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Smooth phases, roughening transitions, and novel exponents in one-dimensional growth models
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A class of solid-on-solid growth models with short-range interactions and sequential updates is studied. The
models exhibit both smooth and rough phases in dimendied. Some of the features of the roughening
transition which takes place in these models are related to contact processes or directed percolation type
problems. The models are analyzed using a mean field approximation, scaling arguments, and numerical
simulations. In the smooth phase the symmetry of the underlying dynamics is spontaneously broken. A family
of order parameters which are not conserved by the dynamics is defined, as well as conjugate fields which
couple to these order parameters. The corresponding critical behavior is studied, and novel exponents identified
and measured. We also show how continuous symmetries can be broken in one dimension. A field theory
appropriate for studying the roughening transition is introduced and discy&sH163-651X98)01905-9

PACS numbsg(s): 05.40:+j, 05.70.Ln, 68.35.Fx, 64.60.Ak

[. INTRODUCTION tion with sequential updates and particle conservafid].
The free parametdd is the maximal allowed height differ-
The statistical properties of moving interfaces and sur€nce between adjacent site_s, and is a discrete quantity. It was
faces of growing crystals have been studied extensively i®bserved that the surface is smooth fo=3, and macro-
recent year§1]. Various theoretical approaches have beerscopically grooved foH>3. AtH=3 the surface appears to
applied in these studies including field theoretical analyses df€ rough. This phenomenon is clearly related to the local
continuum Kardar-Parisi-Zhang{PZ)-type equation§2—4]  conservation law in this model.

and studies of discrete growth processes such as solid-on- Recently, a class of growth processes with short range
solid (SO9 or polynuclear growth(PNG) models amon Interactions, sequential updates and nonconserved dynamics
others[4—14 POy 9 9 was introducedl17]. They were demonstrated to exhibit both

One of the more interesting properties of moving inter—rough and smooth phases in 1D. T.he dynamics is Qescribed
. . ; ) . by SOS models in which adsorption and desorption pro-
faces is their roughness. Itis well known thatir 2 dimen-  .aqqes take place in a ring geometry. Depending on the rela-
sions, moving interfaces may be either rough or smooth degye rates of the two processes, one finds either a smooth or a
pending on the level of the noise in the system. Howeveryg,gh phase. In studying the roughening transition in these
growth processes id=1 dimensions are more subtle. Most models, it has been found that some of its features are related
growth processes governed by short-range interactions, sugh those of contact processes, or directed percolation, which
as those described by the KPZ equation yield a rough intethave been extensively studied in the ppk8—21. These
face. On the other hand, study of a class of PNG modeltatter systems exhibit a continuous phase transition which is
suggested that both smooth and rough phases may exist #trongly linked to the existence of absorbing stdteset of
one dimensior{1D) [9,15,16. However, this class of models states from which the system cannot esgafpee model in-
is characterized by two key featurés) The evolution takes troduced in Ref[17] may be viewed as composed of a series
place by a parallel updating process in which time progressesf contact processes interacting with each other, whose dy-
in discrete steps, and all sites of the interface are updatedamics does not have an absorbing state. This model is the
simultaneously according to a given rule at any given timesubject of the present paper.
step. Such dynamics tend to be less noisy than sequential An intriguing question related to the existence of a
updating processes, in which one site is updated at a tpe. smooth phase is that of spontaneous symmetry breaking
The models have a maximal velocity by which the upper-(SSB and long-range order in one-dimensional systems with
most point of the surface can propagate. The existence of ghort-range interactions and small but unbounded noise. By
maximal velocity in these models is due to the use of paralleinbounded noise we mean that in a finite system all micro-
updates, and the smooth phase disappears when random seepic configurations can be reached from any initial condi-
quential (continuous timg updates are used. An interesting tion in a finite time. It is well known that in thermal equilib-
question is whether a sequential update growth process ifum no phase transition takes place under these conditions.
capable of exhibiting smooth and rough phases in 1D. Systems far from equilibriurf22], such as moving interfaces
Some time ago a transition from a smooth to a roughor driven diffusive systems, are, however, less restrictive and
surface was observed in a SOS model for surface reconstrughe question of existence of SSB under these conditions has
been open for some time. Recently, a simple nonequilibrium
model which exhibits SSB in 1D was introducg#3,24.
*Present address: Department of Molecular Biology and DepartThis model belongs to a class of driven-diffusive systems, in
ment of Physics, Princeton University, Princeton, NJ 08540. which charges of two kinds are injected at the ends of a
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one-dimensional lattice and are biased to move in oppositmodels in this class,@ a restricted solid on solidRSOS
directions. The dynamic rules are symmetric under space ancersion where the height differences between neighboring
charge inversion. However, this symmetry is broken in thesites are restricted to take values 1, 0, andl; and(b) an
stationary state of the system, where the currents of the twanrestricted model where there is no such restriction. Both
charge species are different. In this model, SSB is the resuihodels are defined on a 1d latticeMfsitesi=1, ... N and

of the conservedrder parameter in the bulkharges are not associated with each site is an integer height varidble
created or annihilated except at the boundariasd the ex-  which may take values 0,1. . . Periodic boundary condi-
istence ofopenboundary conditions. These two conditions tions are imposed so thaf,;=h;.

favor the emergence of SSB; the conserved dynamics slows The dynamics are defined through the following algo-
down the temporal evolution of the system; moreover, flipsrithm: at each update choose a sitat random and carry out
from one broken symmetry phase to another can originatene of the following processes: Adsorption of an adatom
only at the boundaries where the order parameter is not con-

served. Initial attempts to modify this model such that either h;—h;+1  with probabilityq (€h)

or both of these features are eliminated resulted in symmetric

stationary states with no SSB. or desorption of an adatom from the edge of a step
The growth model discussed in the present work provides ) ] N

a simple example for SSB which takes place far from equi- hi— min(h; ,h;,;)  with probability(1-q)/2, (2)

librium. The breaking of symmetry takes place in the smooth
phase, and the order parameter associated with this transition ~ hi— min(h; ,h;_;)  with probability(1—-q)/2.  (3)
is not conserved by the dynamics. The model thus demon- . _ ]
strates that SSB can take place in 1D in nonequilibrium sysJ he update of the chosen sités conveniently implemented
tems with nonconserved order parameter and ring geonil @ Simulation by drawing a random number between 0 and
etries. 1 from a flat distribution. If the number is less thamprocess

In this paper we present a detailed analysis of the growttl) is executed, if the number is greater thant(d)/2 pro-
models introduced in Ref17]. The relation of the models to C€SS(2) is executed; otherwise proce is executed.
contact processes and directed percolation is discussed, and!n the RSOS version, a process is only carried out if it
several families of novel critical exponents are defined. Ondéespects the constraint
family describes the critical behavior of magnetizationlike
order parameters related to the symmetry breaking. Another
family is related to statistical properties of the interface

; ; o ; For both models, when the growth raieis low, the de-
height near the roughening transition. The dynamical equa- . . .
tions are analyzed using the mean field approximation, and 3orpt|on processe®) and(3) dominate. If all the heights are

field theoretical model appropriate for the roughening transi—mItIaIIy set to the same value, this layer will remain the

tion is introduced. The scaling picture that emerges is fapottom layer of the interface. Small islands will grow on top

; - -._of the bottom layer through procegd), but will quickly be
Lrgrrpa\(;ic())Tplete but points to the existence of complex lecaleliminated by desorption at the island edges. Thus the inter-

The paper is organized as follows: The growth model i face is effectively anchored to its bottom layer, and the ve-
defined in Sec. Il. The relation to coﬁtact processes and d ocity, defined as the rate of increase of the minimum height

rected percolation is discussed in Sec. lll. In Sec. 1V, theOf the interface, is zero in the thermodynamic limit. On a

results of scaling analysis and numerical studies are preflnlte system, very large fluctuations will occasionally occur

sented. The question of spontaneous symmetry breaking, amr"Ch allow a new layer to be completed, and the velocity

the family of order parameters and their critical behavior, areWIII be positive but exponentially small in the system size.

