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Bifurcations from steady sliding to stick slip in boundary lubrication
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We explore the nature of the transitions between stick slip and steady sliding in models for boundary
lubrication introduced in J. M. Carlson and A. A. Batista, Phys. Res3153(1996. The models are based
on the rate and state approach which has been very successful in characterizing the behavior of dry interfaces
[A. Ruina, J. Geophys. Re88, 10 359(1983]. Our models capture the key distinguishing features associated
with surfaces separated by a few molecular layers of lubricant. Here we find that the transition from steady
sliding to stick slip is typically discontinuous and sometimes hysteretic. When hysteresis is observed it is
associated with a subcritical Hopf bifurcation. In either case, we observe a sudden and discontinuous onset in
the amplitude of oscillations at the bifurcation poif$1063-651X%98)01605-5

PACS numbg(s): 81.40.Pq, 46.16-z, 46.30.Pa, 83.20.Bg

[. INTRODUCTION vides some of the best clues for the microscopic mechanisms
which are responsible for the dissipation. Both large scale
Friction plays a central role in a wide variety of systems.numerical simulation§9] and more recently experimental
In order to design reliable machines and make accurate pretudies[10] suggest that sticking of the slider block is asso-
dictions for their dynamical response it is necessary to deeiated with a freezing or glasslike transition, while the mi-
velop models and phenomenological constitutive relationgroscopic signature of the initiation of slip is associated with
which describe the friction acting between slipping surfacesa shear melting transition in the lubricant layer.
Constitutive relations involve mean-field-like dynamical Our study of phenomenological descriptions of boundary
variables which represent the collective evolution of the mi-lubrication follows a large body of work, primarily within
croscopic degrees of freedom. They play important roles irthe rock mechanics community, on rate and state laws for
the design and control of engineering systems such as awhy interfaces which were introduced by Ruirid]. Ruina’s
tilock brakes and nanometer positioning devi€®®]. Par-  constitutive relation is remarkably effective at capturing
ticularly with the development of micromechanical ma- steady state and certain transient effects in a wide variety of
chines, a more complete understanding of friction atmaterials with micron scale roughnd4®,13. The approach
molecular scales has become increasingly impof@nfThis  involves expressing the friction in terms of the instantaneous
has led to the development of new experimental tools such adip speed at the interface and one or more state variables, for
the surface force apparat(SFA) which allows for the pre- which phenomenological evolution equations are also intro-
cise measurement of friction in thin lubricant filfsee Fig. duced. The underlying assumption is that the interfacial area
1). is large enough to be self-averaging, so that a mean-field-like
In the regime referred to as boundary lubrication atomi-state variable is sufficient to capture the collective depen-
cally flat surfaces are separated by a few molecular layers afence of the microscopic degrees of freedom on the dynami-
lubricant, and the behavior of the interface becomes qualitacal variables—time, displacement, slip speed—that charac-
tively different from the more familiar case of bulk viscosity terize the motion. Of course, this basic approach need not in
which is traditionally associated with lubricants. In boundarygeneral apply. Instead it represents an initial attempt to use
lubrication the interfacial material can pack into a solidlike an underlying physical mechanism to capture observed tran-
structure due to its confinement and exhibit properties suckient effects which cannot be accounted for in a simple fric-
as a finite yield stress and stick slip instabilitisge Fig. 2 tion law where the force depends only on the instantaneous
[4—6]. Even when the interface slips steadily the frictionalslip speed.
resistance can be six orders of magnitude greater than that of A great deal of work has been done using Ruina’s model.
the bulk [7]. Certain aspects of this scenario may also beThe efforts included parallel experimental study,14,23
relevant for rough surfaces in which the asperity contacts arand in depth dynamical systems analy4i5—18. The latter
separated by thin layers of lubricant, although in that case thbas led to important insights into the kinds of transient phe-
friction is likely to involve asperity deformation as well. nomena which might be expected in systems described by
Recent experiments have begun to quantitatively capturthe specific history dependent dynamics described by Rui-
specific features associated with boundary lubrication at flaha’s law. This in turn has led to new experimental tests of the
interfaces which differentiate the frictional properties of thisapplicability of this description.
regime from that of both bulk lubricants and dry interfaces In terms of the basic phenomenology of friction at inter-
[5,6,8. The key differences are revealed by studying effectdaces, one of the interesting features of boundary lubrication
which are time dependent. In contrast to steady state slidings that it is clearly different from both dry interfaces and bulk
where the only dynamical variable the friction can depend orubrication. We expect there may be interesting relationships
is the constant slip speed, transient effects and stick-slip between this system and others in which the interface is
oscillations reveal the history dependence which to date prdilled with material (e.g., granular material, foam, or fault
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FIG. 1. The SFA experimental setup is mechanically equivalent =) 2
to a Slider blOCk Connected to an elastic Spring Wthh iS pU”ed at g O reeerererrsescarsecrnecetcneiotiorrertresarcsatcnnsarasescatccssccsasssnrsnnsones
one end at velocity/ while in contact with a stationary lubricated ¢ 1 I 1 1 ] 1 1 I |
surface. The radius of the contact area is of order tens of microns 0 500 1000
and the thickness of the lubricant is of order 10 A. Typical drive — Time, t (sec) —
velocities are in the range 0.001—1n/s.
T
gouge which may undergo a state change in response to 1o jfg(; _
shear. Recently, we proposed a rate and state description for ‘ v =0 .

