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Interaction-driven equilibrium and statistical laws in small systems: The cerium atom

V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and I. V. Ponomarev
School of Physics, The University of New South Wales, Sydney 2052, Australia

~Received 21 November 1997!

It is shown that statistical mechanics is applicable to isolated quantum systems with finite numbers of
particles, such as complex atoms, atomic clusters, or quantum dots in solids, where the residual two-body
interaction is sufficiently strong. This interaction mixes the unperturbed shell-model~Hartree-Fock! basis states
and produces chaotic many-body eigenstates. As a result, an interaction-induced statistical equilibrium emerges
in the system. This equilibrium is due to the off-diagonal matrix elements of the Hamiltonian. We show that it
can be described by means of temperature introduced through the canonical-type distribution. However, the
interaction between the particles can lead to prominent deviations of the equilibrium distribution of the occu-
pation numbers from the Fermi-Dirac shape. Besides that, the off-diagonal part of the Hamiltonian gives rise
to an increase of the effective temperature of the system~statistical effect of the interaction!. For example, this
takes place in the cerium atom, which has four valence electrons and which is used in our work to compare the
theory with realistic numerical calculations.@S1063-651X~98!07804-0#

PACS number~s!: 05.30.Fk, 31.50.1w
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I. INTRODUCTION

Consider a many-body quantum system of interacting p
ticles. If the number of particles is large, statistical laws c
be applied to describe the properties of the system. They
also be applied to few-particle systems~or even single par-
ticles! interacting with a heat bath. In both cases the equi
rium is achieved at arbitrarily weak interaction between
particles, or with the heat bath. If the interaction between
particles is strong enough, a different kind of statistical eq
librium is possible in isolated few-particle quantum system
It is achieved when the excited states of the system bec
chaoticcompoundstates. The systems examined so far
the rare-earth atom of Ce@1# with just four active valence
electrons, 12 nucleons in thes-d shell @2#, andn54 –7 par-
ticles interacting by means of a two-body random interact
@3,4#. In spite of the obvious differences these systems h
much in common, as far as properties of their eigenstates
various statistics are concerned. It has been shown in@2–4#
that in the regime of compound excited states one can in
duce such thermodynamic parameters as temperature an
tropy, and observe other typically statistical features, e.g.,
Fermi-Dirac distribution of the occupation numbers.

In the present work we concentrate on the statistics of
occupation numbers in a realistic Fermi system: the atom
Ce. We show that when the interaction between the parti
is strong and the two-body matrix element fluctuates stron
as a function of the single-particle states involved~hence,
there is no good mean-field approximation!, large deviations
from the Fermi-Dirac behavior are observed. However, a
tistical description of the system including the introducti
of a temperature is still possible if the interaction betwe
the particles is properly accounted for.

The notion of compound states is important for our wo
so we would like to explain it in greater detail. Suppose t
for a given range of excitation energies the interaction
tween the particles gives rise to a certain mean field. T
mean field can then be used to generate a set of sin
particle orbitals. The multiparticle basis states of the sys
571063-651X/98/57~5!/4933~10!/$15.00
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can be constructed from these orbitals by simply specify
their occupation numbers. The spectrum of such states
system with several active particles is very dense since th
are many ways of distributing them among the orbitals. F
the interacting particles these multiparticle states are not
eigenstates of the system. Instead, they are mixed togethe
the residual two-body interaction. If this interaction is stron
the number of basis states ‘‘involved’’ in almost every eige
state of the system becomes very large~about 100 in atoms
and up to 106 in nuclei!, and the eigenstates become almo
random~chaotic! superpositions of the basis states, devoid
any good quantum numbers, save the exact ones—ene
parity, total angular momentum, etc. Following the nucle
physics terminology we call such eigenstatescompound
states. Their statistical properties, e.g., distribution over t
unperturbed basis states, are very similar in different syst
studied: atoms, nuclei, or a two-body random interact
model. Most importantly, they provide a good starting po
for developing a statistical theory for isolated few-partic
systems@4#.

II. STATISTICS OF THE OCCUPATION NUMBERS

Statistical behavior is usually established in the limit o
large number of particlesn. Moreover, simple quantitative
results can be obtained if correlations between the parti
are somehow weak. This means that the interaction betw
the particles can be neglected, or—more realistically—an
propriate mean-field theory is developed. The latter result
the picture of free quasiparticles moving in the effective se
consistent field created by the constituents.

In the limit of largen the temperatureT is a well-defined
physical quantity and all equilibrium characteristics can
found by applying the canonical~Gibbs! probability distribu-
tion wi}exp(2E(i)/T), where E( i ) is the energy of thei th
eigenstate of the system. For example, for a gas of nonin
acting fermions this results in the famous Fermi-Dirac dis
bution ~FDD! of the occupation numbers:
4933 © 1998 The American Physical Society
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n̄a5
1

exp@~«a2m!/T#11
, ~1!

where«a is the energy of a single-particle statea, and m
5m(n,T) is the chemical potential. It is determined, at
given temperature, from the normalization condition(an̄a
5n. Formula~1!, when it is valid, in fact provides one with
a relation between the temperature and the energyE of the
system:(a«an̄a5E, which can also be viewed as a possib
definition of the temperature. Note that Eq.~1! can hold for
the interacting fermions as well, provided we consider
distribution ofquasiparticles, and replace«a with the quasi-
particle energy«̃ a , which in turn depends on the distributio
of excited quasiparticles. This is an important point of La
dau’s theory of Fermi liquids~see, e.g.,@5#!.

