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Thermal properties in surface-tension-driven convection
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We discuss the approximations that may be applied to the convective problem of a horizontal layer of liquid
in contact with an air layer, both enclosed between conducting walls. Assuming that heat flows across the air
mostly by conduction(conducting-air hypothesisthe two-fluid problem reduces to the usual nBed-
Marangoni(BM) problem provided the spatial variations of the temperature in the thermal boundary conditions
are considered. This approximation is the minimal model to compare with well-controlled BM experiments.
The form of the average temperature profiles suggests the reference temperature that ought to be taken in
nondimensional parameters that describe these phenomena. We also discuss how the Biot number could be
estimated from the Nusselt number and the interfacial temperature field measurements even far from convec-
tive threshold. A linear stability analysis is performed with the correct thermal boundary condition. It gives
thresholds that slightly differ from those obtained previously. These values are compared with recent experi-
mental findings. All these facts will be useful in performing weakly nonlinear analyses and in planning future
experiments on this instabilityS1063-651X97)10212-4

PACS numbe(s): 47.27.Te, 47.20.Dr, 44.25f, 47.20.Ky

I. INTRODUCTION an interfacial field(b) they always modify the interface, and
(c) they only provide approximate valug8]. Other authors

Convective cells, first described by Bard[1] almost a  have suggested using a suitable “average” of the ambient air
century ago, are still the paradigm of pattern-forming sys{7] temperature, but such a criterion has some arbitrariness
tems. Since the work by Pearsf®], we know that these @and cannot be considered for quantitative comparisons.
cells are mainly due to temperature-induced surface tension The BM instability is intrinsically a two-fluid problem
gradients at the open upper surface. Under normal cond[8]. The two-fluid problem is mathematically much more in-
tions, this effect is mixed with buoyancy, leading to the so-volved than the one-fluid model. The main purpose of the
called Baard-Marangon{BM) convection[Pure buoyancy Present paper is to perform a consistent reduction from the
convection is known as Rayleigh-Bard (RB) convection]  two-fluid model to the one-fluid model, using suitable ap-
Theoretical instability thresholds were determined by PearProximations, mainly the disparity between air and liquid
son[2] for pure thermocapillary effects and generalized byproperties. We will see that a consistent reduction consists in
Nield [3] for the full BM problem. assuming that air transfers heat by conduction only

The main drawback in BM convection is the determina-(conducting-air hypothesisin order to discuss such a mini-
tion of the heat transfer across the upper free surface, i.emal model we will review the evolution equations and the
between the liquid layer and the surrounding air. In mostooundary conditions of this problem, and then we will pro-
papers the general problem is reduced to a model for theeed to discuss the thermal properties of the system. Some
liquid layer (one-fluid modé| provided the exchanges with attention is paid to the discussion of the temperature differ-
air are included in a suitable thermal boundary condition€nce that should be taken to determine the value of nondi-
Usually Newton’s law of cooling is assumed, with a constantmensional parameters. We compare the results of the
heat transfer coefficient at the liquid-air interface. Howeverconducting-air hypothesis with the classical ones due to
this condition is only satisfied when the interfacial tempera-Pearsor{2] and Nield[3]. Finally we present a comparison
ture is uniform, i.e., when convection is absent. In other paof these results with the most remarkable experimental re-
pers it has been argued that this law can be used if he&ults on convective thresholds in BM convection.
losses are purely radiativ&vacuum assumption) [4]. Oth-

erwise, phenomenological values of the heat transfer coeffi- Il. MECHANICAL BOUNDARY CONDITIONS

cient can be used to reach an order-of-magnitude comparison IN THE TWO-ELUID BM INSTABILITY

between theoretical values and experiments involving an air

layer over the free liquid surfad&]. Let us review briefly the main characteristics of the setup

