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This paper discusses aperiodic mean-field dynamics in several classes of coupled mapdattices Two
mechanisms underlying complex mean-field evolutions are described. One is the nonlinearity of the mean field
evolution equation. The other, at play in locally coupled logistic map lattices, is the presence of “microscopic”
symmetries. The present work demonstrates that the collective motion in a large class of CML's is governed by
a low-dimensional dynamical system which can, in some instances, be obtained explicitly. The paper also
reports an interesting kind of mean-field multistability, and discusses the robustness of complex mean-field
behaviors under the action of microscopic stochastic perturba{isa863-651X%97)04410-3

PACS numbd(ps): 05.45+b, 64.60.Cn

I. INTRODUCTION Hadley[8] found that CML'’s provided useful reduced sys-
tems to investigate the effects of low levels of noise on large
In this paper we investigate nontrivial collective motion in globally coupled arrays which possess an even larger number
models framed as coupled map lattidgaML’s). We first  of attractors. In the present paper, we present some insights
focus on a globally coupled lattice of piecewise linear mapsinto the genesis and robustness of highly irregular collective
and then consider the ubiquitous logistic map lattice. Thesenotion in various CML'’s, with the hope that these might
two systems are representative of two classes of models inltimately further our understanding of the nontrivial collec-
which nontrivial collective motion arises for very different tive properties of coupled oscillator arrays.
reasons. In the piecewise linear map, we show that the origin In this context, “collective” refers to the properties of
of complex collective dynamics lies in the remarkable presglobal averages, or, more generally, of functions which de-
ence of a low-dimensional nonlinear dynamical systempend on all the degrees of freedom of the lattice model. The
which governs the temporal evolution of the mean field. Insimplest, and most frequently discussed, such quantity is the
the logistic maps system, we show that “microscopic” sym-average activity across a lattice—the mean field. The evolu-
metries play an important role in the genesis of collectivetion of these averages is said to be “nontrivial,” by conven-
guasiperiodicity. Before reviewing the concept of “collec- tion, if it is nonstationary in the asymptotic temporal regime
tive motion” in CML'’s, we briefly discuss some of the mo- and in the thermodynamic limiin which a lattice becomes
tivations for studying these discrete-time spatially extendednfinitely large. Furthermore, the hallmark of NTCB is the
models. simultaneous presence of lodalr microscopi¢ chaos. It is
In the literature, the appeal of CML’s comes from their worth noting here that the behavior in this limit is investi-
ability to reproduce experimental situations qualitatively,gated directly from an evolution equation for the mean field
while remaining amenable to analysis. As experimentalistsvhich is akin to the Perron-Frobenius equation, but which is
probe ever deeper into the behavior of systems with a largaonlinear. This approach, explained in detail in Sec. Il origi-
number of degrees of freedom, new models of globallynally suggested by Kanek®] and later used by Pikovsky
coupled oscillator arrays are introduced, in which the indi-and Kurths[10] allows us to bypass the problem of finite-
vidual oscillators are either continuous or discrete in timegsize effects.
and whose collective behavior is highly irregular. Some of Three types of NTCB are clearly present in CML'’s: peri-
the experimental situations in which global coupling arisesodic, quasiperiodic, and chaofit1,12. Periodic NTCB can
naturally are related to nonlinear optics, with examples rangbe shown in some prototypical models to reflect a spectral
ing from solid-state laser array4] to multimode laser$2]. property of the corresponding Perron-Frobenius operator
In electronics, a number of experiments on Josephson jundnown as asymptotic periodicityAP). AP is characterized
tion arrays coupled in series or in parallel have indicated thdy the cyclical evolution of ensemble densities, and the si-
presence of very rich dynamics, often related to the multimultaneous presence of microscopic chaos. No such clear
plicity of attractors, or the linear stability properties of fully picture has emerged regarding the nature and the origin of
synchronized statgsf. Ref.[3], and references thergiiThe  collective quasiperiodicity and collective chaos in spite of
majority of models proposed to describe these dynamics anecent investigations which relatén partial differential
framed as globally coupled sets of ordinary differential equaequationgthe largest Lyapunov exponent for spatially aver-
tions (ODE’s) [4—6]. The ODE’s are usually not rigorously aged observables to that associated with the microscopic dy-
reduced to CML'’s, and the introduction of the discrete-timenamics[13]. The present work aims at filling this void, for a
map lattices is often motivated by the desire to improve theparticular class of CML models.
phenomenological insight into the evolution of the The major drawback in the analysis of the intrinsic prop-
continuous-time oscillatofg]. For example, Wiesenfeld and erties of mean-field dynamics is the lack of knowledge of its
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equation of motion. Therefore, the investigation of the nature 0z 02
of the dynamics of these observables should be performe , 3
using indirect tools such as the computation of correlatior
dimension or Lyapunov exponents from long time records o
the mean field. However, these last approaches are only fe
sible when the observables considered live on a low i \
dimensional attractdrl4]. Since there is no reason to think o1

that the mean field of CML'’s possess a low-dimensional at: o k, e 02
tractor, we must thus resort to another appro@ithough, as

we demonstrate in this paper, such an attractor sometimes g 1. | eft: The return map for the mean fidid computed on
existy. The one adopted here is widely used in atmospherig |attice of 9<10* elements, withag=1.9 ande = —0.74. Right:
dynamics to determine the limits of predictability of the at- The same for a lattice of $0elements, with 19 transients dis-
mosphere, and consists of investigating the property of sercarded.

sitivity to initial conditions of the system through the analy-

sis of the evolution of small initial errors arising from the few typical cases for which the dynamics lof are neither
finite precision of the measuring devi¢#5|. If the system stationary in time nor time periodic.

considered is chaotic, the amplitude of the error increases in Figure 1 illustrates a typical nontrivial behavior of the
time until it reaches a size of the order of the size of themean field. Here there is no slow convergence to a fixed
attractor, while, if the system is nonchaotic, the amplitude ofpoint or a periodic cycle: the return maps correspond to
the error remains small compared to the attractor’s size. Faisymptotic regimes. As reported by Pikovsky and Kurths
a periodic(quasiperiodig attractor, the error typically oscil- [10], an important feature is that when the size of the system
lates periodically(quasiperiodically, and the amplitude of increases, the fine structure of the attractor is revealed as the
this oscillation depends on the size of the initial error, and orfinite-size effects gradually disappear. As seen below, these
the various local trajectory velocities on the attractorsfinite-size effects can be very well controlled by focusing
Studying the qualitive features of error growth therefore prodirectly on a nonlinear version of the Perron-Frobenius equa-
vides an efficient tool to distinguish the chaotic or noncha+jon for the system, thus circumventing the need for brute
otic character of the dynamics. force simulations of large lattices.