Strictly speaking, the FDD is derived for the grand c
nonical ensemble, wherem is fixed, andn is the mean num-
ber of particles@6#. For largen the difference is negligible
unless fluctuations of the number of particles are concern
In the Appendix we consider the approximations one ha
make to arrive at the FDD~1! for a finite system ofn inter-
acting particles obeying the canonical distribution.

In reality there are many complex systems, such as c
pound nuclei, rare-earth atoms, molecules, atomic clus
or quantum dots, which do not satisfy the conditions for E
~1! to hold. However, their complexity suggests that so
statistical methods can be developed, and in nuclear phy
such a statistical temperature-based description has
known for quite a while. Intuitively such a description
very natural, and a more rigorous justification does not se
to have been needed.

The number of active particles in these systems can
relatively small (&10), whereas the interaction betwee
them~even the residual interaction in the mean-field basis! is
large, i.e., greater than the energy intervals between un
turbed many-particle basis states. This interaction make
for the absence of a heat bath, and promotes the onse
‘‘randomization’’ and quantum chaos. This chaos is pur
dynamical, in the sense that the Hamiltonian matrix of
system does not contain any random parameters, yet the
havior can be complicated enough~‘‘chaotic’’ !, and a num-
ber of properties, e.g., the energy level statistics, are con
tent with the predictions of random matrix theories@1–3#.
This gives one a possibility to talk about some kind of eq
librium in the system, and pursue the development of a
tistical theory for few-body Fermi systems@4#.

In what follows we will look at the results obtained nu
merically in a realistic model of the Ce atom which conta
only four active particles~valence electrons!. We will see
that the energy dependence of the occupation numbers
fers prominently from what one expects from the FDD~1!,
and show that this behavior results from the strong fluct
tions of the two-body Coulomb interaction for different o
bitals. We then show that this interaction can be taken i
account within the statistical approach to calculation of
occupation numbers and other mean values, leading
good agreement between the results of ourstatistical theory
and the numerical calculations. Such agreement confirms
existence of equilibrium similar to the thermal one in t
system of a few strongly interacting particles.
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III. THE Ce ATOM

The cerium atom has one of the most complicated spe
in the periodic table. The density of energy levels with
given total angular momentum and parityJp reaches hun-
dreds of levels per eV at excitation energies of just a few e
well below the ionization threshold ofI 55.539 eV @7,8#.
The Ce atom has four valence electrons, and a well-defi
4 f 6s25d ground state. However, with the increase of t
excitation energy and involvement of yet another low-lyi
electron orbital 6p, the atomic eigenstates become co
pound states~in the sense of Sec. I!, and it becomes abso
lutely impossible to choose any reasonable coupling sch
or provide any classification for them. At the same time,
orbital occupation numbers move away from integer valu
and even the idea of a dominant configuration for a particu
energy level becomes meaningless@1#.

In the present work we continue to study the cerium at
numerically, with emphasis on the energy dependence of
occupation numbers. The electronic structure of the Ce a
consists of a Xe-like 1s2

•••5p6 core and four valence elec
trons. A large difference in the energy scales of the core
valence electrons allows us to neglect excitations from
core and consider the wave function of the core as
‘‘vacuum’’ state u0&. Accordingly, the four active electron
added to this vacuum form the spectrum of Ce at excitat
energiesE&I @9#.

The calculations are performed using the Hartree-Fo
Dirac ~HFD! and configuration interaction~CI! methods~see
@1# for details!. A self-consistent HFD calculation of the neu
tral atom results in the construction of the core and vale
orbitals. It also determines the mean-field potential, which
then used to calculate the basis set of single-particle
thonormalized relativistic statesua&5unl j j z& with energies
«a . This procedure defines the zeroth-order Hamiltonian
the system,

Ĥ ~0!5(
a

«aaa
†aa . ~2!

The unperturbed multiparticle basis statesuk& constructed
from the single-particle states,uk&5an1

† an2

† an3

† an4

† u0&, are

eigenstates ofĤ (0): Ĥ (0)uk&5Ek
(0)uk&, where

Ek
~0!5(

a
«ana

~k! ~3!

is the zeroth-order energy of the stateuk&, and na
(k)

5^kun̂auk&5^kuaa
†aauk& are the occupation numbers equ

to 0 or 1, depending on whether the statea is occupied in
uk&, or not. To subtract additional symmetries only the ba
statesuk& with a given projection of the total angular mo
mentumJz and parity are considered.

The total HamiltonianĤ of the active electrons is the sum
of the zeroth-order mean-field HamiltonianĤ (0) and the two-
body residual interaction

V̂5
1

2 (
abgd

Vabgdaa
†ab

†agad . ~4!
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FIG. 1. Eigenvalue densities for th
even states of Ce averaged over the e
ergy intervalDE50.05 a.u.~a! The up-
per solid curve is forJ54, and lower
curves correspond to successively i
creasing values ofJ. Note that all den-
sities have similar shapes. Dotted curv
is the analytical fit for J54: r(E)
5r0exp@a(E2Eg)

1/2#, where r0527,
a512.3 a.u., andEg522.91 a.u.~b!
Total level density of the even state
and fit with r05119, a513.0 a.u., and
Eg522.91 a.u.
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The residual interactionV̂ contributes to the diagonal an
off-diagonal matrix elements between the multiparticle sta
uk&. Its diagonal part shifts the energy of the basis statek,

DEk5Vkk5 (
a.b

~Vabba2Vabab!na
~k!nb

~k! . ~5!