discussed in Sec. V. The dynamics of the model is studie% @s q IIS '“Cfeaseo" the prt(_JIdugtlon clLlslanSs (I)n t?p offthe
within the mean field approximation in Sec. VI, and a field 0 r?m. zliye(; Increases, lén Ia qug’ N cr]: ca \éa ue Of. .
theoretical model appropriate for studying the critical behayd: the islands merge and new layers are formed at a finite

ior of the roughening transition is defined and discussed fate _giv_ing rise to a finite interface _v_elocity in the thermody-
Sec. VII. In Sec. VIII, some light is shed on the relation of "aMmi¢ limit. Thus, above the transition one, expects the ve-

the model to the polynuclear growth models discusse(ﬁoc'ty to behave as
above, and in Sec. IX the main results are summarized and

[hi—hq|<1. 4

: : : ; v~(q-9c), ©)
conclusions drawn. Finally, a particular case for which
Zteady d;tate can be calculated exactly is presented in trWherey is the critical exponent describing the growth in
ppendix. velocity.
Another critical exponent is defined by considering
Il. MODEL DEFINITIONS the fraction of sites at the lowest levskee Fig. 1. Below the

transition @<q) this fraction will be large, since the inter-
The class of models is most simply introduced in terms offace is anchored at this level. As the transition is approached
the growth of a one-dimensional interface, in which bothmore and more islands form on top of the bottom layer, and
adsorption and desorption processes take place. In the fractionng will decrease until it vanishes at the transi-
present models the key feature is that desorption may takégon. This may be described by
place only at the edge of a plateau, i.e., at a site which has at
least one neighbor at a lower height. We study two particular No~ (g.— ). (6)
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FIG. 1. (8 Typical configuration of the interface, is the frac-

tion of sites at heighk above the minimal height in the configura- - +.,00
tion (hereng=n;= g, n,= %). The average island size grown on top

of level k is I,.. (b) Mapping of the configuration ofa) to the  \here the growth ratey is related toq of Egs. (1)—(3)
charged-particle representatisee Eq(11)], along with a site col- through

oring, as described in Sec. V.

with rateg,

g=2q/(1—-q). (13

Similarly, one may define a family of exponents,} de- The rule that desorption cannot occur from the middle of a

scribing the vanishing o, the fraction of sites at levey, plateau corresponds to the absence of the process 0 0

as — - +. In this version, the dynamics may be performed

without reference to the height variablbs (although these

N~ (gc— ). (7)  can easily be reconstructed to within the height of the bottom

layer from the variables;). The critical behavior is reflected

in the correlations between the charges. d¢q., the

charges are arranged as closely bound— dipoles. Atq

The interface width is defined by

27172
w=|N"1> (hi_N12 hj) } : (80  >dc. the dipoles become unbound, and the fluctuations in
[ i the total charge, measured over a distance of ohledi-
verge withN.

Below the transition the width should be finite, indicating @ = The charged particle representation also allows the effect
smooth interface exploring only a finite height above theyt jesorption from the middle of a plateau to be studied. This
bottom Igyer. However, .above the transition .the interfacgg qone in the Appendix by introducing a nonzero mator
should display the behavior generic to moving interfd@s e process 00-— + and solving the steady state exactly
that is, roughening where the width diverges as in the casgp=1—g/2. The result is that, although different
) choices of this rate allow_the interfa_ce velocity to be positive,
zero, or negative, the interface is always rough and no

Therefore, near to and above the transition, we expect ~ SMOOth phase exists.

W~N¥2  at g>q.

W’VN]‘/Z(C]—C]C)X, (10 Ill. RELATION TO DIRECTED PERCOLATION
AND CONTACT PROCESSES

where x is the exponent describing the vanishing of the . ) ) ) .
roughness as the transition is approached. Some of the critical behavior described in the previous

The above considerations hold for both RSOS and unreSection may be related to that of directed percolatioR). In
stricted models, and and we will address the question as t8P. Sites of a lattice are either occupied by a particle or
what extent the two models can be seen as representatives@Pty. The dynamical processes are that a particle can self-
a whole class of models with the same critical behavior. In@nnihilate or produce an offspring at a neighboring empty
Sec. IV we will further explore the scaling behavior, adding Site. If the rate of self—ann|h|lat|oq is sufficiently high thg
to the exponentg, X, , andy that we have so far introduced. System always reaches an absorbing state where no particles
However, we defer this until after Sec. Ill, where we discuss®main, and therefore no further particle can be produced. On
the relation to a directed percolation model through whichth€ other hand, when the rate of offspring production is high,
some of the simple critical behavior may be understood. ~another steady state of the system, where the density of par-

For the moment we note that the RSOS versi@nmay t|cI§s is finite, exists on the infinite lattice and is termed the
be viewed as a driven diffusion model of two oppositelyactive phase.

charged types of particles. The charges In DP the dynamics is usually carried out in parallel, e.g.,
Ref.[21]. In the corresponding models in the mathematical
ci=h—hi_;e{-,0,+} (1) literature, known as contact proces§gg], the dynamics are

defined in continuous time, which can be numerically imple-
are bond variables, and represent a change of height betwesrented by random sequential dynamics.
adjacent interface sitdsee Fig. 1 In this representation, it To see the analogy with the growth model defined in Sec.
is convenient to convert the dynamical rulég—(3) into  II, consider the dynamics of the bottom layer of the unre-
processes occurring at bonds with the follownages stricted model. Let us introduce variablés} which take
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value 1 if the height of sité is that of the bottom layer, and ponents. Exponents describing quantities involving higher
take value zero otherwise. The algorithm stated in Efjs:  levels of the growth process suchygsgiven by Eq.(7) are
(3) is exactly equivalent to the following dynamics ffsi}.  not so straightforward, as we shall see in Secs. IV and V.

At each update randomly select a sitand modifys; with In this section the exact mapping of the bottom layer of
the following probabilities: the unrestricted growth model to DP has been described. For
_ _ the RSOS model there is no such exact mapping; neverthe-

if s;=1, s—0 withprob.g; less, we expect the bottom layer to exhibit DP behavior and

) ) relations(16) and(17) to hold, because the phase transition
if {Si-1,5i,5i+1}={0,0,1}, si—1 withprob.(1-0)/2; i this model should display a robustness with respect to the

(14 microscopic rules similar to that found in DP models.

if {si_1,5,Si+1={1,0,0,, s;—1 withprob.(1—q)/2,
IV. SCALING AND NUMERICAL RESULTS

if{si-1,8,8+1}={1,0., s—1 withprob.1-q. So far we have seen that, as criticality is approached from

éhe smooth phase, the scaling properties of some quantities
involving only the bottom level of the interface may be ad-
equately described using DP exponents. However, for more

ated at a vacant site with raéeif one neighbor is occupied, general qu_antit_ies the scaling is Ies_s clear cut, and ind_eed
and rate 1 if both neighbors are occupied. This process ha ly a p_art|al picture emerges. We first deal W't.h properties
been extensively studied by series expans[@s$and short of the first few layers in the smooth phase using heuristic
time expansions26] and the transition found to occur at arguments, and then compare them to numerical results. The

\.=0.3032 corresponding ,=0.2327 for the unrestricted width W, a quantity involving all layers, is studied next. It is

growth model. Thus, as seen by the bottom layer of thergued .that a simple scaling picture, involv@ng on]y the DP
growing interface, the transition from anchored to movingcorrelatlon lengtlg, , does not hold. We provide evidence to

phase is simply a DP transition. The anchored phase corréuggest that other length scales may be important as critical-

sponds to the active DP phase, whereas the moving phal¥ 'S @pproached from within the moving phase. A partial
corresponds to the absorbing D|5 phase scaling picture which emerges is then summarized.

The critical behavior of DP may be described as follows.

