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Aperiodic mean-field evolutions in coupled map lattices
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This paper discusses aperiodic mean-field dynamics in several classes of coupled map lattices~CML’s!. Two
mechanisms underlying complex mean-field evolutions are described. One is the nonlinearity of the mean field
evolution equation. The other, at play in locally coupled logistic map lattices, is the presence of ‘‘microscopic’’
symmetries. The present work demonstrates that the collective motion in a large class of CML’s is governed by
a low-dimensional dynamical system which can, in some instances, be obtained explicitly. The paper also
reports an interesting kind of mean-field multistability, and discusses the robustness of complex mean-field
behaviors under the action of microscopic stochastic perturbations.@S1063-651X~97!04410-3#

PACS number~s!: 05.45.1b, 64.60.Cn
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I. INTRODUCTION

In this paper we investigate nontrivial collective motion
models framed as coupled map lattices~CML’s!. We first
focus on a globally coupled lattice of piecewise linear ma
and then consider the ubiquitous logistic map lattice. Th
two systems are representative of two classes of mode
which nontrivial collective motion arises for very differen
reasons. In the piecewise linear map, we show that the or
of complex collective dynamics lies in the remarkable pr
ence of a low-dimensional nonlinear dynamical syst
which governs the temporal evolution of the mean field.
the logistic maps system, we show that ‘‘microscopic’’ sym
metries play an important role in the genesis of collect
quasiperiodicity. Before reviewing the concept of ‘‘colle
tive motion’’ in CML’s, we briefly discuss some of the mo
tivations for studying these discrete-time spatially extend
models.

In the literature, the appeal of CML’s comes from the
ability to reproduce experimental situations qualitative
while remaining amenable to analysis. As experimental
probe ever deeper into the behavior of systems with a la
number of degrees of freedom, new models of globa
coupled oscillator arrays are introduced, in which the in
vidual oscillators are either continuous or discrete in tim
and whose collective behavior is highly irregular. Some
the experimental situations in which global coupling aris
naturally are related to nonlinear optics, with examples ra
ing from solid-state laser arrays@1# to multimode lasers@2#.
In electronics, a number of experiments on Josephson ju
tion arrays coupled in series or in parallel have indicated
presence of very rich dynamics, often related to the mu
plicity of attractors, or the linear stability properties of ful
synchronized states~cf. Ref.@3#, and references therein!. The
majority of models proposed to describe these dynamics
framed as globally coupled sets of ordinary differential eq
tions ~ODE’s! @4–6#. The ODE’s are usually not rigorousl
reduced to CML’s, and the introduction of the discrete-tim
map lattices is often motivated by the desire to improve
phenomenological insight into the evolution of th
continuous-time oscillators@7#. For example, Wiesenfeld an
571063-651X/98/57~5!/4921~12!/$15.00
,
e
in

in
-

-
e

d

,
ts
e

y
-
,
f
s
-

c-
e
i-

re
-

e

Hadley @8# found that CML’s provided useful reduced sy
tems to investigate the effects of low levels of noise on la
globally coupled arrays which possess an even larger num
of attractors. In the present paper, we present some insi
into the genesis and robustness of highly irregular collec
motion in various CML’s, with the hope that these mig
ultimately further our understanding of the nontrivial colle
tive properties of coupled oscillator arrays.

In this context, ‘‘collective’’ refers to the properties o
global averages, or, more generally, of functions which
pend on all the degrees of freedom of the lattice model. T
simplest, and most frequently discussed, such quantity is
average activity across a lattice—the mean field. The evo
tion of these averages is said to be ‘‘nontrivial,’’ by conve
tion, if it is nonstationary in the asymptotic temporal regim
and in the thermodynamic limit~in which a lattice becomes
infinitely large!. Furthermore, the hallmark of NTCB is th
simultaneous presence of local~or microscopic! chaos. It is
worth noting here that the behavior in this limit is inves
gated directly from an evolution equation for the mean fie
which is akin to the Perron-Frobenius equation, but which
nonlinear. This approach, explained in detail in Sec. II ori
nally suggested by Kaneko@9# and later used by Pikovsky
and Kurths@10# allows us to bypass the problem of finite
size effects.

Three types of NTCB are clearly present in CML’s: pe
odic, quasiperiodic, and chaotic@11,12#. Periodic NTCB can
be shown in some prototypical models to reflect a spec
property of the corresponding Perron-Frobenius opera
known as asymptotic periodicity~AP!. AP is characterized
by the cyclical evolution of ensemble densities, and the
multaneous presence of microscopic chaos. No such c
picture has emerged regarding the nature and the origi
collective quasiperiodicity and collective chaos in spite
recent investigations which relate~in partial differential
equations! the largest Lyapunov exponent for spatially ave
aged observables to that associated with the microscopic
namics@13#. The present work aims at filling this void, for
particular class of CML models.

The major drawback in the analysis of the intrinsic pro
erties of mean-field dynamics is the lack of knowledge of
4921 © 1998 The American Physical Society
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4922 57LOSSON, VANNITSEM, AND NICOLIS
equation of motion. Therefore, the investigation of the nat
of the dynamics of these observables should be perfor
using indirect tools such as the computation of correlat
dimension or Lyapunov exponents from long time records
the mean field. However, these last approaches are only
sible when the observables considered live on a lo
dimensional attractor@14#. Since there is no reason to thin
that the mean field of CML’s possess a low-dimensional
tractor, we must thus resort to another approach~although, as
we demonstrate in this paper, such an attractor someti
exists!. The one adopted here is widely used in atmosph
dynamics to determine the limits of predictability of the a
mosphere, and consists of investigating the property of s
sitivity to initial conditions of the system through the anal
sis of the evolution of small initial errors arising from th
finite precision of the measuring device@15#. If the system
considered is chaotic, the amplitude of the error increase
time until it reaches a size of the order of the size of
attractor, while, if the system is nonchaotic, the amplitude
the error remains small compared to the attractor’s size.
a periodic~quasiperiodic! attractor, the error typically oscil
lates periodically~quasiperiodically!, and the amplitude of
this oscillation depends on the size of the initial error, and
the various local trajectory velocities on the attracto
Studying the qualitive features of error growth therefore p
vides an efficient tool to distinguish the chaotic or nonch
otic character of the dynamics.

Section II explores the phenomenology in a toy mo
which is amenable to some analytic investigations. The c
lective behavior is then characterized quantitatively in S
III, by focusing on the propagation of errors in the mea
field trajectories. In Sec. IV, we reduce the functional eq
tion governing the evolution of the distribution of activit
across an infinitely large lattice to a low-dimensional vec
transformation. This reduction provides a number of insig
into the origin of the collective chaos. The case of quasip
odic NTCB is discussed in Sec. V. The main results obtai
are summarized in Sec. VI.