The off-diagonal matrix elementsVk8k5^k8uV̂uk& are re-
sponsible for mixing of the multiparticle basis states.

Complete diagonalization of the operatorĤ5Ĥd1V̂ in
the space of the basis statesuk& yields ‘‘exact’’ energiesE( i )

and stationary statesu i & @20#,

Ĥu i &5E~ i !u i &, ~6!

which can be presented as superpositions of the unpertu
basis states,

u i &5(
k

Ck
~ i !uk&, (

k
uCk

~ i !u251. ~7!

In this work we included 14 relativistic subshellsnl j in
the single-particle basis~6s, 7s, 6p, 7p, 5d, 6d, 4f , and
5 f ), and performed exact diagonalization of theN3N
Hamiltonian matrix in a Hilbert space withN;83103, ob-
tained by truncating the complete set of the shell-mo
atomic configurations. Our numerical results are obtained
the even states of Ce with the total angular momentum p
jection set toJz50. Thereby, all possible states withJ from
0 to 10 are included. For the given choice of the basis
numbers of eigenstates withJ50 –10 are 343, 917, 1354
1493, 1433, 1153, 826, 497, 262, 107, and 34, respectiv

The eigenvalue densitiesrJ(E) for J54 –8 are shown in
Fig. 1. They have been window averaged overDE50.05 a.u.
to smooth out short-range fluctuations. The largest densi
observed forJ54, and with the exception of small region
near the ends of the spectra, allrJ(E) are proportional to
each other. The shapes of the eigenvalue densities are
cally determined by the corresponding basis-state dens
~although the effect of level repulsion makes the form
slightly wider!. They are characterized by a very rapid i
crease in the low-energy part. This increase is a direct c
sequence of the fact that the accessible energy can be di
uted in an ever greater number of ways between the
electrons. Being essentially of combinatorial nature, the le
density can be described by the exponent
s
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r~E!}exp~aAE2Eg!, ~8!

which is derived in the independent-particle model@10# (Eg
is the ground-state energy!. As seen from Fig. 1 the leve
density from our calculation indeed follows Eq.~8! at low
energies, but then reaches its maximum and decreases@11#.
These latter features are unphysical as they are conseque
of the finite size of our basis. However, within 5 eV of th
ground state the configuration set we use is reasonably c
plete.

Relativistic atomic subshellsnl j are (2j 11) degenerate,
therefore we consider average occupation numbers

n̂s5gs
21(

aPs
n̂a5gs

21(
aPs

aa
†aa , ~9!

wheregs52 j 11 is the degeneracy of the subshells. In the
system of a large number of weakly interacting partic
thermally averaged values ofns are given by the FDD~1!. In
the quantum dynamical system, like the Ce atom, the oc
pation numbers for any eigenstate can be obtained asns

( i )

5^ i un̂su i &. When the number of active particles is smallns
( i )

show strong level-to-level fluctuations, and it is more i
structive to look at the spectrally averaged values

ns~E!5^ i un̂su i &5(
k

uCk
~ i !u2^kun̂suk&, ~10!

where the overbar means averaging over the eigenstai
within some energy interval aroundE.

A typical distribution of the occupation numbers calc
lated at the excitation energy of 4.5 eV above the atom
ground state is shown in Fig. 2 as a function of the sing
particle energy«s of the orbitals~see Table I!. The values of
«s are determined with respect to the Xe-like Ce41 core. One
can see that the distribution does not look at all like a mo
tonically decreasing FDD. A similar picture is observed ov
the whole energy interval from the ground state to the io
ization potential. For example, the lowest even state of
has a configuration of 4f 26s2, while the FDD would tell us
that all four electrons must be placed in the lowest 4f orbital,
when the energy or ‘‘temperature’’ of the system is low.
reality the 4f 4 electron configuration lies at very high ene
gies due to a strong electron repulsion in this compact orb
~the radius of the 4f orbital in Ce is at least two times
smaller than that of any other valence orbital!.
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Of course, considering the orbital energies«s has the
drawback that they completely ignore the residual interac
between the valence electrons. When this interaction
strong one would wish to introduce some new mean-fi
orbital energies«̃ s that would incorporate the effect of suc
interaction. The value of«̃ s for the orbitals will inevitably

FIG. 2. Occupation numbersns(E) @see Eq.~10!#, for the even
states of Ce at the excitation energy ofE2Eg54.5 eV versus the
single-particle energies«s of the orbitals~a!, and quasiparticle en
ergies«̃ s ~b!. Diamonds connected by the dashed line represent
result of our statistical calculation withT50.097 a.u.

TABLE I. Single-particle energies and Coulomb matrix el
ments~in atomic units! for the valence and lowest excited orbita
in Ce.

Orbital «s Coulomb matrix elementsUsp(a.u.)
nl j ~a.u.! 4 f 5/2 4 f 7/2 6s1/2 4d3/2 4d5/2 6p1/2 6p3/2

4 f 5/2 21.564 0.791 0.800 0.260 0.423 0.422 0.223 0.2
4 f 7/2 21.551 0.800 0.787 0.259 0.428 0.416 0.223 0.2
6s1/2 20.876 0.260 0.259 0.199 0.231 0.230 0.162 0.1
4d3/2 21.156 0.423 0.428 0.231 0.330 0.331 0.200 0.1
4d5/2 21.141 0.422 0.416 0.230 0.331 0.325 0.204 0.1
6p1/2 20.714 0.223 0.223 0.162 0.200 0.204 0.169 0.1
6p3/2 20.691 0.216 0.215 0.158 0.198 0.195 0.157 0.1
n
is
d

depend on the distribution of the other electrons, and he
on the excitation energy of the system. In Sec. V we int
duce such energies within the statistical approach. Howe
even when the occupation numbers are plotted agains«̃ s
there is still a large deviation from the standard FDD.