This dynamics is exactly that of a contact process when wi
takes;=1 to indicate the occupation of a site: the particles
self-annihilate with rate.=q/(1—q), and a particle is cre-

Above the transition X>X\.), an initial seed particle will A. Scaling properties of the first few layers

typically produce activity over a region of lateral extent We now discuss the scaling properties of the first few
~|e[~" and duration¢|~|e| "I, before the absorbing state |ayers k=12, ... above the bottom layer. Since, in the
is reached. Here, given by smooth phase, the scaling properties at the bottom layer (

=0) are completely characterized by the three DP exponents
Xo=pB, v, , and v, it is natural to assume that the next

measures how far the system is from criticality, &ndand layers obey similar (E)caling laws with analogous exponents,

¢ are interpreted as spatial and temporal scaling lengthg=B8%Y, v{, and (%, where, for examplex, is the den-
which diverge at the transition. Below the transition ( Sity @xponent defined in Eq7). In principle, all these expo-
<)) the densityn of occupied sites in the active phase is nents could be different and independent. Our numerical re-
n~|¢|?, and there is a finite probabilitie|? that an initial  Sults, however, suggest that the scaling exponefftsand
seed particle will result in the active phase being reachedl./ﬁk) areidentical on all levelsand equal to the DP exponents
The lateral extent of such an active cluster grows with timev, andv;. This remarkable property implies that the growth
ast?, wherez=v| /v, is the dynamic exponent. The typical process at criticality is characterized bysimgle anisotropy
sizel of regions containing no activity diverges as the tran-exponeniz= /v, . On the other hand, we find numerically
sition is approached ds-n~1~|e| 7. that the density exponents, for k=1,2, ... aredifferent
These exponents allow one to readily identffyandx,  and considerably reduced compared to their DP vadge
defined in Egs(5) and(6). Sincen, corresponds to the den- = 3. It appears that these exponents are nontrivial in the
sity of occupied sites in the DP active phase, we expect, isense that they are not simply related to DP exponents.
Eq. (6), In order to explain the reduced valuesxpf, we present a
simple heuristic argumefiL7]. Let us first consider the bot-
No~(gc—a)* and x=p. (16)  tom layerk=0. As explained in Sec. Ill, DP is characterized

In th . h th locity is ai by the i fby two length scales: the average size of inactive isldgds
n the moving phase the velocity is given by the inverse °~n51~|e|’5, and the spatial scaling length, ~|e| "

the typical time for the bottom layer to be covered over. We
identify this time scale with the lifetime of active regions in [27]. They both are related, for a system of shigby the

; . finite-size scaling relatioh,~ || #f(N|e|**), wheref is a
the DP absorbing phase, and in &5} we expect function satisfyingf (s) ~s?'" for s—0, implying that on a

v~1g~(q—q.)"l and y=y. (17)  finite system at criticality one hasy~1o *~N"#".. Now
consider the next layek=1. One may view the sites at
Thus we see that the two exponemtsandy that describe heightsk=2 as islands of active sites growing on top of the
guantities involvingonly the dynamics of the bottom layer inactive islands of th&k=1 level, whose typical size ik,.
may be directly identified with knowfnumerically DP ex-  Applying the same scaling relations, and assuming that the

€=0—(c, (15
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system size may be replaced Hy, we find n;~I;?! e 1
~I6’3/”, wherel; is the mean size of islands of sites with », .
height k=2. Repeating this argument one obta'nngsvlk‘l

A" and therefore
0.01 0.01

k-1
N~ e[, xe=B(BlIv,) (18 ,
10 100 1000 10 100 ] 1000

Inserting the numerically known DP exponen2s] P t

01 F oo A 0.1 |

W) S ®

B=0.276 494), 1 =1.733832), v, =1.096842), 1 e 1 e

we obtain the approximations =0.070,x,=0.017, andx, et e
=0.004, which are in qualitative agreement with the numeri- m, i m, =
cal results(see below. However, this simple scaling argu-
ment is not quantitatively correct for several reasons. First
we consider the temporal average of the island kjzas a
fixed “finite-size” length for a DP process taking place on *'1o 100 00 Mo 100 1000
top of the island; we thus neglect the temporal fluctuations of t t

lo. In addition, unlike exact scaling relations, our scaling  FiG. 2. Dynamic simulations: the densitiegand the integrated
argument is expected to fail in higher dimensions, since it igjensitiesm, at criticality as a function of time in Monte Carlo
derived in the case of one dimension where active sites sepateps(MCS) for the (U) unrestricted andR) restricted growth

rate inactive island. Nevertheless, it can be used as a roughodel. See Eq(19).
approximation as well as a qualitative explanation for the

x X X X
PR
x X X X

non ool
W= O
=

~
u . nonon
W= O
2]

~

strongly reduced values of, compared tox, for k=1. We observed that the quality of the numerical results can
be improved considerably if we measure thegrated den-
B. First few layers—numerical results sities

In order to determine the density exponemjsand to K
verify that the scaling exponentg® and »({ are indeed m=3n (22)
identical, we employ three different variants of Monte Carlo k <o
(MC) simulations, termed dynamic, static, and finite-size

simulations, described as follows. instead of the densities, . The integrated density, is the
Dynamic simulationsFirst we measure the temporal evo- propability of finding the interface at heiglit<k. Since
lution of the densitiesn at criticality in a large system, y, . >x, we haven,_,<n, near criticality, and therefore
starting from a flat interface and averaging over a large numm, and n, scale asymptotically with the same exponents.
ber of runs. For times larger than some transient time, thene difference between the two quantities is illustrated for
densities are expected to decay according to the case of dynamic simulations gt in Fig. 2 (for the
. method of determining)., see beloyw As one can see, the
N~ t =X/, (19 ; Al .
graph for the integrated densitieg, in the unrestricted
model shows almost perfect straight lines in a double-
critical (statig simulations, measuring the densitieg in a logarithmic represgntation, Wh”e_ the corre.sp'onding. curves
sufficiently large system in the smooth phase and averagin FNa, N2, andng still Increase, which makes_|t impossible tp
over very long times. Using this method we can determin etermine the corresponding exponents with the 1000 time

the exponents; directly through the expected behavior steps illustrated. The same observation, although with less
numerical accuracy, holds for the restricted model. There-

N~ | e, (20) fore, instead of,, we always measure the integrated densi-
ties my for which we assume the same scaling as in Egs.
wheree=q—q.<0. (19—(21).
Finite-size simulationsFinally we analyze the finite-size ~ The dynamic MC simulations are performed on a large
scaling ofn, in critical systems of siz&l averaged over long System withN=10" sites starting from a flat interface. De-

Static simulationsWe also determineg, directly in off-

times. Here the expected scaling behavior reads tecting deviations from the power law behavior, we find the
critical pointsq.=0.232 67(3) for the unrestricted argl
N~ N~X/vL, (21)  =0.1889(1) for the restricted modtorresponding tog

=0.4658 in Eq.(13)]. The time dependence ofi, at criti-

Thus the dynamic simulation should yield a numericalcality is averaged over typically ¥andependent runs. The
value forx, /v, the static simulation a value fag, and the  results are shown in Fig. 2. From the slopes we estimate the
finite-size simulation a value for, /v, . If, on inserting the  critical exponentsx,/v);. Using v| of DP, we obtain the
DP values ofy andv, , the three methodd.9)—(21) leadto  exponentsx, which are summarized in the left column of
the same numerical result for the exponeqt to within  Table I.
numerical errors, we may conclude that the scaling expo- We note a numerical puzzle we have so far failed to ex-
nentsv* and»({ are indeed equal to the DP exponents. plain. The critical value of for the restricted model appears
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TABLE I. Numerical estimates for the density exponents 1

Xg, - - - X3 for (U) the unrestricted andR) the restricted version of R “
the growth model obtained by various simulation methods. “&
my o
Dynamic method Static method Finite-size method ok0 °o
¢ k=2
X U 0.2785) 0.27310) 0.2765) *ke3
R 0.27010) 0.27710) 0.26510) o1 oo T - 1000
N N
x; U 0.1145) 0.11410) 0.1255)
R 0.10810) 0.11Qq10) 0.11810 FIG. 4. Finite-size simulations: Measurement of the integrated
densitiesm, and the growth velocity at criticality as function of
X; Ut 0.03915) 0.03515) 0.04510) the system siz&\l. The solid(dashedl lines refer to the unrestricted
R: 0.02415) 0.02520) 0.03319 (restricted model. See Eq(21).
X U 0.01110 no result 0.018L0 . . . -
3 110 6o As a final check of scaling, we can also obtain a finite
R no result no result no result

time collapse using the short time data from static simula-
tions. In the smooth phase the expected scalingnjét)

~ | €|*f (t| €| "1), wheref,(s)— const fors—c and f,(s)

~s X" for s—0. Figure 5 shows the scaling functions
ﬂ:(s) for various values ot ranging from—10 4 to —0.07

to be given to high numerical accuracy ty/(1—q,) where
g, is the critical value of the unrestricted model. Whether
this is sheer coincidence or whether it is a manifestation o

some duality between the two models is an open question easured up to {time steps. The long time stationary val-
Juality bet . : pen q ‘ues of the densitiesy, in static simulationg20) correspond
Static simulations are then carried out in the smooth phas

fao the saturation levels of the different curves

H — _ — 3 1 . .

