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Interaction-driven equilibrium and statistical laws in small systems: The cerium atom
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It is shown that statistical mechanics is applicable to isolated quantum systems with finite numbers of
particles, such as complex atoms, atomic clusters, or quantum dots in solids, where the residual two-body
interaction is sufficiently strong. This interaction mixes the unperturbed shell-rfiddetee-Fockbasis states
and produces chaotic many-body eigenstates. As a result, an interaction-induced statistical equilibrium emerges
in the system. This equilibrium is due to the off-diagonal matrix elements of the Hamiltonian. We show that it
can be described by means of temperature introduced through the canonical-type distribution. However, the
interaction between the particles can lead to prominent deviations of the equilibrium distribution of the occu-
pation numbers from the Fermi-Dirac shape. Besides that, the off-diagonal part of the Hamiltonian gives rise
to an increase of the effective temperature of the systatistical effect of the interactipnFor example, this
takes place in the cerium atom, which has four valence electrons and which is used in our work to compare the
theory with realistic numerical calculations$$1063-651X98)07804-Q

PACS numbdps): 05.30.Fk, 31.50tw

[. INTRODUCTION can be constructed from these orbitals by simply specifying
their occupation numbers. The spectrum of such states in a
Consider a many-body quantum system of interacting parsystem with several active particles is very dense since there
ticles. If the number of particles is large, statistical laws canare many ways of distributing them among the orbitals. For
be applied to describe the properties of the system. They cahe interacting particles these multiparticle states are not the
also be applied to few-particle systefts even single par- eigenstates of the system. Instead, they are mixed together by
ticles) interacting with a heat bath. In both cases the equilibthe residual two-body interaction. If this interaction is strong,
rium is achieved at arbitrarily weak interaction between thethe number of basis states “involved” in almost every eigen-
particles, or with the heat bath. If the interaction between thetate of the system becomes very latgbout 100 in atoms
particles is strong enough, a different kind of statistical equi-and up to 16 in nuclej, and the eigenstates become almost
librium is possible in isolated few-particle quantum systemsrandom(chaotig superpositions of the basis states, devoid of
It is achieved when the excited states of the system becomgny good quantum numbers, save the exact ones—energy,
chaoticcompoundstates. The systems examined so far arearity, total angular momentum, etc. Following the nuclear
the rare-earth atom of Cel] with just four active valence physics terminology we call such eigenstatesmpound
electrons, 12 nucleons in tieed shell[2], andn=4-7 par-  states Their statistical properties, e.g., distribution over the
ticles interacting by means of a two-body random interactiorunperturbed basis states, are very similar in different systems
[3,4]. In spite of the obvious differences these systems havetudied: atoms, nuclei, or a two-body random interaction
much in common, as far as properties of their eigenstates anélodel. Most importantly, they provide a good starting point
various statistics are concerned. It has been shoW@-4]  for developing a statistical theory for isolated few-particle
that in the regime of compound excited states one can introsystemg4].
duce such thermodynamic parameters as temperature and en-
tropy, and observe other typically statistical features, e.g., the
Fermi-Dirac distribution of the occupation numbers. Il. STATISTICS OF THE OCCUPATION NUMBERS
In the present work we concentrate on the statistics of the
occupation numbers in a realistic Fermi system: the atom of Statistical behavior is usually established in the limit of a
Ce. We show that when the interaction between the particlerge number of particles. Moreover, simple gquantitative
is strong and the two-body matrix element fluctuates stronglyesults can be obtained if correlations between the particles
as a function of the single-particle states involvé@nce, are somehow weak. This means that the interaction between
there is no good mean-field approximatiplarge deviations the particles can be neglected, or—more realistically—an ap-
from the Fermi-Dirac behavior are observed. However, a stapropriate mean-field theory is developed. The latter results in
tistical description of the system including the introductionthe picture of free quasiparticles moving in the effective self-
of a temperature is still possible if the interaction betweernconsistent field created by the constituents.
the particles is properly accounted for. In the limit of largen the temperatur@ is a well-defined
The notion of compound states is important for our work,physical quantity and all equilibrium characteristics can be
so we would like to explain it in greater detail. Suppose thafound by applying the canonicéBibbs probability distribu-
for a given range of excitation energies the interaction betion w;xexp(—E®/T), where E() is the energy of théth
tween the particles gives rise to a certain mean field. Thigigenstate of the system. For example, for a gas of noninter-
mean field can then be used to generate a set of singlecting fermions this results in the famous Fermi-Dirac distri-
particle orbitals. The multiparticle basis states of the systenbution (FDD) of the occupation numbers:
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_ 1 lll. THE Ce ATOM

n,= , 1 . .
¢ exd(e,~w)/T]+1 @ The cerium atom has one of the most complicated spectra

in the periodic table. The density of energy levels with a

wheres,, is the energy of a single-particle state andx ~ 9iven total angular momentum and pariy reaches hun-
=u(n,T) is the chemical potential. It is determined, at g dreds of levels per eV at excitation energies of just a few eV,

