Ky)

15
+e 2PKitK) ], (17)
1 7, =2[e*A(K1t Kot Ke) 4 e2BK1y 42PK21 42PK34 4o 2PKs
g + 4o~ 2BK2 4 4o~ 28Kz @2B(K1 K= Kg) 4 o2B(Kp+Kg—Ky)
05 + @2B(Ka+Ky—Kp) 4 o= 2B(K1+Ko—Kg) 4 o= 2B(Ka+Kg—Ky)
+ e 2B(Kg+Ky—Kg) | o= 2B(Ky +Ko+Kg)] (18)
0 \ , , : . Making a transformation exp@X;)—iexp(26K;), we obtain
01 1 10 10° 10® 10* 10° )
T zl=2i 326Ky +KoHKa)[ ] — g~ 2B(K1+Ky) _ o= 2B(KpHKy)
—e 2AKaTk), (19

FIG. 1. The critical line of the 1D ferromagnet. The unitTofs

k/K.
2,=20 G (G+ 8)P— (1- 4éo)?, (20)

magnetic field is not known exactly except for the case of a

Kagome latticq 16]. We do not have precise knowledge of 2l =217 G s (A= Lalo— Lala— Laln)?
its thermodynamic properties in general. Nevertheless, in
their classic papefl], Yang and Lee did find an exact solu- —(41+ Lot L3 Ladal3)?, (21)

tion for the square lattice Ising ferromagnet in a specific
imaginary magnetic fieldr=i(m/2)kT. Here we give only  where {;=exp(~2pBK;). Thus the real solutions of’ =0
the result. The free energy and magnetization are respegive the exact zero-field critical temperatures of Ising ferro-

tively given by magnets on triangular, square, and honeycomb latf@ls

i KT (= (n square1{,+ {1+ {>=1; triangular:if1{>+ {203+ {3{1=1;

F(Z=—1,X)=———2f f dw;dw,In{(1—x2)2 honeycomb:  {1{5{3— 10— {203 {3l1—{1— Lo {5+1
2 47 Jo Jo =0. Thus we make the following observation:

2. 4 Lemma 1Let the Ising partition function on each elemen-
X[1+(6—4 coSw,—4 coSwp)x*+ X1} tary cycle of the square, triangular, and honeycomb lattices
(120 be z=2z(T,h=0). Make a transformation expgK;)
—iexp(26K;) and thusz—z'. Then the critical temperatures
and of the Ising ferromagnets on square, triangular, and honey-
comb lattices in the absence of a magnetic field are given by

(1+X2)2 1/4 )
M(z=—1x)= 5 —— 1/2} , (13  the real solutions ot'=0.
(1=x%)(1+6x°+X") Along the critical line of the Yang-Lee edge singularity
wherex=e2%K andz=e~ 26" Since 8 andK are real, in (dh/aM)1(h=ihy)=0. Near the critical line, the magnetiza-

the limit T—o, we havex— 1. In this limit the above equa- tion exhibits a branch point of the form

tions approach, respectively,

M(h,T)~[h—iho(T)], (22)
F~In(1-x) (149
where g is the critical exponentg<1). This suggests that
and near the critical line, the magnetization takes the form
M~(1—x)" ¥4 (15)

M(T>T.,h)=g(T,h)[P(T,h)]?, (23
Thus x=1 is a singularity and corresponds to the critical
point. Sinceh=i(w/2)kT is purely imaginary, we identify \whereg(T,h) andP(T,h) are analytic functions of andh.
this critical pointT—oo as the Yang-Lee edge singularity. | et us consider
Then the critical field must be equal bg= (7/2)kT. This is
consistent with the result obtained by Kurtze and Fih8t. IM a9 oP