boundary lubricatiof19]. As with the experimental system,
our model exhibits a discontinuous transition from stick slip
to steady sliding which depends on both the drive velocity
and the stiffness, illustrated as a function of the drive veloc-
ity in Fig. 2. As described in Ref19], the model captures
additional important features which distinguish boundary lu-
brication from dry interfaces and which are thought to be
associated with the physical mechanism of shear melting and
glassy freezing. More recently we have begun to make more 0.0
detailed quantitativd20] comparisons between our model
and the experimental results. 0 200 200

It is the purpose of this paper to explore the properties of TIME t
these models in the framework of dynamical systems in or-
der to understand its properties in greater depth analytically. FIG. 2. Traces of the spring forde as a function of time for
In contrast to Ruina’s model for dry friction which exhibits a increasing pulling velocitied/. (a) illustrates experimental data
continuous supercritical Hopf bifurcatidii3], we obtain a  from[6] for a hexadecane film at 17 °T € T) with step increases
discontinuous transition between stick slip and steady sliding velocity V marked by the dotted lines. The critical velocity for
in agreement with the experimental observations. We andhis system isV~0.4u/s. (b) illustrates numerical solutions for
lyze the transition using linear stability analy$i1], and model | with th_e parameter vall_Jes mgrked in th_e figure. The results
accompany this with a series of numerical studies which té'€ pr_esent_ed in terms qf_ the dlmen_3|onlgss unlts: In each case t_here
date vield exclusively discontinuous transitions, in some!s a dlscontlnuou§ transition from StICk-S|'Ip behaV|'or to stegdy slid-
cases with an absence of hysteresis. In every case we find tHi¥ 8tV=Vc. which we take to be the first velocity at which the

transition to stick slip is sudden, with no intermediate regime®ick-slip spikes disappear as the velocity is increased in small

of small oscillations. Our results give more precise criteria> P

for direct comparisons between phenomenological modelgyately represented by the schematic diagram in Fig. 1. The
experiments, and atomistic simulations. upper cylinder corresponds to the rigid slider block which
In Sec. Il we present a brief description of the models Weests on a stationary surface, represented by the lower cylin-
study, as well as some of the experimental and numericgje; The plock is connected to a spring of strenigtiwhich
background which has motivated this work. In Sec. Ill e qrresponds to the linear elastic response of the SFA driver,
present our analytical results, explored in greater depth in thg., 4 the other end of the spring is pulled forward at velocity
Appendix. In Sec. [V we present numerical results for they, gecause the interface is smooth, flat, and rigid least
stable and unstable solutions. We conclude with a discussiofnan compared with the lubricantone can be reasonably

0.5

SPRING FORCE F(t)

in Sec. V. confident that variations in the frictional resistance are asso-
ciated with dynamically induced variations in the lubricant.
Il. BACKGROUND: EXPERIMENTS, NUMERICS, Note, however, that interactions between the mica and the

AND PHENOMENOLOGY Igbricant due to different relative crystallographic'orienta—
tions of the upper and lower plates can play an important
The experiments of Israelachvili and his co-workers haveaole, as can additional parameters such as the load, the tem-
yielded many new insights into the nature of friction andperature, the number of layers of the lubricant, and its chemi-
lubrication [4—6]. Their results have been obtained using acal composition. For the purpose of this paper we will as-
surface force apparatySFA), which consists of two atomi- sume these parameters are fixed, and instead focus our
cally smooth mica cylinders, separated by a few moleculaattention on the behavior of the system as a function of the
layers of lubricant, and sheared at right angles via an adjusexternal mechanical variables which are most directly asso-
able coupling spring. Elastic deformation due to the normatiated with the driver, that is the elastic couplikg@nd pull-
load flattens the contact surfaces, so that the interface is aimg speedv.
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The equation of motion for the slider block is given by when combined with the equation of motion, the system is
described by two or more coupled ordinary differential equa-

MU= —k(U—-Vt)—Fq(8, U), (1)  tions(ODE's). This approach assumes that microscopic fluc-

tuations in the state of the lubricant can be neglected in the

whereU(t) is the displacement of the upper block, and dotsequatlons of motion, on the basis that their time scales are

denote derivatives with respect to tiheThe goal of these very small compared to those characteristic of the macro-

experiments is to determine the interfacial frictiéty b scopic degrees of freedom of the system as a whole, and
perim ; B BY  oecuron length scales which are small compared to the con-
monitoring the spring force-k(U—Vt) as a function of

| th _ on
time. In principleF, depends not only on the instantaneous s o

i d but al 1 the slip history and the micr : Previously we proposed a rate and state law for the case
Slip speed, but aiso on he slip history a € MICroSCopIG boundary lubricatiorf19]. We defined the friction to be a
configuration of the lubricant.

