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Thermal properties in surface-tension-driven convection
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We discuss the approximations that may be applied to the convective problem of a horizontal layer of liquid
in contact with an air layer, both enclosed between conducting walls. Assuming that heat flows across the air
mostly by conduction~conducting-air hypothesis! the two-fluid problem reduces to the usual Be´nard-
Marangoni~BM! problem provided the spatial variations of the temperature in the thermal boundary conditions
are considered. This approximation is the minimal model to compare with well-controlled BM experiments.
The form of the average temperature profiles suggests the reference temperature that ought to be taken in
nondimensional parameters that describe these phenomena. We also discuss how the Biot number could be
estimated from the Nusselt number and the interfacial temperature field measurements even far from convec-
tive threshold. A linear stability analysis is performed with the correct thermal boundary condition. It gives
thresholds that slightly differ from those obtained previously. These values are compared with recent experi-
mental findings. All these facts will be useful in performing weakly nonlinear analyses and in planning future
experiments on this instability.@S1063-651X~97!10212-4#

PACS number~s!: 47.27.Te, 47.20.Dr, 44.25.1f, 47.20.Ky
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I. INTRODUCTION

Convective cells, first described by Be´nard @1# almost a
century ago, are still the paradigm of pattern-forming s
tems. Since the work by Pearson@2#, we know that these
cells are mainly due to temperature-induced surface ten
gradients at the open upper surface. Under normal co
tions, this effect is mixed with buoyancy, leading to the s
called Bénard-Marangoni~BM! convection.@Pure buoyancy
convection is known as Rayleigh-Be´nard ~RB! convection.#
Theoretical instability thresholds were determined by Pe
son @2# for pure thermocapillary effects and generalized
Nield @3# for the full BM problem.

The main drawback in BM convection is the determin
tion of the heat transfer across the upper free surface,
between the liquid layer and the surrounding air. In m
papers the general problem is reduced to a model for
liquid layer ~one-fluid model!, provided the exchanges wit
air are included in a suitable thermal boundary conditi
Usually Newton’s law of cooling is assumed, with a consta
heat transfer coefficient at the liquid-air interface. Howev
this condition is only satisfied when the interfacial tempe
ture is uniform, i.e., when convection is absent. In other
pers it has been argued that this law can be used if
losses are purely radiative~‘‘vacuum assumption’’! @4#. Oth-
erwise, phenomenological values of the heat transfer co
cient can be used to reach an order-of-magnitude compar
between theoretical values and experiments involving an
layer over the free liquid surface@5#.

But within the one-fluid model the measurement of t
temperature at the interface is a delicate experimental p
lem. In effect, in this model the control parameter would
the temperature difference between the bottom plate and
interface. Some authors have tried to estimate the interfa
temperature with local probes~thermocouples and ther
mistors! in some experiments. But these probes have so
inconveniences:~a! they provide only local measurement
571063-651X/98/57~1!/475~7!/$15.00
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an interfacial field,~b! they always modify the interface, an
~c! they only provide approximate values@6#. Other authors
have suggested using a suitable ‘‘average’’ of the ambien
@7# temperature, but such a criterion has some arbitrarin
and cannot be considered for quantitative comparisons.

The BM instability is intrinsically a two-fluid problem
@8#. The two-fluid problem is mathematically much more i
volved than the one-fluid model. The main purpose of
present paper is to perform a consistent reduction from
two-fluid model to the one-fluid model, using suitable a
proximations, mainly the disparity between air and liqu
properties. We will see that a consistent reduction consist
assuming that air transfers heat by conduction o
~conducting-air hypothesis!. In order to discuss such a min
mal model we will review the evolution equations and t
boundary conditions of this problem, and then we will pr
ceed to discuss the thermal properties of the system. S
attention is paid to the discussion of the temperature dif
ence that should be taken to determine the value of no
mensional parameters. We compare the results of
conducting-air hypothesis with the classical ones due
Pearson@2# and Nield@3#. Finally we present a compariso
of these results with the most remarkable experimental
sults on convective thresholds in BM convection.