II. GLOBALLY COUPLED ‘‘TOY’’ MODEL

We will focus on a model originally introduced by Pik
ovsky and Kurths@10# as a simple system which can b
ergodic without being mixing. The model turns out to po
sess very interesting collective properties which range fr
the traditionally considered stationary and periodic regim
to less understood chaotic ones. It is also remarkable bec
the evolution equation for the mean field is a low
dimensional vector transformation which can be analytica
derived~cf. the Appendix!.

The evolution equation of the model is as follows:

xt11
~ i ! 5a«~ t !~12uxt

~ i !u!21, i 51, . . . ,N, ~1!

with

a«~ t ![a01
«

N (
j 51

N

xt
~ j ! ~2!

5a01«ht . ~3!

Throughout this paper,ht will denote the mean field~or con-
centration, or spatial average! at time t. We will analyze a
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few typical cases for which the dynamics ofht are neither
stationary in time nor time periodic.

Figure 1 illustrates a typical nontrivial behavior of th
mean field. Here there is no slow convergence to a fix
point or a periodic cycle: the return maps correspond
asymptotic regimes. As reported by Pikovsky and Kurt
@10#, an important feature is that when the size of the syst
increases, the fine structure of the attractor is revealed as
finite-size effects gradually disappear. As seen below, th
finite-size effects can be very well controlled by focusin
directly on a nonlinear version of the Perron-Frobenius eq
tion for the system, thus circumventing the need for bru
force simulations of large lattices.

In the limit N→` the mean field can also be compute
from the ‘‘collapsed’’ densityf t . f t describes at timet the
distribution of activity across an infinitely large network, an
it is approximated, whenN is finite, by the histogram con-
structed by binning all thext

( i )’s for fixed t and alli . In other
words,

lim
N→`

ht5E
21

1

u ft~u!du. ~4!

The probabilityp that an element of the lattice will have a
value betweenx2d andx1d is

p5E
x2d

x1d
f t~u!du. ~5!

Clearly *21
1 f t(u)du51. Let

St~x![~a01«ht!~12uxu!21, ht[E
21

1

y ft~y!dy. ~6!

In essence, Eq.~6! is just a tent map with a time-dependen
slope, and the associated Perron-Frobenius operator is s
lar to the expression for the standard tent map~cf. Ref. @16#!

f t11~x![PSt
f t~x!5

1

a«~ t ! F f tS x

a«~ t ! Dx@21,0#~x!

1 f tS 12
x

a«~ t ! Dx@0,1#~x!G ~7!

~with, as usual,x@a,b#(x)51 if xP@a,b#, and 0 otherwise!.
Though Eq.~7! looks deceptively simple, it is nonlinear be

FIG. 1. Left: The return map for the mean fieldht computed on
a lattice of 93104 elements, witha051.9 and«520.74. Right:
The same for a lattice of 106 elements, with 103 transients dis-
carded.
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57 4923APERIODIC MEAN-FIELD EVOLUTIONS IN COUPLED . . .
cause of the slope’s dependence on the densityf t , and it can
generate very irregular trajectories for the densitiesf t ~and
thus the mean fieldht!.

The return map of Fig. 2, obtained by the numerical
lution of Eq.~7!, clearly confirms the tendency shown in Fi
1. It is indeed indicative of a fine-structure attractor whi
persists in the thermodynamic limit. The accuracy of the
gorithm used to generate Fig. 2 is approximately 1024. As
discussed in Sec. IV, it is possible to do much better, but
entails a more geometrical description of the action of E
~7! on densities. Before proceeding to this geometrica
based description, it is instructive to clarify exactly whic
kind of mean field evolutions are displayed by system~1!.

III. CHARACTERIZATION OF THE MEAN-FIELD
DYNAMICS

The investigation of the dynamical properties of averag
observables is hampered by our lack of knowledge of th
equations of motion@17#. This implies the need for using
algorithms developed in the context of time series analy
~i.e., computation of the correlation dimension, Lyapun
exponents@18#!. But these tools become practically inapp
cable when the dimension of the attractor becomes la
@18#. These limitations prompt the introduction of an alte
native method to classify the mean-field dynamics in syste
such as Eq.~1! since there isa priori no reason to believe
that the evolution of mean fields in such models will
governed by very few degrees of freedom. This alterna
method is based on the qualitative features of error growt
mean-field trajectories at various parameter values.

Let x0PRN denote the initial state of a transformation
RN, andx085x01e0 denote a perturbed state displaced fro
the referencex0 by a small errore0 . The instantaneous erro
between the two trajectoriesxt and xt8 evolving from these
initial conditions will be

Et[uxt2xt8u, ~8!

where u u is a suitably defined vector norm. In the limits o
infinitely long time and infinitely small initial error, Eq.~8!
grows exponentially with a rate equal to the large
Lyapunov exponent in the system, a quantity independen

FIG. 2. Return map for the mean field computed from dir
numerical integration of Eq.~7!, for the same parameters as those
Fig. 1.
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the initial condition. But in practice, these double limits c
never be achieved and as a result local variability is unavo
able. It is therefore necessary to adopt a probabilistic p
spective in order to obtain properties which are independ
of the initial conditionx0 @19#. The mean error is then de
fined to be

^Et&[E
A

f * ~x0!uxt2xt8udx0 , ~9!

wheref * is the invariant probability density of occupation o
the attractorA. An additional averaging overe0 can be per-
formed if necessary. The temporal evolution of^Et& provides
interesting insights into the properties of the system gene
ing the trajectory$xt%.

In chaotic dynamical systems, the temporal evolution
Eq. ~9! follows a ‘‘universal’’ pattern: During a short initia
period, the error remains small and its evolution is well d
scribed by a linearized set of equations@19#. This is followed
by a second regime, during which the error increases line
in time because of nonlinear effects which are no lon
negligible. Finally, in the asymptotic regime, the error sa
rates, and fluctuates around the mean distance separatin
arbitrarily chosen points on the attractor. When the behav
is periodic or quasiperiodic, the mean error tends to oscil
~periodically or quasiperiodically!, and it typically remains
smaller than the average distance separating two rando
chosen points on the attractor~unless very special sets o
initial conditions are chosen!. These qualitative difference
therefore provide efficient means of distinguishing betwe
the various forms of collective behavior, and we now pr
ceed to an investigation of mean error dynamics in
Pikovsky-Kurths model.

