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Trying to capture the essential physics of a hatural phenomenon directly on computers may lead us to useful
numerical schemes to solve the partial differential equation describing the phenomenon. Here we try to capture
the consequences of space-time translational symmetry such as advection in fluids or Huygens’ principle in
wave propagation. Efficient modeling of these phenomena becomes possible with the aid of Hermite polyno-
mial interpolations to realize a continuum on discrete lattices. To illustrate these ideas, we present a new
method to derive wave equation solvers that are high order but (theatomputational cell or stencil includes
nearest neighbors onlya clear advantage over standard high-order algorithms of the finite-difference or
finite-element families. The purpose of the paper is to demonstrate our methodology. Therefore, in two- and
three-spaces, details are given only for the lowest-order algorithms, a preview of a more optimal higher-order
scheme is also includefS1063-651X98)01204-3

PACS numbd(s): 02.70.Bf, 02.60.Cb

[. INTRODUCTION mented in this paper was an outcomeadf initio discrete
modeling of fluid dynamicsi.e., independent of the Navier-
Many nonequilibrium phenomena are spatially extendedStokes equationwithin CDS's[7]. There, an interpolation-
and the most popular means to model them is the partideSampling strategy was proposed as a means to capture spa-
differential equationPDE). Resultant PDE’s are, however, tial translational symmetry on a discrete lattice. A natural

often nonlinear, defying analytical approaches. Even wheffXt€nsion of this idea to wave propagation leads to the use of
: interpolation to implement Huygens’ principle on a lattice.

fche”I?DE’s are Iine_ar, the conventional “mathematic.all phys- Our approach may be interpreted as a general method to
ics” is not useful in many cases due, e.g., to nontrivial ge-qa\ise numerical schemes for PDE's in terms of Hermite
ometry of their domains. In this paper we wish to demon-jnsarholation. However, the details of how to use the Hermite
strate_ that the p_roblem of devising num_encal solvers forinterpolation and the convenience of using a high- or a low-
(physically meaningfylPDE’s may be considered as model- orger implementation are conditioned by the type of PDE to
ing problems or at least motivated as such in physics. As aBe solved. We believe that the methods described below are
example of our approach, we present a wave equation solvedeal for PDE’s with a finite domain of dependenceudely
based on Huygens’ principlé]. speaking, PDE’s in which disturbances propagate with finite
The new algorithms have several attractive features. Imspeeq.
portant among them is the realization of high-order accuracy The use of interpolation is somewhat reminiscent of the
without increasing the size of the computational cell, i.e., thdinite-element strategy. However, the similarity is only su-
computational stencil includes nearest neighbors only. Weerficial. The new algorithm is based on the implementation
also demonstrate that the fifth-order version of the algorithmof Huygens’ principle as a solution map for the wave equa-
can propagate sharp pulses over long distances with littldon. The inclusion of additional equations for derivatives
distortion. This feature facilitates the development of higherimake our algorithm explicit, unlike the traditional finite-
order schemes that can be applied to practical situations thatement algorithms which are implicit. The new wave solver
can include inhomogeneities and geometrically complicateds explicit and local as the second-order finite-difference al-
boundaries. However, the main purpose of the paper is tgorithms.
explain our methodology. We evaluate the quality of the al- In Sec. Il, we explain the interpolation-resampling ap-
gorithm in one-space and introduce the lowest order schemgroach based on the Hermite polynomial interpolation. In
for three-space. Results of two variants of the lowest-ordeBec. lll, preliminary considerations on wave equation solvers
algorithm applied to a two-space test problem are given. Foare given, and the algorithm with which we compare our
comparison we include a result obtained with a higher-orderesults is presented. In Sec. IV, the general idea for the wave
version of the algorithm. A detailed evaluation and applica-equation solver is presented and illustrated in one-space.
tions of the higher-order scheme are planned to be given in @wo versions of the algorithm, based on third- and fifth-
subsequent papég]. order implementations of Huygens’ principle, are described
Our motivation came from the successful examples ofand evaluated. The robustness of the fifth-order version is
solvers for the Cahn-Hilliard equatioi8] and the Fisher- tested by computing the solution of the wave equation with a
KPP equatiori4]. In fact these solvers were not conceived position-dependent velocity. In Sec. V, a solver for the three-
originally as PDE solvers. Modeling the phase transition ki-space wave equation based on a third-order interpolation is
netics in terms of space-time discrete cell-dynamical systemgresented. Two versions of the algorithm are evaluated in a
(CDS’y) [5] was initially conceived independent of the exist- two-space problem. In Sec. VI, an evaluation of the effi-
ing PDE models more or less in the spirit of the lattice gaugeciency of the optimal three-space solver is given. Section VI
theory [6]. The basic idea of the hyperbolic solver imple- is devoted to a summary and final remarks.
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II. INTERPOLATION-RESAMPLING STRATEGY

The use of interpolation for the computation of advection o .
is an old idea. Krishnamurtj8], more than 30 years ago, P R . . .
proposed the use of interpolation in an implicit scheme for ¢
computing advection in the context of weather prediction.
Several improvements since then have produced the so
called semi-Lagrangian advection schemes of wide accep-
tance in the numerical weather predictid?fiwP) community U ’ﬂ\
[9]. These methods are now standard in medium range fore-
casts in many countriggl0]. In weather prediction incom-

pressibility is normally assumed, and the complications as-
sociated with shocks or contact discontinuities are not
present. :>
Even though highly popular among the NWP community,
the method was not applied outside this community until the
eighties. Benquet al.[11] used a semi-Lagrangian approach _ ] _
to compute the solution of the Navier-Stokes equation in F!G- 1. Interpolation-resampling strategy. With the data at the
two-space. Malevsky and co-workers used a parallel impleg“d po!nts of the functiorf, a cpntlnuous |rjterpolant is generatgd
mentation of a semi-Lagrangian scheme with third-orde@"d shifted byvt. Then, the interpolant is resampled to obtain
splines in the context of advection diffusion, and the Navier-"¢" values off at the grid points.
Stokes equations in two- and three-spgdes13. Yabe and  and then resample the values of the translated interpolant at
co-workers[14] proposed a similar approach based on Herthe grid points. Thus the usefulness of this interpolation-
mite polynomial interpolation as a general hyperbolic equaresampling strategy depends on the availability of good in-
tion solver. Yabe and coworkers obtained excellent resultserpolation schemes, which may be problem dependent.
with their semi-Lagrangian scheme in several compressible There are many different interpolation schemes. These
hydrodynamic tests. They showed that shocks and contacién be classified into two types: local interpolation schemes
discontinuities can be captured with as few as two gridand global interpolation schemes. The most popular global
points[14]. Several other highly nontrivial applications are interpolation schemes are spectral methods which utilize
given in Refs[14,15. (generalizegl Fourier expansion. We immediately recognize
To explain the interpolation-resampling strategy, we con{wo limitations of these methods. One is the requirement of
sider a numerical scheme for the elementary first-order linedi€latively simple geometry of the domain of the problem in
hyperbolic PDE: order to be able to find the eigenmodes of the structure, and
the other is the need of a large number of modes to capture
(d;+ca)f(x,t)=0, 2.1 rapid localized changes such as shock fronts.