But within the one-fluid model the measurement of theused in recent experiments, in which excellent thermal con-
temperature at the interface is a delicate experimental proldrol has been achievd®—11]. This consists of a liquid layer
lem. In effect, in this model the control parameter would beof thicknessd, on a rigid conductive plate attached to a
the temperature difference between the bottom plate and tHeeater. The power of the heater is adjusted in order to keep
interface. Some authors have tried to estimate the interfacidhe temperature fixed at the bottom. A thin air layer of thick-
temperature with local probegthermocouples and ther- nessd, is enclosed between the liquid and a rigid conducting
mistorg in some experiments. But these probes have somkd. Usually this lid is a sapphire window that allows optical
inconveniences(a) they provide only local measurement of measurements. Its bottom is in contact with the air and its
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Continuity requires some motion in the air layer, because
v,# 0 impliesv,# 0 at the interface. On the other hangy,
da air . j may be of the same order agv,. As u > pu,, the air terms
interface in Egs.(5) and(6) can be dropped. Hence the mechanical BC
reduces to
d; liquid
wov=|dal/dT|dy8, @)
vy = |do/dT]| dy0, (8)

F_IG. 1. Diagram of the setup to study l&d-Marangoni con- \yhich after applying the continuity equation reads
vection.

. . . i i ) |do/dT| _,
top with a refrigeration bath. The circulation through the vl j=———— V.0, 9
bath carries heat away while keeping the temperatyref Hi

the sapphire constant. When the temperature at the bOttOWhereVZ is the horizontal Laplacian operator
late T}, is raised sufficiently one passes from a conductive h '
P b y P Equations(3), (5), (6), (9), and(10) make up a complete

state to convection. Thus the main control parameter is the . - :
total temperature differencAT=T,— T, across the two set of BC for the BM instability problem, where two main

layers. (For simplicity, we do not consider the temperature""pprox'm"’ltlons have been applie@ the interface is as-

in th it lat th hire) I di f sumgq to 'remain fla}t an(b_) viscous_ effect; ir_1 the air are
?r]rizp;)lrr:ﬁgjrggor?rg Zr?o?/vﬁr}?] FiZ Sipp Ire) IR diagram o negligible in comparison with those in the liquid. In the next

For small heating the evolution equaticdiesntinuity, mo- section we discuss the approximations which determine the
mentum balance, and energy balance equatidresre a thermal BC.

purely conductingquiescent solution:
IIl. HEAT TRANSFER ACROSS THE UPPER FREE

ATY SURFACE
V|:0, T|(Z):Tb_d_z (O<Z<d|), (1)
' Now we recall the thermal BC. Continuity of temperature
c and heat flux across the interface leads to the following ther-
Va=0, To(&)=Ti~ 5[z (di+dy)] mal BC:
a
Ti=Ta, 6,=0a, 0z2=0za, (10

[d<z<(d+da)], (2)

, , g, being the vertical component of the heat flux. At a steady
whereAT¢® stands for the conductive temperature differencey ot interface the last condition readsd,T =\ ,d.T, (\ is
across the liquid and the air, respectivelydenotes the ve- zl1—*af% a
locity, and the subscripts indicate values in the a gnd in The reduction from the two-fluid problem to the one-fluid
the liquid (1), respectively. This is the reference state which,qqe| always involves some hypothesis on the thermal BC
's stable fo_r §mal| heating. Per.turbationg, ground thi; statgs the interface. Usually it is assumed that the air layer is
(small or finitg .evolv.e according to S|m|I.a_r equations, qjiescent and that the heat flow from the liquid to the air
supplemented with suitable boundary conditidfiC). On obeys Newton’s cooling law with a constant coefficiént

rigid conducting plates, Under this hypothesis Eq10) becomes

the heat conductivity

vi=0, /=0 atz=0,d,+d,, (3 o,0,=—he,. (11)
where @ is the temperature perturbation. ) )

Benard [1] reported interfacial deflection measurements,In €arly experiments the value bfwas set as an adjustable
but deviations from flatness are at most aboutt (here-  Parameter for comparison with theoretical thresholds. This
after we will assumed,=1 mm). [However, in thin layers Procedure is arbitrary and does not allow determination of
(d,<0.3 mm) deflection makes an essential, non-negligibld’récise values for this parameter. .
contribution[12].] Here, we will suppose that the interface is _ This procedure can be improved by examining the tem-
flat, undeformable. perature profiles across the two fluids in different situations.