q<9‘.°' Varylng_ |el=a.—q from 10 _to 10°7, we f_|rst Since the three different methods lead to the same results
equilibrate the interface on a large lattice with=10* sites

. . . for x, within numerical errors, we conclude that the scaling
over a time interval up to ftime steps. Then the stationary ®) () , L
exponents/}” and|” are indeed identical on all levels and

densitiesm, are averaged over a time interval of the same .
K 9 gual to the DP exponents, and v;. We obtain the DP

size. The results are again averaged over 100 independe% - )
runs. Using this method we can estimate the critical expogxgigenb(fa'gé’l as:eg%elcted at t_?ﬁ bOtt(l)n:t layer, Wh*l?t
nentsx, directly from the slopes of the lines in Fig.(83ee - X;=0.04,x3=0.015 ... . These latter exponents,

the middle column in Table)l The exponents are extracted although showing the same trend, are clearly different nu-
from the fit of the curves for smalf where the asymptotic merically from those obtained using the heuristic picture of
form is valid Sec. IV A. Itis not clear whethdx,} for k>0 are related to

Finally finite-size simulations at criticality are carried out the DP_exponents, o whethgr they are independent Expo-
for various lattice sizedl=8,16,32. ..,1024. Starting from nents. The fact that we obtain the same exponents in the

a flat interface, we averaged the integrated dengitieever res;ricted and the _unrestricted moo!el suggests that both
time intervals proportional tdN? ranging from 5000 time variants—at Iea;t Wlth. respect to the first few layers—belong
steps forN=8 up to 3x 10’ time steps foN=1024. Since to the same universality class.

finite-sized systems at criticality have a small but finite

growth rate, the densities, have to be measured with re- C. Scaling of the interface width

spect to the actual lowest level of the interface, i.e., in a |n this subsection we investigate the scaling properties of
comoving frame. The slopes of the curves in Fig. 4 give anhe interface width, defined by E¢g), at criticality and as
estimate ofx, /v, (and therewithx,; see right column of the rough phase is entered. The latter measurements lead us
Table ). In addition, the finite growth rate measured in thisto conclude that a complicated scaling behavior prevails.
type of simulation is expected to scaleas N™¥'":, which First recall that in the smooth phase the interface explores
allows an estimate of the expongntn Eq. (17). Our results  only a finite number of levels, and the width is finite. In the

arey=1.71(5) for the unrestricted model ayd-1.76(10)  rough phase the width is expected to diverge according to
for the restricted modelsee Fig. 4, which is in agreement

with our scaling predictiory= v =1.734 in Eq.(17). 10° 10°
k=0
1 === 4*/«::*(; R R 1 = B I “t - \k\=0 ) . . R)
»4:/,:/.‘://;/; P & © &= w/( < > 'w \\; w
O/,a/’“ - = k=1 \ 8 = -
me | e m |7 T N
L & k=t B — e ll:=§ R
U ka 10* = B 4 S e — .
W k=3 (R) %0° 10° 102 10' 10,07 107 107 10'
e e
0.1 5 =] 4 0.1 5 = 1
10 10 10 10 10 10 .. . . . .
e e FIG. 5. Finite time static simulations: Data collapse for the

scaled integrated densitieg, as a function of time measured in the
FIG. 3. Static simulations: double logarithmic plot of the satu- smooth phase for various values ©in the case of (J) the unre-
ration value of the integrated densitieg vs |e|. See Eq(20). stricted and R) the restricted growth model.
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0.4 ; 10'
<&
D/Z)f’zdzzg 10 - © ]
g <
= 027 i g, 10"
— [m)
=
o 107 1
-0.8 . 3
) 10 ‘ ' '
-1.0 1.0 3.0 10° 10° 10° 107 10°
In(In t) e

_FIG. 6. Width at critica_lity as a function of time in the unre- FIG. 8. Double-logarithmic plot of width in the moving phase as
stricted model. The graph is fo¢=2048 and shows the growth of  t,nction ofe. The system size wad =512 and each point is an

the width starting from a flat interface averaged over 2000 runs. Theerage over 2000 simulations. The simulations were started from a
straight line is a best fit through the long time points®{2 flat interface and allowed to saturate ovéf RICS. The width was
MCS), and has a slope of 0.24. then averaged over anothet*2MCS. The straight line estimated
over two decades il corresponds tge=0.95. Simulations of the
W~ N2, the behavior generic to moving interfaces in onerestricted model yielded a similar behavior and estimated exponent
dimension[2]. value y=0.92.
A naive scaling picture would suggest that the interface
width  may be writen as W~|e| "f(N/&)) fore the width saturates due to the finite length of the system.
~| €|~ 7f(N|e|"™), where 5 is some critical exponent. We For times shorter than the saturation time, the width at criti-
refer to this picture as naive because implicit is the simplecality, W,, grows as
scaling assumption of a single length scale in the problem, a
point we shall question in Sec. IV D. Within this naive pic- W~ (Int)”. (24)
ture one chooses a scaling functibnso as to obtain the
expectedyN behavior in the rough phase. This leads to theNow since the saturation time is expected to scaléNgs
following small , largeN asymptotic limits: wherez is the dynamic exponent, one deduces that the satu-
ration scaling of the width is
W~|e|™7 for e<O
W~ (InN)?, (25
W~N"" for e=0 (23 wherevy is given byy=0.24~ 1/4 for the unrestricted model,
and y=0.43 for the restricted model. The exponents are ex-
W~NY2 v 12=m)  for ¢>0. tracted from a fit for large values ofwhere we expect the
asymptotic form(24) to hold (see Figs. 6 and)7 Although

. . ... the error ofy is difficult to estimate, these numerical results
We now proceed to examine the actual behavior of the W'dt%uggest that the critical exponentin Eq. (23) is in fact

at criticality. In Figs. 6 and 7, width against time is plotted
for simulations run at criticality. For both unrestricted and
restricted models, a long time scaling behavior emerges b

equal to zero. For the restricted model the scaling of the
width at criticality is similar to that of amnrestrictedpoly-
fuclear growth moddl9], wherey= 1. The relationship be-
tween the present models and PNG models will be discussed
in Sec. VIIl. However, for the unrestricted model the value
of y is clearly distinct from3, which shows that the critical
width could display nonuniversal behavior. On the other
hand, y could be restricted to a finite humber of possible
values. It should also be noted that in preliminary simula-
o 1 tions the value ofy was erroneously assumgdi7].
5 We now examine how the saturation width diverges as the
growth rate is increased and the interface enters the moving
phase. To do this, it is convenient to subtract out the critical
width and measuraW(e)=W(e)—W,. SinceW, is negli-
‘ gibly small as compared wittW(¢€) for e>0, one expectyV
-1.0 1.0 3.0 . : ; o
In(In t) andAW to have th_e same as_ym_ptotlc behavior. In Fig. 8, itis
seen that the scaling behavior is
FIG. 7. Width at criticality as a function of time in the restricted

model. The graph is as for Fig. 6, and the system si2¢=s2048. AW(e)~ €, (26)
The best fit through the longer time points>(2*? MCS) has a
slope of 0.43. where y=0.95(5) for the unrestricted model.