(—) =—P%+ogg—P° L. (29
on /.,

V. BASIC APPROACH Jh

_ The Ising partition function in th_e absence of a magnet'CSinceg(T,h) and P(T,h) and their derivatives with respect
field on each elementary cycle of triangular, square, and honig 1 do not diverge for arbitranp, along the critical line
eycomb lattices can be written respectively as (6h/aM)-(h=iho)=0 requires P(T,h=iho)=0, which
2= 2[ @P(K1tKa+Ka) 4 gB(—Ki—Kp+Ka) | gB(—Kp=Ka+Ky) gives the critical line. _ _
On the other hand, for a square lattice Ising model, the
+ A~ Ka=KitKa)]) (16)  spontaneous magnetization is given[&y]
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20, 2¢, \?|v8 Solving Eq.(31) for f(Bhg), we obtain
M(T<Tc,h=0)=[1—(—z—2 }
1_§1 1_§2 C [
~[Z/(T.h=0)]* (29 f(Bho) =37+ V T‘l)’ (33

Thus P(T=T.,h=ihy=0)=2z'(T=T,,h=0). Therefore where
we might plausibly extend Lemma 1 to the cdseihg, T

ST, 4e K4 2(1—e 4BK)

Conjecture Let the Ising partition function on each el- M= 1+e 4Pk (39
ementary cycle of square, triangular, and honeycomb lattices
be z=z(T,h). Make the transformation We can determine the functional form 6fby considering
two limits of Eq. (31).
e?PKiie?PKi and Bh—f(Bhy). (26) In the limit T—o Eq. (31) approaches
Thusz—z' with f(0)=0 andP(T=T,,h=ihy=0)=2'(T m(q—2) _
=T.,h=0). Heref(Bh,) is assumed to be a real function of 1= tar? costtf(Bho) +sint?f(Bho). (35)

Bhgy. Thenthe critical line of the Yang-Lee edge singularity

is given by FT,h=ihy)=2z"=0. This meansBhy— const, which is consistent with the result
In the following, we will apply this approach to the iso- obtained by Kurtze and Fishg®],

tropic Ising ferromagnets on square, triangular, and honey-

comb lattices. Bho— /12— (BK/zy) Y2+ O(T~3). (36)

For the 1D lIsing ferromagnet, E(L1) giveszy,=1/4.
In the limit T— T+, expanding the left-hand side of Eq.
A. Derivation of the fitting function f(Bho) (31) around 8. and the right-hand side arourfd=0, we
In this case, the partition function on each elementar)Pbta“n
cycle of square, triangular, and honeycomb lattices is given

by f(Bhg)—t*2

z=\"V+aN, (27)

VI. ISOTROPIC ISING MODELS

(37

4K 1/2
kTo(1+ e4ﬁcK)}

On the other hand, according to E&), hy—|t|#*” in the
with limit T—=T.+ (hereg is the critical exponent
We tried several functions and Taylor series f¢Bhg)
. =e[coshph=(sintPBh+e *)12] (28  that would yield these two limits. We found that only the

) following functional form can satisfy the two limit86) and
whereN is the number of edges of an elementary cycle. Thu§37):

z=0 yields
coshgh ont1 f(Bho) =A sir[b;(Bho)* +by(Bho)* "1+ b3(Bho)* 2
(sintgh+e apKym2=(—1cotm—g +--0], (39)
(n=0,1 N-1) (29) where we need to impose the condition
A A+1 A+2
Making the transformation&6), we obtain bl(g +b, g +bs > +...= g (39
4K 2n+1 )
e 4= tarfrw N cosltf(Bhg) + sint?f(Bhy) As hy—0, T-T.+ and Eq.(38) approaches

, . Comparing Eqs(37) and(40) we obtainh,—t*? and thus
where onlyn=N-—1 is allowed. Thus the critical line is N=1/2(8+ 7). Since for a 2D Ising ferromagne=1/8
given by and y=7/4, we obtain\ =4/15. In this way we obtain, as

(q—2) T-T.+,
e 48K = tanz[ 29 cosltf(Bhg) + sinttf(Bhy), 48K 158
(31 ho:tlSISch[(Abl)zm} (41
whereq is the coordination number and we have used the - o ;
Baxter's formula[26)], As T—ox, let Bhy— 7/2—y to obtain
f(Bho)—A—y?B, (42

e‘250K=tar{ w(q—Z)}. (32

4q where
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FIG. 2. The critical lines of 2D Ising ferromagnets. The unit of
T is k/K.

