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Reconstructing random media

C. L. Y. Yeong and S. Torquato
Department of Civil Engineering and Operations Research and Princeton Materials Institute,

Princeton University, Princeton, New Jersey 08540
~Received 6 August 1997!

We formulate a procedure to reconstruct the structure of general random heterogeneous media from limited
morphological information by extending the methodology of Rintoul and Torquato@J. Colloid Interface Sci.
186, 467 ~1997!# developed for dispersions. The procedure has the advantages that it is simple to implement
and generally applicable to multidimensional, multiphase, and anisotropic structures. Furthermore, an ex-
tremely useful feature is that it can incorporate any type and number of correlation functions in order to
provide as much morphological information as is necessary for accurate reconstruction. We consider a variety
of one- and two-dimensional reconstructions, including periodic and random arrays of rods, various distribu-
tion of disks, Debye random media, and a Fontainebleau sandstone sample. We also use our algorithm to
construct heterogeneous media from specified hypothetical correlation functions, including an exponentially
damped, oscillating function as well as physically unrealizable ones.@S1063-651X~98!01701-2#

PACS number~s!: 44.30.1v
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I. INTRODUCTION

The reconstruction of random heterogeneous media, s
as porous and composite media, from a knowledge of lim
morphological information~correlation functions! is an in-
triguing inverse problem. An effective reconstruction proc
dure enables one to generate accurate structures at will,
subsequent analysis can be performed on the image to o
desired macroscopic properties~e.g. transport, electromag
netic, and mechanical properties! of the media. This provides
a nondestructive means of estimating the macroscopic p
erties: a problem of important technological relevance. Ho
ever, it is clear that even if the correlation functions of t
reference and reconstructed systems are in good agreem
this does not ensure that the structures of the two syst
will match very well. This interesting question of nonuniqu
ness can also be probed using reconstruction methodolo
Another useful application is the reconstruction of a thr
dimensional~3D! structure using information obtained from
a two-dimensional~2D! micrograph or image. Such recon
structions are of great value in a wide variety of fields,
cluding petroleum engineering, biology, and medicine,
cause in many cases only 2D images are available
analysis. A further intriguing inverse problem that has be
suggested@1# is the construction of heterogeneous me
based on the specification of a model or hypothetical sta
tical correlation function. This question involves understan
ing the general mathematical properties of realizable co
lation functions. Finally, we note that reconstructio
procedures can shed light on the nature of the informa
contained in the statistical correlation functions that
implemented. This potentially can aid one in identifying t
appropriate correlation functions that can effectively char
terize a class of structures.

There are a number of approaches that have been tak
reconstruct random media@2–15#. An extensively examined
reconstruction method is based on successively passi
normalized uncorrelated random Gaussian field throug
linear and then a nonlinear filter to yield the discrete valu
571063-651X/98/57~1!/495~12!/$15.00
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representing the phases of the structure. One approach
originated by Joshi@2# and extended by Quiblier@3# from 2D
to 3D reconstructions. Adleret al. @4# refined the technique
to accommodate periodic boundary conditions. The lin
filter in this method convolutes linearly the independe
Gaussian field, giving another field that is still Gaussian d
tributed but correlated. The nonlinear filter then perform
threshold cut to the field to generate the final reconstruc
structure. Through this nonlinear filter, the statistical prop
ties of the transformed field are related to that of the ref
ence structure, and the problem leads to solving a nonlin
system of equations~e.g., by optimization methods! to deter-
mine the coefficients of the linear filters. This procedure h
been further modified@5–7# as well.

Another approach, which is based also on filtering, w
originally devised by Cahn@8# and was analyzed in deta
and applied by a number of investigators@9–14#. This ap-
proach differs from the aforementioned one in that the lin
filter has a different functional form, and it includes doubl
level ~apart from single-level! thresholding the correspond
ing correlated Gaussian random fields. The method is fo
to reconstruct well many classes of nonparticulate compo
materials, such as Vycor glass and membrane systems. H
ever, the class of random media for which it works well
limited by virtue of the use of Gaussian random field. F
example, as reported by Levitz@14#, the process does no
reconstruct particulate systems~such as soils! satisfactorily.
He noted that more morphological information beyond th
contained in the standard two-point probability function~de-
scribed in Sec. II B! is required to reconstruct these stru
tures.

The aforementioned filtering methods have been form
lated for the reconstruction of two-phase isotropic media
ing standardone-point~volume fraction! and the two-point
correlation function information. These approaches are l
ited in that they are difficult to extend to and incorpora
other correlation functions for two-phase isotropic media a
are practically impossible to extend to general multipha
and anisotropic media.
495 © 1998 The American Physical Society
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496 57C. L. Y. YEONG AND S. TORQUATO
The method we propose to reconstruct random media
variation of the simulated annealing method introduced
Rintoul and Torquato@15# who originally used the method t
reconstruct dispersions of particles. In the present work,
extend the method to reconstruct random media of arbit
topology by considering digitized representations of the s
tems. The procedure involves finding a state of minim
‘‘energy’’ among a set of many local minima by interchan
ing the phase of pixels in the digitized system. The energ
defined in terms of a sum of the squared difference of
reference and simulated correlation functions. The rec
struction procedure that we propose has a number of us
features; it is~i! simple to implement,~ii ! generally appli-
cable to multidimensional, multiphase, and anisotropic str
tures, ~iii ! extendable to include any type and number
correlation functions as microstructural information, and~iv!
can be used to construct heretofore unknown structures f
specified correlation functions~even physically unrealizable
ones!.