0.0
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10° : : in Fig. 9, correlation functions for the integrated densities at
higher levels are plotted, and again one sees crossovers be-
A, tween two power laws. The two powers appear distinct for
§ each levek. Fork=1 the two powers are 0.15 and 0.56, and
Y for k=2 the two powers are 0.09 and 0.36. It appears that the
E 10" crossovers occur at a length dependentkoalthough it is
E« difficult to quantify this. If the crossover lengths wekele-
= pendent, then it would imply the different length scales exist
g on different levels.
v In order to give a heuristic explanation for the above be-
100 5 S - 3 havior, let us consider the density at the bottom laygr

10 10 10

=n,. A picture that could explain the crossover phenomena
in Fig. 9 is that the sites at the bottom level are grouped into
FIG. 9. Correlation functiongmy(i)m(i+r))/(my) in the  clusters. Each cluster displays the scaling behavior of an ac-
moving phase in the unrestricted model. The system parameters atiwe DP cluster, and therefore is of typical sizeé”+, and
N=2048 ande=0.02, and the results are an average over 1000within a cluster the correlation function decays-as™#/":.
simulations each run for® MCS to equilibrate. Thus the correlations within clusters generate the first power
law decay. However, one also has correlations between clus-
This result fory disagrees with the naive scaling picture ters. Thus within the cluster picture the second power law
(23), which suggests that the width should diverge with themeasures the decay of correlations between clusters.
exponenty, /2= 0.55(given thatn was found to be equal to A similar cluster picture could hold for the first and sec-
zerg. We are left to conclude that a more complex behaviorond layersk=1 and 2. Within the picture, the sites at the

r

than simple scaling takes place. first level, for example, are distributed in clusters. The first
power law in thek=1 curve of Fig. 9 measures the correla-
D. Length scales in the moving phase tion within a cluster and the second measures correlations

In Sec. IV C. we saw that a simple scaling araument .n_between clusters. The fact that the crossover appears to occur
: » W W 'mp Ing argu N"at a different distance than for the bottom layer indicates

volving only the DP scaling length does not describe COMhat the clusters at the first level are larger than those at the

rectly the numerlcal r.e.sults. In this subsection tlhe'alm IS t ottom level. Therefore there is more than one length scale
identify possible additional length scales, and indicate tha the problem

complex critical behavior may be present. Therefore the sub- This picture is far from being complete or verified unam-

section is by nature speculative. . . . .
i . : ) ._biguously, and many questions remain open. For example it
We investigate scaling lengths of the first few layers in 9 y yd P b

. is not clear whether the second power laws in Fig. 9 continue
andefinitely or are cut off at some larger length. The numeri-

{(m(i)my(i+r)) of the integrated densities, [Eq. (22)] cal value ofy is also not explained.

between sites andi+r.

Let us first consider the bottom layer density=ng. In
the smoothphase it has already been noted that the dynamics
of the bottom layefof the unrestricted modgis exactly that For the sake of clarity we summarize the scaling results of
of DP in the active phase. However, in theoving phase this section and the partial picture of scaling. First we have
there is a subtle difference between the present model artie smooth phase with exponemjsassociated with the den-
DP in the absorbing phase. This difference stems from theity at each levelx, is given by the DP exponeit, whereas
fact that in the present model there is no absorbing state, for k=1 appears to be nontrivial, in the sense that they are
Instead, whenever a layer is completed the next highest layerot simply related to DP exponents. The simple approxima-
becomes the bottom layer. We effectively move in a frametion of Sec. IV A gives the qualitative trend, but is ruled out
comoving with the lowest uncompleted layer, and relabel theyuantitatively by the numerics. As the roughening transition
layers appropriately. is approached, the DP scaling length and scaling time

In order to show that this produces a nontrivial effect wehold at all levels. This implies that approaching the transition
plot (my(i)my(i +r))/(my) in Fig. 9. First recall that in the the dynamic exponent is= v /v, .

DP absorbing phase near criticality one expects to see a At the transition, the interface has a logarithmically di-
power law decay (ng(i)ng(i+r))/{ng)~{mg(i)my(i verging width of the form(25). However, the value ofy
+1)){mg)~r~P"1 of the correlation function up to a scal- appears to depend on which version of the model one simu-
ing length which diverges as™"t. At lengths longer than lates. This could either point tg being nonuniversal or that
the scaling length the correlation function should decay exit can take one of a finite number of values.

ponentially withr. In Fig. 9 fork=0, we see an initial power Above the transition the velocity grows with the DP ex-
law decay with power given by-0.27, then a crossover at ponent v. This reflects the presence of the DP scaling
r~¢, to a new power law decay with power—0.76 length and time at the bottom level. However, by measuring
(rather than to an exponential decay as would be the cagbe growth of the interface width, we have ruled out a simple
with usual DP scaling We checked for different system scaling picture involving only the DP scaling length. We
sizes and values af that this qualitative behavidcrossover have provided evidence to suggest that there may be longer
to a new power law at long distanceas reproduced. Also scaling lengths which characterize the size of clusters of sites

E. Summary of the scaling picture
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FIG. 10. MC simulation of the restricted model for a systems of ; ;

size 600 at different values af. Each configuration is a row of
pixels, with sites at evefodd) heights represented by blagkhite) FIG. 11. Measurement of the order parame{ads,) in dynamic
pixels, visualizing the order parametdr;. Configurations at inter-  MC simulations for {J) the unrestricted andR) the restricted vari-
vals of seven moves per site are shown up to 2100 sweeps. Initiallnt of the growth model.

a large island of size 400 is introduced. Fgq., the island

shrinks and disappears, illustrating the mechanism that insurg§gmic limit, where(- - -) denotes the thermal average. On
long-range order in the smooth phase. The typical time it takes fofhe other hand, in the rough phase the interface explores
the island to disappear depends @it increases and finally di- 51y height levels; therefore, the contribution to the magne-
verges wherg—q.. Similarly the magnitude of the order param- i oiinn gt different sites are uncorrelated over long dis-

Shasehdecreases. AL aitcaity he order parameter s zor0, 5o thal2ceS: andM:)=0. Near the phase transition, we expect
P ' y P ' he order parameter to vanish as

the island is not visible any more.
, . , , . My)~|el %, 28
at higher levels. This picture remains to be fully investigated. (Ma)~lel 28)
Likewise, the question of scaling times for different levels in,,ere 9, is the associated critical exponent.

the rough phase has not been fully addresgedthe rough The order parameter and the SSB mechanism are illus-
phaase the dynamic exponent should take the KPZ value t4teq in Fig. 10. Here the heights are represented by alter-
=3). nating black and white coloringf. Fig. 1) and therefore the

_ Itis interesting to note that in a very recent renormaliza-gyerage gray scale in the figure is related to the magnitude of
tion group analysis of the field theory introduced in Sec. VI, \1. - Also, it is shown how a large island of one phase shrinks
multicritical behavior was identifietB2]. This could be con-  \hen introduced into a system dominated by the other phase,
sistent with the complicated scaling behavior we have obgs ensuring the stability of the smooth phase. This behav-

served. ior is typical of islands of all sizes, except for those extend-
ing over the whole system.
V. SPONTANEOUS SYMMETRY BREAKING Since the symmetry of the model in the heightZis we

Lan define a family of order parameters which generalize

N .
1 2 h;
Eexp{wj

Nj:l n+1

The growth models defined in Sec. Il may be viewed as™*"
examples of spontaneous symmetry breakigB) in a one- 1
dimensional system with periodic boundary conditions and a
nonconserved order parameter. As will be shown, the models
display a robust local mechanism for eliminating islands of
the minority phase generated by fluctuations.

The symmetry of the growth models, apart from spatialThese order parameters have the same qualitative behavior as
translation and reflection invariance, is(discrete transla- M, and can be understood as discrete Fourier transforms of
tional invariance in the heightsZ(). In the smooth phase the height probability distribution. It turns out that each order
this symmetry is broken, since the system spontaneously searameter is characterized by a different critical exponent:
lects one of the heights as a reference level, which then
serves as bottom layer for local fluctuations of the smooth (M) ~] €| %. (30
interface.

n

. (29

As in the case of the density exponemris we determined
the exponent®),, numerically by static, finite-size, and dy-
namic MC simulations. The most precise data are obtained
In order to quantify the symmetry breaking, we define afrom dynamic simulationgsee Fig. 11 The numerical esti-

magnetizationlike order parametévalid for both the re- mates forg, are summarized in Table Il. It seems that these
stricted and the unrestricted models

A. Order parameters

TABLE Il. Numerical estimates for the order parameter expo-
nentsé#, obtained from dynamic MC simulations.

1 N
My==> (—1)N. 27)
N

0, 0, 03 0, 05

This order parameter is clearly not conserved by the dynamignrestricted:  0.6@) 0.402) 0.242) 0.151) 0.111)

cal rules of the models. In the smooth phaseq,, it has a Restricted: 0.666) 0.374) 0.214) 0.143) 0.102)
nonvanishing expectation valyé,)#0 in the thermody-
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—_

metries, however, can be broken only above two dimensions,
although weaker vortex ordering transitions are possible in

T 2D (Kosterlitz-Thouless transition29]).
xoxoxox X M s Here we present a version of the growth model with a

60000 A/A/-(é continuous symmetry which is broken spontaneously in the

i

!

!