. - . . . continuous function, depending on the rate and a single state
In a Newtonian fluid the resistance is simply proportional b 9 9

to the slip speed and captured by a single parameter, ﬂ{ﬁaensaebfr’g\lljvrlairz?s? simplest possible dependediaesan on

friction coefficient 8, so thatFo=B8U. When this friction

law is substituted into Eq(1) all initial conditions converge (—,00], U=0

to the steady sliding staté(t) =V for any value ofk andV. Fo= o0+ BU, U>0 2
The surprising new results obtained by Israelachvili and ' '

his co-workers were the observations that as the thickness gf/e loosely associatéwith the degree to which the lubricant
various lubricants was reduced to molecular dimensions, thg melted. The evolution equatiofiselow) will be defined so
fluidlike properties of the interface were replaced by featureshat ¢ is positive and bounded above and below. Large val-
more reminiscent of solidi4]. In particular, they observed yes of¢ correspond to a more solidlike lubricant with higher
that the films could support a finite shear stress and exhibiictional resistance, while lower values 6éfcorrespond to a
either stick slip dynamics or steady sliding depending on anore melted lubricant, with a smaller state-dependent contri-
variety of experimental parameters includiagndV. Using  bution to the resistance. We express the two contributions to
molecular dynamicg¢MD) simulations Thompson and Rob- e sliding friction (U>0) in terms of a standard Newtonian

bins studied boundary lubrication in the underdamped re;
) X term BU and the state terrrd. Here o represents the load,
gime [9,22]. Based on their results they suggested that the -+ 1he friction is proportional to load in the more solid-

onset of slipping on each stickslip cycle coincides with sheaﬁke elastic regime

melting of the lubricant layer, and that the transition to The two models. we will consider diffdin a fairly minor
steady sliding could be identified with conditions under ay) in terms of the evolution equations for the state vari-
which the energy supplied to the system during slip was jus ble. We refer to the original model as model | and the new

Iar%?] enough t? p_revltlantlth.e systeg; frtom L(:[:‘fr_eeztl_ngk. i model as model Il. We introduce two models primarily for
luti er;orréen(ol;)glc_a Y, | '% possi te Of?. ?'n SI ICkS IIF:) SO technical reasons, which will become apparent as we proceed
utions 10 =.{1) using a wide variety of Iriction 1aws. For iy oy analysis. However, it will be interesting to note how

anmpli,_ |fhw§ restr:jct oulr attentt|r(])n to t?e tsubset of frIft'o.tnsmall changes in the phenomenological equations can result
aws which depend only on the nstantaneous VeloCity, cpangesin the nature of the bifurcation.

Fo(U), steady sliding states are unstable over any range of Tne evolution equation for model | is given by
velocities whereF, exhibits velocity weakening. Further-
more, a transition to steady sliding could be associated with :
a crossover to a velocity-strengthening regimé=jn How- 0=(60—6m)
ever, this approach predicts that the transition depends only
on the drive velocityV, which violates experimental obser- The evolution equation for model Il is given by
vations in which the transition to steady sliding may also be
associated with an increase in stiffness. :
A more accurate description of the data can be obtained 0=(60—6m)
by including history-dependent effects in the friction law. In
the case of dry friction at rough interfaces, Ruina introducedrhe two models thus differ only by the extra factor df (
a rate and state constitutive relation which captures certain 6., in the last term.
experimental aspectshe transients associated with velocity  Both of these equations are motivated by Thompson and
shifts in the steady sliding regimef that system surpris- Robbins’ numerical evidence that the lubricant layer melts in
ingly well [11-13,23,24 More recently, Caroliet al. [25]  response to shear. Here the state variable is loosely associ-
modified the model to give a better fit to the dynamical phasgted with the degree to which the lubricant layer is melted.
diagram as a function d andV for that system. The minimum valued= 6,,, correspond to a fully melted
The rate and state approach is a phenomenological fit tRyer, and the maximum valué= 6, corresponds to the
the data, in which the friction is written as a function of thefu”y frozen case. Equationé3) and (4) are constructed so
instantaneous slip speéd and one or more state variables that any initial stated,,<#<6,, remains bounded in this
0;: Fo(U,{6;}). The primary justification for including mul- interval.
tiple state variables arises when multiple time and/or length The first term on the right-hand side of both of the evo-
scales are relevant in the problem. The state variables atstion equations is the simplest way to describe the fact that

described by evolution equation=0;(U,{6;}), so that in the absence of shear strégsro shear velocity) =0) the

Oy — 0 .
Gm=9_ ol
T

)

—a(6— Gm)U

(Om—0) _ @
T
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melted phase is unstable and the frozen state is stable. Fron oz @) o1z {b)
any initial statef,+ 6,, the film approaches the frozen state ' ' ' '
at a rate which is proportional towith a sharp increase at a
characteristic time¢* (derived in[19])

Z 0.08 - 4 0081
t* = T In 0M—00 _ T |n(00_ Hm) (5) §
(Om—0m) | 6o— Oy Om— Om g
& 0.04 4 0.04

The closer the initial state is to the fully melted configuration
the longer it takes for the system to freeze. For the slider
block described by Egq1) the monotonic increase df cor- 0.00

. 0.00 !
. . . s g . 0.0 500.0 1000.0 0.0 500.0 1000.0
responds to a steady increase in the static friction, which
approache_s some asymptptic limit &s> in agreement ()V=0.15pms (d)V=0.38)m/s
with experimental observations. 0.12 ' 0.12 ‘

The second terms on the right-hand sides of E8sand

(4) describes the tendency of the film to become increasingly UW\/\A/W\MAM/WWW
melted as the block begins to slip. Assuming the block is Z o.0s 0.08

g
initially at rest at the origin and is subject to a constant pull- §
ing speeaV (for convenience here assumed to be spthi Lé,
onset of slip occurs at timg= 0y /kV, where we assume & g4 0.04

the value of@ at the onset of slip i¥~ 8, . If the healing

time 7is large, then the first term on the right can initially be
ignored. For model | we obtain an exponential decay of the 0.00 , 0.00 .
friction with accumulated slip §— 6,,) ~ (60— 6m)exp V¢, T00 500.0 10000 0.0 /5000 1000.0
while for model Il we obtain power-law relaxations ( Time, ts) Time., )