The outline of the rest of the paper is as follows: In S
II, we formulate the reconstruction procedure for digitiz
media. In particular, we will utilize the information con
tained in the two-point probability functionS2, the lineal-
path functionL, and the combination of these two correlatio
functions (S2 and L), although other functions could als
have been used. In Sec. III, we apply the procedure t
variety of one-dimensional~1D! models, including a case
where we specify an unphysical correlation function. In S
IV, we employ the reconstruction technique to a number
different 2D models. In Sec. V, we make concluding r
marks.

II. FORMULATION OF THE RECONSTRUCTION
PROCEDURE

A. General procedure

The reconstruction methodology employed here follo
closely the one introduced by Rintoul and Torquato@15# but
is modified for use in digitized media. Thus, we are not o
able to carry out reconstructions for dispersion of particl
but for anisotropic multiphase systems of arbitrary topolo
For simplicity, we will begin by outlining the reconstructio
procedure by considering only a single two-point correlat
function for statistically isotropic two-phase media. This
followed by a description of a more general procedure inc
porating a set of differentn-point correlation functions for
anisotropic multiphase systems.

Consider reconstructing a two-phase isotropic medi
where the ‘‘reference’’ two-point correlation functionf 0(r )
of phasej ~equals to 1 or 2 in this case! is provided. Here,
the quantityr is the distance between two points in the sy
tem. Let f s(r ) be the same correlation function of the reco
structed digitized system, with periodic boundary conditio
at some time step. It is this system that we shall attemp
evolve towardsf 0(r ) from an initial guess of the system
configuration.

Once f s(r ) at a particular time step is evaluated, a va
able E that plays the role of the energy in the simulat
annealing can be calculated as
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E5(
i

@ f s~r i !2 f 0~r i !#
2. ~1!

To evolve the digitized system towardsf 0(r ) ~or in other
words, minimizingE), we interchange the states of two a
bitrarily selected pixels of different phases. This phase in
change procedure has the nice property of automatically
serving the volume fraction of both phases during t
reconstruction process. After the interchange is perform
we can calculate the energyE8 of the resulting state and th
energy differenceDE5E82E between two successiv
states of the system. This phase interchange is then acce
with probability p(DE) via the Metropolis method as

p~DE!5H 1, DE<0

exp~2DE/T!, DE.0,
~2!

whereT is the ‘‘temperature.’’ This method causesf s(r ) to
converge gradually tof 0(r ). The cooling schedule, which
governs the value and the rate of change ofT, is chosen to
allow the system to evolve to the desired state as quickly
possible, without getting trapped in any local energy minim
We adopt the suggestion that the startingT should have a
value such that the initial acceptance rate is 0.5@16#. The
algorithm terminates when the energyE @given by Eq.~1!# is
less than some small tolerance value or when the numbe
consecutive unsuccessful phase interchanges is greater t
large number~;20 000!. At the ground state, the energyE
can be viewed as aleast-squareserror.

The reconstruction procedure can be generalized to a
to an anisotropic multiphase system. This is done by usin
reference two-point correlation function asf 0

( j )(r ), wherer is
the position vector andj indicates the phase number of up
p for a p-phase system. One can even extend the proces
employ m different n-point correlation functionsf 0

( j ,k)(rn)
wherek5 l , . . . ,m, and each function depends uponn dif-
ferent positionsrn5r1 , . . . ,rn ~see Ref.@15#!. The accom-
panying f s’s are defined in a similar way.

The energy can now be defined as

E5(
i

(
j

(
k

a j ,k@ f s
~ j ,k!~rn!2 f 0

~ j ,k!~rn!#2, ~3!

where the sum oni is multidimensional over all configura
tions of rn. The quantitya j ,k in the expression is an arbitrar
weight that assigns the relative importance of each individ
correlation function contributing to the total energy. This p
rameter can even depend on the stage of reconstruction
that suitable correlation functions can be used at the in
stage to hasten the convergence to a crude structure, and
other correlation functions can be used at the end to re
the reconstructed image.

There are a variety of correlation functions that can
used in the reconstruction procedure, including the two-po
probability function@17#, lineal-path function@18#, two-point
cluster function@19#, chord-length distribution function@20#,
and pore-size distribution function@21,22#, to name just a
few. There exist more complicated correlation functions a
we refer the reader to Ref.@23# for a thorough review. To
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57 497RECONSTRUCTING RANDOM MEDIA
illustrate the reconstruction procedure, we will apply t
technique to both 1D and 2D two-phase isotropic syste
using thetwo-point probability function S2(r ) and thelineal-
path function L(r ). These two correlation functions conta
substantial structural information and yet are simple eno
to be implemented.