In normal liquids the higher the temperature is the smalle/AS @ reference, let us consider Rayleigh-Benard convection
is the surface tensiom, i.e., o=oo(1—|do/dT|6). There- between two rigid plates. The experimental setup includes

fore, the mechanical BC, which states continuity of tangenPottom and top plates with higher thermal conductivities

tial stresses, leads to than the convective fluid, to keep the temperatures fixed in
both plates. When convection begins, the linear temperature
v,=0 (4)  profile is modified by increasing the mean temperature gra-
dient at the boundaries, then decreasing it in the midregions
10041 — madovy| .= |dald T| 046, (5)  of the fluid, as sketched in Fig.[23]. In BM convection the

temperature and heat flux perturbations are linked at the
3|1 — padvy|o=dal/dT|d, 6. (6)  boundary. For smalAT, there are two linear conductive
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pendence o# the simplest method is to consider heat con-
duction through the air. The situation is shown schematically
in Fig. 3. Once convection becomes stationary in the liquid,
the local temperature slope near the bottom is smétlés a
negative quantitythan in the conductive case. Likewise the
linear temperature slope also diminishes in the air layer, thus
giving an incrementd to the average temperature. So, to
fulfill the thermal BC conditions the local slope near the
liquid interface must be smaller than in the conductive case
(the termd,6+ 0 must be added

Conduction in the air settles between a fixédand a
eterogeneous temperature figld+ 6(x), wherex stand for
orizontal coordinates. This fact is considered in expanding
the temperature perturbation field in terms of normal modes

profiles, one across the liquid and another through the air, a&(X.2) = 0 (2)exp(-ik-x), where!< stands for the horizontal
sketched in Fig. 3. The slopes of these profiles are obtainefave number. Then, Laplace’s equation results /5

FIG. 2. Diagram of the temperature profiles in Rayleighh&el
convection between conducting plates. The dotted line indicate
linear conductive profiles, while the solid one represents convectiv%
profiles.

from the thermal BC Eq(10): —k?@=0. Solutions of this equation are of the forl@(z)
=A coshk?+B sinhk?. Applying the rest of the thermal
Tp—T¢ T -T, BC Eq. (10), Newton’s cooling law Eq(11) is recovered,
Mg TR (12)  provided the coefficierh is taken as

_ . . . . A K
which fixes in a unique way a reference interfacial tempera- h=—
ture T* as a function ofT, and T, (see Fig. 3. (The super- A tankkd,)
scriptc indicates that the reference temperature is obtainef|otice that this is the form expected for the heat transfer

from a conductive profile.Now we assume that a perturba- coefficient in an insulating plafei4]. In the particular cases
tion 6 acts on the conductive profile, so thgt=T;+ 6, and  ¢_—0 and k—0, which physically are equivalent td,

(15

the thermal BC Eq(10) can be written as <1k, i.e., the thermal properties of the air layer do fet
c the spatial structure of the underlying liquid amdeduces to
(Tf+6) T, h.

MIo(TE+ 6)= —\q (13)

da, Let us discuss now the range of validity of the
conducting-air hypothesis. The typical Rayleigh numBer

Using Eq.(12) we arrive at Eq(11), providedh is taken to  for an air layer ofd,~1 mm is far smaller thaiR.= 670 of

be an incompressible fluid with an open surface, so natural con-
vection in the air is excluded near the onset of convection.
ho= Na _ (14) On the other hand, continuity drives some motions from the

Ndg liquid to the air that produce #orced-convectiorcontribu-

tion to heat transport. The magnitude of this term is esti-
The relationship Eq(14) is the only point at which the air mated by the Peclet numbBr=\d,/x,, whereV is a typi-
properties enter the one-fluid model. cal velocity andk the heat diffusivity. Since on the interface
~ But in deriving Eq.(14), 6 has been assumed to be spa-y/_—v/,~,/d,, the component of heat transport due to
tially uniform, which is not the case. To include spatial de-forced convection in the air is smaller than that due to con-
duction by a factoP~D/K~10"2 (D=d,/d,, K=k,/k).
Moreover, numerical simulations of the two-layer problem
confirm that the effective thermal conductivity in the air does
not change for small supercriticalifst 1].

