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Anomalous diffusion resulting from strongly asymmetric random walks

Eric R. Week$ and Harry L. Swinney
Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712
(Received 21 November 1997

We present a model of one-dimensional asymmetric random walks. Random walkers alternate between
flights (steps of constant velocityand sticking(pauses The sticking time probability distribution function
(PDP decays a®(t)~t~". Previous work considered the case of a flight PDF decayirR(gs-t~ * [Weeks
et al, Physica D97, 291 (1996]; leftward and rightward flights occurred with differing probabilities and
velocities. In addition to these asymmetries, the present strongly asymmetric model uses distinct flight PDFs
for leftward and rightward flightsP, (t)~t™# and Px(t)~t~ 7", with w# 5. We calculate the dependence of
the variance exponent (o>~t?) on the PDF exponents, u, and». We find thaty is determined by the two
smaller of the three PDF exponents, and in some cases by only the smallest. A PDF with decay exponent less
than 3 has a divergent second moment, and thus isva distribution. When the smallest decay exponent is
between 3/2 and 3, the motion is superdiffusive((1<<2). When the smallest exponent is between 1 and 3/2,
the motion can be subdiffusivey& 1); this is in contrast with the case wifh= 7. [S1063-651X98)01205-7

PACS numbgs): 05.40+j, 92.10.Lq, 94.10.Lf

[. INTRODUCTION a?(t)~t”, with 1<y<2. This behavior has been seen in a
variety of experiments, including tracers in fluid flow with
Random walks are closely tied with diffusive processesjets and vortice$4—7|, particles carried by capillary waves
Einstein showed in 190BL] that normal diffusion of tracers [8,9], tracers in the oceafL0], and mixing of polymerlike
in liquids is a result of the random walks of the tracers due tamicelles[11,17.
Brownian motion, and that the variance of the ensemble of |n other situations(1?) may be finite butT, the time
tracers spreads as between steps, may be infinite, and thidis 0 [by Eq. (2)].
oo s . In this situation,o®(t)~t? with 0<y<1, which is termed
of () =(x*(1) = (x(1))*=2Dt, (1) subdiffusion Subdiffusion can arise when the tracer particles
pause between steps, with a pause ti@so known as a
sticking time PDF decaying a®(t)~t™ " for larget. If v
<2, the mean sticking time is infinite; thus the time per step
T is infinite. In experiments this sticking behavior often re-

where D is the diffusion constanfx(t) represents one-
dimensional motioh If the tracer particles take steps
of length I, with a probability distribution function
(PDF for step length$?(1), the central limit theorem shows

that sults from particles being captured in vortidegs-7,13—-15%
or being locally trapped by some sort of potential well
<|2>_<|>2 [16,17. Subdiffusive behavior has been observed in arrays
=7 (2) of vortices of alternating sigit3—15 and in observations of

the photoconductivity of amorphous materifl$,17).
Levy flights and broad sticking PDFs have been useful for
the study of Hamiltonian systems and conservative maps.
The central limit theorem does not apply for randomCohergnt.stru.ctures within chaotic.phase space can lead to
walks known as Ley flights. For Lay flights, the step |0Nd sticking timeg18-23 or long flights[3,22—-2§. A re-
length PDF decays a8(l)~1~* for largel, with x<3. In cent paper found_a Hgmlltoman model t_hat.has two different
such caseg(|2)=x= and the diffusion constant is effectively YPes of flights with different PDFs, which is the case con-
infinite. Such broad PDFs with slow decay are known asSidered in this papefstrong asymmety[27]. Levy flights
Lévy distributions[2,3]. (Some authors use the termiye @lso appear in an analysis of subrecoil laser cooling of atoms
flights for random walks with instantaneous steps, and usk28,29, where the mean time for atoms to leave an optical
Lévy walks for situations with steps of finite velocity; we trap is infinite.
will use Levy flights for both cases.For Levy flights, the In general, when the central limit theorem no longer ap-
variance grows superdiffusively rather than diffusively: plies, it is still possible to determine analytically the value of
the variance exponent. Quantitative connections between
the behavior of the distribution functions and the exponent
*Electronic mail: weeks@chaos.ph.utexas.edu have been made for symmetric random wdlk®5,30—-34
TElectronic mail: swinney@chaos.ph.utexas.edu In addition, several authors have considered asymmetric ran-