B. Two-point probability function reconstruction

The autocorrelation function of a statistically inhomog
neous system is defined as

S2
~ j !~r1 ,r2!5^I ~ j !~r1!I ~ j !~r2!&, ~4!

wherer1 and r2 are two arbitrary points in the system, a
gular brackets denote an ensemble average, and the ch
teristic functionI ( j )(r ) is defined as

I ~ j !~r !5H 1, whenr is in phasej

0, otherwise.
~5!

The quantityS2
( j )(r1 ,r2) can be interpreted as the probabili

of finding two points at positionsr1 and r2 both in phasej .
Thus, we will refer to it as thetwo-point probability function.

For statistically isotropic media,S2
( j )(r1 ,r2) depends only

on the distancer 5ur12r2u between two points, and there
fore can be expressed simply asS2

( j )(r ). For all isotropic
media without long-range order,

S2
~ j !~0!5f j and lim

r→`

S2
~ j !~r !5f j

2 , ~6!

wheref j is the volume fraction of phasej . For porous sol-
ids, Debyeet al. @24,25# developed a relationship betwee
S2(r ) of the material phase and the scattering intensity
tained in a small-angle radiation scattering experiment
should be emphasized that the two-point probability funct
cannot distinguish between phase 1 and phase 2 materia
a two-phase system sinceS2

(1)(r )2f1
25S2

(2)(r )2f2
2. Here-

after, unless otherwise indicated, we will drop the supersc
of S2

( j )(r ) and simply refer toS2(r ) as the two-point prob-
ability function of the phase that we are interested in rec
structing.

The specific surfaces of a two-phase medium is define
as the area of the two-phase interface per unit total volum
the medium. Thus, it has the dimensions of inverse len
and is an important characteristic length scale of the m
dium. Debye, Anderson, and Brumberger@25# showed that
the slope of the two-point probability function of eithe
phase atr 50 is equal to2s/4 in three dimensions. For th
first three space dimensions, it is easy to show that

d

dr
S2~r !ur 505H 2s/2, D51

2s/p, D52

2s/4, D53,

~7!

whereD is the space dimension.
In a digitizedmedium, although the slope in the 1D ca

is the same as that of a continuum medium, it is not so in
and 3D. The derivation is straightforward when one cons
ers the discrete number of interfacial faces the digitiz
s
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structure has when it is constrained byS2(r ) at r 50 and 1
pixel. It is simple to show that for aD-dimensional digitized
medium, one has

d

dr
S2~r !ur 5052s/~2D !. ~8!

The discrete nature of the digitized system means that
distancer can be conveniently measured in terms of pix
and acquires integral values, with the end points ofr located
at the pixel centers. Also, it can be shown that when samp
along the direction of rows~or columns! of pixels,S2(r ) is a
linear function between adjacent pixels:

S2~r !5~12 f ! S2~ i !1 f S2~ i 11!, for i<r , i 11,
~9!

wherei is an integer, andf 5r mod1. Because of this linea
property, the evaluation ofS2(r ) at integral values ofr is
sufficient to characterize the structure, and determining it
noninteger values ofr is not necessary. Consequentl
S2

( j )(r ) can be evaluated simply by successively translatin
line of r (5 i ) pixels in length at a distance of one pixel at
time and spanning the whole image, counting the numbe
successes of the two end points falling in phasej , and finally
dividing the number of successes by the total number
trials ~which is also the system size for a periodic medium!.
In 1D cases, this sampling is of course performed along
single row of pixels. In 2D, we assume isotropy of the evo
ing system~which is not unreasonable due to the rando
nature of the annealing process! and the sampling is there
fore performed only along two orthogonal directions: t
rows and columns of pixels. It is observed that this sampl
procedure can be more accurate and produces a smoothS2
profile than that by random sampling~throwing random
points into the system!, because the former exhaustively in
corporates information from every pixel in the entire syste
Of course, at additional computational cost, one co
sampleS2 in more directions than two orthogonal direction
only.

To begin the reconstruction process, a random chec
board with volume fractionf j of the reference system i
used as the initial structure, i.e., each pixel has a probab
of f j as phasej material. Practically, to avoid finite-siz
effects, the random checkerboard is constructed by rando
choosing the correct number of pixels in the system a
assigning phasej to them.S2(r ) is then evaluated by the
aforementioned sampling procedure over a range ofr , which
we will refer to as the ‘‘sampling region.’’ The structure
then altered by a phase interchange of two different pix
within the system. The resultantS2 profile of this intermedi-
ate system is calculated and accepted with probability gi
by Eq. ~2!. This annealing procedure is carried out succ
sively until the evolving system’sS2 matches the referenc
S2 within a tolerance limit.

The annealing process can be made remarkably effic
by noticing that once theS2 profile of the initial structure has
been determined by the sampling procedure described, t
is no need to fully sample the intermediate structures all o
again by the same sampling method to calculate theirS2. In
fact, a change inS2 from the previous structure is only due t
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498 57C. L. Y. YEONG AND S. TORQUATO
the change of the success rate~occurrence of the two end
points fall in phasej ) along the row and column that cros
each altered pixel. This change inS2 can simply be evaluated
by invoking the sampling techniqueonly along those rows
and columns crossing the altered pixels. Therefore, to ev
ate theS2 profile of a succeeding structure,S2 of the preced-
ing structure can be stored beforehand, and that of the
sequent structure can be updated efficiently
correspondingly adjusting the storedS2 using the calculated
change.