IV. EVOLUTION EQUATIONS AND NONDIMENSIONAL
PARAMETERS

What would be the control parameter in the one-fluid
model? UsuallyAT=T,—T,; would be suggested by a theo-
rist. But with this choice the problem is not well-defined
becauseT;=T;+ 6(x) is established on the interface. Some

FIG. 3. Scheme of the temperature profiles in anae-  Kind of horizontal averagg6) should be taken intoT},
Marangoni cell. The dotted line indicates linear conductive profiles™(Ti) but no technique allows us to measy# without
through the liquid and through the air. The solid curve representnodifying the interfacial properties. Moreover, from inspec-
the profiles in each medium. The curdemperatureand its de-  tion of Fig. 3 it is clear that is, in general, a two-fluid
rivative (heat fluy must be continuous at the interface. For liquid quantity. These drawbacks suggest the use of a quantity eas-
convection the average interface temperature is modified by a factdly related to the control parameté&T in experiments. In
(). The heat fluxes are also changed accordingly in these circuragreement with the conducting-air hypothesis, the conduct-
stances. ing temperature difference across the air is subtracted from
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AT+ and the resulting differenc&T=T,— T} is used as the 3007
reference for the temperatug@ the next paragraph we will
give the relationship betweeAT; and AT). Besides this
referenceAT for temperature we usg for length andd|2/;<

for time. The evolution equations become 200

V-v=0, (16)

Pr ld,yv=—Vx+V2v+Rbe,, (17
100t

dyf+v,= V26, (18

and the boundary conditions become

v=0, #=0 on z=0, (19
o2, ,=—MV326, 9,6=—Bi6 on z=1, (20

where for simplicity the same notation for nondimensional FIG. 4. Marginal curves. The solid curve is for B39) and the

- . 7 . . . otted line is the curve resulting from Pearson’s results with a con-
variables is maintained and the following nondimensional e . . =
. ) stant Bi=Bij. (A is taken fixed atA =0.204)
numbers have been introduced:

u Nu=1+Bi(k=0){#6). (28
Pr=— (Prandtl number, (21
px Under the conducting-air hypothesis Bi¢ 0)=Bi,, and the

ag(Ty—TO)d? Nusselt number reduces to Mid+Biy(6). From this last

R= padile” )Y (Rayleigh number,  (22)  €xpression it becomes apparent that the perturbatioolds
MK the whole information on the convective heat transport. This

perturbation 6, or equivalentlyT;, cannot be determined
M= |do/dT|(Tp—Ti)d M . b - with local invasive probes like thermocouples or thermistors,
h LK (Maragoni number  (23) but it requires accurate indirect measurements. Regarded as a
phenomenological coefficient, Bi& 0) can be inferred from
oK calorimetric measurements even far from threshold.

(Biot numbey. (24
a
N tanl‘(d—lk)
) _ c. _ Now let us seek the consequences of the thermal BC Eq.
The temperature differenceT=T,—Tj' is not directly mea- 50 on the linear stability analysis. Usually, Bi is regarded
surable but it is derived from T+ by the simple relationship 54 constanf2,3], but, in general, BK)=Bi,. Thus, the lin-

ear problem becomes a little more cumbersome, though it

Bi=hd =
V. CONVECTIVE THRESHOLDS

AT=AT;—(TS—T,)= % ATy, (25 can be solved without difficulty.
0

where Bj=Bi(k=0). Hence the nondimensional numbers A. The caseR=0
M+ andRy built with the parameteA T+ are linked toM and The caseR=0 (no buoyancy can be treated analytically.
R through Furthermore, this is the case in which the interfacial contri-

_ butions give the highest corrections. The marginal curve is

_ Bipt1 simply
(MTIRT)_ B|O (MaR) (26)

8k?{1+[A tanhk/tanqDk)]}(k—sinhk coshk)

We complete this section with some comments on theM (K) = k3—sint? k tanhk '
Nusselt number, a dimensionless measure of heat conduction (29
accessible from calorimetric measurements that can be given
by Nu=(q,)/{qS) or equivalentiy(qs|,= —\\[(T,—T)/d|])  Here the air properties appear within the ratibs=\,/\,
andD =d,/d,. The minimum of this curve gives the thresh-
old valuesM. andk.. Figure 4 shows the curve Eq9)
together with that resulting from taking a constant value
(9 indicates that the temperature perturbation is taken with The factor Bik) has two effects(a) it increases the con-
its dimensions hejpe After introducing the thermal BC Eq. vective thresholdV., becauseM. increases by increasing
(20) and using dimensionless variables, this reads=llu Bi (see Table | in Ref[3]) and(b) it shifts the critical wave
+(Bi(k) #). The horizontal average is equivalent to taking numberk.. For fixedA, M (k) increases monotonically &
the limit k— 0. Then, with full generality increases. Two limiting cases can be distinguished. When