— ~ — -1 i -
Om)~[aU+1/(6y— 6m)] ~. In both cases, melting oc FIG. 3. Traces of the spring forcek(U—Vt) as a function of

curs over a characteristic lengthal/ time for increasing pulling velocitie¥, obtained as numerical so-

Most of the parameters in these models can be estimatqgkions to Eqs(8) in (a) and(b) and Eqs(19) in (c) and(d). In each
based on observations. The minimum value of the state variase we set the parameters according to experimental estimates:

able 0, is approximately equal to zero, so that the friction is=2s +=100 mN, 6,,=0, 6,=1, B=6x10* Pasm, and X
taken to be purely viscous in this regif26]. The maximum =1 um (see text, and takek=3.5 kN/m. For both models we ob-
value 6y, is set by the maximum static friction, obtained in serve a discontinuous transition from stick slip to steady sliding at a
terms of the peak spring force prior to slip following long valueV=V,, defined to be the first velocity at which the stick-slip
intervals in which the block is at rest. Experimentally, the spikes disappedand the spring force becomes constant with jime
characteristic freezing timehas been estimated using a spe-as the velocity is increased in small steps. At this valud débr
cific time-dependent driving referred to as a “stop-start” ex- model IV.=0.475um/s, and for model IV =0.397 um/s.
periment. Here the slider block is pulled at velocityin the
steady sliding regime, then the pulling is ceased altogether
for a time intervalrg, after which it is recommenced at the In this section we present a bifurcation analysis of Egs.
initial speedV. The spring force is measured, and for stop-(1)—(4). We focus our attention on the behavior of the mod-
ping times less than a characteristic nucleation timethe  els as a function of the stiffnegsand drive velocityV. We
mass begins sliding as soon as pulling is reinitiated and thassume the system is in the overdamped limit, in agreement
spring force returns smoothly to its original value. On thewith our best fits to experimental d&ts9,20. This allows us
other hand, ifrs> 7y the block remains stuck until the ap- to drop the inertial term in Eqd).

plied stress exceeds the yield stress at which point the block For large values ok and V both models exhibit only
begins to slide. This is manifest in an observed peak, ogteady sliding solutions, characterized by constant spring
stiction spike, in the spring force, which has a sharp onset &brce. However, wherk and V are decreased sufficiently
7g~7y. Models | and Il exhibit this behavior as well, and there is a transition to stick slip solutions such as those in
the stop time associated with the experimental emergence @fig. 3, where we illustrate a series of stick-slip pulses
the stiction spike can be mapped onto the model vafue obtained numerically for models[(a) and (b)] and 11 [(c)

[Eq. (5] giving a fit to the variabler. We also expect that  and(d)]. The results are obtained using the same parameter
will be sensitive to temperatufg, increasing with increasing values at fixeck with two different(increasing in this cage
temperature, and approaching infinity at the melting temdrive velocities. In spite of the similarity of the models, the
peratureT =Ty, of the film. With current experimental infor- slip pulse shapes are quite different, with model | exhibiting
mation, the most difficult parameter to estimate is the charextended periods of almost steady sliding as the transition is
acteristic melting length 4. We expecta to be a approached. While the slip pulses obtained for model | are of
monotonically increasing function of the film thickness, socomparatively greater duration and period, at these parameter
that we obtain only bulk viscosity when the lubricant film is settings model | is further from the transition velocity than
very thick. For now we will leavex as an almost free pa- model II.

rameter for fitting our results with data from MD computer  We begin our analysis with model I, followed by a sum-
simulations or experiments. mary of the relevant differences obtained for model II. We

IIl. ANALYTICAL RESULTS
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first rewrite the equations in terms of dimensionless vari-only be obtained in asymptotic time from Ed8), 6 does

ables: become very small quickly, slowing the evolution dramati-
cally. This can lead to pathological effects at high speeds.
T E ¢ For example, the freezing time as measured in stop-start ex-
B periments becomes unrealistically dependent on the cumula-

tive slipping time preceding the stopping interval. In our pre-
~ k7 vious studies we have avoided this high speed regime. This

™ GOy’ feature does not arise at all in model Il. In that case, the

steady state value of decreases smoothly towards zero as

—~ k V—oo in contrast to the piecewise linear form given in Eq.

U= O U, (10).

A straightforward linear stability analysis of this solution
yields the bifurcation point, where the steady sliding solution

~ of g ; . .
a= TM a, becomes unstable to stick slip. To this end, we again change
variables, this time so we can linearize about steady sliding
_ BV state:
V=—-, I
v U=Ug+X,
6= 016y, . (6) 6=0.+y. (11

Times have been scaled by the characteristic {ie asso-

. . . | . Retaining only the linear terms i andy we obtain
ciated with the exponential relaxation of a simple over- g only y

damped oscillatofwith no state variableto the steady slid- X X
ing state. Our scaling of the freezing timeincludes a SENI N (12
(dimensionlessfactor of 8y, which accounts for the magni- y y
tude of the state variable in the asymptotic frozen_ state. Dis_|-_|ere the Jacobian matrix is given by
placements have been rescaled by the characteristic slip dis-
placement 6y, /k of an undamped oscillator which begins to -1 -1
slip when the spring force reaches the maximum static fric- l:( | | ) (13
tion and resticks when the slip speed returns to zero. The Osv  Os{a—1lT)
state variable is scaled by its maximum value, so that in
rescaled units & 9<1. The equation for the eigenvalues Hfis
It is most convenient to analyze the coupled ODEESs. \2— A Tr]+detl=0 (14

