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Analytical solution for the modified nonlinear Schrodinger equation
describing optical shock formation
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We present an exact analytical solution by the use of an ansatz method for the modified nonlineéar Schro
dinger equationU .+ 30U ,,+N?U|2U+isN?(|U|?U),=0, describing the propagation of light pulses in
optical fibers. The inclusion of the terraN2(|U|2U), in the usual nonlinear Schdinger equation arises from
an intensity-dependent group velocity and produces a temporal pulse distortion leading to the development of
an optical shock. Previous wofKu Bingzhen and Wang Wenzheng, Phys. Re%1E1493(1995] using the
traveling-wave method does not exhibit this important physical picf@®063-651X98)05004-1

PACS numbg(s): 42.81.Dp, 42.50.Vk, 42.65.Tg, 03.65.Ge

[. INTRODUCTION nificance ofN is that its integer values are related to the
soliton order. In Eq(1), without the self-steepening term it
A fascinating manifestation of fiber nonlinearity occurs in transforms in the conventional NLSE. Here we will be con-
the anomalous-dispersion regime where the fiber can suppd#erned only with the fundamental solitoN ¢ 1).
optical solitons through an interplay between the dispersive The self-steepening of the pulse edge arises from an
and nonlinear effects. Theoliton refers to special kinds of intensity-dependent group velocity and produces a temporal
waves that can propagate undistorted over long distances afglse distortion and an asymmetry in the pulse spectrum.
remain unaffected after collision with each other. In the con-Self-steepening can develop optical shock, understood as an
text of optical fibers, solitons are not only of fundamental€xtremely sharp rear edge. Early work on this subject is de-
interest but also have potential application in the field ofscribed in Refs[3-8], while more recent work has been
optical fiber communications. reported in Refd.9—14). It should be pointed out that optical
The nonlinear Schidinger equatiofNLSE) has been em- shocks also reveal themselves as a result of the interplay
ployed to explain a variety of effects in propagation of pulsesoetween SPM and GVD, as recently demonstrated in optical
in optical fibers, although it only includes self-phase modu-fibers through the phenomena of optical wave break&ig
lation (SPM) and group velocity dispersidi@VD) [1]. How- A characteristic of optical shocks arising due to SPM and
ever, in other cases a generalized NLSE has been required ®VD alone is that it occurs in both leading and trailing edge
account for observations not explained by the NLSE. Theof the pulse, symmetrically, unlike the shock induced by
generalized NLSE includes high-order nonlinear and disperself-steepening, which is asymmetric in nature. In general,
sive terms. In some particular cases, one can include onifhe MNLSE including the self-steepening term has been ana-
one additional term in the NLSE. In the case of optical fibers|ytically solved [6,12]. Recently exact analytical solutions
when the first derivative of the slowly varying part of non- for Eq. (1) were given in Ref[15]. Their traveling-wave
linear polarization is added, it leads to a self-steepening ofethod is based on a choice for the complex amplitude
the pulse edge in the absence of dispersion and this modifidd(¢,7) of the wave in which its modulus and phase are
NLSE (MNLSE) still explains or predicts new nonlinear dependent on the variable=7—ay{. Although they found
phenomen412]. all symmetric solutions for the given boundary conditions,
The propagation of a temporal optical soliton in the prestheir results do not give the asymmetric solutions that are a
ence of the self-steepening term can be described by theatural consequence of the self-steepening term and that lead
MNLSE [2] to shock formatiorf16—20.
In this paper we show that the ansatz method is more
iU, +30U_+NU[PU+isN?(JUJ?U),=0, (1)  powerful than the traveling-wave method for the study of the
MNLSE. As we shall show, the analysis of the different so-
whereU (¢, 7) represents a normalized complex amplitude oflutions will be made through the study of the “potential
the pulse envelopé,is a normalized distance along the fiber, function” as occurs in the traveling-wave method. The dif-
7 is the normalized time within the frame of the referenceference is that in our case we can obtain the asymmetric
moving along the fiber at the group velocity=+1 for the  solution as well as the symmetric one and this is done in both
normal and anomalous regime, respectively, the physical sigaptical regimes(anomalous and normallt is important to
mention that our approach is suitable for obtaining some
symmetric solutiongsuch as that of Refl6]) but not all
* Address after September 1998: Departamento de Biofisica e Rgsuch as that of Ref15]). Finally, for a particular class of
diobiologia, Universidade Federal de Pernambuco, Recife 50,00the solutions found in this paper, we calculate the critical
PE, Brazil. distance for the shock formation.
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Il. EXACT SOLUTION OF THE MODIFIED NONLINEAR ”
SCHRODINGER EQUATION DL, 7)=do({) +agT+ azf f2(n")d7y’