- A/A/g( smooth phase. The only difference between this version and
s 01 R on=1 | the unrestricted model described above is that the height in-
Lana?d // an=2 crement at a growth move is a continuous rather than a dis-
- on=2 crete number.
o *n=3 The model is defined on a one-dimensional lattice with
g00 *n=4 periodic boundary conditions and continuotreal) height
variablesh; at sitesi=1, ... N. The interface evolves by
0.01 5 sl s choosing a siteé at random and carrying out one of the
10 10 N 10 10 processes
FIG. 12. Response of the order parameté to an external hi—h;+{  with probabilityq,
ordering field at the critical point in the unrestricted model with
2000 sites. Measuring the slope of the line in the double- h;—min(h; ,h;, )  with probability(1—q)/2, (33
logarithmic plot over two decades gives estimates for the response
exponentsk, (see text The saturation for very low values of h;—min(h; ,h;_;)  with probability(1—q)/2,

seems to be a finite-size effect.

R where( is a positive real random number selected from a flat
exponents are nontrivial in the sense that they cannot b8istribution between 0 and 1. The symmetry of this model

related in a simple manner by scaling relations to the knowna 4+ from spatial translations and reflectioisscontinuous

DP exponents. translational invariance in the heights, i.e., overall shifts of
the interface heights by any amount. The symmetry breaking
B. External ordering fields corresponds to the fact that in the smooth phase the interface
For each order parametdt, one can define a conjugate Selects a given height which is a real number, and remains
ordering field that favors states where the order parameter @inned to that height for a time that grows exponentially with
positive. This ordering field can be introduced by a periodicthe system size.
modulation of the growth rate, i.e., we replace the uniform Starting from a flat interface at height zero, the dynamics

growth rateq by a height_dependent growth rate taklng place at the lowest level in the continuous model are
exactly the same as in the unrestricted version of the discrete

model, the simple reason being that in both cases each height
level is decoupled from the higher ones. This means that
both models have the same critical poqi=0.232 673).
where\ is the magnitude of the ordering field. For example,Moreover, they have the same occupation of the lowest level
for n=1 andA >0 the growth on the bottom layer and other which is characterized byn,=(g.—q)*°, where xo,=p8

even layers is penalized, whereas growth on odd layers is=0.277 is the DP density exponent.

favored. At criticality, the response to this external field is Above the critical point, the interface is rough and has a

h _ 27Ti
g—a(hj))=g—\ co ey

: (31

expected to obey a power law behavior finite growth velocity. Simulations show that the roughness
. exponent characterizing the interface at this phase is consis-
My~ A", (32 tent with the KPZ exponeni?], within numerical accuracy.

However, an interesting difference from the discrete model
occurs in the growth velocity. As in the previous case, it is
related to the inverse of the island lifetime. However in the
present case, the step size by which the interface grows is not
1, but rather a real random number between 0 and 1. Each
completed layer corresponds to the growth of the interface
by the smallest surviving step. Now, from our results on the
discrete models, we expect that at criticality the width be-
C. Spontaneous breaking of continuous symmetries haves as some power ofNnSince the number of steps in a

So far, we have shown that the growth models discussefinite system is of the order dfi, we expect the smallest of
in this paper exhibit spontaneous breaking aliscretesym- them to be of order N. At the critical point, therefore, we
metry in one dimension. It is therefore of interest to askexpect the following finite-size scaling for the velocity:
whether acontinuous symmetrgan also be broken in one-
dimensional nonequilibrium models. Continuous symme- v~N"HIL (34)
tries, where the order parameter can take a continuum of
values, seem to be harder to break than discrete symmetrieghich corresponds to the scaling
Consider for example the equilibrium case: discrete symme-
tries can be broken above one dimension; continuous sym- v~(q—qy)Y, y= v +v, =2.83. (35

We measured the exponentg in static MC simulation at
criticality (see Fig. 12 Varying A over two decades from
102 to 10!, we obtain the estimates,;=0.60(4), «;
=0.423), «k1=0.263), «;=0.113), and x;=0.123).
Comparision with the results in Table Il suggest that
=6,.
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1 . . . 10° v . . whereq_= g/(1—q). Similar considerations yield the follow-
w0 L | ing set of equations fop,= (i (i)) for k=1:
. . e K k-1
. 107 + . b ﬁpk — —
S " ~ . —=Qpr-1—Apkt o 1- 2 Pj) P, pj- (39
“ 10° L ., J ot j=0 j=0
10° N ] It is convenient to rewrite Eq$38) and(39) in terms of the
0 . . . 107 . . . integrated density variabldsf. Eq. (22)]
10° 100 10° 100 10 10° 100 10 10° 10’
N N

k
¢k:j§0 pj - (40)

FIG. 13. Spontaneous breaking of a continuous symmetry: The
graphs show the occupation of the bottom laggrand the growth - ) _
velocity v in a system of sizd at criticality. From the slopes we Substituting Eq(40), and usingp,= ¢,— ¢_, brings Egs.

obtain the exponents, /v, =0.245(10) and//v, =2.597). (38) and(39) into the forms
This has to be compared with=»=1.73 in the discrete &;%:E(b — 2
model. These exponents are in good agreement with the val- at o Yo

ues measured in MC simulations, as shown in Fig. 13.
It would be interesting to study order parametéds, Iy ) _
which are continuous generalizationsMf, in Eg. (29): ot e~ it (-1 (k=1), (41)

N

EZ exp2mi wh;)

where e= 1—€ These equations have a stationary solution

M= = ' (36) corresponding to a smooth interface tor 0. The roughen-
ing transition takes place at=0. The stationary solution for
As before, we expect a power law behavidf )~ || %), €>0 may be calculated by the following recursion relation:
where f(w) depends continuously om. L 5
dx=3le+ Ve +4(1- €) py-1l, (42)
VI. MEAN FIELD APPROXIMATION with ¢o= €. To leading order ire, Eq. (42) takes the form
In this section we derive the mean field equations corre- b= \/¢— 43)
k™ k—1-

sponding to model$1)—(3), and study the resulting steady
state distribution. We consider the unrestricted SOS modelpg gteady state distribution corresponding to this recursion
since the equations for this case are somewhat simpler. HoWgation is

ever, both the restricted and unrestricted models are expected

to exhibit the same qualitative dynamical behavior. b= (12X (44)
To derive the mean field equations, we introduce at each
site i a set of variablegy(i), k=0, ... ~. Here yy(i) is  Therefore, the mean field values of the exponeptdefined

equal to 1 if the interface at siteis at heightk, and it is  in Eq. (7) are given by

equal to O otherwise. Lefyy(i)) be the average of(i)

over all realizations of the dynamical equations starting with VE

the same initial configuration. Let us first consider the occu- X =k (45)
pation of the zeroth level. The adsorption and desorption 2

processes defined in Eq&l)—(3) result in the following
equation for{ ¢ry(i)):

(deho(i))
A ot

The integrated height density, is a monotonically increas-
ing function ofk, varying frome for k=0 to 1 fork—o (see
Fig. 14. It exhibits a rapid increase ne&r=k,,, which is

=— (o)) +3(1—q)(¢ho(i) (1= (i —1))) determined by the following equation:

L _ _ b,—1t b1~ 20 =0. (46)
+ 2 (L= a)(do(i) (1= (i +1))), (37
The indexk,, corresponds to the interface height at which the

where A is a time constant, which, for SlmpIICIty, may be densitypk: ¢k_ ¢k*l is maximal. Using Eq(43), one finds
taken as 1-g. Within the mean field approximation, one that, to leading order ir,

replaces the correlation functidmyy(i) ¢o(j)) by the prod-

uct{o(i)){¢o(j)). For the ring geometry considered in this 1

work {i(i)) is independent of the site indéx Denoting km”ﬁ'”[_m(f)]- (47)

(¥o(i)) by po, we obtain the following dynamical equation

for po: It is easy to see that the width of thf distribution remains
; finite even in the limite—0. The intervalAk corresponding