At first sight such a strong deviation from the FDD in
strongly interacting Fermi system speaks against any po
bility of a statistical description of the system. In what fo
lows we show that the strong Coulomb interaction betwe
the electrons can be incorporated in the canonical-ensem
description of the system, and thermally averaged occupa
numbers can bens(T) derived. As a result of the electro
interaction, the distribution ofns(T) differs from the FDD.
What is more important, we find good agreement betwe
the results obtained by means of this statistical approach
those from the pure dynamic calculation of the Ce eig
states,ns(T)'ns(E). We also find a way to relate the energ
and the temperature.

IV. CANONICAL ENSEMBLE AND THE STRENGTH
FUNCTION

In this section we show that averaging over thecanonical
distribution, which weighs different states according to the
energiesEk with probabilitieswk}exp(2Ek /T), is very simi-
lar to averaging over the exact eigenstatesu i &, when these
eigenstates arecompound, i.e., include large numbersNc of
basis statesuk& mixed together with small weightsCk

( i )

;1/ANc, Eq. ~7!. For a classical system the latter is equiv
lent to averaging over themicrocanonical distributionthat
considers all points on the surfaceE5const of the phase
space as equally probable@12#. As is known, the two types o
averaging yield identical results for large systems@6#.

A. Averaging over the canonical distribution
at a given temperature

Suppose first that the off-diagonal part of the resid
two-body interactionV̂ is switched off. The multiparticle ba
sis statesuk& then correspond to the stationary states of
system with energiesEk5Ek

(0)1DEk . The interaction with a
heat bath at temperatureT results in the canonical distribu
tion of probabilities of finding the system in a given statek,
wk5Z21exp(2Ek /T), where Z5(kexp(2Ek /T), so that
(kwk51. The occupation numbers at temperatureT are cal-
culated as

ns~T!5(
k

wk^kun̂suk&5Z21(
k

exp~2Ek /T!^kun̂suk&.

~11!

The spectrum ofEk is similar to the eigenvalue spectr
shown in Fig. 1, and is characterized by a rapid rise of
density@see Eq.~8!#. Thus, if we replace summation in Eq
~11! by integration overEk ,

ns~T!5E wT~Ek!^kun̂suk&dEk , ~12!

where we introduced the probability densitywT(Ek)
5Z21exp(2Ek /T)r(Ek), the integrand in Eq.~12! will peak

e
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5
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strongly due to competition between the two exponents,
decreasing exp(2Ek /T) and the risingr(Ek). As a result, the
main contribution tons(T) is given by the vicinity of the
maximum ofwT(Ek). The equation for the position of th
maximumEk5E provides a relation between the most pro
able energyE and the temperature,

2
1

T
1

d$ ln@r~E!#%

dE
50. ~13!

If the temperature is not too small the maximum ofwT(Ek)
is almost symmetric, and the most probable energy beco
close to the mean energy:

E'Ē~T!5E EkwT~Ek!dEk . ~14!

If we use the analytical form~8!, Eq. ~13! yields

T5
2

a
AE2Eg. ~15!

B. Strength function and averaging over the compound states

Let us now come back to the dynamic description of
isolated many-body quantum system and switch on the
diagonal part of the residual interaction. In this case
eigenstates are given by Eq.~6! and the occupation number
at a given energy are found from Eq.~10!. The key quantity
in calculatingns(E) is the mean-squared eigenstate com

nentuCk
( i )u2. WhenV̂ is strong enough and the energyE( i ) is

not too close to the ground state,uCk
( i )u2 represents the

spreading of the eigenstate over a large number of b
states. It is proportional to the strength function~introduced
by Wigner @13# and also known as the local density
states!,

rw~E,k!5(
i

uCk
~ i !u2d~E2E~ i !!.uCk

~ i !u2r~E!, ~16!

wherer(E) is the eigenvalue density. The last equality
Eq. ~16! implies that some averaging over the the ene
interval greater than the level spacing has been performe
E( i )'E. It follows from numerical calculations@1,2,4# as
well as from analytical considerations@10,13,14# that
rw(E,k) is a bell-shaped function centered atE'Ek . Near
its maximum it depends only on the differenceE2Ek , and
can be described by the Breit-Wigner formula

rw~E,k!5
G/2p

~E2Ek!
21G2/4

. ~17!

The spreading width G is usually given by G

.2p z^k8uV̂uk& z 2r(E). Therefore the basis states are stron
mixed together by the residual interaction only local
within the energy rangeG.

The notions of the strength function and the spread
width become meaningful if the interaction is strong enou
andG@D, whereD51/r(E) is the mean level spacing~ac-

cordingly, z^k8uVuk& z2@D2). This means that the number o
e
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e
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e
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basis states participating in a given eigenstate is large,Nc
;G/D@1, or vice versa, a given basis statek contributes to
a large number of nearby eigenstates with energiesuE2Eku
;G. Apart from the smooth variation ofuCk

( i )u2 the statistics
of the eigenstate componentsCk

( i ) is close to Gaussian@1#. In
this situation it is appropriate to call the stationary states
the systemchaoticor compoundeigenstates.