where(I") are the moments d?() andT is a characteristic
time between each stgg].
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FIG. 1. Previously derived phase diagrams for variance expo
nent y [o?(t)~t?] of (@ symmetric and(b) asymmetric random
walks. The horizontal axis ig, the exponent for the flight PDF:
Pe(t)~t™# for larget; the flight PDF is identical for leftward and
rightward flights, in contrast to Fig. 2. The vertical axisiisthe
exponent for the sticking PDRPg(t)~t~” for larget. For each

region bordered by the solid lines, the relationship between the

variance exponeny and PDF exponentg and v is shown. The
shadings indicate areas where the behavior is subdiffugivel(),

normally diffusive (y=1), superdiffusive (¥ y<2), and ballistic
(y=2). From Ref[7].

dom walks, where the probability to take leftward steps i
different from the probability to take rightward stejp&33].

This sort of asymmetry occurs in situations such as charge,
particles moving in an electric field, or particles carried by an

asymmetric flow. The results from these authors for the sym
metric and asymmetric cases are summarized in[Rgfand
in Fig. 1.

Previous work considered cases where the probability to

take leftward and rightward flights could be differgit33].

Here we additionally consider the case where the decay ex-

ponents for the flight PDF are different for leftward and
rightward flights, which we term “strong asymmetry.” We

examine the case of flights with finite velocity. We consider
only the case of a continuous time random walk, where dis
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tinct steps are taken with constant velocity separated by
pauses. Other mechanisn®,35-37 that may lead to
anomalous diffusiofi o?(t)~t”,y# 1] are reviewed in Ref.

[2].

Il. ASYMMETRIC RANDOM WALKS

In this section we use a model based on a one-
dimensional random walk to predict the asymptotic scaling
of the variance: as—», o%(t)~t”. The goal is to find the
dependence ofy on the parameters of the model, and to
examine differences between symmetric, asymmetric, and
the current case of strongly asymmetric random walks.

A. Model

We consider a random walker alternating between stick-
ing (remaining at the same location for some length of jime
and constant velocity flights. The flights consist of two types:
flights of velocity v;, with a distribution functionPg,(t),
and flights of velocityv,, with a distributionPg,(t). If v,
<0 andv,>0 then the flights are in the leftward and right-
ward directions, respectively; i#, and v, have the same
sign, the flights are in the same direction. When ending a
sticking event, the probability of a leftward flight i, and
the probability of a rightward flight ip,=1—p,. The ran-
dom walker begins at the origiw=0, and at time=0 be-
gins a flight(with probability pg) or a sticking eventwith
probability p2=1—pg). The duration of sticking events is
given by the PDFPg(t). For the moment, we make no as-
sumptions about the forms of the flight or sticking PDFs.

Our goal is to find the PDKX(x,t) of the random walker
position for large times, following a procedure similar to that
of Refs.[7,31]. From this PDF we can calculate the variance,
a?(t)=(x?(t))— (x(t))?, and extract the scaling exponent
The moments ok are obtained from the Fourier transform of

"X (k,t)

(in)T|k:o:<Xn>- 3

We constructX(k,t) from simpler PDFs related to the
particle motion. We need(x,t), the probability that a flight
event has a distance &fand a duration of:

) =pr6(X—v )P () + P o(X—v ) Pri(t).  (4)

SThe Dirac 8 functions ensure that the flights are made with

the correct constant velocity. Following the method of Ref.
1, we find the Fourier-Laplace transforin space and

time, respectivelyof X(r,t) to be

pe+pRé(k,s)

X(k,s)={s Y 1-Pgs)]} 1-E(ks)B(s)
- ’ S

PR+ pePs(s)

r'xr 'X’ -~ =
+[P A+ PIN] 1-Z(k.5)P(s)