Section Il explores the phenomenology in a toy model |n the limit N—o the mean field can also be computed
which is amenable to some analytic investigations. The colfrom the “collapsed” densityf,. f, describes at timé the
lective behavior is then characterized quantitatively in Secdistribution of activity across an infinitely large network, and
I1l, by focusing on the propagation of errors in the mean-it js approximated, wheiN is finite, by the histogram con-
field trajectories. In Sec. IV, we reduce the functional equastyycted by binning all tha{’s for fixedt and alli. In other
tion governing the evolution of the distribution of activity words,
across an infinitely large lattice to a low-dimensional vector

transformation. This reduction provides a number of insights _ 1
into the origin of the collective chaos. The case of quasiperi- lim h,= f uf(u)du. (4)
odic NTCB is discussed in Sec. V. The main results obtained N—e -1

are summarized in Sec. VI. - ) )
The probabilityp that an element of the lattice will have a

Il. GLOBALLY COUPLED “TOY” MODEL value betweenx— § andx+ 4 is

We will focus on a model originally introduced by Pik- X+ 6
ovsky and Kurths[10] as a simple system which can be PZI fi(u)du. )
ergodic without being mixing. The model turns out to pos- =9
sess very interesting collective properties which range fro 1 _
the traditionally considered stationary and periodic regim:shearlyfflft(u)du_1' Let
to less understood chaotic ones. It is also remarkable because 1
the evolution equation for the mean field is a low- Si(x)=(apg+eh)(1—|x))—1, htzj yf(y)dy. (6)
dimensional vector transformation which can be analytically -1
derived(cf. the Appendix.

The evolution equation of the model is as follows: In essence, Eq6) is just a tent map with a time-dependent
_ _ _ slope, and the associated Perron-Frobenius operator is simi-
X =a,1—|x"h-1, i=1,... N, (1) Ilar to the expression for the standard tent nefp Ref.[16])
. f =Pg f = ! f X
. N ) t+1(X)=Psg f1(x)= a0 | am X -10(X)
a,(h=ap+y 2 x{ 2)
N =1 X
+fi| 1= —= | x[0,5(X) (7)
:a0+8ht . (3) as(t)

Throughout this papeh; will denote the mean fieldor con-  (with, as usualy[,p(X)=1 if xe[a,b], and O otherwise
centration, or spatial averagat timet. We will analyze a Though Eq.(7) looks deceptively simple, it is nonlinear be-
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0.2 the initial condition. But in practice, these double limits can
never be achieved and as a result local variability is unavoid-
Ny able. It is therefore necessary to adopt a probabilistic per-
"\«i spective in order to obtain properties which are independent
of the initial conditionxy [19]. The mean error is then de-
fined to be

t+1 kS

\l (Et)ELf*(xo)|xt—x{|dxo, (9)

0.1
0.1 0.2 wheref, is the invariant probability density of occupation of

the attractorA. An additional averaging oved, can be per-
formed if necessary. The temporal evolution Bf) provides

FIG. 2. Return map for the mean field computed from directinteresting insights into the properties of the system generat-
numerical integration of Eq(7), for the same parameters as those of iNg the trajectory{x}.
Fig. 1. In chaotic dynamical systems, the temporal evolution of

Eq. (9) follows a “universal” pattern: During a short initial

cause of the slope’s dependence on the defiisitand it can ~ Period, the error remains small and its evolution is well de-
generate very irregular trajectories for the densifiggand ~ Scribed by a linearized set of equati¢i$)]. This is followed
thus the mean fielth,). by a second regime, during which the error increases linearly

The return map of Fig. 2, obtained by the numerical soin time because of nonlinear effects which are no longer
lution of Eq.(7), clearly confirms the tendency shown in Fig. negligible. Finally, in the asymptotic regime, the error satu-
1. It is indeed indicative of a fine-structure attractor whichrates, and fluctuates around the mean distance separating two
persists in the thermodynamic limit. The accuracy of the al-arbitrarily chosen points on the attractor. When the behavior
gorithm used to generate Fig. 2 is approximately 40As IS periodic or quasiperiodic, the mean error tends to oscillate
discussed in Sec. IV, it is possible to do much better, but thiéperiodically or quasiperiodically and it typically remains
entails a more geometrical description of the action of EqSmaller than the average distance separating two randomly
(7) on densities. Before proceeding to this geometricallychosen points on the attract@unless very special sets of
based description, it is instructive to clarify exactly which initial conditions are chosgnThese qualitative differences

kind of mean field evolutions are displayed by systén therefore provide efficient means of distinguishing between
the various forms of collective behavior, and we now pro-

ceed to an investigation of mean error dynamics in the
Pikovsky-Kurths model.

As a first numerical experiment, a small random perturba-

The investigation of the dynamical properties of averagedion uniformly supported on[—5x10'5x 107! is
observables is hampered by our lack of knowledge of theindded to each<§2 of transformation(1), at an arbitrarily
equations of motiorf17]. This implies the need for using chosen, but large, timg, . This in turn induces a small ini-
algorithms developed in the context of time series analysiga| error in the mean field of the model. Figure 3 displays the
(i.e., computation of the correlation dimension, Lyapunovmean error growth curves associated to the mean fields for
exponentg18]). But these tools become practically inappli- the various coupling strengths. The norm used here to com-
cable when the dimension of the attractor becomes larggute Eq.(8) is the two-dimensional Euclidean norm because
[18] These limitations prompt the introduction of an alter- we work numerica”y with a p|ane projection of the mean-
native method to classify the mean-field dynamics in systemgel|d attractor. The attractor dimension will in general depend
such as Eq(1) since there is priori no reason to believe on the parameter values, and, for complicated regimes, there
that the evolution of mean fields in such models will beis no reason to expect that this dimension will be two. But
governed by very few degrees of freedom. This alternativgor s = —0.74, for example, it seems that the attractor is es-
method is based on the qualitative features of error growth i%entially composed of two closed curves, and that the dis-
mean-field trajectories at various parameter values. tances separating points on this curve should meaningfully

Let xoe RN denote the initial state of a transformation of pe computed with the two-dimensional Euclidean norm.
RN, andx;=x,+ €, denote a perturbed state displaced fromGijven our lack of information for the attractor dimension in
the reference by a small errofey. The instantaneous error other regions of parameter space, the same norm is used
between the two trajectorieg andx; evolving from these when the attractors are more complex.