As a first numerical experiment, a small random pertur
tion uniformly supported on@25310211,5310211# is
added to eachxt

*

( i ) of transformation~1!, at an arbitrarily

chosen, but large, timet* . This in turn induces a small ini-
tial error in the mean field of the model. Figure 3 displays t
mean error growth curves associated to the mean fields
the various coupling strengths. The norm used here to c
pute Eq.~8! is the two-dimensional Euclidean norm becau
we work numerically with a plane projection of the mea
field attractor. The attractor dimension will in general depe
on the parameter values, and, for complicated regimes, t
is no reason to expect that this dimension will be two. B
for «520.74, for example, it seems that the attractor is
sentially composed of two closed curves, and that the
tances separating points on this curve should meaningf
be computed with the two-dimensional Euclidean nor
Given our lack of information for the attractor dimension
other regions of parameter space, the same norm is u
when the attractors are more complex.

Clearly, the mean error curves presented in Fig. 3 fo«
520.1, 20.74, and21 with 23106 elements display a
similar initial exponential behavior which ends when t
mean error attains a value of the order of 531024. After this
first regime, explained below, two different types of err
evolution appear: for«520.1 the error saturates immed
ately and oscillates around a level which is close to the ini
error; for «521 and for«520.74, the the mean error in

t
f
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4924 57LOSSON, VANNITSEM, AND NICOLIS
creases with a growth rate smaller~0.1 time unit21 in the
case«521! than the one corresponding to the first exp
nential regime~0.55 time unit21!. At very large times, the
error finally saturates.

To understand the origin of the first exponential behav
for the three parameters of Fig. 3, we follow Pikovsky a
Kurths and write the mean field in this finite-size system a
sum of two contributions

ht5 x̄t1
Dt

N1/2 j t , ~10!

where x̄t5*x ft(x)dx; Dt5*(x2 x̄t)
2f t(x)dx and j t are

Gaussian random variables. In this picture, the origin of
fluctuationsj t is the microscopic chaos, and so two initial

FIG. 3. Growth of an initial perturbation in the CML model~1!
with a051.9 and N523106. Top: Superposition of the erro
growth when«520.1 ~thin solid line!, 20.74 ~dotted line!, 21
~thick line!. The initial exponential regime is due to the microscop
chaos. For«520.1, the attractor is a mean field. For«520.74
and 21, the attractor is more complicated~cf. Fig. 7!. Middle: «
520.74 and21 traces viewed on a different scale to illustrate t
long time error growth following the initial exponential regim
Bottom: Error growth«521 andN5107. Note the second expo
nential regime between steps 44 and 51.
-

r

a

e

close trajectories, will, at very small scales, diverge fro
each other exponentially. This generates the initial expon
tial regime common to all traces of Fig. 3. As one wou
expect from Eq.~1!, the slope of the initial segments de
creases as« decreases. In addition, its value~0.55 time
units21 for «521! corresponds to an estimate of the large
Lyapunov exponent which is consistent with Eq.~1! when
a051.9, «521, ht.0.1.

Note that the numerical results presented in the fig
confirm the validity of Eq.~10!: the saturation of the initial
exponential regime takes place at scales which are of o
1/AN. In the limit thatN→`, displayed in Fig. 4, discusse
below, this regime disappears altogether.

After the initial growth of errors due to the microscop
dynamics, the mean-field behaviors for«520.74 and«5
21 appear to be different from one another. There is
clear exponential behavior for the former while a short e
ponential regime appears for the latter which reflects the c
otic character of the mean-field dynamics at a macrosco
scale~1023 and above!. This confirms the existence of ‘‘col
lective chaos’’@10,20#. This is a very interesting phenom
enon which suggests that, in some spatially extended mod
large scale observables might display a higher predictab
than small-scale ones~while retaining some of the complex
ity characteristic of the microscopic dynamics!. This change
in predictability resulting from changing the scale of avera
ing should receive further attention in the future.

Finally, note that for both«520.74 and21, the long-
term behavior of the error is a slow increase which even
ally stops when the error is comparable to the ‘‘attrac
size’’ ~data not shown in the figure!. This slow increase is
not observed for the periodic mean-field regime, when«5
20.1.

It is desirable to investigate mean-field dynamics in t
thermodynamic limitN→`, a limit which can be simulated
by integrating Eq.~7! directly with standard routines~a much
finer approach is also developed later in Sec. IV!. In this
context, however, our perturbing methodology must adap
the fact that we are no longer dealing with a CML who
components can be perturbed individually. Instead, com
tations are performed directly on a time series of the m
field ht obtained from the nonlinear Perron-Frobenius eq
tion ~7!.

A natural way to address the problem might have been
perturb the density itself, thus indirectly perturbing the me
field, to then follow the simultaneous evolutions of the pe
turbed and unperturbed time series, and to repeat the pro
in order to take averages. The problem with this approac
that it assumes that the perturbed and unperturbed solu
will eventually settle on the same attractor. This is no
reasonable hypothesis here; in fact, we will see in Sec.
that the Pikovsky-Kurths system can possess different co
isting attractors.

In order to circumvent the problem, we adopt a techniq
developed and used in the field of atmospheric dynam
since the beginning of the century@21#. This method consists
in finding in a long historical record atmospheric patter
which resemble one another, and was devoted in its e
applications to classification purposes and long range fo
casts@22#. This technique is known as the method of an
logs. Lorenz@23# used it to estimate the predictability of th
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57 4925APERIODIC MEAN-FIELD EVOLUTIONS IN COUPLED . . .
atmosphere directly from experimental data rather than fr
inherently imperfect models. The approach consists of
following steps.

~1! Consider a very long time series of the desired m
surement@the mean field for system~1! in our case#.

~2! Set aside a segment of the original time series fr
t5t* ~a large arbitrarily chosen time! to t5t* 1N as a ref-
erence to be used in step 3~N is a parameter in the method
we choseN52 for reasons discussed below!.

~3! Scan the time series fort.t* 1N until a segment of
lengthN which is ‘‘close’’ to the reference segment prev
ously stored is found~closeness obviously depends on t
definition of a suitable norm to measure the differences
tween time-series segments; we pick the Euclidean norm
RN!.

~4! The reference segment chosen at step~2! and the one
found at step~3! form a ‘‘pair of analogs.’’ Lett

*
an denote the

starting time of the analog segment.
~5! Compute the differencesD( i )[uxt

*
1N1 i2xt

*
an1N1 i u

for i 51, . . . ,L ~L is another parameter of the method. W
chose generallyL5100 orL51000!.

~6! Repeat steps~2!–~5! and average the difference
D( i ).