The algorithm is made even more efficient if the size
the sampling region can be reduced. A useful fact is thaS2
is an even function in a periodic medium and therefore
sampling region takes up at most half of the entire sys
size. However, the sampling region can be even smaller.
have found that compared to using a larger sampling reg
the algorithm gives comparable results when the samp
region only encompasses a distance of at least one uni
peatable cell of the reference structure, or several pix
(,10 in a 1000 pixels system! after the long-range value o
S2 has been reached, whichever is smaller.

C. Lineal-path function reconstruction

Another important morphological descriptor of the stru
ture of random media is the lineal-path functionL ( j )(r1 ,r2),
which is defined as the probability of finding a line segme
spanning fromr1 to r2 that lies entirely in phasej @18#. This
function contains some connectedness information, at l
along a lineal path, and hence contains certain long-ra
information about the system. In an isotropic medium,
lineal-path function depends only on the distancer between
the two points and can be expressed simply asL ( j )(r ).
Clearly, for all media having a volume fraction off j ,

L ~ j !~0!5S2
~ j !~0!5f j . ~10!

Unlike S2, a lineal-path function can distinguish betwe
different phases of a medium, in the sense that the lineal-
function for a particular phase is not uniquely determined
simply knowing that of the complementary phase~s!. There-
fore, for efficient reconstruction using lineal-path function
it is important to identify which phase in the medium is t
target phase to be reconstructed. Hereafter, unless othe
indicated, we will drop the superscript ofL ( j )(r ) and simply
refer to L(r ) as the lineal-path function of the phase of i
terest.

To evaluateL(r ) in a digitized system, it is again suffi
cient to let r take integer values; sampling is again pe
formed only along orthogonal directions.L ( j )( i ) is defined to
be the probability of finding a line segment of length (i ,i
11# that falls in phasej . To illustrate how to evaluate
L ( j )( i ) efficiently, we first consider a simple case where on
a single phasej chord of lengthl is present in a one
dimensional system. Clearly,

L ~ j !~ i !5H ~ l 2 i !/N, when 0< i<l

0, otherwise,
~11!

whereN is the system size in pixels. For a system that h
more chords or for a system of a higher dimension, the sa
u-

b-
y

f

e
m
e

n,
g

re-
s

-

t

st
ge
e

th
y

,

ise

-

s
e

principle applies to each of the chords such that the line
path function of the entire system is the sum of that due
the individual chords. In this respect, the sampling proced
to evaluateL reduces merely to a problem of identifying th
lengths of the chords of the corresponding phase in the
tem. Provided the system is isotropic, this method of de
mining L is considerably more efficient than by throwin
random lines into the system.

Again, as in the case ofS2, it is not necessary to fully
sample all of the intermediate structures to determine th
lineal-path functions during the annealing procedure. O
only needs to keep track of the length of the chords be
destroyed and created due to the phase interchange of p
so that L can be efficiently updated according to the
changes.

The sampling region should be chosen to encompass
range before the lineal-path function becomes negligi
small. Unfortunately, unlikeS2, L is not an even function.
The sampling region could therefore be large, and may
tend beyond half of the system size, depending on the c
acteristic cluster size in the medium.

D. Hybrid reconstruction

Different correlation functions contain distinctive mo
phological information; generally, a single lower-order fun
tion cannot fully characterize a structure. The lineal-pa
function L contains lineal ‘‘clustering’’ or ‘‘connectedness’
information that is absent in the two-point probability fun
tion S2. However, it does not contain morphological info
mation for length scales larger than the maximum clus
size in the system. As an example,L does not differentiate
between a structure of identical hard disks in a thermal eq
librium arrangement and that of random sequential addit
~RSA! arrangement, i.e.,L(r ) for the particle-phase is the
same for both structures, sinceL(r ) only contains correlation
information within a cluster. On the other hand,S2 provides
short-range information about different clusters. To ov
come the weaknesses of individual correlation functions
to exploit the useful information contained in each corre
tion function, one can accommodate an arbitrary numbe
different correlation functions in the reconstruction proce
The practical limitation on the number of different function
that can be used will be the computational expense that
can afford. In this paper, we will illustrate the use of multip
correlation functions by incorporating bothS2 and L in the
reconstruction process. We put equal weight on the imp
tance of the functions such thata ( j ,k)51 for all k in Eq. ~3!.

III. APPLICATION TO ONE-DIMENSIONAL MEDIA

To begin with, we provide a few examples of 1D reco
structions to gain some insight about the process. In e
case, the initial structure is a 1D random checkerboard wi

FIG. 1. Initial configuration: one-dimensional random check
board. System is 1000 pixels in length and volume fractionf2

50.5.
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57 499RECONSTRUCTING RANDOM MEDIA
system size of 1000 pixels, and has the same volume frac
as the reference system. An example of a structure at 5
volume fraction is shown in Fig. 1. In the following, unles
otherwise stated, phase 2 is the target phase of the re
struction, and the correlation functions of phase 2 are u
In all of the images shown, this phase is represented by b
pixels.