d,
NU—l—ﬁ<é’z'ﬂ> (27
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linked through the relationshipI'=M/R=(|do/dT]|)/
(pag d|2). This parametel’ measures the relative importance
of Marangoni and buoyancy effect$:or a given liquid and
a fixed depth, the ratio ofM and R is fixed) In
thermocapillary-driven experiments, <"~ *<1. We per-
formed numerical simulations including this factor and
Bi(k). The main result is that the linear relationship found
by Nield [3], M./Mg.+R./Ro.=1, is still valid, provided
the appropriate valuelly. (pure Marangoni, no buoyangy
and R, (buoyancy alone, no surface-tension variatjoae
taken. We summarize in Table | the values obtained in this
0 5 10 15 ., 20 analysis for the experimental value=0.204[10] and for
D several values of Bi (As D= A/Bi, we take Bj as the main
parameter to compare with Table | in RE3).) For the sake
FIG. 5. The critical Marangoni numbevl, as a function of of comparison the values of Table | in RdB] are also
D !=d,/d,. It tends to the valudd,=Mgi_ 4 for smalld,/d,. included in this table. In our case a maximum deviation of
Asymptotically it goes likeM =M,(1+ A/D), whereM,=M(Bi 3% from this straight line is found for all the valueslofand
=kcA). In the upper curve in this figuely = (Bio+1)M/Bigis D used in experiment$See also the discussion in REI6].)
represented. Its minimum is at,/d,=0.15 for the experiments After using that linear relation and the definition Bfwe

quoted in Table I(The same valud =0.204 as in Table | has been obtain an expression valid for any value Iof
taken)

500

300

100 b

T'MgcRoc
D—0 (d;>d), M—M(Bi=kA), while for D—c (d, M= FRoct Moy (30)
<d,), M—M(Bip). As the most physically interesting case
is the latter one, we give the main results in term$of*.
The critical valueM_ is plotted as a function dD in Fig. 5 which holds with an uncertainty of 3%.

for a valueA =0.204 used in Table I. From curves in that In comparisons between experiments and theory, Bi has
figure it is obvious that corrections given from Bj(are  peen underestimate@ reference value Bi0.1[9,17] was
most significant in the range 68D <3, i.e., when the liquid  ysed or the correction due t&'#0 was not included9,18].
and air depths are of the same order of magnitude. Schatzet al.[10] include the last correction and the value of
In this point it is worthwhile to comment on some unclear Bi is taken as Bj (conductive heat transport assump)i_on
results in a recent papét5]. There, the thermal boundary we quote in Table Il the values of three recent experiments
condition was improperly taken as if the temperature couldogether with the results for Bi() from our analysis. The
be kept fixed throughout the air layer, or, equivalently, con-alue ofI is easily obtained from the parameter values tabu-
sidering the air to be a good thermal conductor. As a consqated in each experiment. The values\bf andR. have been
quence, the temperature profile in that pai&r. (2)] isonly  calculated from Eq(30) and Nield's linear relationship with
continuous at the interface in the limiting case of a vanishingne values oM oc andRy, in Table 1. Notice that the BK.)
air layer {d,—0). Furthermore, in this particular limit the giffers significantly from the value Bi0.2 taken by Ko-
main result in that pap¢Eq. (10)] is correctly obtained from  schmieder and Switzgi9]. On the other hand, in the case
Eqgs.(29) using the relationship betwedttr andM deduced g ~d,, Bi(k,) differs by a factor of 2 from Bj the value
in the preceding section. In Fig. 5 the value of the critidal  taken in Ref[10]. There is also a discrepancy between the
as a function oD~ is represented to show that the resultstheoretical threshold values &f and those obtained in ex-
of Fig. 1 in Ref.[15] are recovered here as a particular caseperiments. The main source of discrepancy lies probably in
the inaccuracy in the measurementsdof/dT (+=10%). In
our calculationk.=1.97, which is smaller than the smallest
R is not usually negligible in experiments. In fact, the value k.=1.99 (Bi=0) reported by Nield but still higher
dimensionless numbehld andR are not independent but are than the experimental vallg=1.90.

B. The caseR#0

TABLE I. Values ofMOC and Ro, for A=0.204,D = A/Big, and several values of BiThese values must be compared with those in
Table 1 of Ref[3].