Ill. CHARACTERIZATION OF THE MEAN-FIELD
DYNAMICS

initial conditions will be Clearly, the mean error curves presented in Fig. 3efor
=—0.1, —0.74, and—1 with 2x10° elements display a
Ec=|x—x{], (8)  similar initial exponential behavior which ends when the

mean error attains a value of the order of 50~ 4. After this
where| | is a suitably defined vector norm. In the limits of first regime, explained below, two different types of error
infinitely long time and infinitely small initial error, Eq8) evolution appear: foe=—0.1 the error saturates immedi-
grows exponentially with a rate equal to the largestately and oscillates around a level which is close to the initial
Lyapunov exponent in the system, a quantity independent ofrror; fore=—1 and fore = —0.74, the the mean error in-
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1 : close trajectories, will, at very small scales, diverge from
"] each other exponentially. This generates the initial exponen-
(Ey) tial regime common to all traces of Fig. 3. As one would
expect from Eq.(1), the slope of the initial segments de-
creases ag decreases. In addition, its valu@.55 time
units * for e= — 1) corresponds to an estimate of the largest
Lyapunov exponent which is consistent with Ed) when
ap=1.9,e=-1,h=0.1.

Note that the numerical results presented in the figure

10720 0 5'0 100 confirm the validity of Eq.(10): the saturation of the initial

Time

exponential regime takes place at scales which are of order

1/y/N. In the limit thatN— o, displayed in Fig. 4, discussed
below, this regime disappears altogether.
After the initial growth of errors due to the microscopic
dynamics, the mean-field behaviors for= —0.74 ande =
—1 appear to be different from one another. There is no
clear exponential behavior for the former while a short ex-
ponential regime appears for the latter which reflects the cha-
otic character of the mean-field dynamics at a macroscopic
scale(10™ 2 and abovg This confirms the existence of “col-
10-%0 : lective chaos”[10,20. This is a very interesting phenom-
0 250 500 enon which suggests that, in some spatially extended models,
Time | . . 7 . L
arge scale observables might display a higher predictability
than small-scale ondsvhile retaining some of the complex-
(Ey) ity characteristic of the microscopic dynamic$his change
in predictability resulting from changing the scale of averag-
ing should receive further attention in the future.
10710 + 7 Finally, note that for bothe =—0.74 and—1, the long-
term behavior of the error is a slow increase which eventu-
ally stops when the error is comparable to the "attractor
size” (data not shown in the figureThis slow increase is
10~20 L1 not observed for the periodic mean-field regime, when
44 51 100 -0.1.
Time It is desirable to investigate mean-field dynamics in the
thermodynamic limitN— oo, a limit which can be simulated
FIG. 3. Growth of an initial perturbation in the CML modgl) by integrating Eq(7) directly with standard routing& much
with a,=1.9 and N=2x10°. Top: Superposition of the error finer approach is also developed later in Sec). IM this
growth wheneg=—0.1 (thin solid line, —0.74 (dotted ling, —1 context, however, our perturbing methodology must adapt to
(thick line). The initial exponential regime is due to the microscopic the fact that we are no longer dealing with a CML whose
chaos. Fore=—0.1, the attractor is a mean field. Fer=—0.74  components can be perturbed individually. Instead, compu-
and —1, the attractor is more complicatedf. Fig. 7). Middle: ¢ tations are performed directly on a time series of the mean
=—0.74 and—1 traces viewed on a different scale to illustrate the fjg|d h, obtained from the nonlinear Perron-Frobenius equa-
long time error growth following the initial exponential regime. tign ).
Bottom: Error growthe = —1 andN=10". Note the second expo- A natural way to address the problem might have been to
nential regime between steps 44 and 51. perturb the density itself, thus indirectly perturbing the mean
field, to then follow the simultaneous evolutions of the per-
creases with a growth rate small@.1 time unit* in the  tyrhed and unperturbed time series, and to repeat the process
casee = —1) than the one corresponding to the first expo-in order to take averages. The problem with this approach is
nential regime(0.55 time unit®). At very large times, the that it assumes that the perturbed and unperturbed solutions
error finally saturates. will eventually settle on the same attractor. This is not a
To understand the origin of the first exponential behaviolreasonable hypothesis here; in fact, we will see in Sec. IV
for the three parameters of Fig. 3, we follow Pikovsky andthat the Pikovsky-Kurths system can possess different coex-
Kurths and write the mean field in this finite-size system as 3sting attractors.
sum of two contributions In order to circumvent the problem, we adopt a technique
developed and used in the field of atmospheric dynamics

— Dy since the beginning of the centU®1]. This method consists
ht‘“th (10 in finding in a long historical record atmospheric patterns

which resemble one another, and was devoted in its early
where x,= [xf(x)dx; D,=/[(x—x)?f(x)dx and & are applications to classification purposes and long range fore-
Gaussian random variables. In this picture, the origin of thecasts[22]. This technique is known as the method of ana-
fluctuationsé¢, is the microscopic chaos, and so two initially logs. LorenZ 23] used it to estimate the predictability of the



57 APERIODIC MEAN-FIELD EVOLUTIONS IN COUPLD . .. 4925

(B i e R .

10—10 = -
Loat) 0 o - \ \0 so! A T 0 SI(O)I
S 50(0!{02’) 0 S/"V’)S,(uf‘) 5 fef?)
10-%
0 Time 100 FIG. 5. Two successive densitiés(solid line) andf,, ; (dashed

line) in the asymptotic regimél® transients were discardedPa-
rameters ar@y,= 1.9 ande = —0.74. This figure was obtained from

FIG. 4. lllustration of the error growth by direct simulation of direct numerical integration of Eq7).

the nonlinear Perron-Frobenius equatigi. Same parameters as
for Fig. 3. From top to bottom the lines display error propagationexponentia| error growth regim@gvhen e=—1). The ana-

traces fore=—1, —0.74, and—0.1. The main difference with Flg |Ogs used to produce F|g 4 are chosen from a two-
3 is the absence of the initial exponential regime due to the microgimensional plane projection of the mean-field attractor. Be-
scopic fluctuations. This figure was produced with the method ofcause this projection distorts the latter, two analogs might
analogs described in the text, using 300 analogs. not actually correspond to two states which are close on the
rTfitttractor. In this case the linear theory of the evolution of

atmosphere directly from experimental data rather than fro gmall perturbations does not hold, and there is no reason to

inherently imperfect models. The approach consists of th exoect initial exponential error arowth
following steps. P p g9 :