given temperature, from the normalization conditpn,, ‘{_Vﬁll below the ionization threshold df=5.539 eV[7,8].
=n. Formula(1), when it is valid, in fact provides one with 1€ Ce atom has four valence electrons, and a well-defined
4f6s°5d ground state. However, with the increase of the
excitation energy and involvement of yet another low-lying
electron orbital §, the atomic eigenstates become com-
the interacting fermions as well, provided we consider th ound. state$!n the sense of Sec),land it becomgs abso-
S L ’ . . utely impossible to choose any reasonable coupling scheme
distribution of(luasmarncles and replace,, with the quasi- or provide any classification for them. At the same time, the
particle energy ,, which in turn depends on the distribution rhjtal occupation numbers move away from integer values,
of excited quasiparticles. This is an important point of Lan-and even the idea of a dominant configuration for a particular
Strictly speaking, the FDD is derived for the grand ca- | the present work we continue to study the cerium atom
nonical ensemble, wheye is fixed, andn is the mean num-  nymerically, with emphasis on the energy dependence of the
ber of particleg6]. For largen the difference is negligible occupation numbers. The electronic structure of the Ce atom
unless fluctuations of the number of particles are concerneggnsists of a Xe-like 42. - -5p® core and four valence elec-
In the Appendix we consider the approximations one has tgrons. A large difference in the energy scales of the core and
make to arrive at the FDIDL) for a finite system of inter-  yalence electrons allows us to neglect excitations from the
acting particles obeying the canonical distribution. core and consider the wave function of the core as a
In reality there are many complex systems, such as com+acyum” state |0). Accordingly, the four active electrons
pound nuclei, rare-earth atoms, molecules, atomic clusterggded to this vacuum form the spectrum of Ce at excitation
or quantum dots, which do not satisfy the conditions for EQ-energiesEsl [9].
(1) to hold. However, their complexity suggests that some The calculations are performed using the Hartree-Fock-
statistical mt_athpds can be developed, and in_ngclear PhySiq§irac(HFD) and configuration interactiofCl) methods(see
such a statistical temperature-based description has bee) for detailg. A self-consistent HED calculation of the neu-
known for quite a while. Intuitively such a description is tra| atom results in the construction of the core and valence
very natural, and a more rigorous justification does not seemgypitals. It also determines the mean-field potential, which is
to have been needed. _ _ then used to calculate the basis set of single-particle or-
The number of active particles in these systems can bgyonormalized relativistic statese)=|nljj,) with energies

relatively small (10), whereas the interaction between .  This procedure defines the zeroth-order Hamiltonian of
them(even the residual interaction in the mean-field baisis  the system,

large, i.e., greater than the energy intervals between unper-
turbed many-particle basis states. This interaction makes up )
for the absence of a heat bath, and promotes the onset of AO=% ¢.ala,. 2)
“randomization” and quantum chaos. This chaos is purely ¢
dynamical, in the sense that the Hamiltonian matrix of the o )
system does not contain any random parameters, yet the be- Th€ unperturbed multiparticle basE stTaltb c?nstructed
havior can be complicated enougfchaotic”), and a num-  from the single-particle statesk)=a, a, a, a, |0), are
ber of properties, e.g., the energy level statistics, are consigigenstates ofl(®: A©|k)=E(?|k), where
tent with the predictions of random matrix theorigls-3].
This gives one a possibility to talk about some kind of equi-
librium in the system, and pursue the development of a sta- EQ=> g,n (3)
tistical theory for few-body Fermi systenp4]. “«

In what follows we will look at the results obtained nu- .
merically in a realistic model of the Ce atom which containsiS the zeroth-order energy of the stafk), and n{

a relation between the temperature and the en&rgy the

systemX asan_az E, which can also be viewed as a possible
definition of the temperature. Note that Ed) can hold for

only four active particlegvalence electrons We will see = (k|n,|k)=(k|ala,|k) are the occupation numbers equal
that the energy dependence of the occupation numbers dife 0 or 1, depending on whether the statds occupied in
fers prominently from what one expects from the FDD,  |k), or not. To subtract additional symmetries only the basis

and show that this behavior results from the strong fluctuastates|k) with a given projection of the total angular mo-
tions of the two-body Coulomb interaction for different or- mentumJ, and parity are considered.

bitals. We then show that this interaction can be taken into  The total Hamiltoniarkl of the active electrons is the sum
account within the statistical approach to calculation of the ) N
occupation numbers and other mean values, leading to %{f:jhe zergth—lc)rder mean-field Hamiltonia®) and the two-
good agreement between the results of statisticaltheory ody residual interaction

and the numerical calculations. Such agreement confirms the

existence of equilibrium similar to the thermal one in the V= E

V, a'ata.a,. (4)
system of a few strongly interacting particles. Za/aEya Byo%aCpy=e
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x10° — I=4! x10* :, b FIG. 1. Eigenvalue densities for the
. L oo 35 even states of Ce averaged over the en-
i o, - jfg: ergy intervalAE=0.05 a.u.(a) The up-
. J,f Y — per solid curve is fod=4, and lower
; 2.5 / curves correspond to successively in-
2 = creasing values of. Note that all den-
< N sities have similar shapes. Dotted curve
1.5 is the analytical fit forJ=4: p(E)
= poexda(E—Ey)™?], where p,=27,
a=12.3 a.u.,, andEy=-2.91 a.u.(b)
05 Total level density of the even states
=S s and fit with po=119,a=13.0 a.u., and
-2.1 -2.9 —-2.7 -2.5 -2.3 -2.1 _
E (a.u.) Eg=—2.91 a.u.
The residual interactiolv contributes to the diagonal and p(E)xexpayE—Ey), (8

off-diagonal matrix elements between the multiparticle states
|k). Its diagonal part shifts the energy of the basis skate  which is derived in the independent-particle mofd] (E,
is the ground-state energyAs seen from Fig. 1 the level
(K density from our calculation indeed follows E) at low
AE=Vi= gﬁ (Vaﬁﬁa_vaﬁaﬁ)ngz)”(ﬁ)' 5 energies, but then reaches its maximum and decr¢adégs
These latter features are unphysical as they are consequences
The off-diagonal matrix elementvk,k=(k’|\7|k> are re- Of the finite size of our basjs. However, within 5 eV of the
sponsible for mixing of the multiparticle basis states. ground state the configuration set we use is reasonably com-

