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Anomalous diffusion resulting from strongly asymmetric random walks

Eric R. Weeks* and Harry L. Swinney†

Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712
~Received 21 November 1997!

We present a model of one-dimensional asymmetric random walks. Random walkers alternate between
flights ~steps of constant velocity! and sticking~pauses!. The sticking time probability distribution function
~PDF! decays asP(t);t2n. Previous work considered the case of a flight PDF decaying asP(t);t2m @Weeks
et al., Physica D97, 291 ~1996!#; leftward and rightward flights occurred with differing probabilities and
velocities. In addition to these asymmetries, the present strongly asymmetric model uses distinct flight PDFs
for leftward and rightward flights:PL(t);t2m and PR(t);t2h, with mÞh. We calculate the dependence of
the variance exponentg (s2;tg) on the PDF exponentsn, m, andh. We find thatg is determined by the two
smaller of the three PDF exponents, and in some cases by only the smallest. A PDF with decay exponent less
than 3 has a divergent second moment, and thus is a Le´vy distribution. When the smallest decay exponent is
between 3/2 and 3, the motion is superdiffusive (1,g,2). When the smallest exponent is between 1 and 3/2,
the motion can be subdiffusive (g,1); this is in contrast with the case withm5h. @S1063-651X~98!01205-7#

PACS number~s!: 05.40.1j, 92.10.Lq, 94.10.Lf
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I. INTRODUCTION

Random walks are closely tied with diffusive process
Einstein showed in 1905@1# that normal diffusion of tracers
in liquids is a result of the random walks of the tracers due
Brownian motion, and that the variance of the ensemble
tracers spreads as

s2~ t !5^x2~ t !&2^x~ t !&252Dt, ~1!

where D is the diffusion constant@x(t) represents one
dimensional motion#. If the tracer particles take step
of length l , with a probability distribution function
~PDF! for step lengthsP( l ), the central limit theorem show
that

D5
^ l 2&2^ l &2

2T
, ~2!

where^ l n& are the moments ofP( l ) andT is a characteristic
time between each step@2#.

The central limit theorem does not apply for rando
walks known as Le´vy flights. For Lévy flights, the step
length PDF decays asP( l ); l 2m for large l , with m,3. In
such cases,̂l 2&5` and the diffusion constant is effectivel
infinite. Such broad PDFs with slow decay are known
Lévy distributions@2,3#. ~Some authors use the term Le´vy
flights for random walks with instantaneous steps, and
Lévy walks for situations with steps of finite velocity; w
will use Lévy flights for both cases.! For Lévy flights, the
variance growssuperdiffusively rather than diffusively:
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s2(t);tg, with 1,g,2. This behavior has been seen in
variety of experiments, including tracers in fluid flow wit
jets and vortices@4–7#, particles carried by capillary wave
@8,9#, tracers in the ocean@10#, and mixing of polymerlike
micelles@11,12#.

In other situations,̂ l 2& may be finite butT, the time
between steps, may be infinite, and thusD50 @by Eq. ~2!#.
In this situation,s2(t);tg with 0,g,1, which is termed
subdiffusion. Subdiffusion can arise when the tracer partic
pause between steps, with a pause time~also known as a
sticking time! PDF decaying asP(t);t2n for large t. If n
,2, the mean sticking time is infinite; thus the time per st
T is infinite. In experiments this sticking behavior often r
sults from particles being captured in vortices@4–7,13–15#
or being locally trapped by some sort of potential w
@16,17#. Subdiffusive behavior has been observed in arr
of vortices of alternating sign@13–15# and in observations o
the photoconductivity of amorphous materials@16,17#.

Lévy flights and broad sticking PDFs have been useful
the study of Hamiltonian systems and conservative ma
Coherent structures within chaotic phase space can lea
long sticking times@18–23# or long flights@3,22–26#. A re-
cent paper found a Hamiltonian model that has two differ
types of flights with different PDFs, which is the case co
sidered in this paper~strong asymmetry! @27#. Lévy flights
also appear in an analysis of subrecoil laser cooling of ato
@28,29#, where the mean time for atoms to leave an opti
trap is infinite.