The differences between pairs of analogs are thought o
‘‘small’’ initial errors whose evolutions are analyzed in ana
ogy to what is done in Eq.~8!. Here, explicit equations o
motion are not required, and there is no need to perturb
phase-space trajectories in order to study the subsequent
lution of these perturbations.

Figure 4 shows the mean error evolution, averaged o
about 300 pairs of analogs, of the mean field obtained
direct integration of the Perron-Frobenius equation for
two parameter values«520.74 and21. The analogs were
chosen by selecting close mean fields for the data displa
in Fig. 2. Despite the small number of realizations, a cl
trend for the mean error evolution emerges, indicating a s
sitivity to initial conditions. But the shape of the curves d
fers markedly from the one displayed in Fig. 3: the init
exponential regime is absent. This absence reflects tha
limit N→` is taken in Eq.~10!. But there is another mecha
nism possibly responsible for the elimination of the seco

FIG. 4. Illustration of the error growth by direct simulation o
the nonlinear Perron-Frobenius equation~7!. Same parameters a
for Fig. 3. From top to bottom the lines display error propagat
traces for«521, 20.74, and20.1. The main difference with Fig
3 is the absence of the initial exponential regime due to the mi
scopic fluctuations. This figure was produced with the method
analogs described in the text, using 300 analogs.
m
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exponential error growth regime~when «521!. The ana-
logs used to produce Fig. 4 are chosen from a tw
dimensional plane projection of the mean-field attractor. B
cause this projection distorts the latter, two analogs mi
not actually correspond to two states which are close on
attractor. In this case the linear theory of the evolution
small perturbations does not hold, and there is no reaso
expect initial exponential error growth.

The results of Figs. 3 and 4 show clearly that that there
sensitivity to initial conditions at the level of mean-field d
namics for«520.74 and21, even in the thermodynami
limit. Hence, in light of these results, the initial descriptio
of the attractor for«520.74 and that of the sequence
bifurcations described in Ref.@10# for a51.9 and decreasing
« must be revisited. But this is a numerically intensive ta
which cannot be undertaken by direct integration of the n
linear Perron-Frobenius equation. Instead, we make us
the piecewise linear nature of transformation~1! to reduce in
Sec. IV the nonlinear Perron-Frobenius equation to a ve
transformation which, as it will turn out, is acting on a su
prisingly low-dimensional space.

IV. DERIVING A LOW-DIMENSIONAL
‘‘MEAN FIELD MAP’’

The cornerstone of this approach is the~numerical! obser-
vation that the solutions of equation~7! are piecewise con-
stant. Furthermore, the number of ‘‘plateaus’’ or piecew
constant segments which are needed to represent the de
with a prescribed accuracy increases very slowly with
inverse of the resolution. The relation between the accur
of the approximation and the number of plateaus depend
the parameters of the model and is briefly discussed at
end of this section~cf. Fig. 5 below!. Recently, Morita used
these observations to construct a matrix approximation to
operator governing the evolution of collapsed densities
globally coupled tent map lattices@12#. The approach de-
scribed below generalizes his description to any CML sa
fying the following conditions.

~1! The microscopic transformation is the same for
sites.

~2! It is piecewise linear.
~3! Each site is coupled to all others, and the coupling

spatially isotropic.
When the three assumptions above are met, then a ve

approximation to Eq.~7! can be derived by using essential
geometrical arguments.

-
f

FIG. 5. Two successive densitiesf t ~solid line! and f t11 ~dashed
line! in the asymptotic regime~106 transients were discarded!. Pa-
rameters area051.9 and«520.74. This figure was obtained from
direct numerical integration of Eq.~7!.
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4926 57LOSSON, VANNITSEM, AND NICOLIS
A. Iteration of a constant density

Supposef 0(x)[c0 for all xP@a0
(1) ,a0

(2)#, where 21
,a0

(1),0,a0
(2),1. We now calculatef 1(x)5PS0

f 0(x).

Let a1
(1)[S0„min(ua0

(1)u,ua0
(2)u)…, a1

(2)[S0„max(ua0
(1)u,ua0

(2)u)…,
anda1

(max)[S0(0). Then Eq.~7! yields

f 1~x!5H c0

a«~ t !
;xP@a1

~1! ,a1
~2!#

2c0

a«~ t !
;xP@a1

~2! ,a1
~max!# .

~11!

Figure 5 displays an initially constant density and its fi
and second iterates. The simplicity of this example allows
to highlight some key features of this iteration process wh
hold whenf 0 is a more complicated function.

~i! If the support of a densityf t includes the origin, then
f t11 is ‘‘folded’’ because the iterate ofx50 is always the
upper bound for the support off t11 .

~ii ! If ua0
( i )uÞua0

( j )u; iÞ j , this folding implies the creation
of a discontinuity@at a1

(2)5S0(a0
(2)) in Fig. 5#. This is the

only possible mechanism via which the number of piecew
constant segments of the density can increase. With th
observations in mind, it is straightforward to consider t
evolution of more general initial densities.

B. Iteration of a piecewise constant density

Let I denote a set of densities such that iff tPI, it can be
written

f t~x!5(
i 51

N

ct
~ i !x I

t
~ i !~x!, with I t

~ i ![@a t
~ i ! ,a t

~ i 11!!,@21,1#

~12!

@x I(x)51 if xPI , x I(x)50 otherwise#, with the ordering

21,a t
~1!,a t

~2!,•••,a t
~ l 21!,0,a t

~ l 11!

,•••,a t
~N11!,1.

FIG. 6. Schematic illustration of the evolution of an initial
constant density. Typically, one plateau is created with each it
tion, but at the same time the amplitude of each existing disco
nuity decreases by a factora«(t). As a result, the number of ‘‘sig-
nificantly’’ different plateaus does not diverge in time~cf. Fig. 5!.
t
s
h

e
se

Here l 5 l (t) is always chosen such thata t
( l )50. A density

f tPI can be described completely by th
(2N11)-dimensional vector

ft :$a t
~1! ,...,a t

~N11! ,ct
~1! ,...,ct

~N!%. ~13!

If all iterates off t belong toI, the Perron-Frobenius operato
can be considered as a 2N11-dimensional vector transfor
mation. Typically however, iff t(x)PI, then f t11(x)¹I un-
less f t(x) contains as a discontinuity the preimage ofx50
@i.e., there isa t

( i ) such thatSt(a t
( i ))50#. To remedy this

problem, we imposea t11
( l ) [0, and relabel thect11

( i ) ’s and
a t11

( i ) ’s accordingly even if there is no ‘‘real’’ discontinuity
in the density atx50. The addition ofa t11

( l ) 50 to ft11 re-
sults in an increase of the vector’s dimension. To keep
dimension offt11 equal to that offt for all times, onea t11
~and the correspondingct11! must then be removed.