With a local interpolation these problems are considerably
wherec is a constanty,=d/dx, andd,=d/dt. The ordinary  diminished. A characteristic feature of hyperbolic equations
hyperbolic conservation law is close to this equation locallyis the finite speed of propagation of disturbances, which im-
in space. It is currently the trend in the physics and astroplies the localization of the domain of dependence of the
physics communities to use algorithms in which conservasolution. This feature is naturally implemented with a local
tion is explicitly built into the schemes. Although such algo- interpolation scheme. In this respect the Hermite interpola-
rithms may be less prone to develop unphysical solutionstion we have chosen is optimal because it involves only near-
needless to say, conservation alone cannot guarantee the &st neighbors. Also, if we expect to use parallel computa-
curacy of the result. Conservation laws are often due to syntional environments, it is generally more advantageous to use
metry (and variational principleés Therefore, we consider a local interpolation scheme than a global one. Among the
the symmetry of the system first. The crucial symmetry forlocal interpolation schemes, splingk2,13, give interesting
hyperbolic transport systems is tifat least local transla-  alternative possibilities. High-order splines, however, require
tional symmetry of space where the disturbance propagates extended stencil which makes the treatment of inhomoge-

at a finite speed. Equatidi2.1) implies neities and localized boundaries highly nontrivial.
We now describe the Hermite polynomial interpolation
f(x,t+ 8t)=f(x—cét,t), (2.2 [17] used in the way proposed by Yabe and co-worké&ss.

As we show below, with the introduction of additional vari-
so that evolving Eq(2.1) for 6t is equivalent to estimatinf§  ables for derivatives, we obtain a high-order Hermite poly-
accurately at positiom—cét at timet. If we could describe nomial interpolation that involves only nearest neighbors and
the translational symmetry of continuum space precisely, thisvhose coefficients can be solved explicitly. The practically
estimation is trivial. useful lowest-order interpolation is the third order. The one-

If we may assume that the grid mesh is fine enolfl),  space case is discussed here in detail for the sake of illustra-
then we must try to preserve the information already caption. Let{x;} be the coordinates of grid points on tkeaxis
tured by the values df sampled at the grid points. The basic ordered as {i}. We use the notationsf[i]="f(x;),
idea to implement this information preservation is illustratedf '[i]=f'(Xx;). The third-order Hermite interpolarg;(x) of
in Fig. 1. In short, we reconstruct the continuum with the aidf (x) for xe[x;,xj; 1] is defined in terms of[i], f[i+1],
of an appropriate interpolation method, translate it spatiallyf'[i], andf'[i+1] as
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Fi(x)=Cg[i X3+ C,[i]X?+ Cq[i]X+Cq[i], (2.3 #2f. For each newly added derivative, the degree of the in-
o o terpolation polynomial increases by two. For example, the
whereX=x—x; and the coefficient€;[i] (j=0, ...,3) are fifth-order Hermite scheme uses the continuity conditions for
determined by the condition that the interpolant and its first a,f, and aif to determine the interpolation coefficients.
derivative are continuous at the end points of the intervairhe formulas for the fifth-order Hermite interpolant in one-
[Xi,Xi+1]. Thus we obtairCo[i]=f[i], C4[i]=f"[i], space are given in Appendix A. In the following we demon-
: e . e strate the quality of the fifth-order interpolation for the pure
C.lil= 3(f[|+1]2 fli]) 2fTi]+f [|+1], (2.4  advection probleni20,21),
Ax Ax We must know the improvements that can be accom-

plished by increasing the order of interpolation schemes. To

and this end the third- and fifth-order schemes are compared
fl1+f[i+1] 2(f[i+1]—f[i]) through solving Eq(2.1) with c=1 for two types of initial

Cqli]= N - N , (2.5 conditions: sharp pulses and smooth sinusoidal curves. For

X X the sharp pulses we use a grid of 200 points with periodic
whereAx=x;, ;—X; . boundary conditions andx=0.005 andst=0.2Ax (i.e., x

In order to use these explicit formulas for the coefficients= 0-2- Recall that the map depends only on the ratio
we needi[i] andf'[i] at every time step. One way proposed — COU/AX, so that the effect of the choice dfx is only
in Ref.[14] (actually the general idea was proposed by Tu-through«. We propagate the following pulses.
shevaet al.in 1975 according to Ref18]) is to introduce an  ulse A:
additional equation fof’. This approach gives excellent re-
sults when applied to compressible hydrodynamics and to . 1 for Vie{90,...,110
many other casekl4,15. Thus the interpolation algorithm Ueli]= 0 for Vie{1,...,89U{111,...,200.
for Eq. (2.1) reads as follows with this Yabe proposal. Let us
denote the value of (f') at thenth time step at the grid (2.10
point x; as f,[i] (f;[i]). The updating algorithm with the

third-order Hermite interpolation is given by Pulse B:
faralil=Fi(xi—cot) =f[i]+{(C4[i]1€+Coli])§ Uoli]
+1li1}¢, (2.9
1 for Vie{92,...,108
frralil=aFi(xi—co) =1 [i]+(3C[1]§+2C[1])¢, _Jo for Vie{1,...,8U{112,...,200
27 =) 0.25i-89 for Vie{89,...,9}

where ¢= —cét. This expression is foc<0. Forc=0 the —02%i-112 for Vie{109,...,11}.
equivalent expression is obtained by replacthgwith —Ax (2.1

andi+1 withi—1 in Egs.(2.4) and (2.5. Yabe and co-
workers[14] computedC; and then used Eq&2.6) and(2.7)

to update the system. We can, however, combine these tw
steps into one as a map from the time¢o the timen+1 as

he results of pulse A after 1000 time steps are shown in
ig. 2(a), and those after 20 000 steps in Figo)2 Numerical
diffusion is greatly reduced in the fifth-order scheme. Small
frpali1= Fali JALLI T+ Foli — sgr(c) 1AL i ]1— cot{f/[i1AS[i] overshootings at the edges of the pulse are due to the inter-
polation [14]. The results of other commonly used algo-
+ 1 [i —sgr(c)]A4li ]}, (2.8 rithms for the solution of pulse A are given in Yabe and
Takei [14]. Figure Zc) contains the results for the initial
nealil=—sgr(c){f[i]As[i]+f.[i —sgn(c)]Ag[i]}/Ax pulse B after 1000 time steps; those after 20 000 time steps
) ) _ ) are shown in Fig. @). For this pulse the fifth-order scheme
+faliJALi]+f[i —sgr(c)]Ag[i], (2.9 produces almost no overshooting.