II. MECHANICAL BOUNDARY CONDITIONS
IN THE TWO-FLUID BM INSTABILITY

Let us review briefly the main characteristics of the se
used in recent experiments, in which excellent thermal c
trol has been achieved@9–11#. This consists of a liquid layer
of thicknessdl on a rigid conductive plate attached to
heater. The power of the heater is adjusted in order to k
the temperature fixed at the bottom. A thin air layer of thic
nessda is enclosed between the liquid and a rigid conduct
lid. Usually this lid is a sapphire window that allows optic
measurements. Its bottom is in contact with the air and
475 © 1998 The American Physical Society
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476 57C. PÉREZ-GARCÍA, B. ECHEBARRIA, AND M. BESTEHORN
top with a refrigeration bath. The circulation through t
bath carries heat away while keeping the temperatureTt of
the sapphire constant. When the temperature at the bo
plate Tb is raised sufficiently one passes from a conduct
state to convection. Thus the main control parameter is
total temperature differenceDTT5Tb2Tt across the two
layers.~For simplicity, we do not consider the temperatu
drops in the bottom plate and the sapphire lid.! A diagram of
this configuration is shown in Fig. 1.

For small heating the evolution equations~continuity, mo-
mentum balance, and energy balance equations! have a
purely conducting~quiescent! solution:

vl50, Tl~z!5Tb2
DTl

c

dl
z ~0,z,dl !, ~1!

va50, Ta~z!5Tt2
DTa

c

da
@z2~dl1da!#

@dl,z,~dl1da!#, ~2!

whereDTc stands for the conductive temperature differen
across the liquid and the air, respectively,v denotes the ve-
locity, and the subscripts indicate values in the air (a) and in
the liquid (l ), respectively. This is the reference state wh
is stable for small heating. Perturbations around this s
~small or finite! evolve according to similar equation
supplemented with suitable boundary conditions~BC!. On
rigid conducting plates,

vl50, u50 at z50, dl1da , ~3!

whereu is the temperature perturbation.
Bénard @1# reported interfacial deflection measuremen

but deviations from flatness are at most about 1023dl ~here-
after we will assumedl.1 mm!. †However, in thin layers
(dl<0.3 mm) deflection makes an essential, non-neglig
contribution@12#.‡ Here, we will suppose that the interface
flat, undeformable.

In normal liquids the higher the temperature is the sma
is the surface tensions, i.e., s5s0(12uds/dTuu). There-
fore, the mechanical BC, which states continuity of tang
tial stresses, leads to

vz50 ~4!

m l]zyxu l2ma]zyxua5uds/dTu]xu, ~5!

m l]zyyu l2ma]zyyua5uds/dTu]yu. ~6!

FIG. 1. Diagram of the setup to study Be´nard-Marangoni con-
vection.
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Continuity requires some motion in the air layer, becau
vlÞ0 impliesvaÞ0 at the interface. On the other hand,]zva
may be of the same order as]zvl . As m l@ma , the air terms
in Eqs.~5! and~6! can be dropped. Hence the mechanical B
reduces to

m]zyx5uds/dTu]xu, ~7!

m]zyy5uds/dTu]yu, ~8!

which after applying the continuity equation reads

]z
2yzu l5

uds/dTu
m l

¹h
2u, ~9!

where¹h
2 is the horizontal Laplacian operator.

Equations~3!, ~5!, ~6!, ~9!, and~10! make up a complete
set of BC for the BM instability problem, where two mai
approximations have been applied:~a! the interface is as-
sumed to remain flat and~b! viscous effects in the air are
negligible in comparison with those in the liquid. In the ne
section we discuss the approximations which determine
thermal BC.

III. HEAT TRANSFER ACROSS THE UPPER FREE
SURFACE

Now we recall the thermal BC. Continuity of temperatu
and heat flux across the interface leads to the following th
mal BC:

Tl5Ta , u l5ua , qzl5qza , ~10!

qz being the vertical component of the heat flux. At a stea
flat interface the last condition readsl l]zTl5la]zTa ~l is
the heat conductivity!.