Now we proceed with the analysis of Ed.) by separat-
ing U(¢,7) into the real amplitud®/ (£, 7) and phaseb(Z,7)
according toaJ =V exp(¢). We split Eq.(1) into its real and  where¢,(¢) is an integration constant angis given by[see

+38,(— 2085+ 38) {4 (1), ®

imaginary parts, yielding Eq. (7)]
Vd’g"’%U'(VTT_Vd)i)_VS"‘SVSd’T:O, 2) n(§,7)=T—[—Uao+(—20a2+35)V2(§,T)]§. 9)
Vi Lo(2V. 6+ V. )+ 35VRY =0, 3 Finally we have for¢, from Egs.(8) and(9)

_ . . ¢ =k+ay[oag— (35— oay) VA V?, (10
Equations(2) and (3) were solved perturbatively in Ref.
[8] by a power series in the parametgrand in Ref.[6]  where we took for convenienag)({) =Kk, with k constant.
making suitable assumptions about the initial frequency We insert Eqs(4), (7), and(10) in Eq. (2) for we obtain
scanning(or chirp). the initial form f(7) making {=0 to get the second-order
SPM gives rise to an intensity-dependent phase shifequation forV({=0,7)=f(7),
while the pulse shape governed By (¢, 7)|? remains un- 5 s )
changed[2]. SPM-induced spectral broadening is a conse-Yr— 08(S—0a)V’—20(1—88)V '+ 0(2k—0ap)V=0.
guence of the dependence®fZ, 7). This can be understood 1D
by noting that a temporally varying phase implies that the  gqyation(11) can be integrated once and put into a form

?nstantaneous optical frequenc_y differs across the pulse fro_@nalogous to the equation of motion of a particle in a one-
its central value. Self-steepening leads to an asymmetry igimensional potential field

the SPM-broadened spectra and of the trailing edge of the

pulse that eventually creates an optical shock analogous to 1(V,)2+11(V)=0, (12
the development of an acoustical shock on the leading edge o o

of a sound wave. The critical distance corresponding to th&/here the potential field(V) is given by

shock formation can be obtained by requiring that (V)= — Loa,(s— ga,) Ve
[|U(Z,7)|?], be infinite at the shock location. For femtosec- ®
ond initial pulse widthT,<100 fs and peak power of the —to(1—sag)V*+io(2k—0al)V3+ 6.

incident pulse Pp=1 kW, as a result, significant self- ) ) _ )
steepening of the pulse can occur over a few-centimeter-long€re 8 is an integration constant, anf=W. Equation(12)

fiber [6]. can be rewritten as
To solve the coupled pair of Eq&) and(3) we make the W§+H(W) _o, 13
ansatz
where
$,=ag+a,V?, (4)

IT(W)=W(aW3+ BW2+ yW+ §),
wherea, anda, are constants that will be determined later. . _ 4 B _ _
With the ansat#4) we decouple the pair of equatiof® and vzwzh (2ak__ ;%aZ(S 78z), B=—40(1-sz), and y
(3) that now can be solved exactly. First we make some ° 7o)
simple manipulations in order to write E) in the form

Ill. RESULTS
(V) +[(3sVP~0,)V?],=0. (5) In the following we show how to obtain the general solu-
tion of Eq. (13) and give some possible solutions fé+# 0.
Second we substitute E() in Eq. (5) to find For different kinds of root distributions of the polynomial

IT(W), there are different kinds of solutions for E(L.3).
(V) +[—cag+(—20a,+3s)VZ](V?),=0,  (6) Because\N'zvlz>O and all of the coefficients il (W) are
real, we will discuss the real solution of E{.3) only.

where we used the propertyf) ,.=2V2(V?) .. From Eq.(6) (1) a>0. _
obtain directly the general solution fof as (8 All four roots of the polynomiall(W) are real.
(i) There is a single rootW=0 and a triple root
V(¢ 7)=t{r—[—cag+(—20a,+3s)V2]}, (79 W=a. Inthis case “potential functionTll(W) can be re-
written as

where f is an arbitrary function determined by the initial TT(W) = aW(W—a)3. (14)

form of the pulse envelope. As we can see from &g.the

frequency scanning of our solution is nonlinearly modulatedI(W) <0, when 6<W< a. So there is a real solution for Eq.