A. Periodic rods

Consider a digitized system of periodic rods~phase 2! d
pixels in length whose centers are separated byd pixels. The
two-point probability function is a periodic triangular func
tion with a period of 2d:

S2~r !5H ~12r /d!/2, when 0<r ,d

2~12r /d!/2, when d<r ,2d,

S2~r 12d!5S2~r !, ~12!

and the lineal-path function is given by

L~r !5H ~12r /d!/2, when 0<r ,d

0, otherwise.
~13!

To show the capability of the reconstruction procedure,
will illustrate the most difficult situation where a single ro
spans half of the system size (d5500 pixels!. To reconstruct
this reference system@shown in Fig. 2~a!#, the procedure
needs to cluster 500 phase 2 pixels into a single conne
row, which is very different from the initial structure~see
Fig. 1!.

The reconstructed system obtained by usingS2 as the cor-
relation function is shown in Fig. 2~b!. The reconstructed
system appears to be dislocated; however, due to peri
boundary conditions, a shift of the system matches exa
the reference system. The reconstruction indeed clusters
phase-2 pixels together in the necessary fashion. The re
struction procedure usingL as the correlation function~not
shown! also yielded a perfect result in this case.

B. Equilibrium hard rods

The previous example deals with the special case of
deterministic structures that are uniquely determined
those lower-order correlation functions. For random str
tures, lower-order correlation functions generally do not c
tain complete information and therefore cannot be expec
to yield perfect reconstructions. Of course, the judicious
lization of combinations of lower-order correlation functio

FIG. 2. ~a! Reference system: unit cell of periodic rods. Syste
size 51000 pixels, rod length5500 pixels, and volume fraction
f250.5. ~b! S2 reconstruction of periodic rods system.
on
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can produce more accurate reconstructions than any si
function alone. This idea will be implemented as describ
below.

One of the random systems we investigate consists o
equilibrium arrangement of hard rods having a unifor
length ofd pixels. The two-point probability functionS2 can
be expressed analytically@26#. In a simplified form, the ex-
pression is given as@27#

S2~r !5~12f2!(
k50

j
exp~2@r /d2k#/a!

k! S r /d2k

a D k

1122f2 , ~14!

wherejd<r<( j 11)d, anda5(12f2)/f2. The lineal-path
function is trivially given by

L~r !5H f2~12r /d!, when 0<r ,d

0, otherwise.
~15!

The reference structure we adopt has a particle-phase
ume fractionf2 equal to 0.5, and the length of the rods
chosen to be 10 pixels, giving a rod density of 50 per 10
pixels. A realization of the reference structure and theS2-
reconstruction result are shown in Fig. 3. Note that while t
S2 profile of the reconstructed system agrees strikingly w
with that of the reference system, the visual images@Figs.
3~a! and 3~b!# do not appear to be similar. The rods in th
reconstructed image clearly have a wide distribution

FIG. 3. ~a! Reference system: a realization of equilibrium ha
rods. System size51000 pixels, rod length510 pixels, and vol-
ume fractionf250.5. ~b! S2 reconstruction of equilibrium hard
rods system.~c! S2 for the reference and reconstructed system
Also shown is the lineal-path functionL for both systems.
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500 57C. L. Y. YEONG AND S. TORQUATO
length, lacking the uniformity characteristics displayed in t
reference system. A quantitative means of probing this n
uniqueness is to measure adifferent correlation function of
the reconstructed system and compare it to the correspon
function of the reference system. Indeed, the lineal-p
functions of the reference and reconstructed system~in-
cluded in the figures! are seen to be significantly different fo
intermediate to large values ofr . This example clearly show
that S2 does not generally contain sufficient information
uniquely determine a structure.

As stated earlier,L contains more clustering informatio
than S2, and it is therefore expected thatL can capture the
uniform nature of the rod length better. Indeed, this is
case, as shown in Fig. 4. Moreover, theS2 profile of the
reconstructed image~measureda posteriori! is encourag-
ingly close to that of the corresponding reference quant
However, it is clear that the lineal-path function again do
not ascertain a unique structure, i.e., any distribution of
uisized rods~equilibrium of not! will give the same lineal-
path function profile.

The hybrid (S21L)-reconstruction result is shown in Fig
5. The reconstructed structure is annealed to the extent
both correlation functions have little discrepancy from t
reference ones. Visually, the structure seems to not d
substantially from that obtained by theL reconstruction, sim-
ply because theL reconstruction has already performed w
in reconstructing the structure.

C. Unphysical correlation functions

To push the reconstruction process ever further, we
investigate how the technique responds when a physic
unrealizable reference correlation function is used. We no
from Eq.~7! or Eq.~8! that the slope ofS2(r ) at r 50 should

FIG. 4. ~a! L reconstruction of equilibrium hard rods system.~b!
L for the reference and reconstructed systems. Also shown is
two-point probability functionS2 for both systems.
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be negative for all physically realizable structures. One c
therefore easily construct an unphysical referenceS2 profile
corresponding to a system with anegative interfacial areaby
assigning a positive slope atr 50. Such a reference function
S2 and the corresponding reconstruction results are show
Fig. 6. The referenceS2 here has a positive slope atr 50 and
goes to its long-range value after 10 pixels.