To this end, note thatSt decreases the amplitude of exis
ing discontinuities by a factor ofae(t) at every iteration, and
so at timeT some of the discontinuities are of amplitud
O(^a«& t

2T) where^ & t denotes time averaging. For examp
with a051.9, «520.74, numerically it is seen that^a«& t
;1.75, so the amplitude of the smallest discontinuities
time T550 should be of order 10212 ~for an initially flat
density!, an estimate which turns out to be consistent w
direct numerical simulations.

Now suppose that astrictly constant f0(x) ~so allc0’s are
equal! is approximated by a vector as in Eq.~13! with, say,
N550. There are enough components~i.e., 101! in the vec-
tors f0 , f1 ,..., f50 to approximate with any accuracy the ev
lution of the densitiesf 0 , f 1 ,..., f 50. For t.50, the density
possesses more than 50 discontinuities, so theoretically
101-dimensional vector description of the density cease
hold. But by the argument given in the preceding paragra
some of the discontinuitiesD t

( i )5uct
( i )2ct

( i 21)u will be
smaller thand̄510212 for t.50. ~In the rest of this paper,d̄
will be referred to as thetoleranceof our approximation, and
is not to be confused with the overallaccuracyof the ap-
proximation.! By neglecting one of these small-amplitud
discontinuities at every iteration, while adding the discon
nuity arising from the image ofx50, the dimension of the
approximating vectorft is kept constant. Of course, to obta
an exact expression for the vector approximation to Eq.~7!,
some bookkeeping is required~indices are changed becau
of the addition and subtraction of discontinuities!, but the
conceptual foundations require no additional ingredient. T
algorithm is described in detail in the Appendix and illu
trated in Fig. 6. Figure 7 displays various return maps
tained for several parameter values.

C. Closeness of the vector approximation to the
functional equation

From Sec. IV B, it is clear that if the initial density i
represented with a vector as in Eq.~13! with N550, the
resulting error in the averageht induced by this approxima
tion can at most be of order 10212, and this in turn translates
into a similar error on the slopea«(t). So we are naturally
led to the question of how closely the vector system stay
the original continuous one@i.e., Eq. ~7!#. This issue is re-
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57 4927APERIODIC MEAN-FIELD EVOLUTIONS IN COUPLED . . .
lated to the ‘‘shadowing’’ of Eq.~7! by Eq. ~13!, and it is
rather distinct from that discussed in Sec. IV B, which is t
sensitivity to initial conditions in either Eqs.~7! or ~13!. Note
that both issues are themselves not to be confused with
dependence on initial conditions displayed at the level
single trajectories for the CML. The problem discussed h
is the behavior of density trajectories, not that of individu
~or CML! trajectories.

Given that the effect of approximating the function
equation by a vector transformation is a perturbation in
slopea«(t) ~resulting from a perturbation in the averageht
as explained at the end of the Appendix!, the issue of how
closely the evolution of the discrete system will lie to that
the original one is related to the structural stability of t
~density! trajectories of Eq.~7!. Although we have not ana
lytically investigated the structural stability of the attract
for the functional equation, we rely on our numerical expe
ments to postulate this stability in some regions of
(a0 ,«) plane: the attractors forht are the same~within the
numerical error!, whether the CML is integrated directly, Eq
~7! is solved with standard routines, or Eq.~13! is iterated
with the algorithm described in the Appendix. Since Eq.~13!
is by orders of magnitude the fastest way to go about sim
lating the dynamics ofht , we will describe the behavior o
ht using this vector approximation.

D. Effects of noise vs truncation errors

If the toleranced is large enough it is possible to induc
spurious bifurcations which are similar to the ones aris
when white noise in injected in Eq.~7! by including a sto-

FIG. 7. Return mapsht11 vs ht for a051.9 and various values
of the coupling parameter«. The only periodic cases here are o
served for«520.31 and20.54; in all other panels, the evolutio
of ht is either quasiperiodic or chaotic, with initial errors eith
oscillating around a fixed level, or increasing exponentially.
panels were obtained withN550 equal cells. The toleranced̄ de-
fined in Sec. IV B is 10211.
he
f
e
l

e

f
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e
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g

chastic component to the slopea«(t), and using instead o
the deterministic value, the expression

ã«~ t ![a01«htj, ~14!

wherej is a random variable uniformly distributed on som
subinterval of@21,1#. Figure 8 displays the similarity be
tween the effects of including noise in the system, and th
resulting from an inappropriate truncation of the number
plateaus.

This simple numerical experiment indicates how o
should study the~spurious! effects which a faulty approxi-
mation of the original functional equation can have on t
numerical simulations: These effects will be akin to nois
induced transitions. But studying such phenomena is not
purpose of the present paper. We will always choose
approximation with a tolerance small enough to guaran
that we do not induce undesired bifurcations. This is done
picking the combination ofd and the number of cells in the
approximation to be such that a reduction of the former a
an increase in the latter does not have discernable effect
the collective dynamics.

E. Characterization of the collective attractors

One of the motivations for introducing the vector appro
mation to the nonlinear Perron-Frobenious equation is tha
is very efficient. We were thus able to investigate extensiv
the ‘‘collective bifurcation diagram.’’ The results of thes
numerical studies are summarized below, and presente
Figs. 8 and 9.

~1! The presence of collective quasiperiodicity in mod
~1! is not confirmed. A closer look at what appears to
quasiperiodic motion in Eq.~7! ~when a051.9 and «5
20.74, for instance! reveals that there are still error prop
gation~illustrated already in Figs. 3 and 4!. This is not what
is observed in quasiperiodic systems~cf. Sec. V!. Further
numerical work is needed to characterize the transition fr
statistical stability to statistical chaos in system~1!.

~2! We identify a type of multistability: the ‘‘collective
attractor’’ depends on the initial density for the Perro
Frobenius equation. This multistability is remarkable b
cause it is more than a change in the amplitude of an ot
wise qualitatively unchanging attractor reported in Ref.@20#
in globally coupled tent maps. Such amplitude changes
also observed in systems displaying periodic NTCB, a
they are a consequence of the spectral properties of
Perron-Frobenius operator@24#. Figure 9 displays a rathe
different phenomenon: the qualitative features of the attr
tor can change drastically if the initial density in Eq.~7!
crosses the boundaries of various basins of attraction.