during the pulse propagation, as opposed to the ordinary soli13):

ton solution where it is zero. 0@ (r— 7o)

In order to integrate Eq(2) we need now calculate . _ _2aea’(1— 7o)
This can be done from Eq&) and (7) yielding for ¢(¢,7) 1+2aa*(7—19)*"

(15
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where g is an integration constant. This is the “algebraic” In this case “potential function'TI(W) can be written as

dark soliton solution. We have the conditioass — 8/3«,

3ay= B2, and 6= B3/27a7. (W)= aW(W-a)%(W—b), (16)
(ii) There are two single rooté/=0 andb and double

root W=a. when 0<W<b anda>b>0. The real solution in Eq.13):

|

. ( 2a—b ]? a

*bl 1= 5@y | Ta=b
[ (2a—b)?

" Za(a_b) ta”zd’}

(Za_b)Z 1/2

- 4a(a—b)

tarf ¢ |tarf ¢

(17

where ¢= \Jaa(a—b)(7— 75). We have the conditions wherea=1 andb, c, « are given by

B Y 1 1 2 g112
3a+22 a+ L=, RN A TR N A
o a b,c=( ,+)2(1+at4(1+a +a ,
b=—2a—§, B (a—b)c 12
“\(a—c)b]
and . . . - .
respectively, and sn is the Jacobian elliptic function. &or
5= wa?l 2a— E . >W=>b we have the solution
(64
Gy Th I - I W (a—b)c sri(y2a(a—c)b(7— 70),k)
iii) There is one single rod/=0 and three single roots = ,
Weg. b. andc. g g (a—Db)sA(y2a(a—c)b(7— o), k)—(a—c)
In this case the “potential functionTI(W) can be written (20
as wherea, b, ¢, and are the same as above.
II(W)=aW(W-a)(W—b)(W-c), (18) (b) In the case when there are two real rodts-0, a and
a pair of conjugate complex rooW= *ib.
whena>b>c>0. (i) In this case “potential function’TI(W) can be written
For c>W>0 we have the solution as
acsrt(v2a(a—c)b(7—14),&) (W) =W(W—a)(W?+b?). (21
= . (19 . :
a+c[srf(y2a(a—c)b(r— 1),k)— 1] When 0sW=a, there is a real solution for E¢13),
|
ab[1—cn(y2a(a?+b?)b(7— 7g),k)] 22

W= }
b[1—cn(v2a(a?+b?)b(7— 79), k) ]+ VaZ+ b [ 1+ cn(y2a(a+ b?)b(7— 74),«)]

(2) <.
(@) All four roots of the polynomiall(W) are real.

(i) There is a single rodtV=0 and a triple rooW=a. In this case, it is impossible fdd(W)<0 so there is no real
solution for Eq.(13).

(i) There are two single rood&/=0 andb and double roo¥W=a. In this case “potential functionTI(W) can be written
as

II(W)=W(W-a)2(W-b). (23

When 0<sb<WH<a, there is a real solution for E413),

a’b—2a’W+2aW?—bW?—2a(a—b) VW(W—-a)>(W-b

In W=a)2 ) =\—aala—hb)(7— 1), (24
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for simplicity, we letb=0. We have 1.0

W= g sec+g \/—_a(T— 7o) ex;{ ig \/—_a(T— 7o)

(29)

(iii) There are four single roof®/=0, a, b, andc. In
this case, it is impossible fofFI(W). So there is no real
solution for Eq.(13).

(b) In the case when there are two real rodits-0, a, and
a pair of conjugate complex root¥= *=ib. In this case, it 02}
is impossible forlI(W)<0. So there is no real solution for
Eqg. (13). It is important to remember that for all the solutions

06 [

VAL
04|

above we should replaceby 7%(,7) of Eq. (9) in order to 10 5 10
find the amplitudev(Z,7) of Eq. (7). .

In all the discussion above we consideréd 0. As we o _ )
know, the boundary conditions in whidh andV . vanish as FIG. 1. Plot of normalized intensity versus time from EB8)

|_with a,=0.2,s=0.2, anda,=—0.2. { is the position along the
fiber, showing the shift, the asymmetry, and the self-steepening of
nthe pulse. The quantities plotted are dimensionless.

