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Isomorphic multifractal shear flows for hard disks via adiabatic
and isokinetic nonequilibrium molecular dynamics
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Identical particle trajectories can result from driven shear flows of two different types:~i! thermostatted
flows, simulating a nonequilibrium steady state, and~ii ! adiabatic flows, in which the irreversible heating
associated with viscous work is not extracted from the system. This trajectory isomorphism applies to shears
of hard particles, such as hard disks and spheres. Here we simulate such isomorphic shear flows. We also
discuss the associated instantaneous Lyapunov spectra, which are not isomorphic. We extrapolate the dissipa-
tive hard-disk spectra to the large-system limit.@S1063-651X~98!00605-9#

PACS number~s!: 05.60.1w, 46.10.1z
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I. INTRODUCTION

About ten years ago it was established that revers
thermostated nonequilibrium steady states lead to multif
tal phase-space structures@1–6#. The fractal structures hav
‘‘Kaplan-Yorke’’ or ‘‘information’’ phase-space dimension
alities @7,8# less than that of their equilibrium counterpar
This finding of reduced dimensionality demonstrated the
ity of nonequilibrium phase-space states relative to equi
rium ones, and explained it in terms of their singular frac
nature. The fractal distributions of nonequilibrium phas
space states are confined to ‘‘strange attractors,’’ obje
with zero measure, relative to the smooth Gibbsian equi
rium distributions. Surprisingly, the time-reversible mecha
ics underlying the nonequilibrium flows turned out to be p
fectly consistent with dissipative singular attractors, and w
the additional unexpected consequence that the resu
nonequilibrium phase-space distributions were singu
rather than smooth.

The singular multifractal phase-space structures provi
an appealing mechanical rationale for the second law of t
modynamics@1#. But the thermostats underlying these stru
tures raised a question@9,10#: ‘‘Do the fractals correctly rep-
resent the rarity of nonequilibrium states, or are the
singular objects, of reduced dimensionality, merely artifa
of particular time-reversible thermostatting techniques?’’
recent investigation of this question@11# established that the
multifractal states found in thermostated hard-particle sim
lations @1–6,12# have precise counterparts in somewh
more-conventional adiabatic flows. Here we study the re
tionships between two types of shear-flow problems, the
adiabatic and the other thermostated with a fixed kinetic
ergy ~‘‘isokinetic’’ !. It is remarkable that these two very di
ferent problem types can generate configuration-space tra
tories,$y(x)%N , which are ‘‘isomorphic,’’ meaning ‘‘having
the same shape.’’
571063-651X/98/57~5!/4969~7!/$15.00
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A nonequilibrium ‘‘time scaling,’’ which is reminiscen
of Nosé’s equilibrium work @13#, links the two simulation
types, and also makes it possible to correlate the corresp
ing instantaneous dissipation rates and the phase-space
tribution functions. The present work is devoted to carryi
out simulations exhibiting the isomorphism property a
analyzing the results. Though we find, on the one hand,
the particle trajectories are indeed isomorphic, as the ana
of Ref. @11# suggests, on the other hand we discover that
instantaneous Lyapunov spectra are not simply related to
another.

The present work is described as follows. In Sec. II
discuss isomorphisms which link together a variety of a
proaches to the simulation of many-body hard-particle n
equilibrium flows. In Sec. III we show that the configur
tional trajectory isomorphism leads to a simple scaling of
instantaneous Lyapunov sums, in the full phase sp
$x,y,px ,py%N . Section IV includes a brief review of shea
flow techniques, using periodic boundary conditions, a
emphasizing the particular difficulties associated with sc
ing hard-particle collisions using these boundary conditio
Section V describes our numerical simulations of sh
flows, and the results obtained from them. Section VI is
voted to our conclusions.

II. TRAJECTORY ISOMORPHISMS FOR DISKS
AND SPHERES

The usual Newtonian trajectories traced out by hard di
or hard spheres have shapes independent of the kinetic
perature. Quadrupling the temperature, by doubling all
particle velocities (kT}^mv2&), simply doubles the rate a
which the$x,y%N or $x,y,z%N paths are traced out. The in
creased speed does not change the shapes of the confi
tional trajectories themselves. Very similar relations ho
also for trajectories generated by inverse-power ‘‘so
4969 © 1998 The American Physical Society
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sphere’’ potentials,f}r 2n, but with the added complexity
that the volume and the temperature must change sim
neously @14#, in a correlated way, to maintain an isomo
phism. For simplicity, we specialize our numerical work
the two-dimensional hard-disk case, for which the parti
trajectories are correlated sets of two-dimensional coo
nates, $y(x)%N . Exactly similar considerations follow fo
hard spheres.