(1) Consider a very long time series of the desired mea- The results of Figs. 3 and 4 show clearly that thqt there is
suremenfthe mean field for systerfl) in our casé sensitivity to initial conditions at the level of mean-field dy-

(2) Set aside a segment of the original time series fron] 2M1CS fore=—0.74 and—1, even in the thermodynamic
t=t, (a large arbitrarily chosen timéo t=t, + A’ as a ref- imit. Hence, in light of these results, the initial description
*

erence to be used in step(& is a parameter in the method,; OT the attractor fo_raz ._0'74 and that of the sequence of

we chose\'=2 for reasons discussed below bifurcations described in Reff10] for a=1.9 and decreasing
(3) Scan the time series far-t, + A" until a segment of e must be revisited. But this is a numerically intensive task

length A’ which is “close” to the *reference segment previ- which cannot be undertaken by direct integration of the non-

: ; linear Perron-Frobenius equation. Instead, we make use of
ously stored is foundcloseness obviously depends on the q

definition of a suitable norm to measure the differences bet-he piecewise linear nature of ransformatidjto reduce in

. - . . -Sec. IV the nonlinear Perron-Frobenius equation to a vector
tween time-series segments; we pick the Euclidean norm @ q

BY) ansformation which, as it will turn out, is acting on a sur-
(4) The reference segment chosen at §®pand the one prisingly low-dimensional space.
found at steg3) form a “pair of analogs.” Lett3" denote the IV. DERIVING A LOW-DIMENSIONAL
starting time of the analog segment. “MEAN FIELD MAP”
(5) Compute the difference@(i)z|xt* +/\f+i—Xt§“+N+i|
fori=1,...L (L is another parameter of the method. We  The cornerstone of this approach is themerica) obser-
chose generally. =100 orL=1000. vation that the solutions of equatidid) are piecewise con-
(6) Repeat stepg2)—(5) and average the differences stant. Furthermore, the number of “plateaus” or piecewise
D(i). constant segments which are needed to represent the density

The differences between pairs of analogs are thought of agith a prescribed accuracy increases very slowly with the
“small” initial errors whose evolutions are analyzed in anal- inverse of the resolution. The relation between the accuracy
ogy to what is done in Eq8). Here, explicit equations of of the approximation and the number of plateaus depends on
motion are not required, and there is no need to perturb ththe parameters of the model and is briefly discussed at the
phase-space trajectories in order to study the subsequent ewend of this sectioricf. Fig. 5 below. Recently, Morita used
lution of these perturbations. these observations to construct a matrix approximation to the

Figure 4 shows the mean error evolution, averaged ovesperator governing the evolution of collapsed densities in
about 300 pairs of analogs, of the mean field obtained bylobally coupled tent map latticg12]. The approach de-
direct integration of the Perron-Frobenius equation for thescribed below generalizes his description to any CML satis-
two parameter values= —0.74 and— 1. The analogs were fying the following conditions.
chosen by selecting close mean fields for the data displayed (1) The microscopic transformation is the same for all
in Fig. 2. Despite the small number of realizations, a cleassites.
trend for the mean error evolution emerges, indicating a sen- (2) It is piecewise linear.
sitivity to initial conditions. But the shape of the curves dif-  (3) Each site is coupled to all others, and the coupling is
fers markedly from the one displayed in Fig. 3: the initial spatially isotropic.
exponential regime is absent. This absence reflects that the When the three assumptions above are met, then a vector
limit N—oo is taken in Eq(10). But there is another mecha- approximation to Eq(7) can be derived by using essentially
nism possibly responsible for the elimination of the secondyeometrical arguments.
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x

Herel=I(t) is always chosen such tha{"=0. A density
fieZ can be described completely by the
(2N+1)-dimensional vector

ffa®, e e iy, (13

If all iterates off, belong toZ, the Perron-Frobenius operator
can be considered as &2 1-dimensional vector transfor-
mation. Typically however, if(x) € Z, thenf,, 1(X) ¢ Z un-
lessfi(x) contains as a discontinuity the preimagexaf0
i.e., there isa{” such thatS(a{’)=0]. To remedy this
problem, weimposea{),=0, and relabel the{)’s and
a{) ’s accordingly even if there is no “real” discontinuity
in the density at=0. The addition ofa{),=0 to f,,; re-

FIG. 6. Schematic illustration of the evolution of an initially sylts in an increase of the vector’s dimension. To keep the
constant density. Typically, one plateau is created with each iteragimension off,, ; equal to that of, for all times, onea,

tion, but at the same time the amplitude of each existing disconti(and the corresponding., ;) must then be removed.

nuity decreases by a factag(t). As a result, the number of “sig-
nificantly” different plateaus does not diverge in tintef. Fig. 5.

A. lteration of a constant density

Supposefy(x)=c, for all xe[af",af?], where —1
<aP<0<afP<1. We now calculatef(x)= Ps,fo(X).
Let a{=Symin(af’[of)), a{?=Sp(max(af’||ai))),

and o{"™=5,(0). Then Eq.(7) yields
c

3 (Ot) Vxe [a(ll) ,a(lz)]

0=y , (19)

2c
=9 wvxe [a{?,a{™™].
ag(t)

To this end, note tha®, decreases the amplitude of exist-
ing discontinuities by a factor a_(t) at every iteration, and
so at timeT some of the discontinuities are of amplitude
O((a,); ") where( ), denotes time averaging. For example,
with ap=1.9, e=—0.74, numerically it is seen thda,),
~1.75, so the amplitude of the smallest discontinuities at
time T=50 should be of order 10? (for an initially flat
density, an estimate which turns out to be consistent with
direct numerical simulations.

Now suppose that strictly constant §(x) (so allcy’s are
equa) is approximated by a vector as in E3@.3) with, say,
N=50. There are enough componefits., 101 in the vec-
torsfy, fq,..., fsg to approximate with any accuracy the evo-
lution of the densities,, fq,..., f5o. Fort>50, the density
possesses more than 50 discontinuities, so theoretically, the

Figure 5 displays an initially constant density and its first101-dimensional vector description of the density ceases to
and second iterates. The simplicity of this example allows usold. But by the argument given in the preceding paragraph,
to highlight some key features of this iteration process whiclsome of the discontinuitiesA("=|c("—c{ =Y will be

hold whenf, is a more complicated function.