The reduction from the two-fluid problem to the one-flu
model always involves some hypothesis on the thermal
at the interface. Usually it is assumed that the air laye
quiescent and that the heat flow from the liquid to the
obeys Newton’s cooling law with a constant coefficienth.
Under this hypothesis Eq.~10! becomes

]zu l52hu l . ~11!

In early experiments the value ofh was set as an adjustab
parameter for comparison with theoretical thresholds. T
procedure is arbitrary and does not allow determination
precise values for this parameter.

This procedure can be improved by examining the te
perature profiles across the two fluids in different situatio
As a reference, let us consider Rayleigh-Benard convec
between two rigid plates. The experimental setup inclu
bottom and top plates with higher thermal conductiviti
than the convective fluid, to keep the temperatures fixed
both plates. When convection begins, the linear tempera
profile is modified by increasing the mean temperature g
dient at the boundaries, then decreasing it in the midregi
of the fluid, as sketched in Fig. 2@13#. In BM convection the
temperature and heat flux perturbations are linked at
boundary. For smallDT, there are two linear conductiv
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57 477THERMAL PROPERTIES IN SURFACE-TENSION- . . .
profiles, one across the liquid and another through the ai
sketched in Fig. 3. The slopes of these profiles are obta
from the thermal BC Eq.~10!:

l l

Tb2Ti
c

dl
5la

Ti
c2Tt

da
, ~12!

which fixes in a unique way a reference interfacial tempe
ture Ti

c as a function ofTb andTt ~see Fig. 3!. ~The super-
script c indicates that the reference temperature is obtai
from a conductive profile.! Now we assume that a perturb
tion u acts on the conductive profile, so thatTi5Ti

c1u, and
the thermal BC Eq.~10! can be written as

l l]z~Ti
c1u!52la

~Ti
c1u!2Tt

da
. ~13!

Using Eq.~12! we arrive at Eq.~11!, providedh is taken to
be

h05
la

l lda
. ~14!

The relationship Eq.~14! is the only point at which the ai
properties enter the one-fluid model.

But in deriving Eq.~14!, u has been assumed to be sp
tially uniform, which is not the case. To include spatial d

FIG. 2. Diagram of the temperature profiles in Rayleigh-Be´nard
convection between conducting plates. The dotted line indic
linear conductive profiles, while the solid one represents convec
profiles.

FIG. 3. Scheme of the temperature profiles in a Be´nard-
Marangoni cell. The dotted line indicates linear conductive profi
through the liquid and through the air. The solid curve represe
the profiles in each medium. The curve~temperature! and its de-
rivative ~heat flux! must be continuous at the interface. For liqu
convection the average interface temperature is modified by a fa
^u&. The heat fluxes are also changed accordingly in these circ
stances.
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pendence ofu the simplest method is to consider heat co
duction through the air. The situation is shown schematica
in Fig. 3. Once convection becomes stationary in the liqu
the local temperature slope near the bottom is smaller~it is a
negative quantity! than in the conductive case. Likewise th
linear temperature slope also diminishes in the air layer, t
giving an incrementu to the average temperature. So,
fulfill the thermal BC conditions the local slope near th
liquid interface must be smaller than in the conductive c
~the term]zuÞ0 must be added!.

Conduction in the air settles between a fixedTt and a
heterogeneous temperature fieldTi

c1u(x), wherex stand for
horizontal coordinates. This fact is considered in expand
the temperature perturbation field in terms of normal mo
u(x,z)5Q(z)exp(2ik•x), wherek stands for the horizonta
wave number. Then, Laplace’s equation results in]z

2Q
2k2Q50. Solutions of this equation are of the formQ(z)
5A cosh(kz)1B sinh(kz). Applying the rest of the therma
BC Eq. ~10!, Newton’s cooling law Eq.~11! is recovered,
provided the coefficienth is taken as

h5
lak

l l tanh~kda!
. ~15!

Notice that this is the form expected for the heat trans
coefficient in an insulating plate@14#. In the particular cases
da→0 and k→0, which physically are equivalent toda
!1/k, i.e., the thermal properties of the air layer do notfeel
the spatial structure of the underlying liquid andh reduces to
h0 .