(1)—(3)] as an autonomous system, so we also transform to a

reference frame moving at the drive velocit . . .
g y from which we see that the eigenvalues are complex conju-

1=Vt gates with real party=Tr and imaginary partQ)=

U’'=U-VL. ) ith I Trd/2 and i i ()
+/deti—(TrJ/2)?. In the steady sliding regimV>VL the

Finally dropping the tildes and primes, when the block isreal parts are negativey0). At the bifurcation pointv

sliding our system becomes =VL they cross the imaginary axig€0). And in the stick-
. slip regime they are positiveyt>0). For this specific model
U=-U-6-V, we find
: 1-6 __ _ _y!
b=0" - )+a(U+0) : ®) y=—alar=DV=Vy),
. . - B = \ - - .
Equationg8) always exhibit a steady state solution of the Q=yllar=1)=y (15
form We also have at the bifurcation poift+0 anddy/dV+0.
I _ g These are the necessary requirements for a Hopf bifurcation,
U ss ( 053+ V) (9) . ?
and it occurs at the pulling speed
and
1 1
| 1-a7V, V<llar VH_(aT) 1- (a—1/7)]|" (16)
Os= 0, V>1laT, (10

In other words, if we begin in the steady sliding state, and
which is obtained from Eqg¥8) by settingU: 9=0. In the decrease the velocity with all other parameters remaining
original reference frame this solution corresponds to thdixed, the constant velocity solution becomes unstable to
block slipping uniformly at the pulling speed. One awkwardsmall perturbations wher/=Vy,. Reintroducing dimen-
feature of model | is the fact that the steady state valué of sional variables, we fin¥|, decreases linearly with increas-
is zero for pulling speeds greater thamt/ While §=0 can  ing stiffnessk:
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80.0 ' ' reason that we introduced the alternative model Il. We have
\(a) Model | no stronga priori basis to prefer one model over the other at
T 600 - [ Increasing V this point. Technica_lly model | inv_olves slight!y simpler
z O e Y functional forms, while model Il avoids pathological behav-
= ior in the high velocity regime. In principle, we expect the
g 400 | Steady Sliding - best fit of the data would be obtained in terms of a systematic
3 (e.g., polynomial expansion of the friction and evolution
2 equations in Eq92) and(3). Of course that would involve a
& 200 | Stick Slip ] tradeoff between the number of parameters and the complex-
ity of the model versus accuracy of the data fit.
Now we outline the modifications to the above calcula-

O'%_oo o.‘w o,éo o_éo o_Ao 0.50 tions which we obtain for model Il. The transformation
which leads to dimensionless variables is the same as that
given in Eq.(6) for model | with the exception of the rescal-

80.0 o I ing of @, which now is given by
Model It
— o6’ a
£ 600 >—F>Increasing V H == M
E <t :Decreasir?gvv a= k (18)
= - — — Stability line
§ 40.0 8 This leads to rescaled equations in the moving fraamalo-
3 Steady Sliding gous to Egs(8)] which are of the form
D
& 200 - 1 U=-U-6-V,
Stick Slip
00 L L t L _ (1_ 0)
000 010 020 030 040 0.50 =0 ——+a(U+0)0). (19

V (um/s)

FIG. 4. Dynamical phase diagram fe) model I, with param- T_he steady sliding solution, analogous to E§.and(10), is
eters set by experimental valuésee text Numerical simulations given by
for the phase boundary agree with the linear stability analysis pre- I I
sented in Sec. lll. The transition is observed to be discontinuous, Ussm =05V (20
but not hysteretic(b) represents the analogous results for model II.
Here the transition is hysteretic, in agreement with the normaFmd
forms bifurcation analysis.

1
I _
2 Oss= 1+arV’ 21)
H (ar) (ca—BIT)0y As previously mentionedf,, is smooth and positive here,

rather than being piecewise linear and zero for larger pulling
From Eq.(17) we see there is a maximum stiffnelsg, at ~ SPeeds. _ . o
which V!,=0. Fork> ki, the steady state solution remains ~ AS before[Egs.(11)] we linearize about the steady sliding
stable for all pulling speeds. splutlon t(_) determine the Hopf k_)lfurcatlon point. The Jaco-

These results are summarized in the dynamical phase diian matrix analogous to Eq13) is

gram illustrated in Fig. 4, in which we have set our param- 1 1
eters according to estimated experimental val$0]. In Jh=
particular, we take~2 s on the basis of fits to the stop-start (Hgs)za a(&!s)z— 1z’
experiments. Typical loads are of order=100 mN, and
ou~1 based on peak values of the static friction. The fric-The real and imaginary parts of the eigenvalues)'bhear
tion coefficient is estimated to bg~6x10* Pasm[27].  the bifurcation point are
The free parametar is set using the transition velocity,,

(22

~10 um/s for a specific value ok=440 N/m. This yields y=—a’104V -V},
1/a=~1 um. The rest of Fig. 4 is generated using these val-
ues in Eq.(17) as the stiffness ranges between its maximum Q=1/r— yz, (23

Kmas=7>x10* N/m and minimum valueg,=0.