(i) If the support of a density; includes the origin, then
fi4, is “folded” because the iterate af=0 is always the
upper bound for the support 6f, ;.

(ii) If |a{| # | a{)|Vi#], this folding implies the creation
of a discontinuity[at a{?=S,(a{?) in Fig. 5]. This is the

smaller thans=10"*? for t>50. (In the rest of this pape#
will be referred to as th&oleranceof our approximation, and
is not to be confused with the overaltcuracyof the ap-
proximation) By neglecting one of these small-amplitude
discontinuities at every iteration, while adding the disconti-
nuity arising from the image ok=0, the dimension of the

only possible mechanism via which the number of piecewis@pproximating vectof; is kept constant. Of course, to obtain
constant segments of the density can increase. With thesm exact expression for the vector approximation to (2.
observations in mind, it is straightforward to consider thesome bookkeeping is requirdihdices are changed because

evolution of more general initial densities.

B. Iteration of a piecewise constant density

Let Z denote a set of densities such that;i€ Z, it can be
written

N
fi0=2, c'xio(x), with 1'=[a{" e "*)C[-1,1]
=1
(12
[x;(x)=1if xel, x;(x)=0 otherwisg, with the ordering

—1<aV<aP<---<al'" V<0<al*V

<-<aMP<1.

of the addition and subtraction of discontinuiliebut the
conceptual foundations require no additional ingredient. The
algorithm is described in detail in the Appendix and illus-
trated in Fig. 6. Figure 7 displays various return maps ob-
tained for several parameter values.

C. Closeness of the vector approximation to the
functional equation

From Sec. IV B, it is clear that if the initial density is
represented with a vector as in E@{.3) with N=50, the
resulting error in the averadg induced by this approxima-
tion can at most be of order 167, and this in turn translates
into a similar error on the slopa,(t). So we are naturally
led to the question of how closely the vector system stays to
the original continuous ong.e., Eq.(7)]. This issue is re-
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chastic component to the slope(t), and using instead of
the deterministic value, the expression

a,(t)=ap+eh, (19

where¢ is a random variable uniformly distributed on some

S subinterval of[ —1,1]. Figure 8 displays the similarity be-
tween the effects of including noise in the system, and those
resulting from an inappropriate truncation of the number of
plateaus.

This simple numerical experiment indicates how one

Hrel ]

01458 - ~ieas 009 ; \0_19 shogld study the{spurious effects which a faulty approxi-
1o e=-0.74 - e=-0.94 mation of the original functional equation can have on the
b s IV P numerical simulations: These effects will be akin to noise-
%@%“\ induced transitions. But studying such phenomena is not the
”&k "\ purpose of the present paper. We will always choose the
\ \.:: approximation with a tolerance small enough to guarantee
k that we do not induce undesired bifurcations. This is done by

0.1 019 0. 0.22 picking the combination ob and the number of cells in the

he hy

approximation to be such that a reduction of the former and
an increase in the latter does not have discernable effects on

FIG. 7. Ret ] h; f =1.9 and i | - .
eturn maps; . ; vs h, for a, and various values " G dynamics.

of the coupling parametes. The only periodic cases here are ob-
served fore = —0.31 and—0.54; in all other panels, the evolution
of h, is either quasiperiodic or chaotic, with initial errors either
oscillating around a fixed level, or increasing exponentially. All
panels were obtained witN=50 equal cells. The toleranc® de-
fined in Sec. IVB is 10

E. Characterization of the collective attractors

One of the motivations for introducing the vector approxi-
mation to the nonlinear Perron-Frobenious equation is that it
is very efficient. We were thus able to investigate extensively
the “collective bifurcation diagram.” The results of these
numerical studies are summarized below, and presented in
Figs. 8 and 9.

lated to the “shadowing” of Eq(7) by Eq. (13), and it is
rather distinct from that discussed in Sec. IV B, which is the
sensitivity to initial conditions in either Eq¢?) or (13). Note . L
that bothyissues are themselves not toqbe confused with th (.1) The presence of collective quasiperiodicity in model
dependence on initial conditions displayed at the level o ) IS no.t gqnflrm?d. A cII(E)se7r IooI:] at wh_atl gppe?jrs_to be
single trajectories for the CML. The problem discussed herdu@siperiodic motion in Eq(7) (when a,=1.9 ande=

is the behavior of density trajectories, not that of individual — 0:74. for instancereveals that there are still error propa-
(or CML) trajectories gation(illustrated already in Figs. 3 and.4This is not what

Given that the effect of approximating the functional is observed in quasiperiodic systerfw. Sec. V). Further

equation by a vector transformation is a perturbation in th@“"_‘ef_ica' worl_<_is neede_d to characte_rize the transition from
slopea,(t) (resulting from a perturbation in the averale stafistical stab|l|_ty to statistical ch_aos n systéh)!.‘ .

as explained at the end of the Appendithe issue of how (2) W,? identify a type of _mglnstabnny: the “collective
closely the evolution of the discrete system will lie to that of &ttractor depengis on t'he |n|t!al dg_nsny for the Perron-
the original one is related to the structural stability of theFrObenIuS equation. This multistability is remarkable be-

(density trajectories of Eq(7). Although we have not ana- cause it is more than a change in the amplitude of an other-

lytically investigated the structural stability of the attractor V15€ qualitatively unchanging attractor reported in R20]

for the functional equation, we rely on our numerical experi—In globally coupled tent maps. Such amplitude changes are

ments to postulate this stability in some regions of thealso observed in systems displaying periodic NTCB, and

. Ay they are a consequence of the spectral properties of the
(ag,&) plane: the attractors fdn, are the saméwithin the . . .
numerical error, whether the CML is integrated directly, Eq. (I;’_izfrron-{:rc;]benms Ope.ril:]@24]. 'I:_'tgltj_re ? d;splaysf?hratr][ter
(7) is solved with standard routines, or EQ.3) is iterated ~ C/lerent phenomenon. the quaiitative features ot the attrac-

with the algorithm described in the Appendix. Since Ekp) tor can change drastically If the iniial density in .E@l‘)
is by orders of magnitude the fastest way to go about Simu(_:rossej dt.h.e bouannes Of. dvanous basins offattracthn. h
lating the dynamics oh;, we will describe the behavior of nomearlolg;;c;/n t?hg'v\'/g%tgp'apapﬁgiisri;%;ﬁ%?ggﬁ;g%“?ﬁ pSeec_
hy using this vector approximation. IV B highlights the fact that there is a large reduction in the
numbers of degrees of freedom which are responsible for the
bulk of the collective motion. This is not unlike the situation

If the tolerances is large enough it is possible to induce of certain partial differential equations whose dynamics can
spurious bifurcations which are similar to the ones arisingoe shown to essentially belong to a low-dimensional sub-
when white noise in injected in Eq7) by including a sto- manifold of the original infinite-dimensional phase space.