It can be observed that the reconstruction proced
makes an effort to raise the slope ofS2 at r 50 as far as
possible so as to approach the negative reference va

he
FIG. 5. ~a! Hybrid reconstruction of equilibrium hard rods sys

tem. ~b! S2 andL for the reference and reconstructed systems.

FIG. 6. ~a! S2 construction of ‘‘negative interfacial area’’ sys
tem. ~b! S2 for the reference and constructed systems.



r
e

g

-

be

f-
me
e
by

of

isk

ted

al

r-

57 501RECONSTRUCTING RANDOM MEDIA
However, the slope cannot increase too much since the
sultantS2 profile is also constrained by the reference valu
at longer range to give minimumE in Eq. ~1!. Therefore,
instead of annealing to a structure having a minimums
~which should contain only a single rod in the system!, the
reconstruction procedure gives a final structure consistin

FIG. 7. Initial configuration: two-dimensional random checke
board. System is 4003400 pixels and volume fractionf250.5.
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clusters of pixels such thats is the minimum under the con
straint of the referenceS2.

IV. APPLICATION TO TWO-DIMENSIONAL MEDIA

In the 2D reconstruction, the initial system is taken to
a 2D random checkerboard of size 4003400 pixels~unless
otherwise stated!, with the same volume fraction as the re
erence system. An example of a structure at 50% volu
fraction is shown in Fig. 7. Again, phase 2 material will b
the target of the reconstruction, which is represented
black pixels in the images.

A. Equilibrium hard disks

We begin by considering an equilibrium distribution
equisized hard disks of diameterd pixels. For disks with a
diameterd greater than 15 pixels, the area of a digitized d
differs from that of the continuum disk by less than 1%@28#.
We will take d.15 pixels to closely mimic the continuum
result although the reconstruction procedure is not affec
by the level of resolution.

The two-point probability functionS2 of this system has
been evaluated@26#. S2( i ) ( i 5 integer in terms of pixels! is
obtained from a cubic-spline interpolation of the numeric
data provided in Ref.@26#. The lineal-path functionL for the
particles can easily be derived analytically as
L~r !5H 2f2

p H cos21S r

dD2
r

d
sinFcos21S r

dD G J , when 0<r ,d

0, otherwise.
~16!
-
-

r-
rac-

lly

al
r
ap-

on
be
Clearly, L(r ) is insensitive to the particular arrangeme
~e.g., equilibrium or RSA! of particles, provided that they ar
nonoverlapping equisized disks. The reference system
taken to have a particle-phase volume fractionf2 equal to
0.2. A realization of the reference system and the co
sponding reconstruction results are shown in Fig. 8. N
that theS2 reconstruction again does not provide a satisf
tory structure even though itsS2 profile is in excellent agree
ment with the correspondingS2 of the reference system. Th
nonuniqueness issue arises again showing that the re
structed system can match the original correlation funct
very well but yet has a significantly different structure. Sim
lar to the 1D equilibrium rods case, theL reconstruction here
gives a better result thanS2 reconstruction in that the forme
better captures the size uniformity of the particles. That
particles are squarelike in shape is an artifact due to
evaluation ofL in only two orthogonal directions. This de
fect could be eliminated by sampling in other directions, b
of course, at the expense of computational cost. The hy
(S21L) reconstruction, again similar to 1D case, gives o
a slight improvement over theL reconstruction and henc
this result is not shown here.

B. Random overlapping disks

The random overlapping disk model consists of spatia
uncorrelated disks whose centers are determined by a P
t

is

-
e
-

n-
n

e
e

t
id

y
is-

son process@29,23#. This is an interesting model in 3D be
cause the system is bicontinuous~i.e., both phases are con
nected! when the particle volume fractionf2 lies in the
interval @0.29,0.97# @30,31#. In 2D, the system will never be
bicontinuous, but it still captures nontrivial clustering info
mation, and the particle-phase percolates at a volume f
tion of about 68%@32#. The two-point probability function
S2 of the system is given by@29#

S2~r !5exp@2rV2~r !#1122f2 , ~17!

where

V2~r !5~pd2!/22d2/2$cos21~r /d!

2~r /d!A12~r /d!2%H~d2r !. ~18!

Herer is the number density of disks andH is the Heaviside
step function. The lineal-path function is known analytica
for the space exterior to the particles@18#. For the particle-
phase,L is also known analytically but involves numeric
evaluation@33#. We evaluateL instead by sampling ove
1000 realizations of computer-generated digitized overl
ping disks system.

It is of interest to examine the ability of the reconstructi
algorithm to correctly reconstruct large clusters that may



s
-
ra
A
io

a
te

e
te
t-
tio
fe
th
th

rg
t
s
io
uc

n

ch

ave

es

rd

s
d

p-

-
g

s
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present in a system. The reference system we used con
of disks with a diameterd531 pixels. The size of the clus
ters is restricted by considering a particle-phase volume f
tion f2 of 0.5, which is below the percolation threshold.
realization of the reference system and the reconstruct
are shown in Fig. 9.