Let us discuss now the range of validity of th
conducting-air hypothesis. The typical Rayleigh numberR
for an air layer ofda'1 mm is far smaller thanRc5670 of
an incompressible fluid with an open surface, so natural c
vection in the air is excluded near the onset of convecti
On the other hand, continuity drives some motions from
liquid to the air that produce aforced-convectioncontribu-
tion to heat transport. The magnitude of this term is e
mated by the Peclet numberP5Vda /ka , whereV is a typi-
cal velocity andk the heat diffusivity. Since on the interfac
Va5Vl'k l /dl , the component of heat transport due
forced convection in the air is smaller than that due to c
duction by a factorP'D/K'1022 ~D5da /dl , K5ka /k l!.
Moreover, numerical simulations of the two-layer proble
confirm that the effective thermal conductivity in the air do
not change for small supercriticality@11#.

IV. EVOLUTION EQUATIONS AND NONDIMENSIONAL
PARAMETERS

What would be the control parameter in the one-flu
model? UsuallyDT5Tb2Ti would be suggested by a theo
rist. But with this choice the problem is not well-define
becauseTi5Ti

c1u(x) is established on the interface. Som
kind of horizontal averagêu& should be taken intoTb
2^Ti& but no technique allows us to measure^u& without
modifying the interfacial properties. Moreover, from inspe
tion of Fig. 3 it is clear thatu is, in general, a two-fluid
quantity. These drawbacks suggest the use of a quantity
ily related to the control parameterDTT in experiments. In
agreement with the conducting-air hypothesis, the cond
ing temperature difference across the air is subtracted f

s
e

s
ts

tor
-



l

a
na

rs

th
ct
iv

it
.

ng

his

rs,
as a

Eq.
ed

h it

.
tri-

is

-

ue

-
g

hen

on-
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DTT and the resulting differenceDT5Tb2Ti
c is used as the

reference for the temperature~in the next paragraph we wil
give the relationship betweenDTT and DT!. Besides this
referenceDT for temperature we usedl for length anddl

2/k
for time. The evolution equations become

“•v50, ~16!

Pr21dtv52¹p1¹2v1Ruez , ~17!

dtu1vz5¹2u, ~18!

and the boundary conditions become

v50, u50 on z50, ~19!

]z
2vzu l52M¹h

2u, ]zu52Biu on z51, ~20!

where for simplicity the same notation for nondimension
variables is maintained and the following nondimensio
numbers have been introduced:

Pr5
m

rk
~Prandtl number!, ~21!

R5
rag~Tb2Ti

c!d3

mk
~Rayleigh number!, ~22!

M5
uds/dTu~Tb2Ti

c!d

mk
~Maragoni number!, ~23!

Bi5hdl5
lak

l l tanhS da

dl
kD ~Biot number!. ~24!

The temperature differenceDT5Tb2Ti
c is not directly mea-

surable but it is derived fromDTT by the simple relationship

DT5DTT2~Ti
c2Tt!5

Bi0
11Bi0

DTT , ~25!

where Bi05Bi(k50). Hence the nondimensional numbe
MT andRT built with the parameterDTT are linked toM and
R through

~MT ,RT!5
Bi011

Bi0
~M ,R!. ~26!

We complete this section with some comments on
Nusselt number, a dimensionless measure of heat condu
accessible from calorimetric measurements that can be g
by Nu[^qz&/^qz

c& or equivalently„qz
cu l52l l@(Tb2Ti

c)/dl ] …

Nu512
dl

Tb2Ti
c ^]zq& ~27!

~q indicates that the temperature perturbation is taken w
its dimensions here!. After introducing the thermal BC Eq
~20! and using dimensionless variables, this reads Nu51
1^Bi(k)u&. The horizontal average is equivalent to taki
the limit k→0. Then, with full generality
l
l

e
ion
en

h

Nu511Bi~k50!^u&. ~28!