In general, when the central limit theorem no longer a
plies, it is still possible to determine analytically the value
the variance exponentg. Quantitative connections betwee
the behavior of the distribution functions and the exponeng
have been made for symmetric random walks@7,25,30–34#.
In addition, several authors have considered asymmetric
4915 © 1998 The American Physical Society



i

ge
a
m

e
d

e
e
is

by

ne-
ing

to
and

ck-
e
s:

t-

g a

s
s-

at
e,

of

e

ith
ef.

:

po

:

th

4916 57ERIC R. WEEKS AND HARRY L. SWINNEY
dom walks, where the probability to take leftward steps
different from the probability to take rightward steps@7,33#.
This sort of asymmetry occurs in situations such as char
particles moving in an electric field, or particles carried by
asymmetric flow. The results from these authors for the sy
metric and asymmetric cases are summarized in Ref.@7#, and
in Fig. 1.

Previous work considered cases where the probability
take leftward and rightward flights could be different@7,33#.
Here we additionally consider the case where the decay
ponents for the flight PDF are different for leftward an
rightward flights, which we term ‘‘strong asymmetry.’’ W
examine the case of flights with finite velocity. We consid
only the case of a continuous time random walk, where d

FIG. 1. Previously derived phase diagrams for variance ex
nent g @s2(t);tg# of ~a! symmetric and~b! asymmetric random
walks. The horizontal axis ism, the exponent for the flight PDF
PF(t);t2m for large t; the flight PDF is identical for leftward and
rightward flights, in contrast to Fig. 2. The vertical axis isn, the
exponent for the sticking PDF:PS(t);t2n for large t. For each
region bordered by the solid lines, the relationship between
variance exponentg and PDF exponentsm and n is shown. The
shadings indicate areas where the behavior is subdiffusive (g,1),
normally diffusive (g51), superdiffusive (1,g,2), and ballistic
(g52). From Ref.@7#.
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tinct steps are taken with constant velocity separated
pauses. Other mechanisms@2,35–37# that may lead to
anomalous diffusion@s2(t);tg,gÞ1# are reviewed in Ref.
@2#.

II. ASYMMETRIC RANDOM WALKS

In this section we use a model based on a o
dimensional random walk to predict the asymptotic scal
of the variance: ast→`, s2(t);tg. The goal is to find the
dependence ofg on the parameters of the model, and
examine differences between symmetric, asymmetric,
the current case of strongly asymmetric random walks.

A. Model

We consider a random walker alternating between sti
ing ~remaining at the same location for some length of tim!
and constant velocity flights. The flights consist of two type
flights of velocity v l , with a distribution functionPFl(t),
and flights of velocityv r , with a distributionPFr(t). If v l
,0 andv r.0 then the flights are in the leftward and righ
ward directions, respectively; ifv l and v r have the same
sign, the flights are in the same direction. When endin
sticking event, the probability of a leftward flight ispl , and
the probability of a rightward flight ispr512pl . The ran-
dom walker begins at the originx50, and at timet50 be-
gins a flight~with probability pF

0) or a sticking event~with
probability pS

0512pF
0). The duration of sticking events i

given by the PDFPS(t). For the moment, we make no a
sumptions about the forms of the flight or sticking PDFs.

Our goal is to find the PDFX(x,t) of the random walker
position for large times, following a procedure similar to th
of Refs.@7,31#. From this PDF we can calculate the varianc
s2(t)5^x2(t)&2^x(t)&2, and extract the scaling exponentg.
The moments ofx are obtained from the Fourier transform
X:

~ i n!
]nX̃~k,t !

]kn uk505^xn&. ~3!

We constructX̃(k,t) from simpler PDFs related to th
particle motion. We needj(x,t), the probability that a flight
event has a distance ofx and a duration oft:

j~x,t !5prd~x2v r t !PFr~ t !1pld~x2v l t !PFl~ t !. ~4!

The Diracd functions ensure that the flights are made w
the correct constant velocity. Following the method of R
@7#, we find the Fourier-Laplace transform~in space and
time, respectively! of X(r ,t) to be

X̃~k,s!5$s21@12 P̃S~s!#%F pS
01pF

0 j̃ ~k,s!

12 j̃ ~k,s!P̃S~s!
G

1@pr l̃ r1pl l̃ l #F pF
01pS

0P̃S~s!