A=f(m/2) and
B=(A/2)[b A (m/2)) 1+ by(N+ 1) (m/2)*
+bs(N+2) (w2 1+ -2, (43
Thus in this limit, sint(Bhy)—sinhA—y?BcoshA, and

coshf(Bhg)—coshA—y?BsinhA. Substituting these results
into Eq. (31) we obtain

4BK 1/2

Y=|B(sinh 28)(1+e 2FK) (“4)
Therefore we obtain
Zo=B(sinh 2A)(1+e *£X)/4, (45)

In the following, we determine the coefficienks, and
thus obtain closed-form approximations to the critical lines.

B. Square lattice
Taking the high-temperature limghy,— /2 of Eqgs.(35)

and (38) we obtainA=1 In(1+\2+ V2+21/2)=0.76429.
Making use of z;=0.088963 computed if13] and hg
=t15%.442% T, in the limit T—T.+ and the normalization
condition (39), we obtainb;=0.826 23,b,=0.42432, and
b;=—0.04060 with

f(Bho)=A sinb;(Bhg)* +by(Bho)* F1+ bs(ﬁho)HZ(]A-f@

The critical line is plotted in Fig. 2.

C. Triangular lattice

In this case we usg;=0.056 076 computed ifl3] and
ho=t%%0.452%T, in the limit T—T.+. Following the
same procedure, we obtaik=1 In(2+/3)=0.658 48,b,
=0.983 07,b,=0.276 31, andb;=—0.009 93. The critical
line is plotted in Fig. 2.

D. Honeycomb lattice

Kurtze and Fishef13] calculatedz, for some lattices:
Z,=0.088 963(square,q=4); z,=0.056 076(triangular,q
=6); z,=0.052 025 (simple cubic,q=6); z;=0.037 309
(body centered cubiay=8); z,=0.024 224(face centered
cubic, q=12). From these values we notice thaj is
roughly proportional to 4. Using these observations, we
roughly estimatez,=0.12 for the honeycomb latticeq(
=3).

In Sec. Il, we calculated the coefficients of E§) for
Ising ferromagnets on many lattices. It is found that for a
given dimension, the coefficients vary slightly and are ap-
proximately independent of lattice structures. Therefore we
estimate that for an Ising ferromagnet on a honeycomb lat-
tice, hp=0.45% T, asT—T.+.

Using the above estimates and following the same proce-
dure, we obtaimA=3 In(1+ 3+ y3+23)=0.831 44 and
b,=0.62509,b,=0.63654 anch;=—0.09418. The critical
line is plotted in Fig. 2.

VII. CONCLUSION

We have extended our recent approach exploiting the ze-
roes of Ising partition functions of the elementary cycles on
square, triangular, and honeycomb lattices. The exact zero-
field critical conditions are obtained as the zeroes of the
transformed Ising partition functions. Making use of the
critical condition of the Yang-Lee edge singularity,
(oh/oM)1(T>T,,h=ihg)=0, we extended the zero-field
critical conditions to the cas@>T, and h=ihy(T), and
obtained the critical linedy=ihy(T) of the Yang-Lee edge
singularity of Ising ferromagnets on square, triangular, and
honeycomb lattices.

We use the two limiting behaviors tfy: (1) the property
of the critical lines:hy—1*%® as T— T+, (2) the limiting
form of the critical line asT—», Bhy— 7/2— (BK/zp)*?
+O(T%?). The asymptotic behaviors of the critical line in
the high-temperature limit and in the zero-field limit restrict
the functional form off (Bhy) to a sine function. By using
the numerical results obtained by Kurtze and Fisher, we ob-
tained some constangs b4, b,, andb; for the three lattices.
Using Yang and Lee’s exact solution of a square lattice Ising
ferromagnet in a specific imaginary magnetic fiekd
=i(m/2)kT we obtained the exact critical field in the high-
temperature limit.

In addition, we showed that the Yang-Lee edge singular-
ity is a general aspect of critical phenomenon and any ferro-
magnet with the Curie point has the Yang-Lee edge singu-
larity. We have not found numerical data for anisotropic
lattices. If such data become available in the future, we will
extend our method to the anisotropic case and obtain the
critical lines on these lattices.
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