D. Effects of noise vs truncation errors
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FIG. 9. lllustration of multistability in the mean-field dynamics

for model (1). All four return maps were obtained from the vector
approximation to Eq(7), with a;=1.9 ande=—0.52. (A) The
initial density was supported uniformly dn-0.4,0.49442%. (B)
The initial density was supported uniformly ¢r-0.4,0.311108
(C) The initial density was supported uniformly on
[—0.35,0.272219 (D) Same as ifC), but the scale is changed to
display the complex nature of the attractor.

out in Sec. IV can be carried out when the original Pikovsky-
Kurths model is replaced by a globally coupled logistic map

v o2 _ lattice, and the piecewise constant densities are replaced by
the appropriate basis functions. This work lies beyond the

0.18 |- - . - scope of the present paper, and we now turn our attention to
et logistic map lattices which are locally, rather than globally,

o-18 7 coupled, because they are representative of a class of systems
0.14 1~ — in which the origin of complex mean field behavior is not a
o012 L *\.\ _ nonlinear transfer operator, but the presence of microscopic
At symmetries.
0.1
h, 0.22

V. COLLECTIVE QUASIPERIODICITY
IN LOGISTIC CML'’s

FIG. 8. Top: Return map foay,=1.9 ande=—0.74, withN
=48 in Eq.(13), and =10 *2 Middle: Return map for the mean Collective quasiperiodicity has been reported in hypercu-
field obtained from the same 48-cell approximation applied to thePic lattices of democratically and globally coupled logistic
stochastic mode(7) with the slope given by Eq14), with noise ~ maps[11], and in globally coupled tent map26,12. In the
uniformly supported ofi—1.5x10"3,1.5x10 %]. Bottom: The re-  latter model, Morita illustrates how the nonlinearity of the
turn map obtained in the deterministic equati@ with a 20-cell ~ operator governing the evolution of collapsed densities can
approximation of the density, with=3x10"2. result in quasiperiodic mean-field trajectories.

In this section, we focus on the mean-field behavior of
locally coupled logistic maps, because the conclusions of
The nonlinear transfer operat6f) can be represented by two recent publication§27,28 lead rather naturally to a
a low-dimensional vector transformation because the densivorking hypothesis concerning the origin of collective qua-

ties f; can be written as a linear combination of basis func-siperiodicity in a class of CML'’s of which locally coupled
tions(12). This, in turn, reflects the properties of the space oflogistic maps are representative.
functions left invariant by the nonlinear operai@): these Chatfeet al.[27] provided strong evidence that collective
spaces must be compact. dynamics in logistic map lattices can be captured by an ap-
The fact that the basis functions in E42) are piecewise proximation in which all spatial correlations beyond a certain
constant facilitates the algebra, but it is not essential. What iésmal) scale can be neglected. According to these authors,
essential, is the possibility to represent the densities in ¢he original CML should then be thought of as a lattice of
relatively low-dimensional basis. Recently, Alonstal. diffusively coupled “mesoscopic units,” each unit being
showed that such bases exist for single logistic maps in largeomposed of a small number of strongly coupled logistic
regions of parameter spa®5|. Furthermore, the numerics maps.
of Kaneko[26] clearly suggest that the distributions of ac- In addition, Reick and Mosekildg28] described condi-
tivity for lattices of globally coupled logistic maps can be tions under which such units should generate quasiperiodic
represented as a low-dimensional linear combination of basitsajectories: these arise generically in symmetrically coupled
functions. It is therefore probable that the program carriedsystems of identical period-doubling maps. In that case, the

F. Discussion
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0.65121
<Et> R e o e Y s e
L)
10710 | =
0.65106
10-20 0.6444 h, 0.6454
0 . 200
' ‘ Time FIG. 11. Return map for the concentratibp, , vs h, is dis-
' ' ' ' played for an ensemble of410* 2D logistic mapgEgs.(15) and
Yy oo - . (16)] with £=0.15 andr=3.711. The return maj_ , vs h, is
08 |- a ] displayed for clarityh,. ; vs h; possesses two disjoint components
which are far apart relative to the size of the one displayed here.
o7 r b The dots which surround the thick line are due to the transients.
0.6 |- . B
> wheref, is the probability of occupation of phase space, and
0.5 d o ; . . L
C and() denote the chaotic and quasiperiodic attractors, re-
04 ' . spectively. Numerically, the ensemble is approximated by a
0o ) . ) . ) finite collection of two-dimensiona{2D) maps (which we
03 04 08 06, 07 08 09 1 think of as a lattice of decoupled 2D mapsnd the en-

semble average is therefore approximated by the mean field
FIG. 10. Top: The temporal evolution of an initial error in the fOT this finite lattice. Here again this mean field can be ex-

coupled logistic map model&l5) and (16) with r=3.711 ande  Pressed as the sum of two contributions:

=0.1. Note that, on average, there is no long term increase of an LN 1
initial error. Bottom: the quasiperiodic attractor for syste(s) _ T Gy_* (0 (i
and (16) displayed with 18 successive iterations. he= N JZ TN J-EE:C %t +Z‘Q X (18

first two period-doubling bifurcations in the single maps arewhereC and() now denote the sets of indices corresponding
replaced by two Hopf bifurcations in the coupled system, thgo sites which evolve chaotically and quasiperiodically, re-
second one of which typically generates quasiperiodicityspectively. TheC contribution asymptotically reaches a
These quasiperiodic solutions are by nature bistable with theteady statéplus finite-size fluctuationswhile the() contri-
(possibly chaotisolutions of the single maps, and the basinbution is responsible for the observed collective quasiperiod-
boundaries separating quasiperiodic and chaotic attractofeity. The relative importance of the quasiperiodic attractor is
are extremely complex. Thus ensemble averages for sudigflected in the fact that the finite-size fluctuations associated
systems will include contributions from chaotic and from with the chaotic sites are “washed out” when they averaged
quasiperiodic attractors. For example, consider the twowith the nonfluctuating quasiperiodic components.
dimensional transformations This ensemble quasiperiodicity is “robust:” It survives
when mapg15) and(16) are coupled together diffusively as
in the following lattice modeldT,;, ; denoting T,y (X;,Y:)