Under the conducting-air hypothesis Bi(k50)5Bi0 , and the
Nusselt number reduces to Nu511Bi0^u&. From this last
expression it becomes apparent that the perturbationu holds
the whole information on the convective heat transport. T
perturbationu, or equivalentlyTi , cannot be determined
with local invasive probes like thermocouples or thermisto
but it requires accurate indirect measurements. Regarded
phenomenological coefficient, Bi(k50) can be inferred from
calorimetric measurements even far from threshold.

V. CONVECTIVE THRESHOLDS

Now let us seek the consequences of the thermal BC
~20! on the linear stability analysis. Usually, Bi is regard
as constant@2,3#, but, in general, Bi(k)>Bi0. Thus, the lin-
ear problem becomes a little more cumbersome, thoug
can be solved without difficulty.

A. The caseR50

The caseR50 ~no buoyancy! can be treated analytically
Furthermore, this is the case in which the interfacial con
butions give the highest corrections. The marginal curve
simply

M ~k!5
8k2$11@L tanhk/tanh~Dk!#%~k2sinh k coshk!

k32sinh2 k tanhk
.

~29!

Here the air properties appear within the ratiosL5la /l l
andD5da /dl . The minimum of this curve gives the thresh
old valuesMc and kc . Figure 4 shows the curve Eq.~29!
together with that resulting from taking a constant val
Bi5Bi0.

The factor Bi(k) has two effects:~a! it increases the con
vective thresholdMc , becauseMc increases by increasin
Bi ~see Table I in Ref.@3#! and~b! it shifts the critical wave
numberkc . For fixedL, M (k) increases monotonically asD
increases. Two limiting cases can be distinguished. W

FIG. 4. Marginal curves. The solid curve is for Eq.~29! and the
dotted line is the curve resulting from Pearson’s results with a c
stant Bi5Bi0. ~L is taken fixed atL50.204.!
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57 479THERMAL PROPERTIES IN SURFACE-TENSION- . . .
D→0 (da@dl), M→M (Bi5kL), while for D→` (da

!dl), M→M (Bi0). As the most physically interesting cas
is the latter one, we give the main results in terms ofD21.
The critical valueMc is plotted as a function ofD in Fig. 5
for a valueL50.204 used in Table I. From curves in th
figure it is obvious that corrections given from Bi(k) are
most significant in the range 0.5,D,3, i.e., when the liquid
and air depths are of the same order of magnitude.

In this point it is worthwhile to comment on some uncle
results in a recent paper@15#. There, the thermal boundar
condition was improperly taken as if the temperature co
be kept fixed throughout the air layer, or, equivalently, co
sidering the air to be a good thermal conductor. As a con
quence, the temperature profile in that paper@Eq. ~2!# is only
continuous at the interface in the limiting case of a vanish
air layer (da→0). Furthermore, in this particular limit the
main result in that paper@Eq. ~10!# is correctly obtained from
Eqs.~29! using the relationship betweenMT andM deduced
in the preceding section. In Fig. 5 the value of the criticalMT
as a function ofD21 is represented to show that the resu
of Fig. 1 in Ref.@15# are recovered here as a particular ca

B. The caseRÞ0

R is not usually negligible in experiments. In fact, th
dimensionless numbersM andR are not independent but ar

FIG. 5. The critical Marangoni numberMc as a function of
D215dl /da . It tends to the valueM15MBi5kcL for small dl /da .
Asymptotically it goes likeM5M2(11L/D), whereM25M (Bi
5kcL). In the upper curve in this figureMTc

5(Bi011)Mc /Bi0 is
represented. Its minimum is atda /dl.0.15 for the experiments
quoted in Table I.~The same valueL50.204 as in Table I has bee
taken.!
d
-
e-

g

.