- . As a smooth initial condition we use a cosine function.
where the coefficients are functions of the Courant-PmSe C:

Friedrichs-Lewy (CFL) number, k=cét/Ax, as A;=1

+2k3—3K?, Ay=—2k3+3k%, Ag=1+k>—2k, A=k _ _ _

— K, As=6k?>—6k, Ag=—6k>+6k, A;=1+3k*—4x, Uo[i]=codk(i—N/2)Ax] for Vie{l,... N},

andAg=3x2—2k. The map defined by Eq{2.8) and(2.9) (212

has only one parametek, as can easily be seen by multi-

plying Eqg.(2.9) by cét; the map consisting of Eq2.8) and  where k=27/(LAX), andL is the number of points per

cStX Eg.(2.9), for the variables andf '=cétf’, is explic-  wavelength(ppw). To be consistent with the periodic bound-

ity dependent only ornk. In the one-space case shown in ary conditions, we use wavelengths commensurate with the

Egs.(2.8) and(2.9), the stability of the scheme requires the computational grid. For the third-order scheme we use a grid

CFL number to be if0,1] [19]. of N=1000 points withAx=0.005,5t=0.2Ax, and the fol-
Higher-order interpolation-resampling schemes can béowing values ofL: 31.25, 62.5, 125, 250, 500, and 1000.

constructed with the aid of higher-order derivatives such a&or the fifth-order scheme we use a grid df 250 points
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FIG. 2. Comparison of third{left) and fifth- (right) order
interpolation-resampling schemes. Propagation of the initial condi o |
tion A after (a) 1000 time steps antb) 20 000 time steps. Propa-

gation of the initial condition B(three points in the transition re- o & L 186PF’;’V\O/

gion) after (c) 1000 time steps an() 20 000 time steps. { 4 PPW

with Ax=0.02, 6t=0.2Ax, c=1, and the values ot: 10Vaoo 02 0.4 o6 08 1.0
3.90625, 7.8125, 15.625, 31.25, 62.5, 125, and 250. (b) CFLNUMBER

Due to the periodic boundary conditions, after a certain _ _ _
number of steps, the propagated sinusoidal curves return to FIG- 3. Comparison of errors of third- and fifth-order
their initial positions. At such instants we measure the errof"t€rPolation-resampling schemes for test(@.The growth of the
in the |. norm G\X_Y||EE|X'_Y'|) between the computed I,-norm error.(b) The amplitude attenuation rates per iteration as a
! : P function of ppw for various CFL number.
and exact solutions. Figure(@ shows the growth of the

normalizedl;-norm error for the third order with 62.5 ppw, ence in number of operations and memory requirement, then

3::/? dtige {'rf]thl o_r:errmwn:lr 1r51')62t5h§pvr:. yr\:]e r;(?[[]mal:,:ﬁ? Ithe r(?_rrorthe higher-order method is more efficient, as we have seen in
g Inel,-norm error by th&, norm ot tne iniial co the comparison of the third- and fifth-order schemes.

_d|t|0n_. Figure 3b) shows the amplitude attenuation rates per The Hermite polynomial interpolation we used for Eq.
iteration as a function of the number of ppw. For the wave

equation numerical dispersion is the largest source of error(z'l) satisfies the global conservation law that the sum over
9 . persior gest s space off is preserved. This can be shown easily for any
so the amplitude attenuation is not very significant.

: ; ... higher-order schemes, provided the initial spatial derivatives
Figure 3b) demonstrates that the fifth-order scheme W'thare zero(we can impose such initial conditions, as pointed

ggzlﬁglrjrg:rgrs t?]::)([hgemtjhi?gl-r;trsdtleore;(\:,:g\r/ﬁtlaen%z pr:Sr(:]L:)%erSoim by Yabe and co-workef24]). However, whether or not
' onservation holds exactly is not very relevant in wave

operations is siX10) altdd|.t|ons and eightl2) mult|pI|_cat|ons propagation, because the main errors are due to numerical
per update for the thirdfifth-) order scheme. The fifth order di .
! . ispersion.
is superior 22].
The extension of the above interpolation scheme to higher
dimensions is straightforward. For convenience, the third- Ill. WAVE EQUATION
order Hermite interpolation formulas for two- and three-  \ye wish to devise a solver for the linear wave equation
spaces, which will be used in Sec. V, are given in Appendix
B. (92— c?A)u(x,1)=0. (3.1
Due to the inclusion of higher-order derivatives, the
memory requirement increases with the order of the schemdhis is a first step toward deriving algorithms for more com-
For example, in three-space a continuous function has thrggicated wave phenomena.
first, six second, ten third, etc. independent derivatf&s3. Wave equation solvers can be classified into two major
Correspondingly, the number of operations increases. Iftypes: frequency-domain solvers and space-ti8&) do-
however,Ax can be made large enough to offset the differ-main solvers. We are interested in the computation of tran-
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sient behavior in structures of complicated geometry with or First of all we wish to point out that many practical FDTD
without inhomogeneity. For this type of problems space-timecodes use second-order differend88]. This is the case
methods are more appropriate. We do not compare witlven though it has been known for many yef3d] that
frequency-domain methods because they are useful onlyigher-order finite-difference algorithnig.g., fourth order
when the eigenmodes of the structure of interest can bgre more efficient when applied to the propagation in homo-
found easily. In such cases the frequency-domain solution i@eneous space. The development has been slow because
computed first, and by taking an inverse Fourier transfornktrajghtforward generalizations of FDTD to higher orders
the time domain solution is obtaind@5]. The procedure |5ck robustness beyond the simple homogeneous space with-
may be prohibitively expensive when the propagating wave,t complicated boundaries. More elaborate high-order

is composed of sharp pulses because of the wide band reprp for wave propagation is an active area of research

quired. [,35,3@ We are, however, rather skeptical about the signifi-

simTr:g p;g;i?ﬁggggﬁlzg e:r]gdr?c’)t aelthl?:l?h a‘éig’ntgoggugocant and swift progress in general purpose high-order accu-
ple 9 ' quaty 9 rate codes that are practically applicable to, e.g., elastody-

when the domain boundaries do not coincide with the nodal™” . X . .
planes of the numerical lattice or when the geometrical gefamics  or Maxwell's eguaﬂons, egpe.ually. when the
tails require smaller scales thav2 [29,30. In such cases, to boundaries bgtween.medla' cannot coincide with the planes
maintain the accuracy of the scheme, a special treatment &f the numerical lattice. It is natural then to compare our
boundaries becomes necessary. The use of interpolation fgtethod with the 2-2CD method which is the basis of most of
this purpose is natural. It might be convenient to develop dhe practical space-time codes; e.g., Yee's algorithm in elec-
sort of hybrid scheme combining an algorithm based on iniromagnetism can be reduced to K8.2) in homogeneous
terpolation, as the one presented in this paper, with the ordSpace.
nary procedures of the pseudospectral algorithms. The key problem is to develop a high-order FDTD algo-
Among the ST methods there are two main types, theithm that is stable and keeps its high-order accuracy in the
finite-element time domai@FETD) approach and the finite- presence of inhomogeneity and nontrivial boundaries.
difference time domair(FDTD) approach. Recently, there Higher-order schemes in the standard FDTD approach re-
have been advances in explicit FETD methods for the waveuire larger stencils. When the media is inhomogeneous,
equation[31]. The FETD methods so far proposed are, how-e.g., in the staircase approximation, the stencil includes sev-
ever, not better than the standard second-order FDT[Rral cells with different material constants. To obtain a stable
method; even though FETD methods can be high order anfigh-order accurate discrete implementation of the operators
have a smaller error, the Computational cost increases so thmt the genera| case is a difficult pr0b|em. A fourth-order
the second-order FDTD with a finer mesh is still more effi- method in space and time for smooth inhomogeneity was
cient. We will not consider the standard FETD methods be'proposed in Ref[35], but, as pointed out in Ref37], there
cause they are implicit and, consequently, inefficient i'n COMis 4 discrepancy between the order of convergence in homo-
parison to the FDTD methods for the computation ofgonaqys space and that with inhomogeneity. See [R@.
transients. In the last few years, FDTD methods have beg, o error analysis of several higher-order schemes for the

come the preferred choic_e in many applicatidrﬁ,S?}l_. wave equation in inhomogeneous media. For the two-space
FDTD algorithms are local in the sense that the evolution aFnhomogeneous problem, RdB8] claimed to have devel-
a given grid point depends only on the local information ’

. : . oped a method which needs 68 coefficients per node that
around that grid point. Consequently, they are ideal for parqeeq pe stored in order to account for the inhomogeneity.
allel computation.