®)

where the functio\ has been introduced for convenience:
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Ni(s)=pr(s+ikv,) [1-Pr (s+iku,)] (6)
and similarly forx,(s). Noting that
E(kas):prﬁFr(S'HkUr)—i_pIﬁFI(S"_ikUI)v (7)

we haveX expressed completely in terms of the three el-

ementary PDFsPg(s), Pg((s), andP,(s).
Using Eq.(3), we obtain(x) and(x?) by taking deriva-
tives of X(k,s):

(PR PEPIIZ,+Z)]

(x) F(1— 5 €)
(®y=[(1="EP9 (Y, +¥))~SP«(Z,+Z))(pv, Py,
+p|v.'ﬁél>]i§,f_+—~§'5’§§, ©)
where
Yi(9)=pwi(1—Pg +sPg), (10
Z,(s)=pw(1-Pg), (11)

and similarly forY,(s) and Z/(s). If Pg/(t)=Pg(t), these
results reduce to Eq&7) and(28) of Ref.[7]. The results in
Egs.(8) and(9) are exact for any form oPg, ,(t) andPg(t);
no approximations have been made.

B. Results
The asymptotic behavior ofx(t)) and (x%(t)) as t
—o(s—0) can be obtained from an expansion of E@.

and (9) in powers ofs. This depends ofPg ,(s) and Pg,
which in turn depend on the particular formB{t) for these

4917

TABLE I. Scaling of the mean positiofx)~Kt?. g8 is correct
for any PDF with the same asymptotic scaling, while the values
shown forK are correct only for the specific form of the PDEs.
(12)]. Without loss of generality, we assume thats the smaller of
the two flight decay exponents. is the decay exponent for the
sticking PDF. In the expressions f&t, (I)=pv,{tg)+p,v{te)
and T=p|(tg) + p,(te;) +{ts). These results are similar to those
given in Ref.[7].

Conditions B CoefficientK

w>2 v>2 1 T

1<up<2 v>u 1 Uy

w>2 1<p<2 v—1 |
( Mo
re-vw)”

I<pu<2 1I<v<u 1+v—pu v, T(2—w) ot

re-vw2—-u+v))™ * v

P(s)=-T(2—a)t? 's* 1+ 1—(t)s+ %<t2>52

- %(t3>s3+ el (14)

The expression in terms of the momefts of the PDFs is
correct only for these particular PDF’s.

We start by computing the behavior of the megr)
~Kt#, using Eq.(8). The results are presented in Table I.
These results can be understood in relationship to the under-
lying PDFs. When all PDF exponents are larger than 2, the
mean grows proportional tdl)/T, that is, the mean step

functions. After expanding for smas} the leading terms can displacement divided by the time between steps. When a
be inverse Laplace transformed to find the behavior foiflight exponentis less than 2, the mean flight time is infinite.

larget.
We choose flight and sticking PDFs to be of the fdrfi

t<t

o

t=t,,

0
P(t)=

At~ (12

whereq is eithern, u, or v for P, Pg,, andPg, respec-

tively, andt,, is a cutoff at short times to allow the function

to be normalizable; the normalization constantAis=(«

- 1)t§’1. The cutoff timeg,,, t,,, andt, may be different.

In this situation, for an ensemble of random walkers, for any
time t the typical random walker is still undergoing its first
flight, so the mean position for the ensemble of walkers
grows asv,, the velocity of those walkerséassumingu

< y; otherwise the relevant velocity ig). When the stick-

ing PDF has an infinite first moment{€2), the mean posi-

tion grows slower than linearly in time, with the growth de-
pendent on the flight behavior; on average, random walkers
are undergoing their first sticking event, and the growth of
the mean is dependent on the rare walkers not sticking. Cases

The scaling exponeny of the variance only depends on the With S# 1 are termedainomalous advectiof88].