Ty(Xe,Yo) =(1—€)S(Xy) +€S(yy), (15 for short;
Ty(Xe,Y)=(1—2)S(yr) +£S(Xy), (16) i N - . .
Sl o X1 = (=Tt g T+ TV T Ty,
whereS(x) =rx(1—x) ande €[0,1]. Figure 10 displays the (19

activity of Egs.(15) and(16) when it is quasiperiodic, and

the propagation of an initial error separating two trajectories. i) _ 1 _ (i) n (i+1) i+ 70-1)  T(i-1)

We observe that the error oscillates quasiperiodically, but Yeer= (1= Ty 4 [Te A Ty T T T4 Tyl

that it does not slowly increase as in the cése —0.74, (20)

ay= 1.9 for the Pikovsky-Kurths systerftf. Figs. 3 and % _ . . o
Figure 11 displays the return map for ansembleaverage Wherene[0,1]. Figure 12 displays the collective quasiperi-
h,, when some of the elements in the ensemble evolve qugdicity present in the model when+#0 but small. If  is
siperiodically, while others evolve chaotically. Hefg can mcreased further, a c'omplex sequence of collecpye bifurca-
be expressed in the asymptotic regime as the sum of twhons takes place. This sequence depends sensitively on the

contributions(if there are only two bistable attractors values of the other parametersandr. .
In addition to surviving the diffusive coupling of Egs.

(19 and (20), it is interesting to remark that the collective

he= f xf(x)dx+ J xf,(x)dx, (17) quasiperiodicity_is also observed nur_nerica_llly i_n systems per-
C Q turbed stochastically. Furthermore, investigating the proper-
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0645 A o276 B When =0, the phase space is the unit squafel]
' ‘ X[0,1]. Hence the ensemble densftyused to determine the
Hoez ™ P mean fieldh,,
: 1 (1
‘ ht:f yf xfi(x,y)dx dy,
0.6445 0.6272 0 0
0.651 By 0.65125’ 0.6823 hy 0.6826

evolves under the action of the transfer opergidi

FIG. 12. Return maph, . , vs h, for models(19) and(20); same 11
parameters as in Fig. 11, except the “intercluster” coupling is now le(X,y):f f fi(u,v)gu—Ty(u,v),
turned on(A) »=0.001, and the mean field remains quasiperiodic. 0Jo
(B) Here 7=0.09, and the mean field evolves chaotically. Ass
further increased, the mean field undergoes a complex sequence of
bifurcations.

v—T,(u,v))dv du. (24

Such operators are asymptotically periof®], a property
. . which implies that the mean field can only evolve periodi-
ties of stochastic models closely related to H@S) and(20 cally (although the period of the collective cycle can be very

is interesting in its own right since it is possible, in stochastic, . ; T .
models, to relate theoretically the collective behavior to theigh). Hence the return map displayed in Fig(&3s in fact

. . eriodic.
spectral properties of the induced transfer operg2di. P .
Here we describe the phenomenology in mod&® and When 0, the phase space of the CML is now the hy-

; percube[0,1]2N, and the transfer operator is the straightfor-
(20), where Eqs(15) and(16) are replaced with ward 2N-dimensional generalization ¢24)

Ty =(1—e)Sx() +eSyh+&’, (21
| | - fa00= [ fWee-Twn. @

Tye(x,y)=(1-8)S(y{") +eS(x(") +&’, (22 (0.4

iy . ) ) ~ Again, these operators are asymptotically periodic, and

where the&y, are i.i.d. random variables. Typically, their therefore theensembleaverages for the CML'’s also cycle

densityg(£) is supported on a finitéand small subinterval  periodically. Buth, is not an ensemble average for the

of [0,1]. If the interval is too large, the noise tends to destroycoupled system. It is an average which reflects the properties
the apparent quasiperiodic collective behavior, and inducegg single trajectories.

first, pe_riodic evolutions, an_d eventually, stati(_)nary be_hav— It is tempting to generalize the conclusion, valid fgr

iors. Without loss of generality, we take the noise dengity —q that there is no collective quasiperiodicity whem0,

to be and that Fig. 13 in fact displays a periodic cycle with high

period. Unfortunately, systems like Eq21) and (22) tend

not to be ergodic: the collective attractor, as in the tent maps

described in Ref[20], depends on the initial distribution.

Therefore, it is not possible at present to infer from the prop-

wherey is the usual indicator function. Figure 13 displays aerties of Eq.(25) those of mean-field trajectories. Despite

typical return map for Eq919) and(20) with Egs.(21) and  these theoretical shortcomings, Eq81) and (22) provide

(22) when the noiseless model is quasiperiodic. The figuresome illustration for the robustness of the mean field’s attrac-

displays the mean-field return maps both whes 0, and  tor, even if a detailed analysis eventually uncovers a loss of

when 7#0. true quasiperiodicity, and its replacement by a very high-
period limit cycle.

N
g<§>=£[l xo(8)), o<l<r<i, (23

A B
0.651 0.65015

VI. CONCLUSION

A The complex mean-field behavior observed in the

Pikovsky-Kurths model originates in the nonlinear nature of
operator(7), which governs the evolution of the collapsed

densities. Remarkably, this operator can be well approxi-
mated by a nonlinear vector transformation which is of low

FIG. 13. Return maps for the mean fields of stochastically per__dlmensmn(less than 16' This reduction of dimension is

turbed lattices of 2D map€£qs.(21) and(22]). As in the previous |nteres_ting becau_se ?t clearly demonsirates that some of the
figures, the map plotted is,., vs h, for clarity. In both cases, the qollecuve. properties in large classes of CMLS,’ can t_)e Inves-
parameters are=3.711, thecouplinge =0.15, and theperturb- tigated with the tools developed to treat low-dimensional dy-
ing noise is uniformly supported of-0.00015,0.0001F If the ~ Namical systems. _ .

noise amplitude is greater than this, the finest scale structures dis- |he essential ingredient for the nonlinearity of the transfer
played here are destroyed and replaced by “cloud#) the 2D  Operator is the global coupling, and the essential ingredient
maps are uncoupledn=0). (B) the 2D maps are couplet;  for the reduction to a low-dimensional matrix is the existence

=0.00J). As in the noiseless case, an increaseyiwill generate a  Of a low-dimensional basis which spans the space invariant
complex sequence of bifurcatiofsf. Fig. 12. under the action of the operator. We note that these two