The natural next step in analyzing the bifurcation wouldWhich obey the requirements for the Hopf bifurcation. Again
be to determine via normal forms whether the bifurcation iswe locate the transition by determining when the real part of
predicted to be subcritical or supercritical. For model I, thethe eigenvalues of" cross the imaginary axis: Tt =0.
leading term in this analysis is zer@ee the Appendjx This yields
which is inconclusive, albeit consistent with our numerical 1
observation of a discontinuous, nonhysteretic transition from W~ [
steady sliding to stick slip. It is primarily for this technical VH_a/T[ arl(7+1)=1]. (24)
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Reintroducing the dimensional variables we obtdipagain ‘
as monotonically decreasing function kf but no longer Hysteresis Cycle Model |
linear: K=3.5 kN/m B> F,,. (increasing V)

<4 - - <IF, (decreasing V)
[aTo Oy 1
kr+ 8

Results for realistic experimental parameters are illustrated
in Fig. 4. Here we have taken the same parameters as used ir= g.0s - 1 1
model |, and again find~*~1 um by fitting Eq.(25) to the
particular data poin¥/y=10um/s andk=440 N/m. From
Eqg. (25 we obtain the same value &f,,,, the maximum
stiffness associated with stick slip, as obtained for model 1.

Om 0.10

aT

V= (25)

i
H
i
4

Spring Force (N

. . . K 0.06 ! _
The phase boundary curves in this case yielding a somewhat !
better fit to experiments, which exhibit a power-law depen- *
dence ofVy on k over the range ok considered10].
One of the main advantages in studying model Il is the - !

fact that the normal forms analysis does produce a nonzero
value for the stability coefficierd; which predicts the nature -
of the transition(see the Appendjx The basic method is

outlined in[28], and involves another change of variables to

radial and_angular coo.rdmates'assomated with the amp_htude 002 — s 5750 0208 0530
of the oscillating solution and its phase. At the Hopf bifur- V (umis)

cation point, the amplitude becomes nonzero. Supercritical

bifurcations are associated with continuous growth of the FIG. 5. Sample bifurcation diagram for model I. We plot the
amplitude of oscillations and are predicted by a negativenaximum spring force as a function df for fixed k= 3.5 kN/m.
stability coefficienta,, while subcritical bifurcations are as- The small hysteresis observed here is a transient associated with the
sociated with discontinuous changes and are predicted by fiite integration time at each value &f, and decreases as the
positive stability coefficient;. For model Il we obtain integration time is increased.

" small stepsAV=0.001 and then integrating faxt=400 in
alzg ;_1 (26) order for the system to reach a new periodic steady state
before the pulling speed is again increased. Some represen-
which allows for the possibility of either a direct or an indi- tative stick slip solutions are illustrated in Fig. 3. In this
rect transition, depending on the values of the parameterglirection the transition is identified with the first value \6f
Our estimates of realistic parameter values correspond to tHer which the block fails to restick. At this value af and
subcritical case. This is consistent with most experiments t#eyond in both models we find that the new stable solution
date which typically exhibit discontinuous transitions with corresponds to the constant velocity steady sliding state, with
intermittent stick slip observed in the neighborhood ofno intermediate regime of small oscillations.
V(K). To locate the boundary traversing the transition in the
opposite directionfrom the steady sliding sidewe ramp
down the pulling speed in small step/=—0.001 for each
fixed value ofk. In this case, small perturbations are applied
In this section we present a summary of our numericalo the steady sliding solution, and the transition is associated
results for the dynamical phase diagrams of model | andvith the value ofV at which the perturbations first begin to
model Il (Fig. 4. We have both confirmed the results of our grow. For these models, we have always found that the
stability analysis in Sec. Il for the transition from steady stable solution eventually converges to periodic stick slip
sliding to stick slip, and checked for hysteresis by traversingscillations.
the transition in the opposite direction. In each case we have The results presented in Fig. 4 illustrate that for model |
set our parameters to realistic values, as discussed in Sec. there is no hysteresis: the phase boundary computed numeri-
We obtained our results by integrating E¢B) and (19) cally in both directions agrees well with the results of our
incorporating the static friction condition given in EQ®) stability calculations in Sec. lll. Note that for any finite in-
when appropriate. We used a fourth-order Runge-Kutta algategration timeAt, the numerical solution will suggest a non-
rithm [29] with a fixed step sizé=5x 10" °. This choice of  zero hysteresis loop as shown in Fig. 5, where we plot the
h is much less than any relevant time scale for the dynamicanaximum spring force of the stable solution as a function of
for model | the period of small oscillations at the bifurcation pulling speedV for fixed k. The transition is associated with
point is approximately 9.6 in our dimensionless units, whilethe sharp drop fronfessentially the value associated with
for model Il the period is at least 0.96. the static friction maximum in the stick slip phase, to the
The dynamical phase diagrams as a functiokk @hdV  steady state valud=,(V) which corresponds to steady
are illustrated in Fig. 4. Each point on the boundary betweesliding. Apparent hysteresis occurs in this numerical calcu-
stick slip and steady sliding is obtained by increasihgn lation because just above the transitiapproached from the

IV. NUMERICAL RESULTS
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(a) K=35KN/m Model I Limit Cycles
V=0.121pm/s
[>-[>F,,, (increasing V) ' ;
0.100 | <4 - <JF,,, (decreasing V) 1
— G LB, (unstable limit cycle)
2
S e gnstaglle
Q . —— Stick Slip
S oo i 0.90 1
20095 | N -
£ ‘ )
a i Fel 8
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> :
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(b) K=3.5kN/m Model II
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FIG. 6. Sample bifurcation diagrams for model 1l fe&) k -0.100 -0.095 -0.090 -0.085 -0.080
=35 kN/m and(b) k=3.5 kN/m. The width of the hysteresis cycle Spring force (N)
decreases with increasigas predicted by the normal forms cal-