T | h h h q dOur method which can be applied to the inhomogeneous case
O contrast our results, we have chosen the second-ordgl well, and requires 20 variables per node, in three-space, is
centered difference®-2CD) solver of the wave equation.

ith th . K= for th lar f an attractive alternative.
With the notationu,[ijk]=u(xij ,nét) for the scalar func- The high-order implementation of boundary conditions is
tion u at position X =(iAs,jAs,kAs) and at timet

, also a nontrivial problem, with the additional complication
=ndt, the 2-2CD algorithm for the three-space wave equathat there are no real grid points beyond the physical bound-
tion (3.1) is aries. Only recently a one-space implementation of boundary
conditions for high-order schemes that is stable in time was
cét\? o o B proposed 39]. In the case of interfaces between media that
E) {un[i+1jk]+up[i—1jk]+up[ij+1k]  coincide with the planes of the grid mesh, a stable fourth-
order algorithm was developddQ]. We are not aware of
+uy[ij—1k]+uy[ijk+1]+ug[ijk—1] more complicated geometries treated with high-order meth-
. . . ods.
~Buplijk1}+2ulijk ]~ up-q[ijk]. (3.2 Given the slow progress in the development of standard
higher-order FDTD algorithms, we are proposing an alterna-
The main reasons for the success of the second-order finiteve way to reap the benefit of higher orders, i.e., a sharp
difference algorithms are its efficiency and, in particular, itsreduction of numerical dispersion that allows an overall in-
robustness. For example, Yee's algorithm in electromagnesrease in efficiency. Although the number of operations per
tism has been extensively applied to materials with inhomonode increases, the reduction in numerical dispersion implies
geneities, anisotropies, memory effects, €i83]. This is a that for a given error tolerance the higher-order methods re-
reason for our choice. Further justifications of this choicequire fewer points per wavelength, thus the higher-order
follow. methods are also efficient in their use of memory resources.

Unya[ijk]=
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The main problem of the 2-2CD algorithi3.2) is the  values between grids. This procedure for the modeling of
dispersion of the computed modes. That is, the phase veloboundaries was already developed in conjunction with
ity of numerical modes in the 2-2CD scheme varies withsecond-order schemes in electromagndd@. In our algo-
modal wavelength, direction of propagation, and lattice dis+ithm this approach can easily be incorporated because the
cretization. Numerical dispersion can lead to nonphysical reinterpolation is already available as an integral part of the
sults such as pulse distortion and artificial anisotropy. Pseualgorithm.
dorefraction will be produced whenever the grid size varies We now restrict our attention to the one-space case to
with position. The severity of these problems depends on thélustrate the basic scheme and evaluate the numerical errors.
length in time and the relation between the smallest waveMap (4.1) in one-space takes the form:
length of the propagating wave and the size of the grid mesh.

For typical simulations 10—-20 points per wavelength are u(x,t+ 8t)=3{u(x—cét,t) +u(x+céot,t)}
used.

The stability limit of the 2-2CD algorithm for the-space n 1 X+°&d0 (o) 4.2
problem is a CFL number less than or equal ta/dl/ In 2¢ Jx—cat R

one-space, when the algorithm is used with a CFL number
equal to 1, the initial condition is propagated without distor- c
tion. This result does not extend to higher dimensions. The du(x,t+dt)= 5 {=adu(x—cdt,t) +du(x+cét,t)}
distortion introduced by 2-2CD in higher dimensions is simi-

lar to the distortion that occurs in the one-space problem +3{du(x+cdt,t) + du(x—cét,t)}.
when run with a CFL number less than 1. In the next section

we will evaluate the one-space algorithm for a CFL number 4.3

less than 1 in order to have an estimate of the performance i h f third-order int lati . dditional
higher dimensions. These results are also relevant for th € use ot third-order interpolation requireés additional equa-

propagation of waves in inhomogeneous materials in onelons for the spatial derivatives ai(x,t) andau(x,t):

space, because in those cases the CFL number cannot be the 1
same everywhere. For more details about the 2-2CD algo- SxU(X:t+ 81 =32{d,u(X—cdt,t)+u(x+cdt )}
rithm for the wave equation, see RE25]. 1
+ 2 {du(x+cét,t) = du(x—cét,t)}.
IV. WAVE PROPAGATION IN ONE-SPACE (4.4
We wish to solve the initial value problem of E¢B.1) .
with the initial conditionsu(x,t) andd,u(x,t) given at some c
initial time t in an infinite domainkY. The evolution fromt IxdU(X, 1+ ) =5 {—dZu(x—cat,t)+dZu(x+cat,t)}
to t+ 6t can be written as
+ 3{3du(X+Cot,t) + dydu(x—cot,t)}.
u(x,t+ét)
4.
Fu(x,t+ t) , (4 4.5

K L
c’LD K

u(x,t)
du(x,t)

) ) . Note that all but the integral term in E4.2) are given by
whereK, D, andL are linear operators depending on spaﬂalsimme shifts in space. We use the notatian][i]
dimensionality. o _ =u(x;,ndt) (Gu,[i]=au(x;,ndt), etc) to denote the

The generalized Huygens principle can be cast into thg5 e ofy (3,u, etc) at imet=nét and positionx=iAx.
form of Eq.(4.1). In three-s_pac_e for example, the_mks to theWe proceed as follows. With given valueswfi], d,u.[i],
strong form of Huygens’ principle, all the terms in the map , , i1, anda,d,u[i], third-order interpolants for the func-
are mtegrals with a spherical domain. Historically, Huygens tions u(x,t) and d,u(x,t) are generated. By resampling the
principle is older than the PDE called the wave equation du?nterpolants at a distana@t to the left o right of the grid
to d’Alembert. Recently, efficient algorithms for the compu- points, the shift terms in Eq$4.2)—(4.5) are computed. The
tation of scatteringelliptic equations based on Huygens’ integrél in Eq.(4.2) is evaluated by integrating the third-

equivalence principle were developgtl]. In our algorithm 40 internolant ofa,u(x,t). We will call this algorithm
we implement Eq(4.1) with the aid of interpolants aii(x,t) |, ;3. P ). ¢

anddyu(x,t). The use of fifth-order inter, i i iti
. - polation requires additional
.(Ijn a'b:)undtehd QOtm§1|n, Tta@h l.é) sho'uIthr)]e Esed Jor the.d equations forg2u(x,t) and #2d,u(x,t). Spatial differentia-
grid points in the interior of the domain. The boundary gri teizon of Eqs.(4.4) and (4.5 gives

points, defined as those grid points whose distance to th
boundary is less thaoédt, require a different map whose

2 1542 - 2
details depend on the particular shape of the nearby bound(—?xu(X’H&)_ 2105U(x—CoL Y+ du(x+cat b}

ary. In this paper we show how to construct a map for the 1

interior grid points. The use of interpolation is advantageous + =— {9, u(x+cdt,t) — dydu(x—cét,t)}
. . 2c

for the treatment of boundary conditions. Perhaps the sim-

plest way to deal with a boundary of arbitrary orientation is (4.6

by redrawing the grid locally, in conformity with the shape
of the boundary, and then using the interpolation to transfeand
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2 ¢ 3 3 (2)
dxdu(x,t+ ot) = > {—dgu(x—cdt,t)+ du(x+cét,t)}

+ HA2ou(x+Cot,t) + d2au(x—cét,t)}.
(4.7

Knowing u.[i], dun[il, d2unlil, dunlil, dxduglil, and
aiatun[i], we can compute all the terms in Ed4.2)—(4.7)
from the fifth-order interpolants af(x,t) andd,u(x,t) (Ap-
pendix A). We will call this algorithmHuys.