In addition to giving rapid access to some fascinating p
nomenology, the vector approximation presented in S
IV B highlights the fact that there is a large reduction in t
numbers of degrees of freedom which are responsible for
bulk of the collective motion. This is not unlike the situatio
of certain partial differential equations whose dynamics c
be shown to essentially belong to a low-dimensional s
manifold of the original infinite-dimensional phase space

l
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F. Discussion

The nonlinear transfer operator~7! can be represented b
a low-dimensional vector transformation because the de
ties f t can be written as a linear combination of basis fun
tions~12!. This, in turn, reflects the properties of the space
functions left invariant by the nonlinear operator~7!: these
spaces must be compact.

The fact that the basis functions in Eq.~12! are piecewise
constant facilitates the algebra, but it is not essential. Wha
essential, is the possibility to represent the densities i
relatively low-dimensional basis. Recently, Alonsoet al.
showed that such bases exist for single logistic maps in la
regions of parameter space@25#. Furthermore, the numeric
of Kaneko @26# clearly suggest that the distributions of a
tivity for lattices of globally coupled logistic maps can b
represented as a low-dimensional linear combination of b
functions. It is therefore probable that the program carr

FIG. 8. Top: Return map fora051.9 and«520.74, with N
548 in Eq.~13!, andd510212. Middle: Return map for the mean
field obtained from the same 48-cell approximation applied to
stochastic model~7! with the slope given by Eq.~14!, with noise
uniformly supported on@21.531023,1.531023#. Bottom: The re-
turn map obtained in the deterministic equation~7!, with a 20-cell
approximation of the density, withd5331023.
si-
-
f

is
a

e
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d

out in Sec. IV can be carried out when the original Pikovsk
Kurths model is replaced by a globally coupled logistic m
lattice, and the piecewise constant densities are replace
the appropriate basis functions. This work lies beyond
scope of the present paper, and we now turn our attentio
logistic map lattices which are locally, rather than global
coupled, because they are representative of a class of sys
in which the origin of complex mean field behavior is not
nonlinear transfer operator, but the presence of microsco
symmetries.

V. COLLECTIVE QUASIPERIODICITY
IN LOGISTIC CML’s

Collective quasiperiodicity has been reported in hyper
bic lattices of democratically and globally coupled logis
maps@11#, and in globally coupled tent maps@26,12#. In the
latter model, Morita illustrates how the nonlinearity of th
operator governing the evolution of collapsed densities
result in quasiperiodic mean-field trajectories.

In this section, we focus on the mean-field behavior
locally coupled logistic maps, because the conclusions
two recent publications@27,28# lead rather naturally to a
working hypothesis concerning the origin of collective qu
siperiodicity in a class of CML’s of which locally couple
logistic maps are representative.

Chatéet al. @27# provided strong evidence that collectiv
dynamics in logistic map lattices can be captured by an
proximation in which all spatial correlations beyond a certa
~small! scale can be neglected. According to these auth
the original CML should then be thought of as a lattice
diffusively coupled ‘‘mesoscopic units,’’ each unit bein
composed of a small number of strongly coupled logis
maps.

In addition, Reick and Mosekilde@28# described condi-
tions under which such units should generate quasiperio
trajectories: these arise generically in symmetrically coup
systems of identical period-doubling maps. In that case,

e

FIG. 9. Illustration of multistability in the mean-field dynamic
for model ~1!. All four return maps were obtained from the vect
approximation to Eq.~7!, with a051.9 and«520.52. ~A! The
initial density was supported uniformly on@20.4,0.494425#. ~B!
The initial density was supported uniformly on@20.4,0.311108#.
~C! The initial density was supported uniformly o
@20.35,0.272219#. ~D! Same as in~C!, but the scale is changed t
display the complex nature of the attractor.
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57 4929APERIODIC MEAN-FIELD EVOLUTIONS IN COUPLED . . .
first two period-doubling bifurcations in the single maps a
replaced by two Hopf bifurcations in the coupled system,
second one of which typically generates quasiperiodic
These quasiperiodic solutions are by nature bistable with
~possibly chaotic! solutions of the single maps, and the bas
boundaries separating quasiperiodic and chaotic attrac
are extremely complex. Thus ensemble averages for s
systems will include contributions from chaotic and fro
quasiperiodic attractors. For example, consider the t
dimensional transformations

Tx~xt ,yt![~12«!S~xt!1«S~yt!, ~15!

Ty~xt ,yt![~12«!S~yt!1«S~xt!, ~16!

whereS(x)5rx(12x) and«P@0,1#. Figure 10 displays the
activity of Eqs.~15! and ~16! when it is quasiperiodic, and
the propagation of an initial error separating two trajectori
We observe that the error oscillates quasiperiodically,
that it does not slowly increase as in the case~«520.74,
a051.9! for the Pikovsky-Kurths system~cf. Figs. 3 and 4!.
Figure 11 displays the return map for anensembleaverage
ht , when some of the elements in the ensemble evolve q
siperiodically, while others evolve chaotically. Hereht can
be expressed in the asymptotic regime as the sum of
contributions~if there are only two bistable attractors!:

ht5E
C
x ft~x!dx1E

Q
x ft~x!dx, ~17!

FIG. 10. Top: The temporal evolution of an initial error in th
coupled logistic map models~15! and ~16! with r 53.711 and«
50.1. Note that, on average, there is no long term increase o
initial error. Bottom: the quasiperiodic attractor for systems~15!
and ~16! displayed with 103 successive iterations.
e
.
e
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wheref t is the probability of occupation of phase space, a
C andQ denote the chaotic and quasiperiodic attractors,
spectively. Numerically, the ensemble is approximated b
finite collection of two-dimensional~2D! maps ~which we
think of as a lattice of decoupled 2D maps!, and the en-
semble average is therefore approximated by the mean
for this finite lattice. Here again this mean field can be e
pressed as the sum of two contributions:

ht5
1

N (
j 51

N

xt
~ j !5

1

N F(
j PC

xt
~ j !1(

j PQ
xt

~ j !G , ~18!

whereC andQ now denote the sets of indices correspond
to sites which evolve chaotically and quasiperiodically,
spectively. TheC contribution asymptotically reaches
steady state~plus finite-size fluctuations!, while theQ contri-
bution is responsible for the observed collective quasiperi
icity. The relative importance of the quasiperiodic attracto
reflected in the fact that the finite-size fluctuations associa
with the chaotic sites are ‘‘washed out’’ when they averag
with the nonfluctuating quasiperiodic components.