. o N A A plete.
Complete diagonalization of the operatdr=H4+V in I . . '
the s a(F:)e of thegbasis statés yields “e[;act” enerd 0 Relativistic atomic subshelislj are (2 +1) degenerate,
and ftationary statd#) [20] y 9 therefore we consider average occupation numbers

Hliy=ED]i), (6) Ne=0s > N,=gs > ala,, 9)

aEeS aES

which can be presented as superpositions of the unperturbed
basis states P perp P whereg,=2j+1 is the degeneracy of the subshellin the

system of a large number of weakly interacting particles
thermally averaged values of are given by the FD1). In

liy=> cllk), X [CdP=1. (7)  the quantum dynamical system, like the Ce atom, the occu-
. K pation numbers for any eigenstate can be obtainedg%\s
In this work we included 14 relativistic subshetisj in ~ =(i|ns/i). When the number of active particles is smf?

the single-particle basiés, 7s, 6p, 7p, 5d, 6d, 4f, and show_strong level-to-level fluctuations, and it is more in-
5f), and performed exact diagonalization of tiNx N structive to look at the spectrally averaged values
Hamiltonian matrix in a Hilbert space witN~8x 10°, ob-
tamepl by truncating the comple_te set of the shell_-model ns(E):<i|ﬁs|i>:E |C(k|)|2<k|ﬁs|k>1 (10)
atomic configurations. Our numerical results are obtained for K
the even states of Ce with the total angular momentum pro-
jection set taJ,=0. Thereby, all possible states wilhfrom  where the overbar means averaging over the eigenstates
0 to 10 are included. For the given choice of the basis thavithin some energy interval arourtel
numbers of eigenstates with=0-10 are 343, 917, 1354, A typical distribution of the occupation numbers calcu-
1493, 1433, 1153, 826, 497, 262, 107, and 34, respectiveljated at the excitation energy of 4.5 eV above the atomic
The eigenvalue densitigs;(E) for J=4-8 are shown in ground state is shown in Fig. 2 as a function of the single-
Fig. 1. They have been window averaged a&&=0.05 a.u.  particle energy of the orbitals(see Table)l The values of
to smooth out short-range fluctuations. The largest density iss are determined with respect to the Xe-like*Ceore. One
observed forJ=4, and with the exception of small regions can see that the distribution does not look at all like a mono-
near the ends of the spectra, alj(E) are proportional to tonically decreasing FDD. A similar picture is observed over
each other. The shapes of the eigenvalue densities are batie whole energy interval from the ground state to the ion-
cally determined by the corresponding basis-state densitiggation potential. For example, the lowest even state of Ce
(although the effect of level repulsion makes the formerhas a configuration of #6s?, while the FDD would tell us
slightly widern. They are characterized by a very rapid in- that all four electrons must be placed in the lowesb4bital,
crease in the low-energy part. This increase is a direct conwhen the energy or “temperature” of the system is low. In
sequence of the fact that the accessible energy can be distriteality the 4 electron configuration lies at very high ener-
uted in an ever greater number of ways between the fougies due to a strong electron repulsion in this compact orbital
electrons. Being essentially of combinatorial nature, the leve{the radius of the # orbital in Ce is at least two times
density can be described by the exponent smaller than that of any other valence orbital




4936 FLAMBAUM, GRIBAKINA, GRIBAKIN, AND PONOMAREV 57

ol6f T T T g T T T T T T T T depend on the distribution of the other electrons, and hence
| a | on the excitation energy of the system. In Sec. V we intro-
I duce such energies within the statistical approach. However,
0.12 . even when the occupation numbers are plotted agaigst

there is still a large deviation from the standard FDD.

. At first sight such a strong deviation from the FDD in a

= 0.08 . strongly interacting Fermi system speaks against any possi-

bility of a statistical description of the system. In what fol-

lows we show that the strong Coulomb interaction between

0.04 Hil 47 5d 65| 6p - the electrons can be incorporated in the canonical-ensemble

1 description of the system, and thermally averaged occupation
75 H7p ﬂ5f _number_s can ba_s(T_) dgrived. As a_result of the electron

0.916 L _1'4 L _1'2 L _1'0 L -olx _0'6 . _0'4 . o0 . 00 mteracpon, the.d|str|but|on oms.(T) differs from the FDD.

' ' Single-particle energy (a.u.) ' ’ What is more important, we find good agreement between
the results obtained by means of this statistical approach and
those from the pure dynamic calculation of the Ce eigen-
statesng(T)~ng(E). We also find a way to relate the energy
and the temperature.