To evaluate the quality of these two algorithms, we solve
Eq. (3.1 with sharp and smooth pulses as initial conditions.
This test is very important because, as we mentioned before, )
the errors in two- and three-spaces are of the same type. In
two- and three-spaces there is the additional issue of numeri-
cal anisotropy which is important, and can also be largely
diminished by theduy schemes, as the tests in Sec. V show.

We now proceed to the description of the tests.

For the propagation of sharp pulses we use a grid of 200 ()
points with periodic boundary conditiongyx=0.005, 6t
=0.2Ax, andc=1.0. The initial conditions are as follows.

For pulse D:

(b)

N

) 1 for Vie{90,...,110
Uoli]= 0 for Vie{l,...,89U{111,...,20Q FIG. 4. Sharp pulse propagation withuy3 (left) and Huys
4.9 (right). Propagation of the initial condition D aftefa) 1000 time
steps andb) 20 000 time steps; propagation of the initial condition
dugli]=0 for Vie{1,...,200. (4.9 E after:(c) 1000 time steps an@) 20 000 time steps. A significant
reduction of the dispersion is clearly demonstrated.

For pulse E:
for Vie{l,... N}, (4.12
Uo[i] . .

AUgli]=0 for Vie{l,... N} (4.13
(1) ;or :I 6{22’ o 81?? 119 20 For HUY3 we use a grid ofN=1000 points with periodic

, or !E{ ---,88U{112, ..., 209 boundary conditions,Ax=0.005, §t=0.2Ax, ¢=1.0, o
0.25i—88) for Vi €{89,...,9% =0.3, andk=6.25r, which is equivalent to 64 ppw. For

—0.25i—-112 for Vie{109,...,11} (4.10  Huys we use a grid ofN=250 points withAx=0.02, 5t
=0.2A%, c=1.0,0=0.3, andk=6.257, which is equivalent

dugi]=0 for Vie{l,...,200. (4.1)  to 16 ppw.

For the initial condition F the growth of thig-norm error

Due to the periodic boundary conditions, the waves gd43] of the 2-2CD algorithm with 64 ppw is given in Fig.
back to the initial position every 1000 time steps. Figu@ 4 6(a). Figure &b) shows the growth of the error fetuys with
exhibits pulse(D) after 1000 time steps and Fig(b} after 64 ppw. Figure &) [Fig. 6(d)] shows the same results for
20 000 time steps. The pulse propagatedHby3 suffers a  HUY5 with 16 ppw(6.4 ppw. HUYS is superior to the 2-2CD
rather large deformation. Numerical dispersion is drastically
diminished withHUY5. Figure 4c) exhibits pulse E after
1000 time steps, and Fig(d) after 20 000 time steps. We ,
can say that the error is small Huys even after 20 000 time [ 73

steps. Large numerical dispersion errors completely distort
the pulses propagated with 2-2CD. We only show one rep-
resentative figure in this case. Figure 5 shows pulse D propa-
gated with 2-2CD after 1000 time steps.

Figures %a)—5(d) exhibit the results for the same tests \
v_vith the 2-2CD algorithm. Needless to say, for the propaga- ’v°v",1“q'5v"‘\“-"unu” muﬂ\["‘\‘z‘gqéu“l‘“‘“‘“
tion of sharp pulses the 2-2CD algorithm is out of practical \[1 '\1}
guestion because of the large dispersion errors.

As a smooth initial condition we use a sinusoidal wave
packet with a Gaussian envelope for pulse F: FIG. 5. Sharp pulse propagation with 2-2CD algorithm. Propa-

gation of the initial condition D after 1000. For the propagation of
Uo[i]=cog k(i —N/2) AxJexp{—[ (i — N/2) Ax]?%/ 0%} sharp pulses this scheme is practically out of the question.
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FIG. 6. Growth of thd ;-norm errors forHuy3, HUYS, and 2-2CD for the initial condition F, with a CFL number equal to 0.1, 0.5, and
0.8, are shown(a) 2-2CD algorithm with 64 ppwAx= 0.005.(b) HUY3 with 64 ppw.Ax=0.005.(c) HUY5 with 16 ppw,Ax=0.02.(d) HUY5
with 6.4 ppw,Ax=0.05. Note thatiuys with 1—10 as many grid points per wavelength produces an error that is compéstithlemallep to
the error due to 2-2CD.

scheme for all types of initial conditions even with one-tenth [&f—cz(x)ai]u(x,t)=0. (4.14
as many ppw, as demonstrated in Figd)6 Comparison of

CPU times for one-space cases are notimportant. In Sec. Vi, g jnitia| Gaussian pulse and the position-dependent veloc-
a detailed evaluation of the efficiency in the important three

Space case is diven. ity c(x) are dep|cte_d in Fig.(@). The maX|mun(m|n|mL_|m).

pThe errors s%own in Figs.(B)—6(d) are much larger than value for the vg_locny Ic=1.0 (C:.O'S)' We use periodic
expected from pure attenuation of the sinusoidal Wavest,aqundary conditions. In the following}, andd, denote the
which can be estimated from Fig(i8. Notice that the dis- Widths of the transition regions of the velocity of propagation
crepancy measured in norm between a sine wave and its Méasured in number of grid points, ang the width of the
shifted version with a small phase shit<) is linear ins. ~ Initial Gaussian pulse. In Fig.(B) the result of 2-2CD with
We conclude that imuy3 andHuYs the main source of error 1000 grid points(d; =20, d,=100, andw,; =100 is given.
is numerical dispersion. The high quality Bf’ys in com-  This result can be considered as the correct solution; higher
parison to 2-2CD an@iuys is a consequence of a large re- resolution of space does not appreciably change the result.
duction of numerical dispersion. The result given by 2-2CD with 700 grid pointgl; =14,

The stability ofHuy3 andHuYs has been studied numeri- d,=70, andw,;=70) is displayed in Fig. ). This result is
cally. HUY3 is unstable for a CFL number that is an elementslightly different from that in Fig. #®). Figure 7d) contains
of [0.91, 1.G. We restrict the value of the CFL number to the the result ofHuys with 200 grid points(d,=4, d,=20, and
interval[0.0, 0.7. For CFL numbers larger than 0.7, numeri- w;=20). The fine structure in Fig.(d) is as good as that in
cal dispersion becomes too large and the shape of an initialllfig. 7(c). Note that sharp pulses are generated during the
sharp pulse deteriorates rapidiuys is unstable for a CFL propagation. For example, the right most pulse in Figl) 7
number that is an element $0.81, 1.0, but again due to contains only seven grid points. The reduction in the number
numerical dispersion we restrict the CFL number to intervalof grid points with HUY5 has not been optimized. A more
[0.0, 0.79. detailed evaluation of propagation in inhomogeneous media
Finally, we will test the robustness of our higher-orderwill be given elsewhere.

