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Takayasu, Sato, and TakayddRhys. Rev. Lett79, 966 (1997)] revisited the question of stochastic pro-
cesses with multiplicative noise, which have been studied in several different contexts over the past decades.
We focus on the regime, found for a generic set of control parameters, in which stochastic processes with
multiplicative noise produce intermittency of a special kind, characterized by a power-law probability density
distribution. We briefly explain the physical mechanism leading to a power law probability distribution func-
tion, and provide a list of references for these results dating back from a quarter of century. We explain how
the formulation in terms of the characteristic function developed by Takayasu, Sato, and Takayasu can be
extended to exponenjs>2, which explains the “reason for the lucky coincidence.” The multidimensional
generalization of the results of Takayasu, Sato, and Takayasu and the present status of the problem are briefly
summarized. The discovery of stretched exponential tails in the presence of the cutoff introduced by Takayasu,
Sato, and Takayasu is explained theoretically. We end by briefly listing applications.
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PACS numbdrs): 05.20-y, 05.40+j, 89.90+n

I. STOCHASTIC MULTIPLICATIVE PROCESSES such as a monotonicity, which ensures that no measure is
REPELLED FROM THE ORIGIN concentrated over a finite interval. All these processes share
the same power-law PDF,
Takayasu, Sato, and Takayd4iirecently studied the dis- o
crete stochastic equation P(X)=Cx"""#, ©)
for largex, with a u solution of
X(t+1)=b(t)x(t)+f(t) 1)
(b(t)*)=1. )
as a generic model for generating power law Rpfbabil-
ity density function. Equation(1) defines a stationary pro-
cess if{Inb(t))<O0.

The fundamental reason for the existence of the powerlaw
PDF (3) is that Inx(t) undergoes a random walk with a drift

In order to obtain a power-law PDB(t) must sometimes [© the Ieft, and which is repelled from . A simple Bolt-
take values larger than 1, corresponding to intermittent amZMann argumeri2] shows that the stationary concentration

plifications. This is not enough: the presence of the additivérofile is exponential, leading to the power-law PDF in the

term f(t) (which can be constant or stochastis needed to  X(!) r\]/ariable. I iy o
ensure a “reinjection” to finite values, susceptible to the | N€S€ results were proved for process by Kesten[3]
intermittent amplifications. It was thus shoi&i that Eq.(1) ~ USing renewal theory, and was then revisited by several au-

: o thors in the differing contexts of autoregressive conditional
is only one among many convergertn(b(t))<0) multipli- X ;

cative processes with repulsion from the origitue to the heterqskeda_tst@ARCH) Processes in econom_et{‘ﬁ] ar_1d
£(t) term in Eq.(1)] of the form one-dimensional random-field Ising modgfg using Mellin

transforms, and more recently using extremal properties of
the G-harmonicfunctions on noncompact groups] and the
X(t+1) = FXOLOI0 - Dh(t)x(t), 2 Wiener-Hopf techniqué2]. Many other results are available,
for instance concerning the extremes of the progéss|7],
such thatF—0 for largex(t) [leading to a pure multiplica- which shows thak(t) have similar extremal properties such
tive process for largg(t) ] andF —« for x(t)— 0 (repulsion as a sequence of independent identically distribuiéd)
from the origin. F must obey some additional constraint, random variables with the same PDF. The subset of times
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1=<{t,}<t at which x(t,) exceeds a given threshold*

converges in distribution to a compound Poisson process
with intensity and cluster probabilities that can be made ex-

plicit [7,8].

IIl. CHARACTERISTIC FUNCTION FOR p>2

Within renewal theory or Wiener-Hopf technique, the
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[
ﬁ><5>=exp[ > dkﬁk+d,ﬁ#}, (1D

k=1
where the coefficiend, can be simply expressed in terms of
the ri’s. In this we recognize the transformation from the
moments to the cumulants. Expressidrl) generalizes the
canonical form of the characteristic function of the stable

casen>2 does not play a special role, and the previous-€vY laws, for arbitrary values of, and not solely fop.<2,
results apply. In the context of the characteristic function’®’ Which they are defined. The canonical form is recovered

used in Ref[1], the caseu>2 can also be tackled by re-

marking that the expression of the Laplace transfét(s)

of a power-law PDFP with exponentu presents a regular

Taylor expansion in powers g8 up to the ordet (wherel
the integer part oft) followed by a term of the forng*. Let

us give some details of this derivation. The Laplace trans*

form
P(B)= f dw P(w)e #Y, (5)
0
applied to Eq(3), yields
R o - Bw o e*X
P(ﬂ):CL dWW=Mﬁ"fB dxxl—ﬂL. (6)

for u=<2, for which the coefficientd, is not defined(the
variance does not exjstand the only analytical term {w) 3