0.16 - ]

/ 7 IV. CANONICAL ENSEMBLE AND THE STRENGTH

0.12 F ¥~ R FUNCTION

___________ Y i In this section we show that averaging over gdamonical
- Y distribution, which weighs different states according to their
\ energies, with probabilitiesw,«exp(—E,/T), is very simi-

w lar to averaging over the exact eigenstdfties when these
6Py N\ eigenstates areompoundi.e., include large numbers, of

ﬂ s basis stategk) mixed together with small weight€{)

< 0.08 |

0.04

~1/JN,, Eq. (7). For a classical system the latter is equiva-

lent to averaging over thenicrocanonical distributiorthat

09 08 07 06 05 04 03 02 01 00 considers all points on the surfaée=const of the phase
Quasiparticle energy (a.u.) space as equally probaljle2]. As is known, the two types of

averaging yield identical results for large syste@p

0.0

FIG. 2. Occupation numbers(E) [see Eq.(10)], for the even
states of Ce at the excitation energyf E;=4.5 eV versus the
single-particle energies; of the orbitals(a), and quasiparticle en-
ergiese ¢ (b). Diamonds connected by the dashed line represent the
result of our statistical calculation with=0.097 a.u. Suppose first that the off-diagonal part of the residual

two-body interactionV is switched off. The multiparticle ba-

Of course, considering the orbital energies has the sis stategk) then correspond to the stationary states of the
drawback that they completely ignore the residual interactiorsystem with energie, = Eﬁ°)+ AE, . The interaction with a
between the valence electrons. When this interaction itieat bath at temperatufle results in the canonical distribu-
strong one would wish to introduce some new mean-fieldion of probabilities of finding the system in a given stte
orbital energies s that would incorporate the effect of such W,=Z"'exp(~E,/T), where Z=3exp(-E,/T), so that

interaction. The value of  for the orbitals will inevitably Ekl""::dl- The occupation numbers at temperaflrare cal-
culated as

A. Averaging over the canonical distribution
at a given temperature

TABLE I. Single-particle energies and Coulomb matrix ele- R R
ments(in atomic unit$ for the valence and lowest excited orbitals  ng(T)= >, Wi(k|ngk)=Z"1>, exp(—E,/T)(k|ngk).
K K

in Ce.
(11

Orbital &4 Coulomb matrix elementssy(a.u.)

nl] (@u) A4fg, 4fy, 6y, Ady, 4ds, 6p1s 6Py The spectrum oE, is similar to the eigenvalue spectra

shown in Fig. 1, and is characterized by a rapid rise of its
4fg, —1.564 0.791 0.800 0.260 0.423 0.422 0.223 0.216density[see Eq.(8)]. Thus, if we replace summation in Eq.

4f,, —1.551 0.800 0.787 0.259 0.428 0.416 0.223 0.215(11) by integration oveiE,,

6s;, —0.876 0.260 0.259 0.199 0.231 0.230 0.162 0.158

4d;, —1.156 0.423 0.428 0.231 0.330 0.331 0.200 0.198 _ ~

4dg, —1.141 0.422 0.416 0.230 0.331 0.325 0.204 0.195 nS(T)_fWT(E")<k|nS|k>dE"’
6py, —0.714 0.223 0.223 0.162 0.200 0.204 0.169 0.157

6ps, —0.691 0.216 0.215 0.158 0.198 0.195 0.157 0.156Where we introduced the probability density(Ey)
=Z texp(—E/Mp(Ey), the integrand in Eq(12) will peak

(12
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strongly due to competition between the two exponents, théasis states participating in a given eigenstate is lakge,
decreasing exp{E,/T) and the risingp(E,). As a result, the ~T'/D>1, or vice versa, a given basis st&teontributes to
main contribution tong(T) is given by the vicinity of the a large number of nearby eigenstates with enerffiesE,|

maximum ofwr(E,). The equation for the position of the _ Apart from the smooth variation ¢€{|2 the statistics

maximumE, = E provides a relation between the most prob- of the eigenstate componelﬁﬁ) is close to Gaussiaf]. In
able energyE and the temperature, this situation it is appropriate to call the stationary states of
1 d{n[p(E)]} the systenthaoticor compoundeigenstates.
+ = (13 Using Eg.(16) we can rewrite expressiofl0) for the
occupation numbers in the integral form

T dE
If the temperature is not too small the maximumvef(E,)

is almost symmetric, and the most probable energy becomes |, (E)= | |CV|2(K|A |k>P(Ek)dEk%f pulEK)
close to the mean energy: s k s wlE,

_ X(k|ng|K)dEy, (18)
E~E(T)=f EW(E)dEy. (14)
_ . where we used the fact thatE,) ~ p(E) near the maximum
If we use the analytical fornt8), Eq. (13) yields of p,,(E,k). The above representation is very similar to Eq.
) (12 for ny(T). Equation(18) describes averaging over the
T=2E—-E. 15 compound state strength functipr,(E,k) of width I cen-
a 9 (19 tered at energ¥e, whereas Eq(12) refers to a thermal aver-

age with thew(E,) probability density, which peaks near
B. Strength function and averaging over the compound states ~ E(T). Of course, the width osf/zthe distributiow(E,) de-
Let us now come back to the dynamic description of the!Dends on the temperatijre-aT= for Eqs.(8)_and(15)], but

isolated many-body quantum system and switch on the offll We choose the temperature by settifig- E(T), the two
diagonal part of the residual interaction. In this case theélveragesns(E) and ny(T) should be close to each other,
eigenstates are given by E@) and the occupation numbers Provided the widths ofp,(E.,k) and w(E,) are much

at a given energy are found from Ed.0). The key quantity ~9reater than the mult|part|cle level spacing, and the dnffer—
in calculatingng(E) is the mean-squared eigenstate compoence between these widths does not exceed the single-