Using Eq. ~16! we can rewrite expression~10! for the
occupation numbers in the integral form

ns~E!5E uCk
~ i !u2^kun̂suk&r~Ek!dEk'E rw~E,k!

3^kun̂suk&dEk , ~18!

where we used the fact thatr(Ek)'r(E) near the maximum
of rw(E,k). The above representation is very similar to E
~12! for ns(T). Equation~18! describes averaging over th
compound state strength functionrw(E,k) of width G cen-
tered at energyE, whereas Eq.~12! refers to a thermal aver
age with thewT(Ek) probability density, which peaks nea
Ē(T). Of course, the width of the distributionwT(Ek) de-
pends on the temperature@;aT3/2 for Eqs.~8! and~15!#, but
if we choose the temperature by settingE5Ē(T), the two
averagesns(E) and ns(T) should be close to each othe
provided the widths ofrw(E,k) and wT(Ek) are much
greater than the multiparticle level spacing, and the diff
ence between these widths does not exceed the sin
particle energy interval in the system@4#.

In the next section we calculate thermally averaged oc
pation numbers and establish a relation between the effec
temperatureT and the excitation energy for the Ce atom
Numerical calculations will confirm that a temperature-bas
statistical theory agrees with the dynamic calculation, a
describes well the peculiar behavior of the occupation nu
bers in Ce.

V. CALCULATION OF THERMALLY AVERAGED
OCCUPATION NUMBERS

A. Statistical model

Let us now perform a statistical calculation of the occ
pation numbers for a system ofn particles distributed overr
orbitals with energies«s and degeneraciesgs(s51, . . . ,r ).
We will assume that the two-body interaction of any tw
particles in the orbitalss andp is Usp , where both the direct
and exchange terms are included:

Usp5
1

gs~gp2dsp!
(
aPs

(
bPp

~Vabba2Vabab!. ~19!

Thus Usp is averaged over the degenerate single-part
states within the orbitalss andp.

The energy of a particular many-particle statek is now
given by

Ek5(
s51

r

Ns«s1(
s51

r

(
p5s

r Ns~Np2dsp!

11dsp
Usp , ~20!
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FIG. 3. Temperature dependence of the occupation numbers for the orbitalsgsns(T) ~a!, energy of the systemĒ(T) ~b!, and quasiparticle

energies«̃ s ~c!, calculated in the statistical model of the Ce atom, Eqs.~20!–~24!. The occupation numbers shown for the 4f , 5d, and 6p
subshells are sums of those of their fine-structure sublevelsj 5 l 6 1

2. The quasiparticle energies of the orbitals are listed in~c! in the same
order as they appear on the graph.
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whereNs is an integer number of particles in the orbit
s(0<Ns<gs), and(sNs5n. The statek is specified by the
orbital occupation numbersNs and isGk degenerate, where
Gk5)s51

r (Ns

gs ). Of course, Eq.~20! corresponds to the ‘‘di-

agonal’’ approximation (Ek'Hkk), since we neglect the ef
fect of mixing of states due to the residual interaction~off-
diagonal part of the Hamiltonian!. In the low-energy part of
the spectrum this interaction pushes the eigenstates d
with respect to their diagonal-approximation values beca
of the usual level-repulsion effect.

In this model we cannot keep hold of the total angu
momentum, so our calculation will yield quantities averag
over various angular momentaJ and projectionsJz . How-
ever, it is relatively easy to ensure the conservation of pa
If the orbitals has a parity ofPs ~either 1 or21), the parity
of the multiparticle statek is )s51

r Ps
Ns . Therefore one can

easily select multiparticle states with a given parity wh
calculating statistical sums like that of Eq.~11!.

In the canonical ensemble the probability of finding t
system in the statek is given by

wk5Z21Gkexp~2Ek /T!, ~21!

where

Z5(
k

Gkexp~2Ek /T!, ~22!

and the sum overk runs over all multiparticle states, possib
with a restriction on parity. The average occupation numb

ns(T)5Ns/gs are calculated as

ns~T!5gs
21(

k
Ns

~k!wk , ~23!

whereNs
(k) is the number of particles in the orbitals in the

multiparticle statek. In the diagonal approximation the en
ergy of the system is related to the temperature asE

5Ē(T), where

Ē~T!5(
k

Ekwk ~24!
wn
e

r
d

y.

rs

is the canonical average. However, one can include the
diagonal part of the Hamiltonian in the definition of temper
ture by introducing the energy shiftDE(T),

E5Ē~T!2DE~T!. ~25!

DE(T) is positive in the lower half of the spectrum, whic
means that the statistical effects of interaction between
ticles increase the effective temperature. At high tempe
tures DE(T)52^Hii 2E( i )&, where Hii 2E( i ) is the simple
energy shift due to the nondiagonal matrix elements of
HamiltonianHik . This estimate is based on the mean ene
of the components uk& in the eigenstate u i &: (Ek̄) i

[(kHkkuCk
( i )u25E( i )1DE ~see@4#!.

In general, the occupation numbers obtained from
~23! will be different from those predicted by the Ferm
Dirac distribution~see Sec. V B!. In the Appendix we look at
how the FDD ~1! is derived from the canonical statistica
distribution, Eq.~23!, and see what are the limitations on th
interaction between the particles for the derivation to
valid.