(for w>1). This rationalizes “the lucky coincidence” noted
in Ref. [1], that the results obtained from the characteristic
function were found to apply numerically for exponents
m>2.

lIl. MECHANISM FOR THE STRETCHED EXPONENTIAL
FOUND IN REF. [1]

To mimic system size limitation, Takayasu, Sato, and
Takayasu introduces a thresheldsuch that fofx(t)|>x.,
b(t)<1, and found a stretched exponential truncating the
power-law PDF beyond,.. . Frisch and Sornet{e 1] recently
developed a theory of extreme deviations generalizing the
central limit theorem which, when applied to multiplication
of random variables, predicts the generic presence of

We have assumed, without loss of generality, that the powestretched exponential PDF’s. Let us briefly summarize the

law holds for x>1. Denote | the integer part ofu
(I<u<I+1). Integrating by part times, we obtain(for
C=pn)

. B B (-1)'p )
— Bl ...
PipI=e (1 w1 e D=2 (e
(_1)IBM @ x| —
+(M_1)(M_2)"‘(M_|)J3dxe X7 D

This last integral is equal to

B”f;dx e X #=T(+1-pu)p*

+ My (1+1-u,8)], (8

wherel is the gamma functiopl'(n+1)=n!] and

+ oo

. - B"
v+l-up)=e ﬁnZO T(+2—pm+n)

€)
is the incomplete gamma functidi®]. We see thatP(;)
presents a regular Taylor expansion in powerg aip to the
order|, followed by a term of the forn3*. We can thus
write

P(B)=1+r18+ +1,B'+r,B+0(8"1), (10
where r;=—(x),r,=(x?)/2,... are themoments of the
power-law PDF and, reintroducing, wherer , is propor-
tional to the scale paramet€r For smallB, we exponentiate

Eq. (10) and rewriteP () in the form

key ideas, and how the theorem applies to the present con-
text. First, we neglecf(t) in Eq. (1) for large x(t) [X. is
supposed much larger than the characteristic scaldtdf.
The problem thus boils down to determining the tail of the
pdf for a product of random variables.
Consider the product
X,=mim,...m,. (12
If we denotep(m) the PDF of the 1ID random variables; ,
then the PDF oiX,, is

P (X)~[p(X*¥™]" for X—o and n finite.
(13

Equation(13) has a very intuitive interpretation: the tail of
P,(X) is controlled by the realizations where all terms in the
product are of the same order; theref®g X) is, to leading
order, just the product of the PDF’s, each of their argu-
ments being equal to the common vak¥". Whenp(x) is
an exponential, a Gaussian or, more generally, of the form
xexp(~Cx"), with y>0, then Eq.(13) leads to stretched
exponentials for largen. For example, whenp(x)
xexp(—Cx), thenP,(X) has a tailcexp(—CnX2/).
Expression(13) is obtained directly by recurrence. Start-
ing from X, 1= X X,+ 1, We write the equation for the PDF
of X,,.1 in terms of the PDF's 0k, andX:

Pnia(Xni1)= fo anPn(Xn)fO dXn+1P(Xn+1) (X4 1

) Jw dx,
— X = J—
nn+1 0 Xn

X
Pn<xn>p( X”).

n

(14)



57 BRIEF REPORTS 4813
The maximum of the integrand occurs for follows a multiplicative stochastic dynamics having fo(i)
Xn=Xn+1) "M at which X}"=X,,,/X,. Assuming coupled to nearest neighbors through a diffusion term. Mu-
that P,(X,) is of form (13), the formal application of noz and Hwd10] numerically found a power-law decay for
Laplace’s method to Eq(14) then directly gives that the PDF ofx in the d-dimensional case.

Ph+1(Xh41) is of the same form. Thus propert§3) holds Autocatalytic equations lead to multiplicative stochastic
for all n to leading order inX. See Ref[11] for a more  equations that are exactly tractaple] in the case of Gauss-
detailed derivation. ian multiplicative noise. Proce€4) also describes accumu-

lation and discount in finance, perpetuities in insurance,

IV. CONCLUDING REMARKS ARCH processes in econometry, and time evolution of ani-

Process(1) corresponds to a zero-dimensional process.mal population with restocking8]. Random map(1) can

An interesting extension consists of takingo be a function also be applied to problems of population dynamics, epidem-

of space(d dimension and time. Qualitatively, we thus ob- igs, investment portfolio growth, and immigration across na-
tain a d-continuous infinity of variables, each of which tional borderg8].
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