FIG. 7. A phase portrait of the unstable limit cycles and the
stick-slip limit cycles. Note that as we increagefrom the transi-

. . . . tion pointV}L the unstable cycle grows until it collides and elimi-
stick slip sid¢ the rate at which the solution converges 10 ;e the stick-slip cycle, as illustrated in terms of the maximum

steady sliding is very small. While the real part of the eigen-spring force in Fig. 5. Results are shown fior=35 kN/m. The
value of the Jacobiafl3) is negative in the steady sliding small dot in the middle of the limit cycles marks the stationary
phase, it crosses zero at the transition point. Thus, as Wgoint.

approach the transition from either side the groddecay o ) _ )

rate of small perturbations approaches zero. By increasing€gin with a small perturbation to the stationary point and
the integration timeAt we have confirmed that the size of allow the solution to flow for one loop in the phase space,
the hysteresis loop for model | decreases appropriately, sgefined by the state variable and spring fdrée-k(U —V1t)]
that in the limitAt—x we expect the phase boundaries to (see Fig. 7. The amplitude of the initial perturbation is sub-

culation.

coincide exactly. sequently increased along a fixed axis from the stationary
In contrast, for model Il we clearly obtain hysteretic tran- POINt towards the stick slip orbit until we find the unstable
sitions which are not sensitive to the integration tithe limit cycle. The only closed orbits in the phase space are the

Our numerical results for the transition from steady sliding toStationary point, the stable stick slip solution, and the un-
stick slip do coincide with the stability analysis as expectedStable orbit(which oscillates without coming to a complete
but the transition associated with increasigoccurs at a Stop‘ In|t|al_ con_d|t_|ons which flow_to_vvards the ;tat_lo_n_ary
higher value than that which we observe on the way downPoint flow lie _W|th|n the unstable I|m|t.cy_cle, yvhllellmtlal
Sample hysteresis loops are illustrated in Fig. 6 where W&OﬂdItIOI’IS Whlch flow towards the periodic stick slip solu-
plot the maximum spring force as a function of pulling speedt'on are outs_lde the. unstable _orbl"[. Some sample stable and
V for two different values of the stiffnesk. Figure &a) unstable orbits are illustrated in Fig. 7.
illustrates our results for a comparatively large valuekpf
where the width of the hysteresis loop is observed to be
relatively small compared to smaller values lof as illus- We have studied dynamical phase transitions in two mod-
trated in @b). This is consistent with our normal forms bi- els of boundary lubrication. In both cases, our numerical
furcation analysis presented in the Appendix, where we findimulations have shown that the transition is strongly discon-
that the rate of growth of the unstable limit cycle increaseginuous, exhibiting a crossover from uniform steady sliding
with increasingk, suggesting a more rapid approach to thedirectly to large amplitude stickslip oscillations. Linear sta-
stable stick slip cycle in the case of large bility analysis of these modelkEgs. (17) and (25)] yields

To determine the amplitudes of the unstable limit cyclesexcellent agreement with our numerical results as the veloc-
which are included in Fig. 6, we used the Poincarap. We ity is lowered or spring constant is decreased.

V. CONCLUSIONS
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Discontinuous transitions to oscillatory states are typicallyhydration, and load for cases which exhibit this range of
described by subcritical Hopf bifurcations. Indeed, our re-behaviors would be of particular interest.
sults for the stability coefficient for model Il show that for
realistic parameter values this is indeed the case. Subcritical ACKNOWLEDGMENTS
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The behavior we observe originally in model | is more
unusual. That is, the transition is discontinuous, but not hys- APPENDIX: BIFURCATION ANALYSIS

teretic. This is consistent with, but certginly not .prov.ed bY  1n this Appendix we present a more complete description
our result that to leading order the stability coefficient is zeroys 1o steps which led to our results for the stability coeffi-
in that case. A stronger confirmation is obtained comparingients for model I in Sec. Ill. The null result obtained to
the stability calculation with our previous results in which leading order for model | can be obtained using the same
we calculated an approximate stick slip solutld(t) which . athod which is outlined in detail in ReR28].

was no longer self-consistent along the phase boundary Tne full nonlinear ODE system in the variablesandy

V¢(K) [19]. In the regime in which the approximations were \nich are centered at the fixed point is given by
valid, that result agrees with the result obtained here.

The primary goal of these studies is to develop a better X 0
understanding of experimental systems, and the kinds of rate y y + ( h(x,y))’ (A1)
and state friction laws that might describe them. For bound-
ary lubrication, a great deal remains to be done in this regardynereJ' is the Jacobian for model Il given by E@2), and
Phenomenological models such as those we have considered
are based on physical insight and represent reasonable h(x,y)=Axy+By?+ Cxy*+ Dy5. (A2)
guesses for frictional constitutive relations. The underlying
mechanism that the model assumes is based on moleculblere the coefficients are given by
scale simulations, and the basic qualitative properties of the
models agree with observations. One of the most important A=20.,
messages we extract from the phenomenological approach is
that history dependence is of fundamental importance, and
needs to be the focus of experimental measurements as well B=20s0—