B. Numerical calculations

To perform numerical calculations of the occupati
numbers for Ce in the statistical model outlined above
use the same set of 14 relativistic orbitals as in the CI ca
lation described in Sec. III. The orbital energies are obtain
as«s5^suHcus&, whereHc is the frozen Dirac-Fock Hamil-
tonian of the Ce41 core, and the averaged Coulomb matr
elementsUsp are found from Eq.~19!. Their numerical val-
ues for the seven lowest orbitals 4f 5/2, 4f 7/2, 6s1/2, 5d3/2,
5d5/2, 6p1/2, and 6p3/2 are given in Table I. For excitation
energies below the ionization threshold these orbitals are
most important.

Using the statistical model formulas we have calcula
the occupation numbersns(T), Eq. ~23!, and the energy of
the system, Eq.~24!, as functions ofT @see Figs. 3~a! and
3~b!#. The relation between the energy of the system a
temperatureE5Ē(T)2DE(T) can be inverted and used t
plot the dependence of the statistical model occupation n
bers as functions of the energyE. In this work we are mostly
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FIG. 4. Comparison of the orbital occupanciesgsns(E) obtained from the exact diagonalization~solid and dash-dot lines! with

gsns„T(Ē)… obtained from our statistical theory~dotted lines!. Note thatns(E) have been window averaged overDE50.05 a.u. For the 6s1/2

orbital the solid gray line connects unaveraged occupation numbers for the eigenstates withJ54.
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interested in the low-energy part of the spectrum, and we
DE(T)5const to fit the true ground-state energy of the s
tem atT50. In Fig. 4 we compare the results of the stat
tical model with the energy-averaged occupation numb
obtained from the CI calculation of the Ce eigenvalues a
eigenstates, Eqs.~6! and ~10!. We see that the complicate
non-Fermi-Dirac energy dependence of the occupation n
bers in Ce is reproduced well by the statistical model.

For one of the orbitals unaveraged occupation numb
are shown in Fig. 4. For a chaotic eigenstate with aboutNc
principal components the fluctuations of various quantit
are expected to be;Nc

21/2. If the average occupation num

ber n̄s is smaller than unity, thes orbital is populated only in
aboutn̄sNc of the basis states involved, and the relative flu
tuation of the occupation number can be estimated asdns

;1/An̄sNc. For Ce whereNc;100 this estimate is in agree
ment with the size of fluctuations seen for the 6s1/2 orbital in
Fig. 4.

To study the effect of the off-diagonal matrix elements
the Hamiltonian on the temperature we calculate the can
cally averaged mean energy of the system~24! using the set
of the basis-state energiesEk[Hkk and that of the exac
eigenstatesE( i ). The difference between these two mean e
ergies is plotted in Fig. 5. It is almost constant at sm
temperatures and follows

DE~T!.
(kÞ lHkl

2

T
, ~26!

at largeT ~see@4#!.
Note that the energy shiftDE(T) is larger than the simple

difference between the diagonal matrix elements and e
eigenvaluesHii 2E( i ). This is because the true occupatio
numbers~10! even in the exact ground state are not inte
~see Fig. 4! due to the admixture of higher configuration
This means that the effective temperature of the ground s
is already not zero~see discussion in@4#!.

VI. DISCUSSION AND CONCLUSIONS

Most importantly, the agreement observed in Fig. 4 me
that the interaction between the particles indeed introdu
et
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some kind of equilibrium in the system~‘‘microcanonical’’
distribution!. Moreover, averaging over it yields results clo
to those over a canonical ensemble~21!, with the tempera-
ture chosen to reproduce the total energy of the system.
equivalence is always true for a large system where any
beit weak interaction between particles leads to equilibriu
However, in afew-particlesystem the residual two-body in
teraction must bestrong enoughto produce chaotic eigen
states and facilitate statistical description~see@15–17# where
criteria for the interaction strength are discussed!.

The simple criterion for the onset of ‘‘chaos’’ follow
from the perturbation theory:

a[
V

D2~E!
5AS

AHik
2

D~E!
*1, ~27!

whereD2(E)5D(E)/S is the mean energy spacing betwe
many-body basis states directly coupled by a nonzero

FIG. 5. Difference between the mean values of the energy
tained from the canonical distribution using the energies of the b
states,Ek[Hkk , and those of the exact eigenstates. The dash
line is the high-temperature analytical approximation~26!.
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diagonal matrix element,V is the root-mean-squared nonze
off-diagonal matrix element, andS,1 is the sparsity of the
Hamiltonian matrix defined as a fraction of nonzero o

diagonal matrix elements,Hik
2 5SV2. The Hamiltonian ma-

trix is sparse because the residual Coulomb interaction
tween the valence electrons is a two-body one, hence
more than two excited electrons not all many-body ba
states can be coupled in the lowest first order.

In our numerical modela becomes greater than unity
E2Eg.0.07 a.u., i.e., above 2 eV from the ground sta
This energy is of the order of energy spacing between
single-electron orbitals in Ce. Note that the estimates fr
@15–17# can hardly be applied to our model. The point is th
in our system there are additional degrees of freedom
symmetries~angular momentum, its projection and parity!,
while @15–17# in fact considered a system without any sym
metries~an effective one-dimensional system!. As a result,
the single-particle levels are multiply degenerate. An ad
tional chaotization of the many-body state basis takes p
when complex linear combinations of the Slater determina
are constructed to form basis states with definite angular
mentum values. As noted in@2#, this procedure involves ran
domlike Clebsch-Gordan coefficients. On the other ha
comparison with estimates near the Fermi surface@16# is
difficult due to the fact that the very concept of the Fer
energy is ill defined for such a small system with stro
interaction~see Fig. 2!.