12 j̃ ~k,s!P̃S~s!
G ~5!

where the functionl̃ has been introduced for convenience

-
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57 4917ANOMALOUS DIFFUSION RESULTING FROM STRONGLY . . .
l̃ r~s!5pr~s1 ikv r !
21@12 P̃Fr~s1 ikv r !# ~6!

and similarly for l̃ l(s). Noting that

j̃ ~k,s!5pr P̃Fr~s1 ikv r !1pl P̃Fl~s1 ikv l !, ~7!

we haveX̃ expressed completely in terms of the three
ementary PDFs,P̃S(s), P̃Fl(s), and P̃Fr(s).

Using Eq.~3!, we obtain^x& and ^x2& by taking deriva-
tives of X̃(k,s):

^x&5
~pF

01pS
0P̃S!@ Z̃r1 Z̃l #

s2~12 j̃ P̃S!
~8!

^x2&5@~12 j̃ P̃S!~ Ỹr1Ỹl !2sP̃S~ Z̃r1 Z̃l !~prv r P̃Fr8

1plv l P̃Fl8 !#
2~pF

01pS
0P̃S!

s3~12 j̃ P̃S!2
, ~9!

where

Ỹr~s!5prv r
2~12 P̃Fr1sP̃Fr8 !, ~10!

Z̃r~s!5prv r~12 P̃Fr !, ~11!

and similarly forYl(s) and Zl(s). If PFl(t)5PFr(t), these
results reduce to Eqs.~27! and~28! of Ref. @7#. The results in
Eqs.~8! and~9! are exact for any form ofPFl ,r(t) andPS(t);
no approximations have been made.

B. Results

The asymptotic behavior of̂ x(t)& and ^x2(t)& as t
→`(s→0) can be obtained from an expansion of Eqs.~8!

and ~9! in powers ofs. This depends onP̃Fl ,r(s) and P̃S ,
which in turn depend on the particular form ofP(t) for these
functions. After expanding for smalls, the leading terms can
be inverse Laplace transformed to find the behavior
large t.

We choose flight and sticking PDFs to be of the form@7#

P~ t !5H 0, t,ta

Aat2a, t>ta ,
~12!

wherea is eitherh, m, or n for PFl , PFr , andPS , respec-
tively, andta is a cutoff at short times to allow the functio
to be normalizable; the normalization constant isAa5(a
21)ta

a21 . The cutoff timesth , tm , andtn may be different.
The scaling exponentg of the variance only depends on th
asymptotic behavior of the sticking and flight PDFs~the ex-
ponentsh, m, andn), although some results that follow wi
depend slightly on the behavior at short times; this will
clarified later.

The Laplace transforms of the PDFsP(t) @Eq. ~12!# have
the form

P̃~s!5Aasa21G~12a,sta!. ~13!

Expanding the incompleteG function for small arguments
yields
-

r

P̃~s!52G~22a!ta
a21sa21112^t&s1

1

2!
^t2&s2

2
1

3!
^t3&s31•••. ~14!

The expression in terms of the moments^t& of the PDFs is
correct only for these particular PDF’s.

We start by computing the behavior of the mean,^x&
;Ktb, using Eq.~8!. The results are presented in Table
These results can be understood in relationship to the un
lying PDFs. When all PDF exponents are larger than 2,
mean grows proportional tôl &/T, that is, the mean step
displacement divided by the time between steps. Whe
flight exponent is less than 2, the mean flight time is infini
In this situation, for an ensemble of random walkers, for a
time t the typical random walker is still undergoing its fir
flight, so the mean position for the ensemble of walke
grows asv r , the velocity of those walkers~assumingm
,h; otherwise the relevant velocity isv l). When the stick-
ing PDF has an infinite first moment (n,2), the mean posi-
tion grows slower than linearly in time, with the growth d
pendent on the flight behavior; on average, random walk
are undergoing their first sticking event, and the growth
the mean is dependent on the rare walkers not sticking. C
with bÞ1 are termedanomalous advection@38#.

Similarly, we expand Eq.~9! using Eq.~14! to find ^x2&,
and ultimately to finds2(t)5^x2&2^x&2. The results are
shown in Fig. 2 and Table II. The results depend only on
smallest two PDF decay exponents, but are symmetric
tween flight and sticking behavior~except for theg51 co-
efficient!. The variance growth exponentg in particular is
determined by the smallest exponent, and in some case
second smallest exponent as well~see Table II!. Note that the
transitions from one phase to another that occur as the e
nents of the PDFs are varied are sharply defined only in
infinite time limit.