asymptotic behavior of the sticking and flight PD(Eise ex-

Similarly, we expand Eq(9) using Eq.(14) to find (x?),

ponentsy, u, andw), although some results that follow will and ultimately to finda?(t)=(x?)—(x)?. The results are
depend slightly on the behavior at short times; this will beshown in Fig. 2 and Table II. The results depend only on the

clarified later.
The Laplace transforms of the PDP§t) [Eq. (12)] have
the form
P(s)=A,s* T (1—-a,st)). (13
Expanding the incomplet&' function for small arguments
yields

smallest two PDF decay exponents, but are symmetric be-
tween flight and sticking behavidexcept for they=1 co-
efficieny. The variance growth exponent in particular is
determined by the smallest exponent, and in some cases the
second smallest exponent as wske Table ). Note that the
transitions from one phase to another that occur as the expo-
nents of the PDFs are varied are sharply defined only in the
infinite time limit.
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SUPER-DIFFUSIVE

FIG. 2. Phase diagram for the variance expongfit-?(t)~t”] for the strongly asymmetric case; the flight PDFs have distinct decay
exponentsw, and a, are the exponents controlling the asymptotic power-law decay of the sticking PDF and the two flightFRDFs:
~t~* for t—oo. Of the three PDFs controlling the behaviflights to the left, flights to the right, stickinga; and «, are the lowest two
exponents, although by symmetry of the results for this graph it does not matter which exponent is the smallest. For each region, bordered
by the solid lines, the relationship between the variance expopeat, and a, is shown. The shadings indicate areas where the behavior
is normally diffusive (y=1), subdiffusive (y<1), and superdiffusive ¥>1). Compare with Fig. (b); the main difference is that the
strongly asymmetric case shown in this figure does not have a ballistic region.

TABLE Il. Anomalous diffusion resultso2~ Ct?, with the coefficients<C and exponenty given in the
table. Thew;'s represent the sorted decay exponents of the PEs @, < a3). The variablep; represents
(py,pr,1) if @; corresponds with 4, u,v), respectively; similarly; representsy ,v,,0). 7; is defined in
terms of the cutoff timegsee Eq(12)]: 7; = (tg .tg ,tg) if @; corresponds with 4, u,v), respectively T
=37 1pi(t;) andL;==%_,p;(v;—v;)(t;). (Note that this definition fofT is equivalent to the one given in
Table ) v is correct for all PDFs with the same asymptotic scaling, while the values showhdece correct
only for the specific form of the PDHEQ. (12)].

Conditions v CoefficientC

D)
_2<ts>2<|>+§1 Pz L

a1>3 a2>3 1

<< > - a;—1
2<a1<3 ar>aq 4—aq 2L§ /p17.11 )

(4-a)B-a)| T

a2>4—al 1<al<2 2(11_2 ZFZ(al)—F(Zal—l) —
Lipr 72
F2(2—a1)F2(a1)F(2al—l) S

A(B-a)  \Pr )
— — 0_1(01_02)
2-a)l(3+a—ap) p, 74

a<ar,<4—a, 1I<ay<2 2+ a1—a, (
I(
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As is the case for the medm) discussed above, the be- subsequent sticking tim¢g&]. However, in an analysis of our
havior can be understood through the PDFs. &gthe the  experimental dats,7], we found no evidence of such cor-
smallest of the PDF decay exponentsalf>3 then all three  relations; hence we leave generalization of the model for
PDFs have finite first and second moments, and the centr@éliture work.
Iimit theorem must apply. In this case the growth is normally  Qur results can be compared with the results obtained
diffusive, thatis,y=1. If 2<a, <3, the second moment for from the Hamiltonian model of Ref[27]. This model
that PDF is |nf|n|te, this is the situation where ﬂlghtS aredescribes a 2D flow Consisting of a chain of vortices in a
Levy flights. The mean position scales @g~t, and the  shear flow. Tracer particles alternate between being trapped
growth in the variance results from spreading about thigy yortices and moving in jets. In several cases, flight times
mean position. As expected for situations W'thEﬂ'ght?: in the jets and sticking times in the vortices are well
the growth is superdiffusive. If the smallest exponent is thejeserined by power-law PDFs. In particular, this Hamil-
stlckn':g ixpoﬁnenﬁ;hﬂ: IS, 'ftﬁlz”%’ the stl?kmg events ap- onian model yields different PDFs for leftward and right-
pear to be Ley Tignts in ihe Telerence frame €o-moving 4 flights, and thus the results can be compared with our
with the mean positiox), and this accounts for the super- model
diffusive growth of the variance. , Referencd 27] considers three cases in detail, and finds