Po  — to a change ofp from some valueb,,;, to another, sayax

t = ot poll=po), @8 s given to leading order i by
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1.2 T ] latory. This feature is an artifact of the mean field approxi-
i ] mation. In this approximation, fluctuations of the position of
1r Lt the interface are neglected. When they are taken into account
i ) ] they are expected to broaden the interface, resulting in a
0.8 p diverging width at the roughening transition. This should
P o 6i 1 lead to a vanishing magnetization at the transition. In a simi-
x T lar fashion, the mean field theory of KPZ interfaces does not
0.4l B describe the roughening behavior.
0.2- ) ] VII. FIELD THEORY
ol L] In order to understand the universal properties observed in
0 5 10 15 20 the growth models at criticality, it is useful to study the cor-

k responding field theory. As will be explained below, such a

field theory describes a hierarchy of unidirectionally coupled
FIG. 14. Mean field approximation of the integrated helght den'DP processes. Thus it should p|ay a role in even more gen-
sity ¢y at levelk. eral contexts, namely whenever DP-like processes are

L coupled unidirectionallyithout feedback.
Unlike the KPZ equatiof2], the field theory we consider

Ak= ﬁln[lnwmm)/ln((bmw)]. (48) involves separate fields for each height level in order to in-
corporate the rule that atoms cannot desorb from the middle

This interval is independent af, and thus the width of the of an island. Let us first try to guess the Langevin equations
¢, distribution isfinite. This feature, together with E¢47), by adding appropriate diffusion and noise contributions, such

yield the following behavior for the average height: that (a) the equation for the lowest level reproduces the or-
dinary Langevin equation for directed percolat[@0]; (b) at
(hy~\(h*~In[~In(e)] (490  a given time and position the sum over all height densities

o 2Pk is equal to 1; andc) the hierarchy of equations is
We now turn to the magnetizationlike order parametefransiational invariant in space and time as well as in the

M;=3(—1)p; [see Eq.(27)]. For smalle>0, EqQ. (44  heights. The simplest set of Langevin equations that meets

yields the following expression fdvl,: these requirements reatsuppressing the argumentg)
Mi=et D 21— 12— 1)k (50) 3ipo=—Apo+ po(1=po) + VZpo+ o (51
k=1
k k—1

In Fig. 15, we plot the magnetization as a function of  4,p,=qp,_1—qpr+ px
In[—In(e)]. It is readily seen thai; does not decay to zero
for small e. Rather, it oscillates with an amplitude which
remains finite at smalk. This may easily be understood in

the following way: the main contribution to su(B0) comes wheren,(x,t) are field-dependent Gaussian noise fields with

from a finite number of layers centered arodndk,,,. As € ! . o -
. o two point correlations to be specified below. Notice that Eq.
decreaseg,, increases, and the magnetization order param-

eter probes different layers. Since the contributions of thé51) s just the ordinary Langevin equation for D80]. One

layers have alternate signs, the magnetization becomes oscid! also verify tha_‘t the sum over all density fields_ py is
a constant of motion.

1_20 pi _Pki:ZO pi+VZpy

~Vipitm—mer (k>1), (52)

0 As in Sec. VI, these equations can be simplified by intro-
. ] ducing integrated density field$k(x,t)=2}‘:op,-(x,t), re-
0.4l ] sulting in
0.3 - ] drp=adi— it Adi-1+ V(b= 1)+ 7, (53
M 0.2 b — . . .
i ] wherea=1—q and ¢_,=0. Interestingly, the introduction
0.10 " ] of integrated densities also led to a considerable improve-
5 .. ] ment of the numerical results in Sec. IV, suggesting that
oL e e these quantities are more natural in the context of the present
f ] problem than the height densitipg(x,t).
-0 1b et Although the Langevin equatior(63) follow quite natu-
0 1 2 3 4 rally from principles(a)—(c) stated above, it can be danger-
In[-In(e)] ous to conjecture the correlations of the noise fiejgéx,t).

A systematic derivation of the Langevin equations and the
FIG. 15. Mean field approximation of the magnetizatidy as  noise correlations based on a bosonic operator formalism
a function of If—In(e)]. [31] will be presented in Ref.32]. Dropping irrelevant op-
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erators[like V2¢,_; in Eq. (53)], and introducing indepen- 1
dent coefficients for all terms it is shown, that the Langevin it=1, N=5, xqF=—. (60)
equations are given by 2

Field theorieq54) and (55) may be interpreted as a hier-

_ _ 2, 2
b= A Meict Qb1+ DV bt i, (54) archy of DP processes which araidirectionallycoupled by

densities of particleA,B,C, ..., this field theory corre-
(X0 (X 1)) =2T | (X, 1) S(x—x") S(t—t"), sponds to the reaction-diffusion process
55
9 A—2A, A—B,
wherek<. Notice that there are noise correlatidrestween
different height levelk and| which are generated in a one- B—2B, B—C,
loop approximation by nontrivial mixed cubic verticg32].
In Sec. IV, we observed numerically that the scaling ex- C~2C, C—D,

ponentsy, and v are identical on all height levels. This
observation can be verified easily within an “improved mean
field approximation” as follows. Consider the scaling trans-

formation MC simulations indicate that this reaction-diffusion process

belongs indeed to the same universality class as the rough-
X AX, =A%, b A Xk, (56) ening tlran.sition discussed @n this paper. We therefore expect
that this field theory describes not only the present growth

wherez is the dynamical exponent ang are the scaling model_s bu_t any system in which DP processes are coupled in
exponents of the fields,. Under rescaling, Eqg54) and  ©ne direction.
(55) turn into
VIIl. RELATION TO POLYNUCLEAR
f9t¢k:ak/\z¢k_)\kAFXk(ﬁﬁ"'i/\z”kwk*lébk—l GROWTH MODELS

+D AT 2V2, + L, (57) In the previous sections we have seen that the dynamics
of the lowest layer undergoes a DP transition that corre-
, P sponds to a transition from zero to finite velocity of the in-
(Xt (x".1)) terface. For a class of models termed polynuclear growth
=2A7" 070 (1) S(x—X) S(t—t') (k<) (PNG) [6,7,9,15,18 which employsparallel dynamics, a
similar scenario pertains to the growth at the highest level. In
(58 these models the use of parallel dynamics implies that the
maximum velocity is 1, i.e., the sites at the highest Idvel
=T grow at every time stef. The sites at the highest level
may be considered as active sites of a DP process, and below
the transition there is a nonzero density of such sites. Above
the transition there are no sites at the highest level and the

whered is the spatial dimension. Thus an infinitesimal res-
caling by A=1+m would result in a change of the coeffi-
cients

ImBi= By, velocity is less than 1. This transition is lost, however, when

the dynamics are performed random sequentially, since then
Imhk= N2~ Xk, there is no maximum velocity. This contrasts with models
(1)—(3), where a phase transition is found whether the dy-
ImDk=Dy(z=2), (59) namics be implemented random sequentially or in parallel.

In this section we shed some light on the connection be-

Il k1 =L (z+ x—d), tween the present models and models of the PNG class. In
o order to do this we first generalize the dynamics of the un-
k= A(Z+ Xk— XK_1)- restricted model$1)—(3) to encompass both random sequen-

tial and parallel dynamics. In a time staf sites are updated
At the critical dimensiord=d., we expect the coefficients according to the following rule:
to be invariant under rescaling. As usual, the DP equation at
the lowest levek=0 yields the solutiong=2, y,=2, and  hi(T+1)=hi(T)  with prob. 1-A
d.=4. The linear term is relevant, so that the paramater _ :
has to be tuned to zefthis is the mean-field critical point of hi(T+1  with prob.ga
DP). Also, at higher level&k>0 the linear term is the most min[hi(T),h;+1(T)]  with prob.(1—q)A/2
relevant contribution, and thua,=0 is the multicritical ) .
point in the mean field. Requiring that the nonlinearity and minfh; —1(T),hi(T)]  with prob.(1—q)A/2.
coupling to the previous level are equally relevamt-(y, (61)
— Xk—1=2— xx), we are led to the solutiog,=2"X. Iden-
tifying z=w /v, and x,=x,/v, we obtain, in agreement As A varies from O to 1, rulé61) interpolates between ran-
with Sec. VI, the mean field exponents dom sequential dynamics and parallel dynamics: for
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<1/N the height of at most one site is modified at any timeied. However, with the standard PNG modéH), the dy-

step, and the dynamics becomes random sequential for namics is strictly parallel, and it is not clear if it can be

=1, all sites are modified at each time step and the dynamidsansformed to any random sequential model. Indeed, simply

is parallel. employing the inverse transform of E(G2) yields another
We now make a transformation suggested to us by Jmodel with strictly parallel dynamics.