Not surprisingly, theS2 reconstruction does not give
good result: the cluster sizes are too large and the sys
actually percolates. We emphasize that the resultingS2
matches exactly the referenceS2 profile ~although the figure
is not included here!. TheL reconstruction is superior to th
S2 reconstruction, capturing the cluster distributions bet
However, the hybrid (S21L) reconstruction apparently ou
performs the previous two methods. The resultant correla
function profiles are compared to the corresponding re
ence profiles in Fig. 10. It should be mentioned that
requirements for this reconstruction are demanding in
50% of the pixels in a very large system (4003400 pixels!
are required to aggregate in such a way as to form la
clusters that have reasonable shape. It can be seen tha
hybrid reconstruction successfully accomplishes this ta
This example clearly shows that combinations of correlat
functions in the reconstruction procedure can yield a m
better result than those using single ones.

C. Debye random media

Debye claimed without rigorous proof that the expone
tially decay two-point probability function given by

FIG. 8. ~a! Reference system: a realization of equilibrium ha
disks. System size54003400 pixels, disk diameter517 pixels,
and volume fractionf250.2. ~b! S2 reconstruction of equilibrium
hard disks system.~c! L reconstruction of equilibrium hard disk
system.~d! S2 for the reference andS2-reconstructed systems, an
L for the reference andL-reconstructed system.
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S2~r !2f2
2

f1f2
5exp~2r /a!, ~19!

wherea is a correlation length, applies to structures in whi
one phase consists of ‘‘random shapes and sizes’’@24,25#. It
is now known that certain types of space tesselations h
two-point functions given by Eq.~19! @34,35#. We refer to
this class of structures asDebye random media.

We are also in a position to find the specific structur
that realize the function given by Eq.~19!. We chosef2

FIG. 9. ~a! Reference system: a realization of random overla
ping disks. System size54003400 pixels, disk diameter531 pix-
els, and volume fractionf250.5. ~b! S2 reconstruction of random
overlapping disks system.~c! L reconstruction of random overlap
ping disks system.~d! Hybrid reconstruction of random overlappin
disks system.

FIG. 10. S2 andL for the reference and hybrid reconstruction
of the random overlapping disk system.
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57 503RECONSTRUCTING RANDOM MEDIA
50.5 anda52 pixels for the construction procedure. Th
construction results are shown in Fig. 11. The resulting str
ture is seen to be consistent with Debye’s intuitive desc
tion of it. This successful example serves as a prelude to
generation of hitherto unknown structures from specifi
correlation functions.

D. Hypothetical medium

We will now illustrate one of the powerful aspects of th
reconstruction procedure, namely, the ability to gener
heretofore unknown structures from hypothetical correlat
functions. In this section, we will use a physically realizab
correlation function, but in the next section, we will emplo
physically unrealizable ones. Here we will assume that
two-point probability function is given by the exponential
damped, oscillating function

S2~r !2f2
2

f1f2
5exp~2r /a!cos~vr 1c!, ~20!

FIG. 11. ~a! S2 construction of a ‘‘Debye random medium.
System size54003400 pixels, volume fractionf250.5, and cor-
relation lengtha52 pixels.~b! S2 for the reference and constructe
system.
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where the parametera bounds the amplitude of theS2 pro-
file, v is the wave number, andc is the phase angle. It is
immediately obvious that the corresponding medium sho
have two different characteristic length scales. One of
length scales is dictated by the wave numberv and the other
one bya, which is the correlation length of the bulk feature
of the medium. We adopta58, v51, and c50 in the
construction. The reference correlation function profile
shown in Fig. 12.

The generated structure corresponding to Eq.~20! @see
Fig. 12~a!# has a labyrinthine appearance. As expected fr
the form of the reference correlation function, this structu
is highly correlated and the two different characteris
length scales can clearly be identified. The shorter charac
istic length scale is the average width of the ‘‘wall’’ of th
labyrinth ~shown as black pixels in the figure!, which is of
the order ofp/v. The value ofS2 at this distance is the
minimum of theS2 profile, indicating that the correlation
immediately beyond this distance is negligible~see also the

FIG. 12. ~a! S2-construction for a system with an exponential
damped, oscillating correlation function specified by Eq.~20!. Sys-
tem size54003400 pixels, volume fractionf250.5, correlation
length a58 pixels,v51 ~pixel!21, and phase anglec50. ~b! S2

for the reference and constructed system.



o
h
r
e
e
s

y
n

i-

s-

ant

face

00

cor-
ne
fic

re-
to
ill

e nd-
,

504 57C. L. Y. YEONG AND S. TORQUATO
S2 profiles of equilibrium hard rods and disks!. On the other
hand, the average size of the ‘‘patches’’~where the labyrinth
walls orient in the same direction! is governed by the corre-
lation lengtha.

This example serves to illustrate that the reconstructi
algorithm is capable of generating structures that match
pothetical, physically realizable correlation functions that a
rather complicated functionally. Moreover, by examining th
generated structures, we will be able to deepen our und
standing of the nature of the information contained in the
correlation functions.