012 - D particle energy interval in the systef].
nent|C{’|%. WhenV is strong enough and the energ} is In the next section we calculate thermally averaged occu-

not too close to the ground statéC{’|? represents the pation numbers and establish a relation between the effective

spreading of the eigenstate over a large number of bastmperatureT and the excitation energy for the Ce atom.

states. It is proportional to the strength functigmroduced  Numerical calculations will confirm that a temperature-based

by Wigner [13] and also known as the local density of statistical theory agrees with the dynamic calculation, and

states, describes well the peculiar behavior of the occupation num-
bers in Ce.

pu(E.K) =2 |C|28(E—EM)=|C{|?p(E), (16)
! V. CALCULATION OF THERMALLY AVERAGED

where p(E) is the eigenvalue density. The last equality in OCCUPATION NUMBERS
Eqg. (16) implies that some averaging over the the energy A. Statistical model
interval greater than the level spacing has been performed at

EM~E. It follows from numerical calculation§l,2,4 as
well as from analytical consideration§10,13,14 that
pw(E,K) is a bell-shaped function centeredEed=E,. Near
its maximum it depends only on the differenge- E,, and
can be described by the Breit-Wigner formula

Let us now perform a statistical calculation of the occu-
pation numbers for a system ofparticles distributed over
orbitals with energiess and degeneraciegs(s=1,...r).
We will assume that the two-body interaction of any two
particles in the orbitals andp is Ug,, where both the direct
and exchange terms are included:

K=
T n U

2 E (Vaﬁﬁa_vaﬁaﬁ)' (19)

P gs(gp_ 5sp)aes Bep

The spreading width I is wusually given by T’ . . .
—— i Thus Uy, is averaged over the degenerate single-particle
=27|(k’|V|k)|*p(E). Therefore the basis states are stronglygtates within the orbitals and P.

mixed together by the residual interaction only locally, 1he energy of a particular many-particle stités now
within the energy rangé&'. given by
The notions of the strength function and the spreading
width become meaningful if the interaction is strong enough, ; AN |
andI'>D, whereD = 1/p(E) is the mean level spacingc- — 6,
p(E) pacin@g Ekzgless_i_E 2 sW¥p~ %)

—_— , 20
cordingly, |[(k'|V|k)[?>D?). This means that the number of Sip=s 1+ P 0
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FIG. 3. Temperature dependence of the occupation numbers for the oghitg($) (a), energy of the systeia(T) (b), and quasiparticle
energiess ¢ (c), calculated in the statistical model of the Ce atom, E86)—(24). The occupation numbers shown for thg, &d, and &
subshells are sums of those of their fine-structure sublgwels: % The quasiparticle energies of the orbitals are listecjrin the same
order as they appear on the graph.

where A is an integer number of particles in the orbital is the canonical average. However, one can include the off-
s(0sN;=g,), and= N;=n. The statek is specified by the diagonal part of the Hamiltonian in the definition of tempera-
orbital occupation numbetd’; and isG, degenerate, where ture by introducing the energy shifig(T),

szﬂgzl(?;s). Of course, Eq(20) corresponds to the “di-

agonal”’ approximation E,~H,,), since we neglect the ef- E=E(T)—Ag(T). (25
fect of mixing of states due to the residual interact{off-
diagonal part of the Hamiltonianin the low-energy part of Ag(T) is positive in the lower half of the spectrum, which
the spectrum this interaction pushes the eigenstates downeans that the statistical effects of interaction between par-
with respect to their diagonal-approximation values becaustcles increase the effective temperature. At high tempera-
of the usual level-repulsion effect. tures Ag(T)=2(H;; —E®), where H;—E® is the simple

In this model we cannot keep hold of the total angularenergy shift due to the nondiagonal matrix elements of the
momentum, so our calculation will yield quantities averagedHamiltonianH;, . This estimate is based on the mean energy
over \_/a_rious a_mgular momenthand projections]z_. How- _of the components|k) in the eigenstate|i): (Ey);
ever, itis relatively easy to ensure the conservation of parity=ys, H,,|C|2=EM + A (see[4]).
If the orbitals has a parity o (either 1 or—1), the parity In general, the occupation numbers obtained from Eq.
of the multiparticle staté is IIg_,P_ . Therefore one can (23) will be different from those predicted by the Fermi-
easily select multiparticle states with a given parity whenDirac distribution(see Sec. V B In the Appendix we look at

calculating statistical sums like that of E@.1). how the FDD(1) is derived from the canonical statistical
In the canonical ensemble the probability of finding thedistribution, Eq.(23), and see what are the limitations on the
system in the statk is given by interaction between the particles for the derivation to be
valid.
wW,=Z"1Gexp(—E,/T), (21)
where B. Numerical calculations

To perform numerical calculations of the occupation
Z=, Gexp(—E./T), (220 numbers for Ce in the statistical model outlined above we
k use the same set of 14 relativistic orbitals as in the CI calcu-