5( :Jll

. . ; . OssT’
as microscopic models and simulations.
Our calculations open up the possibility for more detailed C=a,
guantitative comparisons between experiments and these two
specific phenomenological models. However, we are not yet D=a. (A3)

at a point where we can expect perfect agreement. When

phenomenological constitutive relations fit the data well, e perform a linear transformation so that 1) is

they can be important technologically. However, this typi-cast in the normal forni30], where the matrix elements of
cally would require a systematic expansion involving largethe Jacobian operator are the real and imaginary parts of the
numbers of parameters, and the data is not sufficiently presomplex eigenvalues = y+iQ. That is, we define a coor-

cise at this point to warrant such an approach. Still it isginate transformation in terms of the linear operagmsuch
important to think about these comparisons as stepping,at
stones to finding better models and planning experiments
which will guide their development.
Indeed, a detailed comparison of model | and experiments S lJ”Sz(
is presented if20]. Most of the experimental results for
dynamical phase diagrams which have been obtained to danIlowing standard techniques from linear algeSrandS -
are somewhat more analogous to the results we have ob- ; . . .
) : .. ._are obtained from the real and imaginary parts of the eigen-
tained here for model Il, though even in that case the fit is far 0.
from perfect[10]. For lubricants such as tetradecane the re ectors ofJ™:
lationship between the transition velocWy and the stiffness
k is reasonably well described by a power ldW.(k) S:(Urvi):<
~1/k” with 1<y<3], as opposed to the linear relation in
Eq. (17). Experimentally the final crossover is marked by a
range of velocities over which intermittent stick slip is ob- and
served, which can make it difficult to sharply define a tran-
sition point. Some lubricants such as OMCTS have exhibited 571:__1
continuous as well as discontinuous transitions. Experiments Q
to determine the dynamical phase diagram as a functian of

and k as well as external parameters such as temperaturélext we implement the linear change of variables

Q
7 ) . (A4)

1 0
) (A5)

(-1=%) -Q

(A6)

-Q 0)
(1+vy) 1)°
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X less of the other parameter values, which alone is inconclu-
(A7) sive and requires a higher order nonlinear anal3is.

w gt
z) y ) .
When the parameters are close to those associated with
in Eg. (A1), in order to express this system in the normalthe bifurcation point and for initial conditions which are in

form the neighborhood of the fixed point a quasilinear transforma-
_ tion from the (v,z) coordinate system to one described by
wi [y Q) (w) [(f(w,2) polar coordinatesr(¢) yields the following leading order
z] \-Q y/\z g(w,z) (A8) equations for the amplitude and phase of the oscillatory so-

lution:
with f(w,z)=0, g(w,z)=—h(w,—w—Q2)/Q, andh(x, _
as in I(Eq.(KZ). 9w ( : ) r=r(y+a;r)+0(r®), (Al12)
The conditiony=0 corresponds to the Hopf bifurcation : )
point. The stability coefficienta; determines whether the ¢=0+0(r). (A13)

bifurcation is subcritical or supercritical, and is calculated,o Hopf theorem asserts that the phase flow of these equa-
using the nonlinear terms. The advantage in changing var,ng js topologically equivalent to that of the full nonlinear

ables as we have done above, is that i_t allows us to apply mﬁ/stem near the fixed poif28]. Beyond the bifurcation
standard formuldsee Ref[28]), which in our case reduces point y>0(V<V,), so that ifa,<0 there is a stable limit

to cycle withr=+/— y/a;, and the transition is predicted to be
1 1 continuous(a supercritical bifurcation while if a;>0 the
a=71g [Owwzt 9224 — 160 [gwAGuwwT 9,21 (A9)  transition is discontinuoug subcritical bifurcatiopwith an
unstable limit cycle at = — y/a;.
Here ) and the partials o(w,z) are evaluated at the Hopf  For model Il we obtainy=—\(a/7)(7+1)°AV, where
bifurcation point. They are AV=(V—V}L). Substituting in this expression, E¢A11)
and reintroducing the dimension from E&) we obtain the

Q_i following dependence of the expected radius of the limit
NS cycle on the stiffnesg:
8B[k/(o2a) YAkl B+1)%2 12
Gun=2(A—B)/Q= = ([33/)<]|<T§—1]B Sav]
o Qrily
Because the amplitude of the stick slip oscillations are of
g =A—28=2(i_ ol ) (essentially fixeq fi_nite value, the depc_endence o_f the radius
wz 0'3'57- st | of the unstable limit cycle oAV determines the width of the

hysteresis loop. Whek>1 but still less than B/7, r grows
I 1 rapidly as AV increases. On the other hand, ks>0, r
9o~ —2BQ=—20| 2050~ ], o JKAV. This ask— s Which marks the end of the stick-
s slip regime, the hysteresis loop is expected to become in-
Juwws=2(3D—2C)=2D=2a, creasingly narrow, and ds—0 we expect the hysteresis gap
to widen, consistent with our numerical results shown in Fig.

6a .
gzzz=6D92=7- (A10) While our experimentally estimated parameter values
have led us to focus primarily on a regime in which the
Finally we obtain transition remains subcritical throughout the dynamical
phase diagram, other parameter values can yield a phase
a (3 boundary in which there is a crossover from a subcritiaal
a=g (;_1)' (A1) gmal k) to a supercriticalat largek) transition atk=38/r.

The predicted radius of the orbit EGA14) diverges at the
From Eq.(Al1l) in these(dimensionlessunits for model Il value ofk associated with the crossover, which suggests the
a,;>0 for 7<3, a;=0 for 7=3, anda;<0 for r>3. For transition will be extremely sharp, and thus very difficult to
model | the corresponding calculation yields=0 regard-  distinguish numerically from the discontinuous case.
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