T— * oo are very important in the sense of temporally loca
ized solutions and this means hete 0. We are now going
to show that in this case we can find an analytical solutio
that is a generalization of an early result in the literafifie

in which we depict its asymmetric nature due to the self- . .
steepening term. Later we use this solution to show the shoc'ﬁef' [6]. We can still emphasize some features of the ob-

formation and calculate the critical distance in which thet@ined solution described by E@8). For v=0, for example,
shock occurs. we have from Eq(16) thatay= 1/s and the amplitude in this

Without loss of generality we can assume again that th ase goes as a square root of the conventional sech-type so-

peak of the pulse is located at=0, i.e.,V(0)=V, andV, ution, whereas fon=1 (a,=0 ora,=os) the amplitude
0. We also havél(V,)=0, which specifies the constakt has the usual sech-type behavior. This means that in going
as follows: ’ from v=1 to v=0 the input pulse width which satisfies Eq.

(28) is shorter than the conventional solution. For the con-
k=ica2+i(1-sa)Vi+ia,s—oa,)Ve. (26) Vventional nonlinear Schdinger equation “bright” and
“dark” solitons exist depending on whether= 1, respec-
For the NLSE the value assumed kys 3 obtained by the tively. In our solution the condition for the existence of a
inverse scattering method and in this case the frequendyright soliton in the normal regimes(= + 1) becomes
scanning is zero. We recover this result in E26) as ¢,
=0 (ap=0, a,=0) and alsos=0 (in this case MNLSE

goes into the NLSEwhere we mad#&/,=1 for the normal- 1+ s (s—a,)<Sa, (30)
ized pulse. 3
For a potential well to exist betwedfi=0 andV=V, the
coefficient ofV2 in Eq. (12) must be negative, i.e., where use of Eqg26) and(27) was made. This implies that
in a medium in the normal regime we can still propagate a
o(2k—gad)<O0. (27)  bright soliton provided Eq(30) in the anomalous regime
(c=-1)is

The formal solution of Eq(12) is found after some alge-
braic manipulations as

a
V2 1]-1 1+§(s+a2)>sao. (3D
V2(§,T)=E COSH(M??HE : (28
The conditions set by Eq$30) and(31) will be important
where in the determination of the possible values of the parameters

ay. The phase is easily found from Ed8) and(28) and is

w?=—o(1-say)Vi— toay(s— oa,)Vy, 29 given by

g 2
v=—F(1—sa0)V , a,V5

(L, 7)=k{+agr+ T
and 7 is defined by Eq(9). The results obtained in Eq&l), K g
(28), and(29) are the ones from which we will make a de- a
tailed analysis showing under which conditions we can re- xtan [ V1— v tanh(un) ]+ — (35— 20ay)
trieve earlier results of the literature, as well as new ones. 2
We can see from Egg9) and (28) that in the anomalous 4 _2
regime (= —1) for a,=—3s/2 we recover the results of XVel[(2—v)cost(un)+v—1]72 (32
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Once again we see from Eg&2) that we recover the [3v+ 92— 320+ 32)2
phase of Refl6] whena,= — 3s/2 for the anomalous regime g(v)= > > 7" (36)
(o=—1). Figure 1 depicts the results of Eq8), (28), and [2(3v°—8v+8) + 2vy9v"— 320+ 32]

(29) where the pulse asymmetry leading to shock formation As we saw in Sec. Ill, fom,=—3s/2 in the anomalous

regime (= —1), we recover the results of R¢6] in which
&fie pulse propagates symmetrically and consequently there is
no shock formation. This is clearly corroborated by our Eq.

- . . (35 where {,—0 (no shock formationwhena,= —3s/2,
Fora,=0 and arbitranya, there is an asymmetry and the o= —1. From Eq.(35) since{,>0 and all other parameters

dispersion is unable to prevent the shock formation. In thiﬁnvolved are positive we have the conditions fay:a,=
case one should notice that, unlike the dispersionless Case g /s (o= —1) anda,=3s/2 (0= +1), and this. szet R
= ,< = ,

the whole envelope is shifted. range fora, depending on the self-steepening parameter
Therefore we conclude that the conditions of E@9), (31
IV. SHOCK FORMATION AND CRITICAL DISTANCE anda,=3s/2, a,< — 3s/2, respectively, set a region of pos-
OF PROPAGATION sible values of the parameteaig anda, that are compatible