schemeHuys solving a spatially inhomogeneous model As a conclusion of this section we can say that our best
problem algorithm for wave propagation in one-spacedisys. Even
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a 1
(a) UX,t+ ) = -7 ) flxy_md3y[5t(9tu(y,t)+u(y,t)
+d,u(y,t)cn,ébt], (5.0

1
_ 3
du(Xx,t+ 6t)= Amc2(o)2 J'|xy|=c6td y[du(y,t)

[T AqA J\ + d,0:u(y,t)cdtn,+d,u(y,t)2cn,
V +d,0pu(y,t)c®n,ngét]. (5.2

(b)

-~

Greek suffices denote spatial coordinates, arid the out-
(<) ward normal to the surface of integration. The summation
convention is implied. In this case the strong form of Huy-
[T M /\ J\ gens’ principle holds. Map(5.1) is also known as the
Y N Green’s representation formula for the wave equation.
To generate the third-order interpolants wf(x,t) and
dun(x,t), the values ofu,(x,t), d,un(x,t), du(x,t), and
@ d,0:u(x,t) are needed. The maps far(x,t), J,un(Xt),
du(x,t) andd,du(x,t), with the integrals scaled to the unit

— /\r\ /\ J\ sphereS?, are(o is the surface element

A

1
R u(x,t+5t)=—f do[ Stau(x+cdtn,t) + u(x+cétn,t)
4o |2

FIG. 7. Demonstration of the robustness wfvys. Here Eq.
(4.13 is solved withHuys and 2-2CD.(a) The Gaussian wave +n,d,u(x+cédtn,t)cét], (5.3
packet on the left is the initial condition. The functiofx) is also
plotted in this figure. Its uppdfower) level is 1(0.5). (b) The result 1
of 2-2CD with 1000 grid points andx=0.005 andst=0.005. This AM(X,t+ 8ty = — f dof[ 8td,du(x+cotn,t) +d,u(x
result is regarded as the accurate solutigh2-2CD with 700 grid 4m )
pointsAx=0.007 14 and5t=0.007 14. Already there are some er-
rors compared to(b). (d) Huys with 200 grid points andAx AN, 1)+ 0N gdgU(XFCAN, )E ],
=0.025 andst=Ax/2. The result is comparable to that of 2-2CD (5.9
with 700 grid pointgc). The line in(d) is slightly broken due to the
small number of grid points. However, the details of the amplitude 1
are correctly captured. Note that the right most puls@jrcontains JU(X,t+ St)= — f do[ du(x+cdtn,t) +n,d,d,u(x
only seven points. 47 Js?

. . . + + +
with one-tenth as many grid points per wavelengtbys cotn,edt+2en,d u(x+catn,t

produces a smaller error than 2-2CD. The advantages of the +1N 4N 5,0 gU(X+COtN,t)c258t], (5.5
new scheme become clear in higher dimensional spaces,

where, as shown in Sec. VI, it requires 1-2 orders of maggnd

nitude fewer operations for solutions with the same error

tolerance. 1
aaatu(x,t+5t)=—f dof d,0u(x+cédtn,t)
47 |2

V. WAVE PROPAGATION IN TWO- AND THREE-SPACES + %ngﬁgﬁtU(X*‘C&n't)C&

We demonstrate the effectiveness of our methodology us-
ing the lowest-order scheme. With this lowest-order demon-
stration we can already show stability and reduction numeri-
cal dispersion and anisotropy. A more optimal version based

+d,dgu(X+cdtn,t)2cng

+ 0,09, U(X+Ctn,t)ngn,c?ot].

on a fifth-order interpolation on a staggered grid, an exten- (5.6)
sion ofHUYS, is planned to be evaluated in detail and applied

to more challenging problems in a separate papernHow- We use the notations[ijk]=u(xjx,ndt), duy[ijKk]
ever, see, Sec. V. = U(Xiji ,NAt)  (Fun[ijK]=du(Xij ,ndt),  dadiun[ijk]

In three-space, ma@.1) can be written as spherical av- = d,d;u(X;jx ,nét)) for the values at tim¢=nst at the grid
erages around each point in sp4ds]: pointsx;;, . We proceed as follows. Assuming that we know
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unlijk], dunlijk], du,lijk], andd,duijk], we gener- c¢=1.0, we excite the center point at positigs 100 andy
ate the interpolants for the functiong(x,t) and d,u,(x,t), =100 with a Gaussian excitation in the following way:
which are then used to evaluate formu(&s3)—(5.6). If we

implement the algorithm on a single grid, then the update at )

a given point, done by evaluating Eq5.3—(5.6), requires diU+1)[ 100,100 = d,u,{ 100,10Q + 2e ™ L(k~80 078l

in three-space the generation of interpolants in the interior of (5.11
the eight cells that surround that point. If we use instead a

staggered grid approach, with subgrids A and B, the nodes Qfiherek is an integer number that indicates the number of
subgrid A being at the center of the cells of subgrid B, a”dtime steps.

vice versa, then the evaluation of E¢S.3—(5.6) at a node In Fig. 8@) we present a contour plot of the solution with