Driven nonequilibrium simulations most often incorpora
isokinetic or isoenergetic feedback forces, so as to main
stationary states@15,16#. Though thermostat forces can b
applied to a special set of boundary particles, the thermo
forces are usually applied homogeneously, to all the p
ticles, so as to minimize the influence of the boundar
Mass or energy currents are driven by external fields, se
tive to a particle’s type or energy, while homogeneo
‘‘shear flows’’ are usually driven by special periodic shea
ing boundary conditions. These shearing boundary co
tions were developed, independently, by at least three s
rate sets of workers@17–19#. The shearing boundarie
preclude the conservation of total energy, or internal ene
or angular momentum, whether or not thermostating fe
back forces are present.

The idea underlying a trajectory isomorphism betwe
adiabatic and isokinetic thermostated trajectories can be
sualized as indicated in Fig. 1, where the progress of
isomorphic trajectories, but in two different phase spaces
outlined schematically. In the figure, we show the corresp
dence between trajectories in~i! the adiabatic phase spac
$qa ,pa%N and in ~ii ! the isokinetic phase space$q0 ,p0%N .
Notice that, while the trajectories agree exactly, the mome
differ by a scale factors, discussed below. We indicate var
ables following the two types of trajectories by subscriptsa
for adiabatic and 0 for isokinetic. The isomorphism linkin
the two trajectory types implies that all the geometric co
figurational variables, based on particle coordinates,
identical in the two corresponding trajectory segments:

~x,y!a⇔~x,y!0 .

On the other hand, rates, such as the particle velocities
the strain rate—defined more fully in Sec. IV, are differe
and typically become faster in the adiabatic flow, as the
netic energy of that flow increases due to viscous heatin

~1/dt,ẋ,ẏ,px ,py ,ė !a⇔s~1/dt,ẋ,ẏ,px ,py ,ė !0 ,

s[~Ka /K0!1/2[dt0 /dta .

FIG. 1. Corresponding changes in isokinetic and adiabatic
jectories for a time intervaldt05sdta . The $y(x)% representations
of the trajectories are identical, though both the momenta and o
rates differ, by the scale factors5(Ka /K0)1/2, as is explained in the
main text.
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Here, and throughout this work, we represent, bys, the
‘‘scale factor’’ which correlates the isokinetic and adiaba
time scales. The treatment of second derivatives, includ
the accelerations and the dissipation rate, discussed in
following section, is somewhat more complicated. For t
accelerations, a chain-rule calculation establishes the us
correspondence

~ ṗ!a5s~d/dt!a~sp0!⇔s2@ ṗ1~K̇a/2Ka!p#0[s2@ ṗ1zKp#0 ,

where

~ ṡ/s!a[K̇a/2Ka[zK .

Thus the isokinetic friction coefficientzK , described in more
detail, for shear flows, in Sec. IV, corresponds to the rate
change of the thermal energy along the corresponding a
batic trajectory.

An analytic demonstration of the trajectory isomorphis
@11# can be based on showing that the trajectory curvatu
$d2y/dx2%N match, at corresponding trajectory points$x,y%N
with matching slopes,$dy/dx[py /px%N . The trajectory iso-
morphism is most easily grasped and appreciated by com
ing numerical solutions of the two sets of equations. P
vided that the initial conditions correspond, exactly the sa
$y(x)%N trajectories are traced out, but at different rat
Similar scalings have been considered by several groups
terested in molecular dynamics, beginning with No´
@11,13,20–22#.

A two-body trajectory segment illustrating shear-flow is
morphism as described by Doll’s-tensor dynamics, appe
in the Appendix. It is perhaps less obvious, but also true, t
a corresponding exact scaling relationship connects the
sipation, through the instantaneous sum of the ‘‘loca
Lyapunov exponents. Such a scaling does not occur for
individual exponents. Dissipation and the Lyapunov spec
are discussed in the following section.