) ) ) lation described in Sec. Ill. The orbital energies are obtained
and the sum ovek runs over all multiparticle states, possibly ases=(s|H|s), whereH, is the frozen Dirac-Fock Hamil-

with a restriction on parity. The average occupation NUMberg;nian of the C&" core. and the averaged Coulomb matrix

ng(T)=Ny/gs are calculated as elementsU, are found from Eq(19). Their numerical val-
ues for the seven lowest orbital§, 4f;5, 6S1/o, 5d3p,
ns(T)=g§lZ /\/(sk)Wk, (23 5d5,2,.6p1,2, and 63_3,2 are .given in Table I. For Qxcitation
K energies below the ionization threshold these orbitals are the

o _ _ o most important.
where V{ is the number of particles in the orbitalin the Using the statistical model formulas we have calculated
multiparticle statek. In the diagonal approximation the en- the occupation numbensy(T), Eqg. (23), and the energy of
ergy of the system is related to the temperatureEas the system, Eq(24), as functions ofT [see Figs. @) and
=E(T), where 3(b)]. The relation between the energy of the system and
temperatureE=E(T)—Ag(T) can be inverted and used to
E(T)= 2 E W, (24) plot the depe.ndence of the statistica}l model occupation num-
K bers as functions of the energy In this work we are mostly
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18 1.8 — 5dy
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ozt k 0.2 0.2
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FIG. 4. Comparison of the orbital occupancigsns(E) obtained from the exact diagonalizatigeolid and dash-dot lingswith

gsns(T(E)) obtained from our statistical theofglotted lineg. Note thaing(E) have been window averaged oveE=0.05 a.u. For the €/,
orbital the solid gray line connects unaveraged occupation numbers for the eigenstatés ith

interested in the low-energy part of the spectrum, and we setome kind of equilibrium in the systefimicrocanonical”
Ag(T)=const to fit the true ground-state energy of the sysdistributior). Moreover, averaging over it yields results close
tem atT=0. In Fig. 4 we compare the results of the statis-to those over a canonical ensemi®), with the tempera-
tical model with the energy-averaged occupation numberture chosen to reproduce the total energy of the system. This
obtained from the CI calculation of the Ce eigenvalues anetquivalence is always true for a large system where any al-
eigenstates, Eq$6) and (10). We see that the complicated beit weak interaction between particles leads to equilibrium.
non-Fermi-Dirac energy dependence of the occupation nunmHowever, in afew-particlesystem the residual two-body in-
bers in Ce is reproduced well by the statistical model. teraction must bestrong enougho produce chaotic eigen-
For one of the orbitals unaveraged occupation numberstates and facilitate statistical descriptisee[15—17 where
are shown in Fig. 4. For a chaotic eigenstate with athut criteria for the interaction strength are discugsed
principal components the fluctuations of various quantities The simple criterion for the onset of “chaos” follows
are expected to be-N_ Y2, If the average occupation num- from the perturbation theory:

berng is smaller than unity, the orbital is populated only in

n. [1y2
aboutngN,. of the basis states involved, and the relative fluc- _ v o p Hik
tuation of the occupation number can be estimatedras D,(E) D(E)

~1/\ngN,. For Ce whereN.~ 100 this estimate is in agree- . .
ment V\Zthcthe size of fluctucations seen for theg S orbital in whereD(E) = D.(E)/S IS th_e mean energy spacing between
Fig. 4. many-body basis states directly coupled by a nonzero off-
To study the effect of the off-diagonal matrix elements of
the Hamiltonian on the temperature we calculate the canoni '
cally averaged mean energy of the syst@#) using the set !
of the basis-state energids.=H,, and that of the exact 0.035 1 ‘l
eigenstate€ (). The difference between these two mean en- !
ergies is plotted in Fig. 5. It is almost constant at small 0031 |1
t
\

temperatures and follows

~ 0025}
SeHE S
Ag(T)= - (26) & ool
$N0015 - \
at largeT (see[4]). . \

Note that the energy shiftg(T) is larger than the simple
difference between the diagonal matrix elements and exac  0.01|
eigenvaluesH;; —E(. This is because the true occupation
numbers(10) even in the exact ground state are not integer  0.005 |
(see Fig. 4 due to the admixture of higher configurations.
This means that the effective temperature of the ground stat

0.0 e
is already not zergsee discussion |[14]) 00 01 02 03 04 T?.S ) 06 07 08 09 1.0
au.
V1. DISCUSSION AND CONCLUSIONS FIG. 5. Difference between the mean values of the energy ob-

) o tained from the canonical distribution using the energies of the basis
Most importantly, the agreement observed in Fig. 4 meanstates E,=H,,, and those of the exact eigenstates. The dash-dot
that the interaction between the particles indeed introducelne is the high-temperature analytical approximati@).
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diagonal matrix elemenyY is the root-mean-squared nonzero agree well with the Fermi-Dirac formula, because the statis-
off-diagonal matrix element, an8<1 is the sparsity of the tical equilibrium needed was not achieved.
Hamiltonian matrix defined as a fraction of nonzero off- The situation in the Ce atom is different. Thé drbital
diagonal matrix ebmentgﬂ_ﬁ(zsvz_ The Hamiltonian ma- has a mu.ch smgller radius thgn any other orbital, and the
trix is sparse because the residual Coulomb interaction bé=0ulomb interactions have a hierarchy of scales:
tween the valence electrons is a two-body one, hence for
more than two excited electrons not all many-body basis
states can be coupled in the lowest first order. Uarar=Uass™>Usp, (28)