Krug (private communication If one defines

IX. CONCLUSIONS
hi(T)=T—gi(T), (62) o . : .
In summary, we have studied in detail a one-dimensional
the variablegy;(T) undergo the following dynamics: stochastic growth model with random sequential dynamics,
that exhibits a transition from a smooth to a rough phase. In
studying the model, we have shown that some properties

gi(T+1) may be understood directly from the scaling behavior of DP.
=g,(T)+1 with prob. 1-A However, other properties and critical exponents appear non-
trivial in the sense that they seem not to be related to DP

=g;(T) with prob.gA quantities in a simple manner. Furthermore, we have intro-

. duced novel exponents such as those relating to the magne-
max g;(T).gi+1(T)]+1  with prob.(1-q)A/2 tizationlike order parameters characterizing the SSB and the
max{g;_(T),g(T)]+1  with prob.(1—q)A/2. response of these order parameters to an ordering field.
One can also think of the model in terms of a system of
(63) unidirectionally coupled DP processes. We have proposed a
field theory which should describe the properties of this gen-
(taral class of systems.

We are left with several open questions. First, can the
lues of the novel exponents be predicted? Second, can the
critical behavior be described by a conventional scaling pic-
re? In our study, we have indicated that the critical behav-
r may be quite complicated. This could be consistent with
multicritical behavior found in a study32] of the field
theory proposed in Sec. VII.

We have also made a subtle connection between the
?Jresent random sequential models and models similar in
character to the parallel update PNG models such as that

Rules(63) yield a growth model where the maximum veloc-
ity is 1 and the DP transition appears at the maximal heigh
level, as occurs with PNG models. However, it is importantva
to note that the dynamic&3) is always parallel in nature
since the heights of many sites are modified at each tim
step. Thus both random sequential and parallel versions q
Eqg. (61) are mapped onto a parallel rJlEq. (63)].

We now compare Eq(63) with a specific PNG model
studied in Ref.[9]. In that model the heights of a one-
dimensional interface are updated in parallel in two substep
First, all up(down) steps of the interface move deterministi-
cally left (right) to a distance oti lattice spacings. Then alll P . : : :
heights are incremented by 1 with probability (For our f&?t?]ff in[9]. It would be instructive to explore this point
purposes it is convenient o group.the two substeps in the It would also be of interest to study in more detail the
reverse order to that of Re], but this does not change the model[Eqg. (33)] that exhibits the breaking of a continuous

dynamics). Thus the model is unrestricted. For the case symmetry. In particular the order paramei@6) has not
=1, this dynamics may be written as a single parallel updatg, .., fully investigated.

where The growth models and their scaling behavior were inves-
tigated in one dimension. However, it is straightforward to
gi(T+1) define the models in higher dimensions where similar scaling
= ma{gi_1(T),0i(T),0i+1(T)]+1  with prob.p behavior is expected to hold.
Let us finally remark that it would be very interesting to
= ma{gi-1(T),9i(T),9i+1(T)]  with prob.(1-p). search for experimental realizations of the growth processes

(64) discussed in this paper, in particular because of their relation
to DP. As pointed out by Grassberdé&8], the large body of
Clearly the two dynamic$63) and (64) are similar in char- theoretical work on DP seems to be unbalanced by the fact
acter but distinct. Furthermore, in R¢€] it was found that that there are no experiments where DP exponents have ac-
at p.~0.527 the width of the interface scales ay tually been measured. Itis not yet clear whether this is due to
~(InN)Y2, which is distinct from the behavior of the unre- @ lack _of such experiments or to an oversimplification of
stricted model but similar to that of thestricted modebf ~ hature in DP models. The growth models, however, suggest
the present paper. another category of experiments where DP exponents may
In this section we have seen a subtle connection betwee?® identified, namely, absorption-desorption processes where
the growth models studied in the present paper and modef§€ evaporation of atoms from the middle of completed lay-
similar in character to PNG models. This was done by gen€rs is highly suppressed.
eralizing the dynamics of the present model to a dynamics
that interpolateg between random squential and parallel. ACKNOWLEDGMENTS
Then, transforming the present model via E8R), one ob-
tains a model with parallel dynamics which has similarites We thank P. Bladon, Y. Y. Goldschmidt, M. J. Howard, J.
with, but is distinct from, the PNG models previously stud- Krug, V. Rittenberg, P. Sollich, U. C. "Tder, and N. B.
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APPENDIX: AN EXACTLY SOLVABLE CASE
If Eq. (A3) is to hold in the steady state, the following equa-
It is instructive to consider a case where the steady statgion for the balance of probability must hold for any configu-
can be calculated exactly. This will allow us to verify that ration:

the interface is indeed rough in the moving phase, and, that if
we allow some rate for desorption from the middle of a pla-
teau, the interface is rough independent of whether the ve-
locity is positive, negative, or zero. X P(M)=(bg.+gb,o+b_g+gby_)P(M)

The transition rates we consider are that of the RSOS
model presented in Sec. | with the addition of a process with +(2+9)bpP(M+1)+(gb, _+pb_,)P(M—1).

ratep: (AB)

[bio+gbos +bg-+gb_o+2b, _+gb_,+(g+p)bg]

0+—+0 with rateg, To understand EqA6), note that the left-hand side gives the
rate of loss of probability due to the transitions out of the
configuration, and the right-hand side gives the rate of gain
of probability due to the transitions into the configuration.
We now divide through by EA3), and use Eq(A5) in Eq.
(A6) to yield

+0— 0+ with rate 1,
— 0— 0— with rateg,

0—— — 0 with rate 1,
(A1)
00— + — with rateg, (g+P)boo—gh_ . =(1+09/2)boot (2p—2)b_ ., 7

+—-—00 withrate2, which is satisfied for arbitranbgyy,b_, when Eq. (A2)

holds.

In order to calculate the velocity and roughness for
large, one notes that the sum for the normalizatiad) is
dominated byM=N (1—1/y/2); thereforep, the steady

The process with rat@ translates to desorption from the State density of positive charg¢and also that of negative
middle of a plateau when the model is translated back into &harges is
growth model via Eq(11). We shall using a technique simi-

lar to that employed recently in Rdfl4] (see also Ref.13])
to show that if p=1—1/J2+O(1N). (A8)

Here we define the velocity as the steady state growth rate
p=1—g/2 (A2)  atanarbitrary sité. Let(c;c;, ) be the steady state expec-
tation of finding a charge; at sitei and a charge; . ; at site
the steady state probabilitie? of a configuration may be i+1; then
written in a factorized form

— +— 00 with rateg,

00— — + with ratep.

v=0(0i+i+1)—(+i0i+ 1) —(0i—i+1)+9(—i0i+1)

+(39/2=1)(0;01+1) = 2(+i =i+ )+ 9 —it+i+1)
whereM is the number of positive charges in the configura- (A9)
tion andZy is a normalization. One also has the constraint
that the only allowed configurations have equal numbers oForm (A3) implies that correlation functions factorize to
positive and negative charges due to the fact that dynamideading order in M (e.g.,(+;+.1)=p?), and one finds
conserves the global charge. Taking this into account the
normalizationZy is given by

P(M)=2z."27M, (A3)

v=2(g—1)p(1-2p)+(3g/2—1)(1-2p)2+(g—2)p?
N/2 NI +O(1/N)
_ ) —M
Zn= X ' B 2- @) g-1). (A10)

o M!M!(N—zlvl)!2
In order to prove Eq.(A3) let us define variables One can also calculate the roughness exactly. First we define
b,o,bs.,bi_ ..., where, for exampleh, , is the number the height at sité relative to siteN as
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(A11)

i
hi = E Cj .
j=1
Clearly (h;)=0, therefore the widthv is defined through

1 N
w2=S2 (h?). (A12)
=1

A moderate calculation then yields

W2IN = p/3+O(1IN)=(1—1/\/2)/3. (A13)
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Result(A13) implies that when Eq(A2) holds, the interface
is always rough, and indeed the prefactor does not depend on
g.
In the casgp=0, we see from EqA2) thatg=2, and we
are clearly in the moving phase of our original growth
model. Wheng=1, it is easy to check that we have a de-
tailed balance, so that the interface is in equilibrium, and
again we expect it to be rough. Equatiohl3) verifies that
in the case of nonzerp [and when Eq.A2) holdg, the
interface is rough whether it be moving upwards>1),
downwards ¢<<1), or not at all g=1).
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