Bi, Mo, Ke Mlalcield krcxueld Ro, Ke Rgield krcxueld

0 95.241 1.970 79.607 1.993 721.65 2.135 669.00 2.088
0.01 95.241 1.970 79.991 1.997 721.65 2.135 670.38 2.089
0.1 95.251 1.971 83.427 2.028 721.66 2.139 682.36 2.117
0.2 95.800 1.992 87.195 2.060 722.84 2.147 694.78 2.144
0.5 102.610 2.096 98.256 2.142 739.80 2.207 727.42 2.212
1 118.540 2.221 116.127 2.246 775.91 2.290 770.57 2.293

2 152.012 2.374 150.679 2.386 833.19 2.391 831.27 2.393
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TABLE Il. Experimental and theoretical threshold values.

il d, da r Big Bi (ko) M theer M Pt
Koschmieder 100 cs 3 0.4 0.6 1.2 1.3 100 71
and 1.9 0.4 15 0.8 0.8 100 62
Switzer 50 cs 1.9 0.4 1.4 0.8 0.9 100 72
1.2 0.4 35 0.5 0.6 98 61
Schatzet al. 7 cs 0.4 0.45 44 0.2 0.4 95 84
Nitschkeet al. 10 cs 1.41 0.50 2.9 0.6 0.7 99 99
VI. DISCUSSION right threshold value®,. and M. are used. A comparison

Close to the convective threshold, heat flows across th\é\”th recent experimental thresholds,10,14 is also pre-

. . . . Sented. The critical wave numbdg, in our analysis K.
air layer mainly by conduction. This fact allows us to pro- =1.97) is slightly smaller than the smallest value obtained
pose a minimal model, which we called teenducting-air . gntly

approximation in which the real two-fluid problem can be %yegltflg [3]1(56): 1.99) but still higher than that in experi-
o . . T =1
reduced to a one-fluid system, provided that a simple modi Although the model presented here is strictly valid for

fication of Newton's heating law is made. The constant “Osmall superecriticality, the points raised in this paper must be
efficient in this law must be replaced bykadependent co- P Y P pap

efficient. With this model most of the questions raised in thetaken into account in pursuing a nonlinear analysis and, in

introduction of a recent work by Parmentietral.[7] can be particular, in fully explaining the striking hexagon-square
answered ' transition recently discovered in experimefis,20,21.

We discussed the reference temperature to be used in non‘;Jl F(;crn;)qe::rc])(ran:):Tegrrlen?;ntg:t:rl]?i{sttr;\i :if:?;tsersi;uﬂ:gel?hit:;r
dimensional numbers, a point relevant to any comparismzd p<05mm Butd pnn t be decr dyb low a wettin
between theory and experiments. In this paper we argued @ ~ = ). Butd, cannot be decreased below a wetting

that a suitable choice for the reference for the temperature i alue[11]. On the other hand, the thinner the fluid Iayds:r.
the dimensional analysis §T°=T,—T°, a quantity easily e smaller the buoyancy and the bigger the thermocapillary
| 1

derived from theexternal control parameteAT- in experi- effect. But the ratial, /d, should be kept as small as possible

ments through the simple relatiaiT®= Biy/(Big+ 1)A Ty . to minimize the drawback of &-dependent Biot number.

From the general relationship between the interfacial tem:rhe optimization of these factors may improve the experi-

o mental setups used so far. This comment is especially rel-
perat.u.reTi anq the Nusselt number "*L.‘”B'("—Ox” the evant for planning future experiments under microgravity
coefficient Bik=0) can be determined, even far from conditions
threshold, after measurinf; with a suitable technique and '
Nu with a calorimetric technique.

A linear stability analysis gives us the convective thresh-
olds under quite general conditions. In the limiting case of no  This research was supported by the PIUKniversidad
buoyancy(pure Marangoni effegtour results differ by less de Navarraand the DGICYT-PB95-05785panish Govern-
than 1% from those obtained by Smith9] considering the mend. One of us(B.E.) would like to thank the Basque Gov-
whole surface-tension-driven instabilifyith deflections and  ernment for financial support. We are grateful to Professor
convection in air. The general case is also considered andH. Mancini (Universidad de Navarydor his collaboration in
we discuss some practical rules for obtaining the appropriateéhis research and to Dr. Kolodndétucent Technologies,
threshold values. Fortunately the linear relationsRig R Murray Hill, N.J) for many useful comments and discus-
+M./My.=1 found by Nield[3] still holds provided the sions.
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