TABLE I. Scaling of the mean position.^x&;Ktb. b is correct
for any PDF with the same asymptotic scaling, while the valu
shown forK are correct only for the specific form of the PDFs@Eq.
~12!#. Without loss of generality, we assume thatm is the smaller of
the two flight decay exponents.n is the decay exponent for th
sticking PDF. In the expressions forK, ^ l &5plv l^tFl&1prv r^tFr&
and T5pl^tFl&1pr^tFr&1^tS&. These results are similar to thos
given in Ref.@7#.

Conditions b CoefficientK

m.2 n.2 1 ^ l &/T

1,m,2 n.m 1 v r

m.2 1,n,2 n21 S ^l&
G~22n!G~n!

Dtn12n

1,m,2 1,n,m 11n2m S vrG~22m!

G~22n!G~22m1n!Dprtm
m21tn

12n
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FIG. 2. Phase diagram for the variance exponentg @s2(t);tg# for the strongly asymmetric case; the flight PDFs have distinct de
exponents.a1 and a2 are the exponents controlling the asymptotic power-law decay of the sticking PDF and the two flight PDFsP(t)
;t2a for t→`. Of the three PDFs controlling the behavior~flights to the left, flights to the right, sticking!, a1 anda2 are the lowest two
exponents, although by symmetry of the results for this graph it does not matter which exponent is the smallest. For each region
by the solid lines, the relationship between the variance exponentg, a1, anda2 is shown. The shadings indicate areas where the beha
is normally diffusive (g51), subdiffusive (g,1), and superdiffusive (g.1). Compare with Fig. 1~b!; the main difference is that the
strongly asymmetric case shown in this figure does not have a ballistic region.

TABLE II. Anomalous diffusion results:s2;Ctg, with the coefficientsC and exponentg given in the
table. Thea i ’s represent the sorted decay exponents of the PDFs (a1,a2,a3). The variablepi represents
(pl ,pr ,1) if a i corresponds with (h,m,n), respectively; similarlyv i represents (v l ,v r ,0). t i is defined in
terms of the cutoff times@see Eq.~12!#: t i 5 (tFl ,tFr ,tS) if a i corresponds with (h,m,n), respectively.T
5( j 51

3 pj^t j& andLi5( j 51
3 pj (v i2v j )^t j&. ~Note that this definition forT is equivalent to the one given in

Table I.! g is correct for all PDFs with the same asymptotic scaling, while the values shown forC are correct
only for the specific form of the PDFs@Eq. ~12!#.

Conditions g CoefficientC

a1.3 a2.3 1
22^ts&

2^ l &1 (
i 51

3

pi

^t i
2&

T3 Li
2

2,a1,3 a2.a1 42a1 2L1
2

~42a1!~32a2!
Sp1t1

a121

T3 D
a2.42a1 1,a1,2 2a122 S 2G2~a1!2G~2a121!

G2~22a1!G
2~a1!G~2a121!DL1

2~p1t1
a121

!22

a1,a2,42a1 1,a1,2 21a12a2 S 2G~32a2!

G~22a1!G~31a12a2!
Dp2t2

a221

p1t1
a121 ~v12v2!

2
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57 4919ANOMALOUS DIFFUSION RESULTING FROM STRONGLY . . .
As is the case for the mean^x& discussed above, the be
havior can be understood through the PDFs. Leta1 be the
smallest of the PDF decay exponents. Ifa1.3 then all three
PDFs have finite first and second moments, and the ce
limit theorem must apply. In this case the growth is norma
diffusive, that is,g51. If 2,a1,3, the second moment fo
that PDF is infinite; this is the situation where flights a
Lévy flights. The mean position scales as^x&;t, and the
growth in the variance results from spreading about t
mean position. As expected for situations with Le´vy flights,
the growth is superdiffusive. If the smallest exponent is
sticking exponent~that is, if a15n), the sticking events ap
pear to be Le´vy flights in the reference frame co-movin
with the mean position̂x&, and this accounts for the supe
diffusive growth of the variance.

For the case when 1,a1,2, the first moment for the
corresponding PDF is infinite. On average, all random wa
ers are undergoing their first flight~or sticking! event
corresponding to this PDF. Thus, the growth in the varia
comes from the rare random walkers that finish tho
events. If the second smallest PDF exponenta2 is suffi-
ciently small, g depends on botha1 and a2 as shown in
Fig. 2.