III. DISSIPATION AND THE INSTANTANEOUS
LYAPUNOV SPECTRA

The stability of stationary phase-space flows can be
scribed by the Lyapunov spectrum$l%, where the~time-
averaged! exponents are numbered in descending order, w
l i>l i 11. The individual exponents can be precisely det
mined as time averages@23#, with an accuracy of a few part
per 1000. The largest exponent,l1, represents the averag
rate at which two nearby trajectories diverge from one
other. The rate at which a two-dimensional phase-space a
defined by three neighboring trajectories, changes with t
defines the suml11l25^d lnA/dt&. Likewise, the averaged
time rate of change of a three-dimensional phase-space
ume,^d lnV/dt&, is equal to the sum of the largest three e
ponents,l11l21l3. The technical details underlying th
computation of the spectrum have been comprehensively
scribed for hard disks and spheres@23,24#.

The Lyapunov exponents provide an important link b
tween microscopic mechanics and macroscopic irrevers
thermodynamics. Their instantaneous sum provides a di
measure of dissipation, through the external entropy prod
tion Ṡ @15,16#:
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Ṡ/k52( l i ,

with the sum including all the Lyapunov exponents. Th
external entropy production corresponds to the tim
averaged rate at which the comoving phase-space volum
4N dimensional forN hard disks and 6N dimensional forN
hard spheres—decreases. Evidently the occupied phase
ume characterizing a stationary state can neither increase
decrease. Thus the dimensionality of a steady-state ph
space attractor is equal to the linearly interpolated numbe
terms in the partial sum(8l i at which the interpolated sum
@7# changes from positive~indicating growth! to negative
~indicating decay!. This borderline dimensionality is gene
ally fractional. It is the ‘‘information dimension’’ or
‘‘Kaplan-Yorke dimension,’’ of the strange attractor,
which the dynamics of the stationary state distribution
effectively confined.

In the full phase space, both the adiabatic and the is
netic dynamics must satisfy the phase-space continuity e
tion @15,16,25#:

d lnf /dt[2( l i52( ~]q̇/]q!2( ~] ṗ/]p!,

despite the fact that both dynamics inhabit multifractals w
an information dimension well below that of the full spac
Taking into account that Gibbs’s canonical hard-disk eq
librium phase-space distributionf eq varies as (VT)2N, gives
an interesting and useful relation linking the evolving no
equilibrium phase-space density to the corresponding e
librium phase-space distribution:

d ln~ f neq/ f eq!/dt52( ~]q̇/]q!2( ~] ṗ/]p!1NK̇a /Ka

[DṠ/k52( l i ,

whereDS is the excess entropy, relative to an ideal gas at
same energy, and the Lyapunov exponents are those o
nonequilibrium distribution. Though this relationship hol
for both thermostated and adiabatic shear flows, the in
vidual instantaneous Lyapunov exponents are not simply
lated to one another. The exponents are sensitive to the
at which particle trajectories are generated as well as to
trajectory shapes.

In the following section, we consider the relations linkin
the dissipation to the Lyapunov spectrum, for both adiab
and isokinetic shear flows. In the adiabatic case the ph
space densityf neq increases, relative to the equilibrium on
mainly due to an increase in the kinetic energy:

NkṪ5hė2V.

There is an additional small contribution due to the mom
tum dependence of the scale factors. In the isomorphic iso-
kinetic casef neq increases, mainly due to the frictional co
centration of phase-space density, through the frict
coefficientzK . There is also a smaller contribution from th
momentum derivative ofzK . We will see that the relative
rate of increase,DṠ/k5d ln(fneq/ f eq)/dt, is the same in both
s
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cases. As the system size is increased, with the dissipa
approaching ever more closely to the macroscopic hydro
namic prediction,s, T, and the dissipation rate all come t
follow simple analytic forms@11#.

IV. SHEAR-FLOW SIMULATIONS

As is the usual practice, we consider plane Couette fl
here, with the strength of the departure from equilibriu
described by a homogeneous ‘‘strain rate,’’ė[dux /dy. It is
also usual to use feedback constraint forces to extract
thermodynamic work done by the periodic shear. During
time intervalt the work done by the shear stress2Pxy is

W~ t ![2E
0

t

PxyVėdt8.

By applying feedback, in the form of frictional constraint,
‘‘thermostat,’’ forces $2zp% either the ‘‘temperature’’
}^p2/(mk)& or the ‘‘internal energy’’ E5F
1(p2/2m—where the ‘‘momenta’’$p% are defined relative
to the local stream velocity—can be controlled. For ha
disks and spheres the difference between these two
proaches is of order 1/N.