This ensemble quasiperiodicity is ‘‘robust:’’ It survive
when maps~15! and~16! are coupled together diffusively a
in the following lattice models@Tx/y,t denotingTx/y(xt ,yt)
for short#:

xt11
~ i ! 5~12h!Tx,t

~ i !1
h

4
@Tx,t

~ i 11!1Ty,t
~ i 11!1Tx,t

~ i 21!1Ty,t
~ i 21!#,

~19!

yt11
~ i ! 5~12h!Ty,t

~ i !1
h

4
@Tx,t

~ i 11!1Ty,t
~ i 11!1Tx,t

~ i 21!1Ty,t
~ i 21!#,

~20!

wherehP@0,1#. Figure 12 displays the collective quasipe
odicity present in the model whenhÞ0 but small. If h is
increased further, a complex sequence of collective bifur
tions takes place. This sequence depends sensitively on
values of the other parameters« and r .

In addition to surviving the diffusive coupling of Eqs
~19! and ~20!, it is interesting to remark that the collectiv
quasiperiodicity is also observed numerically in systems p
turbed stochastically. Furthermore, investigating the prop

an

FIG. 11. Return map for the concentrationht12 vs ht is dis-
played for an ensemble of 43104 2D logistic maps@Eqs.~15! and
~16!# with «50.15 andr 53.711. The return mapht12 vs ht is
displayed for clarity:ht11 vs ht possesses two disjoint componen
which are far apart relative to the size of the one displayed h
The dots which surround the thick line are due to the transient
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4930 57LOSSON, VANNITSEM, AND NICOLIS
ties of stochastic models closely related to Eqs.~19! and~20!
is interesting in its own right since it is possible, in stochas
models, to relate theoretically the collective behavior to
spectral properties of the induced transfer operator@24#.

Here we describe the phenomenology in models~19! and
~20!, where Eqs.~15! and ~16! are replaced with

Tx,j
~ i ! ~xt ,yt![~12«!S~xt

~ i !!1«S~yt
~ i !!1jx

~ i ! , ~21!

Ty,j
~ i ! ~xt ,yt![~12«!S~yt

~ i !!1«S~xt
~ i !!1jy

~ i ! , ~22!

where thejx/y
( i ) are i.i.d. random variables. Typically, the

densityg(j) is supported on a finite~and small! subinterval
of @0,1#. If the interval is too large, the noise tends to destr
the apparent quasiperiodic collective behavior, and indu
first, periodic evolutions, and eventually, stationary beh
iors. Without loss of generality, we take the noise densityg
to be

g~j!5)
i 51

N

x@ l ,r #~jy
~ i !!, 0< l ,r<1, ~23!

wherex is the usual indicator function. Figure 13 displays
typical return map for Eqs.~19! and~20! with Eqs.~21! and
~22! when the noiseless model is quasiperiodic. The fig
displays the mean-field return maps both whenh50, and
whenhÞ0.

FIG. 12. Return mapsht12 vs ht for models~19! and~20!; same
parameters as in Fig. 11, except the ‘‘intercluster’’ coupling is n
turned on.~A! h50.001, and the mean field remains quasiperiod
~B! Hereh50.09, and the mean field evolves chaotically. Ash is
further increased, the mean field undergoes a complex sequen
bifurcations.

FIG. 13. Return maps for the mean fields of stochastically p
turbed lattices of 2D maps@Eqs.~21! and~22#!. As in the previous
figures, the map plotted isht12 vs ht for clarity. In both cases, the
parameters arer 53.711, thecoupling«50.15, and theperturb-
ing noise is uniformly supported on@20.00015,0.00015#. If the
noise amplitude is greater than this, the finest scale structures
played here are destroyed and replaced by ‘‘clouds.’’~A! the 2D
maps are uncoupled~h50!. ~B! the 2D maps are coupled~h
50.001!. As in the noiseless case, an increase inh will generate a
complex sequence of bifurcations~cf. Fig. 12!.
c
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When h50, the phase space is the unit square@0,1#
3@0,1#. Hence the ensemble densityf t used to determine the
mean fieldht ,

ht5E
0

1

yE
0

1

x ft~x,y!dx dy,

evolves under the action of the transfer operator@16#

f t11~x,y!5E
0

1E
0

1

f t~u,v !g„u2Tu~u,v !,

v2Tv~u,v !…dv du. ~24!

Such operators are asymptotically periodic@29#, a property
which implies that the mean field can only evolve perio
cally ~although the period of the collective cycle can be ve
high!. Hence the return map displayed in Fig. 13~a! is in fact
periodic.

WhenhÞ0, the phase space of the CML is now the h
percube@0,1#2N, and the transfer operator is the straightfo
ward 2N-dimensional generalization of~24!

f t11~x!5E
@0,1#2N

f t~u!g„u2T~u!…du. ~25!

Again, these operators are asymptotically periodic, a
therefore theensembleaverages for the CML’s also cycl
periodically. But ht is not an ensemble average for th
coupled system. It is an average which reflects the prope
of single trajectories.

It is tempting to generalize the conclusion, valid forh
50, that there is no collective quasiperiodicity whenh.0,
and that Fig. 13 in fact displays a periodic cycle with hig
period. Unfortunately, systems like Eqs.~21! and ~22! tend
not to be ergodic: the collective attractor, as in the tent m
described in Ref.@20#, depends on the initial distribution
Therefore, it is not possible at present to infer from the pro
erties of Eq.~25! those of mean-field trajectories. Despi
these theoretical shortcomings, Eqs.~21! and ~22! provide
some illustration for the robustness of the mean field’s attr
tor, even if a detailed analysis eventually uncovers a loss
true quasiperiodicity, and its replacement by a very hig
period limit cycle.

VI. CONCLUSION

The complex mean-field behavior observed in t
Pikovsky-Kurths model originates in the nonlinear nature
operator~7!, which governs the evolution of the collapse
densities. Remarkably, this operator can be well appro
mated by a nonlinear vector transformation which is of lo
dimension~less than 102!. This reduction of dimension is
interesting because it clearly demonstrates that some of
collective properties in large classes of CML’s can be inv
tigated with the tools developed to treat low-dimensional d
namical systems.

The essential ingredient for the nonlinearity of the trans
operator is the global coupling, and the essential ingred
for the reduction to a low-dimensional matrix is the existen
of a low-dimensional basis which spans the space invar
under the action of the operator. We note that these
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57 4931APERIODIC MEAN-FIELD EVOLUTIONS IN COUPLED . . .
ingredients are present in the globally coupled logistic m
lattices discussed in Ref.@20#, and that this model should
therefore be amenable to analytic investigations~though the
algebra will probably be heavier than in the piecewise lin
situations described here!.