In our numerical modelkr becomes greater than unity at
E—-E4>0.07 a.u, i.e., above 2 eV from the ground state. ,
This energy is of the order of energy spacing between thiheres and p are orbitals other thanf4 Indeed, the Cou-

single-electron orbitals in Ce. Note that the estimates fronjomb interaction between the electrons is determined mostly

[15-17 can hardly be applied to our model. The point is thatPy the mean radius of the largest orbital. Thus, for the two
rbitalss andp such that ;<r,, the Coulomb interaction is

in our system there are additional degrees of freedom anfl > s s ;
symmetries(angular momentum, its projection and paxjty Ulsp~e /I’p'(thIS formula is exact for the two electrons dIS-“
while [15-17 in fact considered a system without any sym- tributed uniformly over the surface_s of tW(_) spheres_ of radii
metries(an effective one-dimensional systems a result, s @ndrp). Because of Eq(28) the interaction term in Eq.

the single-particle levels are multiply degenerate. An addi{20 fluctuates strongly with the change of the occupation
tional chaotization of the many-body state basis takes placBUmber of the 4 orbital, and in effect there is no good
when complex linear combinations of the Slater determinant§'€an-field approximation for the excitation spectrum of Ce.
are constructed to form basis states with definite angular moFhe quasiparticle orbital energies; can still be obtained in
mentum values. As noted [2], this procedure involves ran- the statistical model for Ce by means of £410). They are
domlike Clebsch-Gordan coefficients. On the other handplotted in Fig. 3c) and show considerable variation with
comparison with estimates near the Fermi surfpb@ is  temperature. However, even when we use these energies in-
difficult due to the fact that the very concept of the Fermistead of the Hartree-Fock ones for plotting the occupation
energy is ill defined for such a small system with strongnumbers, the resemblance to the true FDD is only marginally
interaction(see Fig. 2 better than that in Fig. 2.

We would like to reiterate now, that although the The absence of reasonably defined quasiparticle orbitals
temperature-based description is applicable to our foyrand the ensuing distortion of the Fermi-Dirac distribution are
particle system, the orbital occupancies could not be def€atures outside the usual Migdal theory of normal finite
scribed by the FDOFig. 2). The FDD is inapplicable to our Fermi systemsTFFS [18]. Its breakdown in the Ce atom
system because of the strong interaction between the pa?an be associated \‘I‘\llth the open-shell structure of the atom
ticles[second term on the right-hand side of E20)]. How-  (nearly degenerate “ground stateénd a clear lack of sym-
ever, the deviation from the FDD is determined not by theMery of the ground state with one removed particle. As a
magnitude ol,,, but rather by the size of their fluctuations. result, single-particle excnauons.above the ground state do
To see this assume for a moment that all two-body matri1°t €arry good quantum numbelige the momentum in an
elements are the sameg,=U. In this case the double sum Infinite Fermi system, or the angular momentum in a spheri-
in Eq. (20) just shifts all energies byl{/2)n(n—1), and the cglly symmetric f|n|te_systeirn Moreover,_ even at low ener-
statistical properties of the system are the same as for noftes (few e\() the _smgle-_partlcle excitations hav_e large
interacting particles. IfJ;, are different for different orbital ¥.V'dths. associated W|th.the|r 'decay into multiply excited con-

. . . — igurations (the spreading widtH"~2 eV [1]), largely be-
pairssp one can siill iniroduce some average interaciibn cause such decay is not really limited by any selection rules

a_md Sme.iCt this “background” interaction .from the interac- (only the trivial total angular momentum and parity are con-
tion term in Eq.(20). This procedure effectively suppresses served

the interaction term, since the summands in expressions like It has been proposed {#] that for finite Fermi systems

Zs<p(Usp—U)N, have different signs. Note that the intro- sjmilar to the Ce atom, characterized by the dense spectra of
duction of (energy-dependentU is equivalent to a local chaotic multiparticle eigenstates, a statistical theory alterna-
mean-field approximatiofsee also the AppendixThis ap- tive to the standard TFFS can be developed based on the
proximation is good if the fluctuations &fs, from one or-  properties of these eigenstates. Most importantly, the exis-
bital to another are relatively small. tence of the chaotic eigenstates and the equilibrium this in-
An instructive example was provided {13,4]. In these troduces in the system is ensured by the sufficiently strong
works a model of random two-body interactions was ex-interaction between particles.
plored numerically and a good Fermi-Dirac-like behavior of This concept of the interaction-driven equilibrium is sup-
the occupation numbers was observed for as few as foyported by our present results. We have shown that this equi-
particles distributed among 11 orbitals. However, this regimdibrium can be described in terms of usual statistical param-
was achieved for the relatively small two-body matrix ele-eters, such as the temperature, even though some of the
ments with mean zero and rm~0.1d;, whered; is the  system’s properties are very different from those usually ex-
mean level spacing between the single-particle orbitals. Opected in Fermi systems. For example, the statistics of the
the other hand, for smaller two-body interaction strengths th@ccupation numbers cannot be described by the Fermi-Dirac
occupation number distribution was not smooth, and did noformula.
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if we introduce the chemical potential by

APPENDIX: DISTRIBUTION OF OCCUPATION ,
NUMBERS FOR A CANONICAL ENSEMBLE OF FINITE Z({e},.n,T)

SYSTEMS OF INTERACTING FERMIONS Z({e), n—1T) exp— u/T). (AS)