of subgrid A, requires the evaluation of the interpolants inpqnsiaggerediuys after 500 time steps with a CFL number
the interior of a single _c_eII of subgrid B. In both cases it ISequal to 0.2. In Fig. &) the contour plot of the result of
possible to derive explicit maps of the forms staggerediuys after 500 time steps and a CFL number equal
to 0.2 is given. Figure @) contains the contour plot of the
Uns1[ijk]=HU[ijKJLU|[ijK]+HUT[ijk JLUT[ijk], result of the equivalent problem solved with 2-2CD after 200
(5.7)  time steps and a CFL number equal to 0.5. We use a larger
time step with 2-2CD because it is known that 2-2CD works
. . . . , better with 6t nearer the stability limit. The contour lines
axju”“[”k]:KU'['Jk]LU'['Jk]+KUT'['Jk]LUT'[”k]' should be perfect circles, but the contours produced by 2-
(5.9 2CD are clearly distorted. The distortion is a consequence of
numerical anisotropy, which is one of the problems of 2-
&tun+1[ijk]: M U|[|Jk]LU|[|jk]+ M UT|[|jk]LUT|[|]k], 2CD, as we m.entioned in Sec. ”l No an'iSOtrOpiC distqrtions
(59 can be seen in the results obtained with both versions of
HUY3.
For the same input5.11), we compare the results of the
JuUn+1l1[K]=NU [ijKJLU|[ijk]+NUT[ijkJLUT|[ijk].  three schemes with the exact solution which can be obtained
(5.10 from the convolution of Eq(5.11) and the two-space im-
pulse response. The comparison is done at a cross section
Here summation convention is implied, andU[ijk] parallel to thex axis withy=100. In Fig. 9a) the compari-
(LUT[ijk]) is a linear combination ofu,[ijk] and son between the nonstaggeredy3 and the exact solution is
dunlijk], (dwugijk] and d,6;uq[ijk]). The coefficients presented. It is seen that the solution computed with the non-
HU,, KU;, MU, NU;, HUT,, KUT,, MUT,, andNUT, staggeredHuy3 deviates from the exact solution near the
depend only on the properties of the medium. The map fopropagating front. This error is due to overshooting in the
the single grid implementation involves nearest, next-, andnterpolation[14]. In Fig. 9b) we show the comparison be-
next-next-nearest neighbors. In the staggered grid approadtveen the exact solution and staggerady3. There is an
the map involves only nearest neighbors. undulation on the internal side of the front caused by numeri-
Applications to wave propagation in anisotropic mediacal dispersion. For comparison the same test with 2-2CD is
should be possible after numerically evaluating the approprishown in Fig. @c). The distortion due to numerical disper-
ate Green'’s functions with, e.g., the method described in Refion is very clear. The best results are obtained with stag-
[44]. Our formulation is suitable for parallel implementa- geredHUY3; however, this algorithm is not superior to the
tions, because the solution at a given point depends only o®-2CD, because, in agreement with the one-space analysis,
the values at its surrounding points. We can obtain the twothe improvement witlHuY3 is not enough to compensate for
space version of this algorithm assuming translational symthe additional cost due to the larger number of operations.
metry along one of the coordinate axes, i.e., the method dflow the staggered version of staggeredvs can solve the
descen{45]. problem may be glimpsed from Sec. VI. A full description of
A possible strategy for applications to inhomogeneousduys is planned to be presented in a separate paper.
media is to treat the terms including spatial derivatives of the We also computed the solution for a point source in front
parameters of the media as dependent sources, and then sobfean interface that separates two media with different propa-
the resultant integral equation inside each cell. An alternativgation velocities in the case when the amplitude and its nor-
is to compute the local Green’s function or use some apmal derivative are continuous across the interface. The exact
proximation to it. This procedure might seem too costly atsolution for this problem can be obtained with, e.g., the
first sight, but the local problems are much simpler than theCagniard—De Hoop methdd6].
full problem. Complex geometries can be built through The solution withHUY3 was obtained by implementing
patching together simple pieces. We can expect that, becaukkiygens’ principle on both sides of the interface. This is
of the reduction to simpler problems, some analytic result®quivalent to assuming that the interface is located between
may be incorporated into the algorithm. Further research i$wo nodal planes of the grid. The treatment of the interface is
needed to determine the best way to model inhomogeneowpproximate because, even though the solution is computed
media in the framework of thauy algorithms. correctly on both sides of the interface, the interpolant gen-
To demonstrate the reduction in numerical dispersion an@rated across the interface only approximately represents the
numerical anisotropy, we run a simple two-space test. On affect of the interface. Further research to improve beyond
grid of 200 200 points withAx=Ay=1.0,5t=0.2Ax, and  this approximation is being undertaken.
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FIG. 8. Numerical anisotropy. A comparison betwesryz and 2-2CD. Ten level contour plots of the results of the propagation(@jith
the nonstaggereduys after 500 time steps with a CFL number equal to Q2 the staggereduys after 500 time steps with a CFL number
equal to 0.2, andc) 2-2CD after 200 time steps with a CFL number equal to 0.5.

We use a grid of 208200 points with the interface lo- solved with the 2-2CD algorithm is shown in Fig.(bD The
cated at positiony=100.25, and a Gaussian excitation lo- improvement with respect to 2-2CD is not significant for the
cated atx=100 andy=110, as same reasons stated above.

In our tests we have found that the three-spéwe-
space version of the nonstaggeretlys is stable for a CFL
dU+1)[100,110= atuk[100,11q+0.59‘[((‘(‘80)‘9‘)2/24]. number less than or equal to 0.dl&ss than or equal to 0.2
(5.1  Also from numerical tests, the stability limit of staggered
HUY3 has been found to be a CFL number equal to 0.5,
independent of dimensionality.

In Fig. 10(@) the result is compared with the exact solu-  The idea of implementing Huygens’ principle with the aid

tion at positionsx=100 andy=120. The same problem of interpolation is not limited to Cartesian grids. The algo-
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FIG. 9. Numerical dispersion. A comparison betwesry3 and
2-2CD. The signal is measured along the line100. Results ob-
tained with(a) the nonstaggereduys with a CFL number equal to
0.2, (b) staggerediuys with a CFL number equal to 0.2, ar(d)
2-2CD with a CFL number equal to 0.5.
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FIG. 10. Interface. Comparison with the exact solution. The
signal is measured at positions=100 andy=120. Results ob-
tained with(a) the staggereduys with a CFL number equal to 0.2
compared with the exact solutiofh) 2-2CD with a CFL number
equal to 0.5 compared with the exact solution.

rithm should work equally well on grids of arbitrary shape as
long as we have a good quality interpolation over which to
implement Huygens’ principle.

VI. EFFICIENCY OF Huys IN THREE-SPACE

In three-space the number of independent derivatives up
to second order is 9. For the wave equation we need to keep
track of two functions, the amplitude and its time derivative.
Therefore,HUY5 (HUY3) in three-space requires 2@ight
variables per grid point. If we straightforwardly extend the
nonstaggered method discussed up to this point, the nonstag-
geredHuys would require 670 multiplications and 1600 ad-
ditions, 2300 total. These values are to be compared with
eight additions and three multiplications in the 2-2 CD algo-
rithm. Notice that, even with this large difference in the
number of operations per grid point, the nonstaggereds
can be made more efficient than the 2-2 CD thanks to the
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reduction in the number of grid points by a factor of 10, as ' . ’ _ Hovs
shown in the one-space case. With this factor, the reduction
in the number of grid points is 1000. Furthermore with a .
CFL number equal to 0.1, the largét gives an additional
factor of 2 for a total of 2000, i.e., approximately ten times o5}
faster, with a memory requirement 100 times smaller than
the 2-2 CD. 047

The use of a staggered grid considerably improves the
efficiency of theHuys. In the staggered mesh scheme the
values at the grid pointsi (j,k) are used to compute new
values at positions on the staggered grid iat £,j+ 3,k
+ 1), and vice versa. There are three main advantages. First
the unit cell for the staggered computation has only eight
points, which permits a reduction in the number of opera-
tions per step by a factor of approximately 2. Second, the
symmetry of the homogeneous space is better representec o+ ‘ . ; - s ‘ - s s

. . 0 5 10 15 20 25 30 35 40 45 50

because all the neighbors used in every update are equally position
weighted. Lastly, the stability limit is increased considerably ) ) _ _ _
from a CFL number equal to 0.1 to one equal to 0.4. The .FIG. 11. Huys resul_t, in g grid of 5& 50 points, Wlth the exci-
staggeredHuys requires a total of about 1000 operations, {ation at(25,23. The signal is measured along the lye 25. The
less than one half the number required for the nonstaggere%("’_mt result_ is given by the continuous line, and numerical result is
scheme. Notice that if we assume a reduction in the numbgpdicated with().

of points by a factor of 4 in each direction, with & CFL iy sharp fronts can be captured with a single grid point.

number equal to 0.3;uYs and 2-2 CD have comparable g jonrovement over standard algorithms is especially sig-
CPU efficiencies, withHUY5 requiring about one-third the nificant when the wave is a short pulse.