E. Unphysical correlation functions

We now tax the procedure in two dimensions by emplo
ing unphysical correlation functions, as we did in one dime
sion. The same referenceS2 that gave physically unrealiz-
able 1D structures with negatives is used here@see Fig.
13~c!#, but with a system size of 2003200 pixels. The re-
sultant structure shown in Fig. 13~a! consists of large clusters
in order to minimizes as much as physically possible. Sim
lar to the 1D case, this annealed structure is not comprised
a single cluster that has the minimums. Again, this is be-
cause the structure is constrained by the referenceS2 after

FIG. 13. ~a! S2 construction of ‘‘negative interfacial area’’ sys-
tem. System size52003200 pixels and volume fractionf250.5.
~b! S2 construction of ‘‘zero interfacial area’’ system. System siz
51003100 pixels and volume fractionf250.5. ~c! S2 for the ref-
erence and constructed systems.
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r 50, which the algorithm tries to match as closely as po
sible while yielding a realistic structure.

Another unphysical example that we study has a const
S2 at a value off2 for any r @see Fig. 13~c!#. This implies
that the reference structure has to have a zero specific sur
area. Unlike the previous case, the fact that the referenceS2
always remains at the highest value (f2) means that there is
no constraint by the referenceS2 to restrict the largest slope
a physical structure can achieve@i.e., higher slope will favor-
ably yield lowerE in Eq. ~1! at the same time#. The value of
f2 that we used here is 0.5 and the system size is 1
3100 pixels. The generated structure shown in Fig. 13~b!
indeed indicates that the nearest feasible structure such
relation function can have is a structure consisting of o
large percolating cluster, which has the minimum speci
surface area possible.

F. Fontainebleau sandstone

Having obtained reasonably successful reconstruction
sults for theoretical model systems, we are in a position
explore the reconstruction of real random media. We w

FIG. 14. ~a! Reference system: a section of Fontainebleau sa
stone. System size52803280 pixels. White pixels are void phase
and black pixels are material phase.~b! Hybrid reconstruction of
Fontainebleau sandstone.~c! S2 andL for the reference and hybrid
reconstruction systems.
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57 505RECONSTRUCTING RANDOM MEDIA
reconstruct a tomographic image of a slice of Fontainebl
sandstone as obtained from the study of Coker, Torqu
and Dunsmuir@36#. The image is shown in Fig. 14~a!. The
size of the filtered image extracted is 2803280 pixels, where
one pixel equals 7.5mm. In this case, for efficiency pur
poses, the target phase to be reconstructed is the dis
nected void phase, represented as white pixels in the im
The reference correlation functions of the true sandstone
obtained by the sampling techniques described in Secs.
and II C, respectively, but modified to accommodate the n
periodic boundary conditions of the image.

We found that both the singleS2 reconstruction and the
singleL reconstruction did not capture the salient structu
features of the sandstone as satisfactorily as the hybrid
construction and hence we just report the latter result.
overall features of the hybrid reconstructed image@shown in
Fig. 14~b!# closely resembles the original sandstone ima
except that the void regions are typically more rounded
shape. Note that theS2 and L profiles of the reconstructe
medium match well the corresponding profiles of the tr
sandstone@see Fig. 14~c!#. Naturally, the minor differences
between the images should diminish if more correlat
functions are employed and sampling is performed in m
directions.

V. CONCLUSIONS

In this paper, we have presented a simple yet powe
procedure to reconstruct digitized random media from li
ited morphological information. The procedure is capable
reconstructing multidimensional, multiphase, and anisotro
structures. We applied the methodology to reconstruc
number of 1D and 2D model microstructures as well as a
sandstone image using the morphological information c
tained in the two-point correlation functionS2 alone, the
lineal-path functionL alone, and bothS2 andL. For the 1D
periodic models, the reconstructions were perfect. For
random cases, the reconstructions generally captured th
74
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lient features of the reference systems. However, e
though the reference and reconstructed correlation funct
matched well, the reconstructions deviated somewhat fr
the reference systems as measured by differences in o
correlation functions of the system. This nonuniqueness
expected since lower-order correlation functions generally
not contain complete morphological information. It will b
of interest to test the sensitivity of the macroscopic prop
ties of the systems.

We also used our algorithm to address another intrigu
inverse problem, namely, the construction of heterogene
media based on the specification of model or hypothet
statistical correlation functions@1#, including physically un-
realizable correlation functions. This question involves u
derstanding the general mathematical properties of realiz
correlation functions, which thus far has not been fully e
plored. Moreover, there are a family of structures that c
have the same correlation function and there may be m
structures within this family that possess similar effecti
properties. However, as noted by Torquato@1#, it is likely
that some structures within this family will have marked
different effective properties and it would be of interest
identify the outliers. Understanding this question of nonu
niqueness as it relates to the effective properties of heter
neous media will offer great insight into structure/prope
relations.

We are extending the procedure to reconstruct 3D iso
pic structures from 2D slices of the material and to mo
complex media, such as anisotropic structures. We will a
compare the macroscopic properties of the reference sys
to the corresponding properties of the reconstructed syste
Such work will be reported in future publications.
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