In what follows we consider isokinetic shear-flow dynam
ics of periodicN-body systems in two space dimensions. F
simplicity we let the systematic shearing motion vary li
early in space,ux5 ėy. The corresponding thermostate
equations of motion—with the presence of a thermos
again indicated by a subscript 0—can be written in terms
a parametera which further distinguishes among families o
shear-flow models:

$ẋ5 ėy1px /m; ẏ5py /m; ṗx5Fx2aėpy2zpx ; ṗy

5Fy2~12a!ėpx2zpy%0 .

The friction coefficientz in these equations of motion pro
vides the dissipation described in the preceding sect
‘‘Doll’s-tensor’’ dynamics, which we adopt in our numerica
work, corresponds to the choicea50 while ‘‘sllod’’ @15#
dynamics corresponds to the alternativea51. For anya, the
isokinetic and isoenergetic forms for the friction coefficienz
are given by relatively simple functions of the particles’ c
ordinates and momenta:

zK5( @F~p/m!2 ė0~pxpy /m!#/2K'zE52 ėPxyV/2K.

Apart from small number-dependent corrections, these f
tion coefficients are also directly related to the rate of div
gence of the phase-space density functionf neq, as was out-
lined in Sec. III:

d lnf neq/dt52Nz1O~1/N!.

In the adiabatic case the increase in the strain rate with t
contributeszK to d lnfneq/dt. The decreasing value of th
equilibrium distribution function,}T2N, provides a contri-
bution N times larger. In the isokinetic case the correspon
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ing equilibrium distribution is stationary; the thermostatti
friction forces $2zKp%N provide the entire increase in th
phase-space density:

d lnf neq/dt5~2N!zK .

Between collisions, where the interparticle forces van
and the shear stress is purely kinetic, the isokinetic
isoenergetic friction coefficients would be exactly the sam
During the isolated two-body collisions, the two friction c
efficients would differ slightly, again by terms of order 1/N,
only becoming identical as the number of particles increa
The collisional contributions make highly singula
d-function contributions to the motion of all the particles,
the instant of each two-body collision. Although these co
sional contributions can be ignored at low density, they p
vide most of the frictional dissipation at high density, f
both shear flows and heat flow.

Apart from the friction coefficientz, Doll’s-tensor dy-
namics follows from a special Hamiltonian, designed
model either shear or bulk adiabatic flows@26#:

HDoll
qp 5F~$q%!1K~$p%!1( ¹u:qp.

In the plane Couette flows considered here, the corresp
ing nonequilibrium HamiltonianHDoll

qp includes the terms

$ėypx%, one for each particle. The alternative sllod dynam
@16# follows from Newton’s equations of motion, transcribe
to a locally comoving frame. But because the shear
boundaries again prevent energy conservation, neithe
these approaches is more truly ‘‘fundamental’’ than t
other. The Doll’s-tensor approach has the computational
conceptual advantage that it involves no explicit contrib
tions to the motion from the ‘‘strain acceleration’’ë, in the
event that the strain rate varies with time.

Any of the families of many-body dynamics with 0<a
<1 describes a simulation type which provides a shear
cosity in agreement with Green-Kubo linear-response the
@15,16# at small strain rates. In the usual stationary-st
simulations the strain rate is fixed, atė0, andz is nonzero.
For hard disks the special adiabatic friction-free scaling
the motion equations, including a variable strain rate,ėa

[sė0, is suggested by the equations of motion. Because b
the impulsive forces$F% and the equivalent acceleration

$ ṗ/m% are separately proportional to the collision rate,}T1/2,
as well as to the velocity, again}T1/2, both the forces and
the accelerations are proportional to temperature. If, in a
tion, the strain rate were chosen to be proportional toT1/2

then the corresponding adiabatic trajectories, with zero f
tion, become isomorphic to their thermostated twins:

$ėa[ ṡe0 ;z[0%⇒$y~x!%a[$y~x!%0 .

The treatment of shear-flow collisions themselves p
sents a difficulty which cannot be avoided. At high dens
most of the transport of momentum and energy occ
through isolatedd-function collisions linking pairs of par-
ticles. Trajectory isomorphism requires that each collis
must lead to the same changes in the scaled velocities:
h
d
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Otherwise, a rescaling of all the adiabatic disk velocit
would be required whenever two disks collided. This dif
culty only disappears in the large-system limit, where
nearly continuous collision frequency leads to a nearly c
tinuous variation of the kinetic-energy ratios25(Ka /K0).