We would like to reiterate now, that although th
temperature-based description is applicable to our fo
particle system, the orbital occupancies could not be
scribed by the FDD~Fig. 2!. The FDD is inapplicable to ou
system because of the strong interaction between the
ticles @second term on the right-hand side of Eq.~20!#. How-
ever, the deviation from the FDD is determined not by t
magnitude ofUsp , but rather by the size of their fluctuation
To see this assume for a moment that all two-body ma
elements are the same,Usp[U. In this case the double sum
in Eq. ~20! just shifts all energies by (U/2)n(n21), and the
statistical properties of the system are the same as for
interacting particles. IfUsp are different for different orbital
pairssp one can still introduce some average interactionŪ
and subtract this ‘‘background’’ interaction from the intera
tion term in Eq.~20!. This procedure effectively suppress
the interaction term, since the summands in expressions
(s,p(Usp2Ū)Np have different signs. Note that the intro
duction of ~energy-dependent! Ū is equivalent to a loca
mean-field approximation~see also the Appendix!. This ap-
proximation is good if the fluctuations ofUsp from one or-
bital to another are relatively small.

An instructive example was provided in@3,4#. In these
works a model of random two-body interactions was e
plored numerically and a good Fermi-Dirac-like behavior
the occupation numbers was observed for as few as
particles distributed among 11 orbitals. However, this regi
was achieved for the relatively small two-body matrix e
ments with mean zero and rmsV;0.1d1, whered1 is the
mean level spacing between the single-particle orbitals.
the other hand, for smaller two-body interaction strengths
occupation number distribution was not smooth, and did
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agree well with the Fermi-Dirac formula, because the sta
tical equilibrium needed was not achieved.

The situation in the Ce atom is different. The 4f orbital
has a much smaller radius than any other orbital, and
Coulomb interactions have a hierarchy of scales:

U4 f 4 f.U4 f s.Usp , ~28!

wheres and p are orbitals other than 4f . Indeed, the Cou-
lomb interaction between the electrons is determined mo
by the mean radius of the largest orbital. Thus, for the t
orbitalss andp such thatr s,r p , the Coulomb interaction is
Usp'e2/r p ~this formula is exact for the two electrons di
tributed uniformly over the surfaces of two spheres of ra
r s and r p). Because of Eq.~28! the interaction term in Eq.
~20! fluctuates strongly with the change of the occupat
number of the 4f orbital, and in effect there is no goo
mean-field approximation for the excitation spectrum of C

The quasiparticle orbital energies«̃ s can still be obtained in
the statistical model for Ce by means of Eq.~A10!. They are
plotted in Fig. 3~c! and show considerable variation wit
temperature. However, even when we use these energie
stead of the Hartree-Fock ones for plotting the occupat
numbers, the resemblance to the true FDD is only margin
better than that in Fig. 2.

The absence of reasonably defined quasiparticle orb
and the ensuing distortion of the Fermi-Dirac distribution a
features outside the usual Migdal theory of normal fin
Fermi systems~TFFS! @18#. Its breakdown in the Ce atom
can be associated with the open-shell structure of the a
~nearly degenerate ‘‘ground state’’! and a clear lack of sym-
metry of the ground state with one removed particle. As
result, single-particle excitations above the ground state
not carry good quantum numbers~like the momentum in an
infinite Fermi system, or the angular momentum in a sph
cally symmetric finite system!. Moreover, even at low ener
gies ~few eV! the single-particle excitations have larg
widths associated with their decay into multiply excited co
figurations~the spreading widthG;2 eV @1#!, largely be-
cause such decay is not really limited by any selection ru
~only the trivial total angular momentum and parity are co
served!.

It has been proposed in@4# that for finite Fermi systems
similar to the Ce atom, characterized by the dense spectr
chaotic multiparticle eigenstates, a statistical theory alter
tive to the standard TFFS can be developed based on
properties of these eigenstates. Most importantly, the e
tence of the chaotic eigenstates and the equilibrium this
troduces in the system is ensured by the sufficiently str
interaction between particles.

This concept of the interaction-driven equilibrium is su
ported by our present results. We have shown that this e
librium can be described in terms of usual statistical para
eters, such as the temperature, even though some of
system’s properties are very different from those usually
pected in Fermi systems. For example, the statistics of
occupation numbers cannot be described by the Fermi-D
formula.
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APPENDIX: DISTRIBUTION OF OCCUPATION
NUMBERS FOR A CANONICAL ENSEMBLE OF FINITE

SYSTEMS OF INTERACTING FERMIONS

Consider a quantum system which consists of a numbe
single-particle discrete statesa ~we will also call them orbit-
als here! with energies«a(a51, . . . ,m) filled with n,m
Fermi particles. The multiparticle statesk of the system are
identified by specifying the occupation numbersna50 or 1
of the orbitala, (ana5n. The total number of multiparticle
statesN5(n

m) is quite large, even for moderatem andn. If
we allow for the interaction between the particles, the ene
of the statek is given by

Ek5(
a

«ana1
1

2(ab
Uabnanb , ~A1!

whereUab includes both the direct and exchange interact
between the particles ina andb, andUaa50.