The results for the exponentg are similar to those shown
in Fig. 1~b!, with the exception of the ballistic area form,2
in Fig. 1~b!. The ballistic motion for the case withm5h
arises as the average random walker is undergoing its
flight even ast→`, but the flight can either be leftwar
or rightward; for the strongly asymmetric case (mÞh) one
direction dominates. Withm5h, random walkers going
left diverge from those going right; withmÞh, random
walkers spend most of their time going in the same directi
and thus the divergence no longer occurs. Thus,
mÞh and either 1,m,2 or 1,h,2, the growth
is no longer ballistic, and can in fact be subdiffusive~see
Fig. 2!.

The results can be easily extended to random walks w
multiple types of flights, by slightly modifying the coeffi
cients listed in the tables. All sums over the three types
events~leftward flights, rightward flights, sticking events!
are modified to account for the additional flight types. Aga
the variance exponentg only depends on the PDFs with th
slowest decay~smallest decay exponentsa).

III. DISCUSSION

Exponentially decaying PDFs are common in physi
situations @7#. All moments for an exponential PDF ar
finite, and the PDF can be treated as if the relev
power-law decay exponent were infinite. If both flig
PDFs and the sticking PDF have exponential tails,
central limit theorem applies, and the behavior is norma
diffusive. Cases without sticking events can be conside
by taking the limits n→` and then tn→0, in which
^tstick&50, which slightly changes the coefficients given
Table II.

Our results have been derived for independent steps
pauses. The model could have been generalized to inc
effects of correlations, for example, correlations betwe
successive steps, between the sticking duration and the d
tion of the subsequent flight, or between flight times and
ral
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subsequent sticking times@2#. However, in an analysis of ou
experimental data@5,7#, we found no evidence of such co
relations; hence we leave generalization of the model
future work.

Our results can be compared with the results obtai
from the Hamiltonian model of Ref.@27#. This model
describes a 2D flow consisting of a chain of vortices in
shear flow. Tracer particles alternate between being trap
in vortices and moving in jets. In several cases, flight tim
in the jets and sticking times in the vortices are w
described by power-law PDFs. In particular, this Ham
tonian model yields different PDFs for leftward and righ
ward flights, and thus the results can be compared with
model.

Reference@27# considers three cases in detail, and fin
for the exponents (m,h,n) the values (̀ ,`,2.9) @case~a!#,
(3.26,̀ ,2.4) @case~b!#, and (̀ ,1.89,2.0)@case~c!# ~where
an exponent equal tò represents non-power-law decay!.
The values ofg for cases~a!, ~b!, and~c!, respectively, are
1.42, 1.53, and 1.80, while the corresponding predictions
our analyses are 1.10, 1.60, and 1.89. The agreement is
for cases~b! and ~c! but not for ~a!. This suggests that per
haps the trajectories in the Hamiltonian model have hidd
correlations, that is, that the motions in the jets and vorti
are correlated. It is also possible that the asymptotic ti
limit has not been reached for case~a!. For both cases~a! and
~c!, the exponentb in ^x&;tb is unity, in agreement with the
predictions of our model. A value ofb could not be deter-
mined for case~b!.

In conclusion, we have investigated cases where the
dom walk alternates between sticking~motionless behavior!,
and flight ~movement! behavior, where the flights consist o
two distinct types. These results are qualitatively differe
from results@7# derived in situations with only one type o
flight. In cases with Le´vy flights where the first moment o
the PDF is also infinite, an arbitrarily small difference in th
decay of the flight PDFs changes the asymptotic beha
from ballistic (g52) to superdiffusive (g.1) or even
subdiffusive (g,1). This behavior can be understood b
considering the first flight a random walker begins. If the fi
moment of the flight PDF is infinite, the average duration
this flight is infinite. The ratio of numbers of random
walkers in flights with decay exponenth to walkers in flights
with decay exponentm is proportional totm2h for larget; as
t→` this ratio goes to zero ifm,h ~or ` if m.h), and
thus the behavior is dominated by the random walk
in the flight direction with the smaller decay exponent.
such a case the diffusion is anomalous, with 0,g,2.
Only if m5h does the behavior become ballistic wi
g52, as the ratio of walkers in the two flight behaviors is
constant.
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