To achieve some simplicity in a practicable molecular d
namics simulation, with a few hundred particles, it is ess
tial that the ‘‘adiabatic’’ hard-disk collisions follow the iso
kinetic collision rule. Otherwise not only the strain rate b
also all the particle momenta would have to undergo artific
discontinuous changes whenever any pair of disks collid
We make this arbitrary choice in discussing thermosta
simulations in terms of an adiabatic analog, in the next s
tion.

V. NONEQUILIBRIUM HARD-DISK SHEAR
SIMULATIONS

In thermostated systems of hard disks or spheres the
lisions need to be treated specially@27–30#. The external
shear together with the isokinetic constraint affect the ti
evolution of the particles during their infinitesimally sho
impulsive collisions. Exact collision rules can be deriv
@22# by using an approach proposed by Hoover and Kra
@27,28# and applied to the sheared Lorentz gas by Petra
Isbister, and Morriss@29,30#. The main idea is to replace th
hard interaction by a smooth but very steep potential. O
can, for example, assume that particles repel one ano
with a constant forceF, whenever their distance is less tha
the particle diameter. ForF→` the equations of motion dur
ing a two-particle collision simplify considerably and can
solved analytically. The postcollisional momenta are then
lated to the precollisional momenta by a one-dimensio
implicit equation, which can be easily solved numerical
Corresponding exact collision rules can be derived also
tangent-space dynamics. We note the isokinetic, isoe
getic, and adiabatic collisions differ only by terms of th
order 1/N.

We confined our simulations to a single convenient d
sity, one-fourth the close-packed density, and to a strain r
ė50.75s(m/kT)1/2, large enough for multifractal effects t
be important, but without entering the ‘‘string-phase’’ r
gime, which appears at large strain rates. There is noth
specially complicated about the simulations. For con
nience, we choose the particle massm, Boltzmann’s constant
k, the temperatureT, and the disk diameters all equal to
unity. The shapes of the periodic systems we study are
tially square.

We accumulated accurate Lyapunov spectra and m
sured the corresponding dissipation rates for systems ran
from N52 to N5196. The largest Lyapunov exponent, th
sum of all the positive isokinetic exponents, and the loss
phase-space dimensionalityDD, are all given in Table I,
along with the mean dissipation rate^z&5^Ṡ/2Nk&, and the
fluctuation of its kinetic part. Additional studies of the larg
est Lyapunov exponentl1, not included in Table I, estab
lished, first, that the number-dependent part of that expon
is accurately proportional toN21/2, and second, that conver
gence of the full spectrum of exponents~which requires the
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TABLE I. The largest Lyapunov exponent,l1, the sum of the positive Lyapunov exponents,(l1 , and
the dimensionality loss per phase-space dimension,DD/(4N11), are given, followed by the time-average
values of the friction coefficientz and the fluctuations of the streaming contributions ofz. All the data are for
N hard disks at a density equal to one-fourth the close-packed density, and a reduced strain rate of

N l1 (l1 /N DD/(4N11) ^z& N^(dz)2&

2 2.78 1.39 0.037 0.298 0.258
4 2.10 1.70 0.051 0.275 0.178
9 2.06 1.83 0.058 0.265 0.118
16 2.14 1.86 0.061 0.270 0.123
36 2.25 1.87 0.062 0.271 0.123
64 2.31 1.87 0.062 0.270 0.122
100 2.35 1.87 0.063 0.272 0.123
144 2.38 1.87 0.062 0.271 0.124
196 2.38 1.87 0.062 0.270 0.122
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solution of 4N12 sets of 4N11 coupled differential equa
tions for N hard disks! is not currently practical beyondN
5196. The extrapolated spectrum forN5`, based on an
N21/2 extrapolation, is shown in Fig. 2. The gap between
positive and negative branches of the spectrum is notew
thy.

In view of our finding that the nonequilibrium fluctuation
behave well, asN21/2 in the large-system limit, we expec
the N-body dynamics to approach a well-defined larg
system limit corresponding to a constant friction coefficie
z. When fluctuations in the isokinetic dissipation rate can
ignored, so thatz[z0 is constant, the relationship betwee
the adiabatic and isokinetic time scales becomes simple

d lns/dt05z0→s5ez0t0,dt0 /dta[s5ez0t0→ta

5@12e2zt0#/z.