As we saw in Sec. Il, the presence of the last term of EqWith our solution. Finally, as we said before, the self-
(1)—the self-steepening term—is responsible for the asymsSteepening term creates an optical shock on the trailing edge
metric behavior of our solutions. This self-steepening carPf the pulse. This is due to the intensity dependence of the
develop the formation of an optical shock understood as afoup velocity that results in the peak of the pulse moving
extremely sharp rear edge seen in Fig. 1. In this section wglower than the wings€=—1). As a result this manifests,
calculate the critical distance of propagation for shock for-Pesides the asymmetric behavior, through a shift of the pulse
mation of the solution described by E@8) with the condi- ~ center. This shift can be described by the delay tirel)
tion thatV, becomes infinite at the shock position. From Eq.that can be calculated from E) making =0 and taking
(7) we find V2(§,rd)=vg as the peak of the pulse. We have then for

74(£)

= aridm) =[—oay+(3s—20ay) V3]L. (37)
VT_1+(3S—2032)§(df2/d77)' (33 T4({)=[—oap+( oay)Voll

slower than its trailing edge, but without a whole shift of the
envelope.

For o=—1, a,=—3s/2, andayg=s we recover the nu-
The condition for shock formation is then obtained from Eq.merical result of Ref[6] in which the delay time has the

(33) and the critical distancé, is determined whedf?/dn  behaviorry(Z) =s¢ for s<0.3. From our result described by

is a maximum, i.e., Eq. (37), we observe that the peak does not movg=0)
for ag+2a,= —3s with Vy=1.
1 1 Concerning the results presented in this paper it is impor-
for=— 3s_20a, (A12d7) e (34 tant to mention that the main difference between our ap-

proach and that of Refl5] is related to the choice of the

The maximum ofdf?/d 7 is calculated from Eq(28) yield- ~ Variablen, i.e., in their casep=7—ay{ while ours is given
ing for 7 by Eq.(9).

ACKNOWLEDGMENTS
9(v)

“8uV2(3s—20ay)’

Lor (39 Financial support for this research by CNPq, FINEP,

CAPES, and FACEPE, Brazilian agencies, is gratefully ac-

whereg(v) is given by knowledged.
[1] A. Hasegawa and F. Tappet, Appl. Phys. La8, 142(1973; [7] R. L. Fork, C. V. Shank, C. Hirlimann, and X. Yen, Opt. Lett.
23, 1171(1973. 8, 1(1983.

[2] G. P. Agrawal,Nonlinear Fiber Optics Quantum Electronics  [8] N. Tzoar and M. Jain, Phys. Rev. 28, 1266(198)).
Principles and Applications Serie@\cademic, New York, [9] E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V.

1989. N. Serkin, Pis’ma Zh. Eksp. Teor. Fid2, 74 (1985 [JETP
[3] L. A. Ostrovskii, Zh. Eksp. Teor. Fiz51, 1189(1967) [Sov. Lett. 42, 87 (1985].

Phys. JETP24, 797 (1967)]. [10] W. Zhao and E. Bourkoff, IEEE J. Quantum Electr@E-24,
[4] F. De Martini, C. H. Townes, T. K. Gustafson, and P. L. 365(1988.

Kelley, Phys. Rev164, 312(1967). [11] G. R. Bayer and M. A. Franco, Opt. Lettl4, 465
[5] D. Grischkowsky, E. Courtens, and J. A. Amstrong, Phys. Rev. (1989.

Lett. 31, 422 (1973. [12] J. T. Manassah, iThe Supercontinuum Laser Soureslited

[6] D. Anderson and S. Lisak, Phys. Rev.2&, 1393(1983. by R. R. Alfano(Springer-Verlag, Berlin, 1989 Sec. V.



4756 JAIRO R. de OLIVEIRA AND MARCO A. de MOURA 57

[13] G. Yang and R. Shen, Opt. Lef, 510(1984). 10, 457 (1985.

[14] B. R. Suydam, inThe Supercontinuum Laser Sour¢eef. [17] J. E. Rothenberg and D. Grischokowsky, Phys. Rev. l6at.
[12]), Sec. VL. 531(1989.

[15] Xu Bingzhen and Wang Wenzheng, Phys. RevbE 1493  [18] J. E. Rothenberg, J. Opt. Soc. Am.632392(1989.
(1995. [19] K. Kaup and A. Newell, J. Math. Phy49, 798(1978.

[16] W. J. Tomlisom, R. H. Stolen, and A. M. Johnson, Opt. Lett. [20] J. R. de Oliveiraet al, J. Opt. Soc. Am. B3, 2025(1992.