Of course, the statesk are not eigenstates of the syste
However, if the interaction between the particles is not
strong, we can use them for averaging over the canon
ensemble with probabilitieswk5Z21exp(2Ek /T), whereZ
5(kexp(2Ek /T) is the partition function, and the sum run
over all N multiparticle states@19#. It will be convenient to
show explicitly that the partition function depends on t
energies of the orbitals«1 , . . . ,«m[$«%, number of par-
ticles n, and temperatureT: Z[Z($«%,n,T) ~and, strictly
speaking, on the interactionsUab , if they are not zero!.

Using the canonical probabilities we can express the m
occupancy of the orbitala as

n̄a5(
k

na
~k!wk5

(
k

na
~k!exp~2Ek /T!

(
k

exp~2Ek /T!

~A2!

5

(
k~a!

exp~2Ek /T!

(
k~a!

exp~2Ek /T!1 (
k~ ā !

exp~2Ek /T!

,

~A3!

wherena
(k)51 or 0, depending on whethera is occupied or

empty in the statek, and we split the sum overk into two
sums over the statesk(a) wherea is occupied, andk(ā),
where it is empty.

Let us first consider the case of noninteracting partic
(Uab50). It is easy to see that the first sum is then equa
Z($«%a8 ,n21,T)exp(2«a /T) and the second one i
Z($«%a8 ,n,T), where $«%a8 is the set ofm21 orbitals ob-
tained by discardinga from $«%. The equation can then b
written as
nt

of

y

n

.
o
al

n

s
o

n̄a5F11
Z~$«%a8 ,n,T!

Z~$«%a ,n21,T!
exp~«a /T!G21

. ~A4!

This equation is very similar to the Fermi-Dirac formula~1!,
if we introduce the chemical potentialm by

Z~$«%a8 ,n,T!

Z~$«%a8 ,n21,T!
[exp~2m/T!. ~A5!

The problem is that this ratio on the left-hand side in fa
depends on which orbitala is deleted from the set$«% to
form $«%a8 , and so does the ‘‘chemical potential’’m. If we

write Eq.~A4! for n̄b with bÞa, the set$«%b8 will produce a
different ratio Z($«%b8 ,n,T)/Z($«%b8 ,n21,T), and as a re-
sult, a different value ofm. However,$«%b8 can be obtained
from $«%a8 by simply moving the orbital energy from«b to
«a . So, the difference between the values ofm for different
orbitals can be probed by calculating the derivative of E
~A5! with respect to the energy of some orbitalb. Using the
relation n̄b52T]Z/]«b , valid for noninteracting particles
@see Eqs.~A1! and ~A2!#, we obtain

]m

]«b
5n̄b

~n!2n̄b
~n21! , ~A6!

wheren̄b
(n) and n̄b

(n21) are the mean occupation numbers f
n andn21 particles distributed among the$«%a8 orbital set.
It is obvious that the right-hand side of Eq.~A6! is larger
near the Fermi level,u«b2mu&T, and is almost zero outsid
this interval. We can estimate that the total difference
tween the value ofm for orbitals well below the Fermi leve
and those well above it is

dm5E ~nb
~n!2n̄b

~n21!!d«b5d1E ~nb
~n!2n̄b

~n21!!
d«b

d1

'd1@n2~n21!#5d1 , ~A7!

where d1 is the mean spacing between the single-parti
orbitals. Thus in a system with discrete orbital energies
chemical potential can be considered as constant to wi
;d1 accuracy. At finite temperatures the width of th
smoothened Fermi-Dirac ‘‘step’’ is of the order ofT, there-
fore m5const is valid forT@d1 ~or for m@d1). Note that
this condition means that the number of orbitals within t
Fermi-Dirac ‘‘step’’ is large.

For the interacting particles the sum(k(a)exp(2Ek /T)
which gives rise to exp(«a /T) in Eq. ~A4! can be written as

(
k~a!

exp~2Ek /T!5 (
k~a!

expF2
1

TS (
bÞa

«bnb

1
1

2 (
b,gÞa

UbgnbngD G
3expF2

1

TS «a1 (
bÞa

UabnbD G .
~A8!
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In this formula the last exponent contains the energy of
particle in a, which depends on the occupanciesnb of the
other orbitals. When summation overk(a) is carried out the
exponent is averaged over different distributions ofn21
particles among all orbitals buta. The result can be pre
sented approximately as

Z~$«%a ,n21,T!exp~2 «̃ a /T!, ~A9!

where we replaced the averaged exponent by the expo
containing thequasiparticleenergy,

«̃ a5«a1 (
bÞa

Uabn̄b , ~A10!
.

t.

A

s.

e
n
iv
om
od
G.
e

nt

and the mean valuesn̄b are, strictly speaking, different from
those from Eq.~A2!, as one particle has always been kept
a in the sum~A8!. Therefore the ‘‘Fermi-Dirac’’ ansatz~A4!
holds for the interacting particles, if we replace the sing
particle energies«a with the temperature-dependent qua
particle energies«̃ a from Eq. ~A10!.

Note that the transformation of Eq.~A8! into Eqs.~A9!,
~A10! is exact up to first order inn̄b , and to all orders, if
Uab[U for all orbitals. In the latter case«̃ a5«a1(n
21)U is a trivial redefinition of the single-particle energie
That is why replacing«a with the quasiparticle energies«̃ a
is a valid operation, unless the interactionsUab fluctuate
strongly, and the number of active particles is small. In
latter case the mean-field approximation is inadequate
the introduction of quasiparticles is not very meaningful.
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