An amusing consequence of this relationship linking
adiabatic and isokinetic time scales is that the infinitely lo

FIG. 2. Lyapunov spectra forN516,36,64,100,144,196. Th
vanishing exponents and the corresponding negative expon
have been omitted. Lyapunov spectra for systems of 100 and
hard disks are used to extrapolate to the large-system limit base
a number dependence of orderN21/2. The dashed line indicates thi
extrapolated ‘‘hydrodynamic limit’’ spectrum.
e
r-

-
t
e

e
g

isokinetic trajectories correspond to only a finite time in t
adiabatic case. Nonetheless, the adiabatic trajectories inc
an infinite number of collisions. In fact, the effect of finite
system fluctuations on this scaling relation limits its usef
ness to finite times, of the order of lnN. This painfully slow
convergence to the large-system limit is characteristic
fractal phase-space distributions.

VI. CONCLUSIONS

We have successfully characterized hard-disk shear fl
which exhibit a detailed trajectory isomorphism linking the
mostated and adiabatic flows. The fractal phase-space s
tures already known to be generated by thermostated s
lations describe also their adiabatic analogs. We found
the individual instantaneous Lyapunov exponents for the
flow types are not simply related to each other. The summ
spectra do satisfy a simple scaling rule,DṠ/k52(l i ,
whereDS is Gibbs’s entropy, relative to that of an ideal g
with the same internal energy and at the same density.
number dependence of our simulation results confirmed
expectation, based on the central limit theorem, that the
fect of fluctuations on intensive properties would decrease
N21/2. For thermostatted systems this finding suggests
the large-system instantaneous dissipation rate, as well a
other hydrodynamic state variables, approach those of a
tem with a constant friction coefficient, asN→`. Provided
that this is true, fluctuations can be ignored and the tim
scaling relationship can be simplified, as shown in the p
ceding section:

@N5`#⇒ ta[@12e2z0t0#/z0 ,

where the friction coefficientz0 corresponds to the total dis
sipation, including collisional contributions. The multifract
nature of the isokinetic distribution applies also to that of t
instantaneous adiabatic phase-space distribution func
Thus the present work strongly suggests that the fra
structure of large-system thermostated flows also repres
the limiting structure of adiabatic shear flows.

In the present work the friction coefficient linking the tw
types of trajectories incorporates only the streaming con
butions to the shear stress. We expect that exactly sim
considerations would apply as the system size is increa
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so that fluctuations in the rate of phase-space collapse~in the
thermostated case! and equilibrium phase-space growth~in
the adiabatic case! can likewise be ignored.

ACKNOWLEDGMENTS

Work at the Lawrence Livermore National Laborato
was performed under the auspices of the University of C
fornia, through Department of Energy Contract No. W-740
eng-48, and was further supported by grants from the
vanced Scientific Computing Initiative and the Accelera
Strategic Computing Initiative. C.D. gratefully acknow
edges support from the Fonds zur Fo¨rderung der wissen
schaftlichen Forschung Grant No. J01302-PHY. Ca
Hoover provided useful comments on earlier drafts of t
work. We thank Jerry Erpenbeck for help too.

APPENDIX

We demonstrate numerically the trajectory isomorphi
discussed in the text, for a symmetric pair of hard dis
undergoing shear according to Doll’s-tensor dynamics. T
motion equations are as follows:

$ẋ5 ėy1px /m; ẏ5py /m;

ṗx5Fx2zpx ; ṗy5Fy2 ėpx2zpy%,

where the isokinetic friction coefficient is a ratio of two
particle sums:

z[2 ė( pxpy Y ( p2.

The adiabatic equations are exactly similar except that
strain rateė varies with the kinetic energy:
tt

.

le

x

i-
-
-

d

l
s

s
e

e

ė~ t ![sė~0!,s[@K~ t !/K~0!#1/2.

The forces$Fx ,Fy% represent the hard-particle collision
We display a simple numerical example in Fig. 3. The init
‘‘momenta’’ of the two disks, which describe their motio
relative to the local stream velocity, are taken to
$65/13,612/13%, so that the initial comoving kinetic energ
is unity. The strain rate is 0.25s(m/kT)1/2, one-third that
used in our many-body simulations. The trajectories sho
in Fig. 3 correspond to an isothermal time interval of 3.00
and to an adiabatic time interval of 3.4762. Both sets
motion equations yield the same laboratory-frame trajec
ries, as shown here.

FIG. 3. A pair of time-reversible hard-disk trajectories$y(x)%
according to both isokinetic—constant-strain-rate—dynamics
adiabatic—scaled-strain-rate—dynamics, as is described in the
pendix.
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