memory. With a reduction in the number of points by a fac- Efficiency gain for wave propagation in homogeneous

tor c.)f 6 (10)_and a CFL number equal to 0.3, th_ere is aNgspace is usual with standard high-order FDTD algorithms.
efﬁc_gency gain factor of”'(E|SO) over th? 22 C.D alfgo_rlthm. In" Eor conventional schemes, high order is achieved by enlarg-
addition, from the parallel computation point of VIEMUYS i the numerical stencil. In contradistinction, the numerical

has more to gain, because a large part of the operations e ysed by the staggeredy algorithms includes near-

each grid point can be done in parallel without any COMMU+g; najghbors only, independent of the order of the interpo-
nication cost. Figure 11 shows a result-afys for the same l?tion used

test of Sec. V. It is seen that the wave front can be capture The algorithm can also be applied to anisotropic media

W.'th one cell with no V'S'bl.e distortion due to numerical once the appropriate Green’s functions have been computed.
dispersion. The continuous line corresponds to the exact Sqis can pe accomplished with the aid of, e.g., the method
lution obtained as a convolution of the impulse response anfescrined in Ref[44]. The idea of using interpolation to
a Gaussian with standard deviation=Ax/2. implement Huygens’ principle can be extended to nonstruc-
tured grids in a general geometry.
VII. SUMMARY AND FINAL REMARKS In one-space, we haye ussdvlsl to solve a simple wave
propagation problem with a position dependent velocity. In

We have demonstrated the possibility of constructing efthe presence of sharp spatial variations in the medium, the
ficient numerical solvers for hyperbolic PDE’s by capturing solution remains stable and accurate. In two-space the prob-
the crucial physics, e.g., the symmetries of space-time imlem of a point source in front of an interface between two
plicit in Huygens’ principle for the wave equation. A de- media has been computed with the staggereds. A pos-
tailed evaluation of the one-space algorithms demonstratessible strategy for the general case is to treat the terms with
large reduction of numerical dispersion as the order of thespatial derivatives of the parameters of the media as depen-
interpolation increases. As a matter of fact, in one-space thdent sources, and then solve the resultant integral equation
algorithmHuys, based on a fifth-order interpolation, is more inside each cell. The solution under the assumption of local
accurate than the popular 2-2 CD algorithm even with oneconstant velocity should give a first approximation. It might
tenth as many grid points per wavelengthHloys the num-  be possible to improve beyond this approximation by, in the
ber of operations per node is higher, but the reduction in thevorse case, computing the local Green’s functions. Further
number of grid points can make it significantly more effi- research has been undertaken to determine the most appro-
cient. In two- and three-spaced,y3, based on a third-order priate way to model material inhomogeneities within the
interpolation, has been explained in detail to demonstratétamework of theHuy algorithms.
that our approach is not confined to one-space. A two-space We consider the wave equation solvers presented in this
test shows that numerical anisotropy is reduced. A comparipaper as a first step toward the development of solvers for
son of the results of the two-space test with the exact solumore complicated problems, e.g., pulse propagation in inho-
tion, obtained as a convolution between the input and thenogeneous or anisotropic materials with complicated bound-
two-space Green’s function, demonstrates that the staggeraaly conditions or propagation of short pulses in nonlinear
algorithm is the most accurate. A preview of the result ofmaterials, both, situations in which space-time methods are
staggerediuys has been added to show that with this algo-superior to frequency-domain method&/]. Also note that

amplitude
o
w

0
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the interpolation-resampling strategy is an ideal means to freali1=Fi(x—cot)=f [i]+[[{(Cs[i1€+Cyli]) &
realize nonperturbative renormalization-group methods, al-

lowing continuous scalin§48]. +Colilpé+frlil21e+1'[i]1¢, (A5)
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Fij(X)= B[] IX3+B[ij Y3+ B[ ij IX2Y +B[ij X Y?
APPENDIX A: FIFTH-ORDER HERMITE +Bg[ij 1X2+Bg[ij Y2+ B4[ij IX Y+ a,f[ij X
INTERPOLATION IN ONE-SPACE
+a,flijIY+T[ij], (B1)
The fifth-order interpolantF;(x) of f(x), valid for
[Xi Xi+1], is whereX=x—x; andY=y—vy,. The seven constang; are
solved from the conditions of continuity df at (i+1,j),
Fi(X)=Cs[i]X°+ Cy[i ]X*+ C3[i IX3+ C,[i]X?+ Cy[i]X (i,j+1), and {+1,+1) and continuity ofs,f and d,f at
+Cy[i] (A1) (i+1,) and (,j+1). The interpolation for the other quad-
oLt rants has the same form with different sets of constants. The

. o conditions of continuity are imposed at the corners of the
where X=x—x; and the coefficientC[i] (j=1,...,5) are quadrants.

determined by the conditions of continuity of the interpolant ", ygrodynamic applications the direction of the velocity
Fi(x) and its first and second derivatives at the_end pqints Ofietermines which of the surrounding neighbors are to be
the interval[x;,x;+1]. Thus we haveCo[i]=f[i], Ci[i]  ysed to implement advection correctly. In two-space the
=f'[i], Co[i]=1"[i]/2, and signs ofu, andu, determine one of the possible four quad-
) ) . . rants; in three-space the signsgf, u,, andu, determine
Clil= 6(fli+1]—f[i) 3(f'[i+1]+f[i]) one of the possible eight octants. A special step in the algo-
5 (Ax)® (Ax)* rithm has to be introduced to make this selection. For the
wave equation, all the surrounding octants contribute, so that

fli+1]—f"]i] (A2) o selection step is needed to implement Huygens’ principle.
2(Ax)° ' In three-space the third-order interpoldhf (x) for f(x)
defined in the first octantx(y,z) e [X; X+ 1]X[Y;,Yj+1]
O AN(f[i]—f[i+1]) S8f'[i]+7f'[i+1] X[z ,z+1] IS
Cll=—" 0 " ax?
Fij(X)=Ca[ijK X3+ C,[ijk]Y3+Cy[ijk]Z3
8f [']2_(5:)2['“], (A3) +C,LiJKIX2Y + Coijk X Y2+ Co[ijk 1X2Z
+C,[ijkIXZ2+ Cglijk]Y2Z+ Cy[ijk Y Z2
CS[i]zlo(f[izl];f[i]) 4f’[i+i]+26f’[i] +CydijKIXYZ+ Cy[ijk X2+ CyJijk]Y?
(4x) (4% +C{ijk]Z%+ CfijkIXY+CyJijk]XZ
f"li4+1]—-3f"[i] . . ,
By eva— (A4) +Cad iKY Z+ o, f[ijk X+ a,f[ijk]Y
+9,f[ijk]Z+f[ijk], (B2)

The resampling formulas analogous to formu(@%) and
(2.7) are where X=x-%;, Y=y-y; and Z=z-z. The 16
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constant<C; are solved from the conditions of continuity bf
at (i+1,j,k), (i,j+1k), (i,j,k+1), (+1,j+1k), (i

+1,j,k,+1), (i,j+1k+1), and {(+1,j+1k+1), and
continuity ofd,f, 4,f, andé,f at (i+1,j,k), (i,j+1k), and
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(i,j,k+1). The interpolation for other octants has the
same form. The coefficients are solved from the conditions
of continuity at the corners of those octants. For more de-
tails, see Ref{14].
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