For the case when<da;<2, the first moment for the for the exponents, »,v) the values ¢,,2.9) [case(a)]

ing PDF is infinite. Il Ik- b '

corresponding is infinite. On average, all random wa (3.26%,2.4) [case(b)], and (,1.89.2.0)[case(c)] (where

ers are undergoing their first flightor sticking event
corresponding to this PDF. Thus, the growth in the varianc&? €xponent equal te represents non-power-law degay

comes from the rare random walkers that finish thosel Ne values ofy for cases(a), (b), and(c), respectively, are

events. If the second smallest PDF exponestis suffi- 142, 1.53, and 1.80, while the corresponding predictions of
ciently small, y depends on bothx,; and @, as shown in our analyses are 1.10, 1.60, and 1.89. The agreement is fair
Fig. 2. for cases(b) and (c) but not for(a). This suggests that per-

The results for the exponentare similar to those shown haps the trajectories in the Hamiltonian model have hidden
in Fig. 1(b), with the exception of the ballistic area far<2 correlations, that is, that the motions in the jets and vortices
in Fig. 1(b). The ballistic motion for the case witp=7  are correlated. It is also possible that the asymptotic time
arises as the average random walker is undergoing its firsimit has not been reached for cagg For both case&) and
flight even ast—«, but the flight can either be leftward (c), the exponeng in (x)~t# is unity, in agreement with the
or rightward; for the strongly asymmetric case# ») one  predictions of our model. A value g8 could not be deter-
direction dominates. Withw=#, random walkers going mined for caseb).
left diverge from those going right; withu# %, random In conclusion, we have investigated cases where the ran-
walkers spend most of their time going in the same directiondom walk alternates between stickifgotionless behavigr
and thus the divergence no longer occurs. Thus, foand flight(movement behavior, where the flights consist of
pu#m and either Ku<2 or 1<z<2, the growth two distinct types. These results are qualitatively different
is no longer ballistic, and can in fact be subdiffusite®e  from results[7] derived in situations with only one type of

Fig. 2). . _flight. In cases with Ley flights where the first moment of

The results can be easily extended to random walks Withhe ppF js also infinite, an arbitrarily small difference in the
multiple types of flights, by slightly modifying the coeffi- ecay of the flight PDFs changes the asymptotic behavior
cients listed in the tables. All sums over the three types OFrom ballistic (y=2) to superdiffusive §>1) or even
events(leftward flights, rightward flights, sticking events subdiffusive (<1). This behavior can be understood by
are modified to account for the additional flight types. Again '

: : 'considering the first flight a random walker begins. If the first
;Tgv;/:sr;aggfa;z%%rllleez %gzaiegfgg:e%the PDFs with the moment of the flight PDF is infinite, the average duration of

this flight is infinite. The ratio of numbers of random
walkers in flights with decay exponentto walkers in flights
IIl. DISCUSSION with decay exponent is proportional tat*~ 7 for larget; as

Exponentially decaying PDFs are common in physicalt ~> this ratio goes to zero iu<7 (or = if u>7), and
situations [7]. All moments for an exponential PDF are thus the behavior is dominated by the random walkers
finite, and the PDF can be treated as if the re|evan{n the ﬂlght direction with the smaller decay eXponent. In
power-law decay exponent were infinite. If both flight such a case the diffusion is anomalous, with9<2.
PDFs and the sticking PDF have exponential tails, theéOnly if w=% does the behavior become ballistic with
central limit theorem applies, and the behavior is normallyy=2, as the ratio of walkers in the two flight behaviors is a
diffusive. Cases without sticking events can be consideredonstant.
by taking the limits v—«~ and thent,—0, in which
(tsicw =0, which slightly changes the coefficients given in
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