Consider a quantum system which consists of a number of ] ) ) o
single-particle discrete states(we will also call them orbit-  The problem is that this ratio on the left-hand side in fact
als herg with energiese (a=1, ... m) filed with n<m  depends on which orbitak is deleted from the sefs} to
Fermi particles. The multiparticle statksof the system are form {e};, and so does the “chemical potentiafi. If we
identified by specifying the occupation numbers=0 or 1 write Eq.(A4) for ngz with 8+ a, the sef s} ; will produce a
of the orbitale, 2 ,n,=n. The total number of multiparticle different ratio Z({s}’ﬁ,n,T)/Z({s}b,n—l,T), and as a re-
statesN=(y') is quite large, even for moderate andn. If ~ sult, a different value ofi. However {}, can be obtained
we allow for the interaction between the particles, the energyrom {g}(’l by simply moving the orbital energy fromﬁ to
of the statek is given by &,. So, the difference between the valuesuofor different
orbitals can be probed by calculating the derivative of Eq.
(A5) with respect to the energy of some orbifalUsing the
relationng=—TdZ/de g, valid for noninteracting particles
[see Eqs(Al) and(A2)], we obtain
whereU ,z includes both the direct and exchange interaction
between the particles ia and 8, andU,,=0. i _

Of course, the statds are not eigenstates of the system. E:@n)_@n o (A6)
However, if the interaction between the particles is not too
strong, we can use th.e.r.n for av§{aging over the Canonic%hereﬁ(“) andn®"~ Y are the mean occupation numbers for
ensemble with probabilities =2 “exp(~E(/T), wherez andn[il artiléles distributed among tHe}’, orbital set
=2, exp(—E/T) is the partition function, and the sum runs , . P . ong a '
over all N multiparticle state$19]. It will be convenient to It is obvious that the right-hand side of EGA6) is larger

show explicitly that the partition function depends on thene.ar'the Fermi Ievelgﬁ—msT, and is almost zero outside
energies of the orbitals en={s}, number of par this interval. We can estimate that the total difference be-
1r = = =M™ 5 -

ticles n, and temperaturd: Z=Z({s},n.T) (and, strictly tween the value ofx for orbitals well below the Fermi level

speaking, on the interactions, s, if they are not zerp and those well above it is
Using the canonical probabilities we can express the mean

1
Ekzg e Nyt EQEB UapNaNg, (A1)

i _ ., de
occupancy of the orbitak as 5'“:J (n<ﬁn>_ﬁ§3n 1))d83=d1j (nfgm_ﬁl(gn 1>)d_lﬁ
2 niexp —Ei/T) ~dy[n—(n-1)]=d, (A7)
o (K, —
n“_zk Mo Wic= (A2) where d; is the mean spacing between the single-particle

EK exp(—Ey/T) orbitals. Thus in a system with discrete orbital energies the
chemical potential can be considered as constant to within
~d; accuracy. At finite temperatures the width of the

> exp(—E/T) smoothened Fermi-Dirac “step” is of the order ®f there-
k(a) fore w=const is valid forT>d; (or for u>d;). Note that
- ' this condition means that the number of orbitals within the
> exp(—E/T)+ 2 exp—E/T) Fermi-Dirac “step” is large.
k(a) k(a) (A3) For the interacting particles the suiy, exp(—E/T)
which gives rise to exp(,/T) in Eqg. (A4) can be written as
wheren®=1 or 0, depending on whether is occupied or 1
empty in the staté, and we split the sum ovek into two > exp—E /T)=>, ex;{ - _( > €4Ng
sums over the statdg a) wherea is occupied, ank(«), k(e) k(e) T\ 47a
where it is empty. 1
Let us first consider the case of noninteracting particles + > E Uﬂynﬁny)
(U,z=0). Itis easy to see that the first sum is then equal to Biy#a
Z({e},,n—1T)exp(-¢,/T) and the second one is 1
Z({e}.,,n,T), where{e}. is the set ofm—1 orbitals ob- XGXF{—? 8a+[§a Uaﬁ”B) :

tained by discardingr from {¢}. The equation can then be
written as (A8)
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In this formula the last exponent contains the energy of theynd the mean values; are, strictly speaking, different from

particle in @, which depends on the occupancigs of the
other orbitals. When summation ovef«) is carried out the
exponent is averaged over different distributionsnof 1
particles among all orbitals but. The result can be pre-
sented approximately as

Z({&},,n—1T)exp —&,/T), (A9)

those from Eq(A2), as one particle has always been kept in
a in the sum(A8). Therefore the “Fermi-Dirac” ansat®4)
holds for the interacting particles, if we replace the single-
particle energies, with the temperature-dependent quasi-
particle energieg , from Eq. (A10).

Note that the transformation of E¢A8) into Egs.(A9),
(A10) is exact up to first order img, and to all orders, if
U,s=U for all orbitals. In the latter case ,=¢&,+(n

where we replaced the averaged exponent by the exponentl)U is a trivial redefinition of the single-particle energies.

containing thequasiparticleenergy,

o=t 2 Uugng, (A10)

B#a

That is why replacing:, with the quasiparticle energies,
is a valid operation, unless the interactiods, fluctuate
strongly, and the number of active particles is small. In the
latter case the mean-field approximation is inadequate and
the introduction of quasiparticles is not very meaningful.
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