0.6508 0.64995
0.6448 hy 0.6452 , 0.6457 B, 0.6459
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ingredients are present in the globally coupled logistic mapCurie Fellowship program of the EC’s Human Capital and
lattices discussed in Ref20], and that this model should Mobility Program, and receives additional support from the
therefore be amenable to analytic investigatith®ugh the  Fonds FCAR(Government of QuebgcThis work was sup-

algebra will probably be heavier than in the piecewise lineaported in part by the Global Change and the Interuniversity

situations described here _ . Attraction Pole programs of the Belgian Government.
In this framework, we expect that collective motion can

display the array of complex behaviors which are character-
istic of nonlinear low-dimensional discrete-time transforma- APPENDIX
tions. Examples are given by the collective bifurcation dia- 1pis Appendix describes in detail the algorithm which is

gram(Fig. 7) and by the remarkable coexistence of different,,seq 1o simulate the matrix representation of the nonlinear

chaotic attractors displayed in Fig. 9. Although such transy,qter operatof7). It relies heavily on a clear understand-
formations can in principle possess quasiperiodic solution

! ' hg of the geometrical properties of the modg).
we note here that we did not find such attractors for modes\ Starting from Eq.(13), the problem is to determine the

(1), although such attractors were recently reported in a re- ) . T
lated globally coupled systefil2] exact expression for the image vector,; approximating the

Locally coupled logistic map lattices point to an alto- densityfi., introduced in Sec. IV:
gether different mechanism responsible for quasiperiodic
mean-field evolutions: the presence of quasiperiodic attrac- fror={etdr,.ai 1Y e, et} (A1)
tors in symmetrically coupledow dimensional “clusters”
of logistic maps results in the quasiperiodic evolution of av-This is done in two steps. The first deals with thg ,'s, the
erage in networks of these “clusters.” The quasiperiodic at-second with the plateau heightse c,, ,'s). From Eq.(1),
tractors are by construction bistable with single map solu-
tions, and when these are chaofias in Fig. 1}, one agjﬁﬁas(t)(l—lagk)b—l, with j=II,(k), (A2)
generically observes microscopic chaos coexisting in a given
lattice with microscopic quasiperiodicity. The working Ny- \yhere 11, is some time-dependent permutation of the set
pothesis linking the collective behavior to that of “mesos-¢q N}. To obtain an explicit form foll,, note that the
copic units” is consistent with the ideas presented in Refscloser|a§k)l is to x=0, the larger its image under E(A2),

[27, 28. : i ; -
. ... and hence the larger the index of this image in &d.). If |
In the test model of Sec. V, the collective quaS|per|od|C|tyiS the index of the'magea&)l, then thepreimagemust be

clearly arises from the microscopic quasiperiodicity, and it
survives diffusive intercluster coupling. In addition it also such that
survives the addition of small stochastic perturbations.
Analysis of the transfer operator in the presence of noise
leads to the conclusion that the apparent collective quasiperi-
odicity is in fact collective periodicity of high periok®9]. Obviously, theay’s are known, and so the permutatibh is
The present work leaves a number of avenues unexplore@asily determined in practidéor example IT;(1)=N+1 for
The first is the extension of the present approach to a class @l t]. Computing thec, ;s is a little trickier.
models which are not piecewise constant, but quadratic. Note that each constant segment of the initial denfity
Given the ubiquity of transformations possessing quadratiof height ¢ on the interval[ & ,a{** "] will be trans-
maxima in the modeling literature, it is important to theoreti- formed under the action of the transformatigrinto another
cally ground our understanding of collective properties inconstant function of height c(Y/a,(t) defined on
lattices of coupled logistic maps, and to identify the different) ;1 <11 "Lare the ordering of the original’s is

. . .. . . . t+1 *Tt+1
mechanisms responsible for nontrivial collective behavior in, necessarily preserved under the action of the transforma-

these models. A related research avenue is to classify the \ nacause it is possible to havevith n>k+1, n
kinds of transitions which separate the various collective re— 1 N+1}) '

gimes. Although in some systems, such transitions have been
given preliminary attentior[24,20, much remains to be
done in this area. For example, although the presence of
critical phenomena is undeniable in CML's its relation to the )
spectral properties of transfer operators is still uncea]. ~ Hence the images (()f)th.e constant segments oan overlap,
Finally, the multistability discussed in Sec. IV E is a remark-SO that to compute;?, it is necessary to sum the contribu-
able phenomenon, which to our knowledge has not been délons of all the segments whose images overlap with the
scribed previously. It is different in nature from that de- interval [a{};,a{,;V]. Define the setH,(j)C{1,... N
scribed in Ref.[20] because the coexisting attractors +1}:

discussed here are qualitatively different. The structure of the

la|>]al "], for all j=1,...N.

la¥|>]a{"|>|a*" Y| and a¥<a*"P<0<a{".

basin boundaries is still unknown, and the basic ingredients Hi(j):{1<k<l such that[a{);,al V]

which are necessary for the coexistence of multistable col- M) Ikt 1)

lective attractors still need to be identified. Ula, )t ety 1#0},
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In other words, the sétl;(j) contains the indices of the con-
stant segments df, whose images overlap with thj¢h seg-
ment of f,, ;. With this notation, we have

cll
() —

cl,= —_—. (A3)
YOS ad(t)

Define the integer q<N to be such than(%, <5,
while A{),>6 for i<q. To keep the dimension of ,
equal to that off,, (%, is removed from the vectd , .
Hencec(9;" andc(¥;
that the mass of the intervik{97;V,a{%: ] is unchanged.
What is changed here is the valuelgf. ;, and although the

exact perturbation depends on the valuemfﬁf_ll), agi)l,

(q+1)
Qg

change inh;, ; can easily be seen to hgitself.

LOSSON, VANNITSEM, AND NICOLIS

must be equated, and this is done so

57
Once the expression®2) and (A3) for the vectorf; are
obtained, we carry out the “approximation” which consists
of (1) eliminating theaﬁ)1 corresponding to a small discon-

tinuity, settingc{9;%, ¢{9,=c’ where

-1 -1 1
(@t - ) i@V - o)

(q+1)_ () ’
ditg iy

!

—

(2) adding o), in the vectorf,;,,

_ (-1
=Ciy1 -

EquationgAl), (A2), and(A3) define the vector transfor-
mation which approximates the nonlinear Perron-Frobenius

and (3) setting c{?,

, and Aﬁ)l, a conservative upper bound on the equation, and which can be easily implemented numerically

(cf. Fig. 6.
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