In this framework, we expect that collective motion c
display the array of complex behaviors which are charac
istic of nonlinear low-dimensional discrete-time transform
tions. Examples are given by the collective bifurcation d
gram~Fig. 7! and by the remarkable coexistence of differe
chaotic attractors displayed in Fig. 9. Although such tra
formations can in principle possess quasiperiodic solutio
we note here that we did not find such attractors for mo
~1!, although such attractors were recently reported in a
lated globally coupled system@12#.

Locally coupled logistic map lattices point to an alt
gether different mechanism responsible for quasiperio
mean-field evolutions: the presence of quasiperiodic att
tors in symmetrically coupled~low dimensional! ‘‘clusters’’
of logistic maps results in the quasiperiodic evolution of a
erage in networks of these ‘‘clusters.’’ The quasiperiodic
tractors are by construction bistable with single map so
tions, and when these are chaotic~as in Fig. 11!, one
generically observes microscopic chaos coexisting in a gi
lattice with microscopic quasiperiodicity. The working h
pothesis linking the collective behavior to that of ‘‘meso
copic units’’ is consistent with the ideas presented in Re
@27, 28#.

In the test model of Sec. V, the collective quasiperiodic
clearly arises from the microscopic quasiperiodicity, and
survives diffusive intercluster coupling. In addition it als
survives the addition of small stochastic perturbatio
Analysis of the transfer operator in the presence of no
leads to the conclusion that the apparent collective quasip
odicity is in fact collective periodicity of high period@29#.

The present work leaves a number of avenues unexplo
The first is the extension of the present approach to a clas
models which are not piecewise constant, but quadra
Given the ubiquity of transformations possessing quadr
maxima in the modeling literature, it is important to theore
cally ground our understanding of collective properties
lattices of coupled logistic maps, and to identify the differe
mechanisms responsible for nontrivial collective behavior
these models. A related research avenue is to classify
kinds of transitions which separate the various collective
gimes. Although in some systems, such transitions have b
given preliminary attention@24,20#, much remains to be
done in this area. For example, although the presenc
critical phenomena is undeniable in CML’s its relation to t
spectral properties of transfer operators is still unclear@24#.
Finally, the multistability discussed in Sec. IV E is a rema
able phenomenon, which to our knowledge has not been
scribed previously. It is different in nature from that d
scribed in Ref. @20# because the coexisting attracto
discussed here are qualitatively different. The structure of
basin boundaries is still unknown, and the basic ingredie
which are necessary for the coexistence of multistable
lective attractors still need to be identified.
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APPENDIX

This Appendix describes in detail the algorithm which
used to simulate the matrix representation of the nonlin
transfer operator~7!. It relies heavily on a clear understand
ing of the geometrical properties of the model~1!.

Starting from Eq.~13!, the problem is to determine th
exact expression for the image vectorft11 approximating the
density f t11 introduced in Sec. IV:

ft115$a t11
~1! ,...,a t11

~N11! ,ct11
~1! ,...,ct11

~N! %. ~A1!

This is done in two steps. The first deals with thea t11’s, the
second with the plateau heights~the ct11’s!. From Eq.~1!,

a t11
~ j ! 5a«~ t !~12ua t

~k!u!21, with j 5P t~k!, ~A2!

where P t is some time-dependent permutation of the
$1, . . . ,N%. To obtain an explicit form forP t , note that the
closerua t

(k)u is to x50, the larger its image under Eq.~A2!,
and hence the larger the index of this image in Eq.~A1!. If j
is the index of theimagea t11

( j ) , then thepreimagemust be
such that

ua t
~ j !u.ua t

~ j 11!u, for all j 51, . . . ,N.

Obviously, thea t’s are known, and so the permutationP t is
easily determined in practice@for example,P t( l )5N11 for
all t#. Computing thect11’s is a little trickier.

Note that each constant segment of the initial densityf t ,
of height ct

(k) on the interval@a t
(k) ,a t

(k11)# will be trans-
formed under the action of the transformationSt into another
constant function of height ct

(k)/a«(t) defined on

@a t11
P t(k) ,a t11

P t(k11)
#. Here the ordering of the originala t

(k)’s is
not necessarily preserved under the action of the transfor
tion because it is possible to have~with n.k11, n
P$1, . . . ,N11%!

ua t
~k!u.ua t

~n!u.ua t
~k11!u and a t

~k!,a t
~k11!,0,a t

~n! .

Hence the images of the constant segments off t can overlap,
so that to computect11

( j ) it is necessary to sum the contribu
tions of all the segments whose images overlap with
interval @a t11

( j ) ,a t11
( j 11)#. Define the setHt( j ),$1, . . . ,N

11%:

Ht~ j !:$1<k, l such that @a t11
~ j ! ,a t11

~ j 11!#

ø@a t11
P t~k! ,a t11

P t~k11!
#Þ0”%,

Ht~ j !•:$ l<k<N11 such that@a t11
~ j ! ,a t11

~ j 11!#

ø@a t11
P t~k11! ,a t11

P t~k!
#Þ0”%.
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In other words, the setHt( j ) contains the indices of the con
stant segments off t whose images overlap with thej th seg-
ment of f t11 . With this notation, we have

ct11
~ j ! 5 (

kPHt~ j !

ct
~k!

a«~ t !
. ~A3!

Define the integer 2,q,N to be such thatD t11
(q) , d̄,

while D t11
( i ) . d̄ for i ,q. To keep the dimension offt11

→

equal to that offt , a t11
(q) is removed from the vectorft11

→ .
Hencect11

(q21) andct11
(q) must be equated, and this is done

that the mass of the interval@a t11
(q21) ,a t11

(q11)# is unchanged.
What is changed here is the value ofht11 , and although the
exact perturbation depends on the values ofa t11

(q21) , a t11
(q) ,

a t11
(q11) , and D t11

(q) , a conservative upper bound on th
change inht11 can easily be seen to bed̄ itself.
.

B

m

Once the expressions~A2! and ~A3! for the vectorft are
obtained, we carry out the ‘‘approximation’’ which consis
of ~1! eliminating thea t11

(q) corresponding to a small discon
tinuity, settingct11

(q21) , ct11
(q) 5c8 where

c85
ct11

~q21!~a t11
~q! 2a t11

~q21!!1ct11
~q! ~a t11

~q11!2a t11
~q! !

a t11
~q11!2a t11

~q! ,

~2! adding a t11
( l ) in the vector ft11

→ , and ~3! setting ct11
( l )

5ct11
( l 21) .
Equations~A1!, ~A2!, and~A3! define the vector transfor

mation which approximates the nonlinear Perron-Froben
equation, and which can be easily implemented numeric
~cf. Fig. 6!.
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