linked through the relationshipG5M /R5(uds/dTu)/
(ragdl

2). This parameterG measures the relative importanc
of Marangoni and buoyancy effects.~For a given liquid and
a fixed depth, the ratio ofM and R is fixed.! In
thermocapillary-driven experiments, 0,G21<1. We per-
formed numerical simulations including this factor an
Bi(k). The main result is that the linear relationship foun
by Nield @3#, Mc /M0c1Rc /R0c.1, is still valid, provided
the appropriate valuesM0c ~pure Marangoni, no buoyancy!
andR0c ~buoyancy alone, no surface-tension variations! are
taken. We summarize in Table I the values obtained in t
analysis for the experimental valueL50.204 @10# and for
several values of Bi0. ~As D5L/Bi0 we take Bi0 as the main
parameter to compare with Table I in Ref.@3#.! For the sake
of comparison the values of Table I in Ref.@3# are also
included in this table. In our case a maximum deviation
3% from this straight line is found for all the values ofG and
D used in experiments.~See also the discussion in Ref.@16#.!
After using that linear relation and the definition ofG we
obtain an expression valid for any value ofG,

Mc5
GM0cR0c

GR0c1M0c
, ~30!

which holds with an uncertainty of 3%.
In comparisons between experiments and theory, Bi

been underestimated~a reference value Bi.0.1 @9,17# was
used! or the correction due toGÞ0 was not included@9,18#.
Schatzet al. @10# include the last correction and the value
Bi is taken as Bi0 ~conductive heat transport assumption!.
We quote in Table II the values of three recent experime
together with the results for Bi(kc) from our analysis. The
value ofG is easily obtained from the parameter values tab
lated in each experiment. The values ofMc andRc have been
calculated from Eq.~30! and Nield’s linear relationship with
the values ofM0c andR0c in Table I. Notice that the Bi(kc)
differs significantly from the value Bi50.2 taken by Ko-
schmieder and Switzer@9#. On the other hand, in the cas
da.dl , Bi(kc) differs by a factor of 2 from Bi0, the value
taken in Ref.@10#. There is also a discrepancy between t
theoretical threshold values ofkc and those obtained in ex
periments. The main source of discrepancy lies probably
the inaccuracy in the measurements ofds/dT (610%). In
our calculationskc51.97, which is smaller than the smalle
value kc51.99 (Bi50) reported by Nield but still higher
than the experimental valuekc51.90.
in
TABLE I. Values of M0c
andR0c

for L50.204,D5L/Bi0, and several values of Bi0. These values must be compared with those
Table 1 of Ref.@3#.

Bi0 M0c
kc M0c

Nield kc
Nield R0c

kc R0c

Nield kc
Nield

0 95.241 1.970 79.607 1.993 721.65 2.135 669.00 2.088
0.01 95.241 1.970 79.991 1.997 721.65 2.135 670.38 2.089
0.1 95.251 1.971 83.427 2.028 721.66 2.139 682.36 2.117
0.2 95.800 1.992 87.195 2.060 722.84 2.147 694.78 2.144
0.5 102.610 2.096 98.256 2.142 739.80 2.207 727.42 2.212
1 118.540 2.221 116.127 2.246 775.91 2.290 770.57 2.293
2 152.012 2.374 150.679 2.386 833.19 2.391 831.27 2.393
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TABLE II. Experimental and theoretical threshold values.

Oil dl da G Bi0 Bi (kc) Mc
theor Mc

expt

Koschmieder 100 cs 3 0.4 0.6 1.2 1.3 100 71
and 1.9 0.4 1.5 0.8 0.8 100 62
Switzer 50 cs 1.9 0.4 1.4 0.8 0.9 100 72

1.2 0.4 3.5 0.5 0.6 98 61
Schatzet al. 7 cs 0.4 0.45 44 0.2 0.4 95 84
Nitschkeet al. 10 cs 1.41 0.50 2.9 0.6 0.7 99 99
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VI. DISCUSSION

Close to the convective threshold, heat flows across
air layer mainly by conduction. This fact allows us to pr
pose a minimal model, which we called theconducting-air
approximation, in which the real two-fluid problem can b
reduced to a one-fluid system, provided that a simple mo
fication of Newton’s heating law is made. The constant
efficient in this law must be replaced by ak-dependent co-
efficient. With this model most of the questions raised in
introduction of a recent work by Parmentieret al. @7# can be
answered.

We discussed the reference temperature to be used in
dimensional numbers, a point relevant to any compari
between theory and experiments. In this paper we arg
that a suitable choice for the reference for the temperatur
the dimensional analysis isDTc5Tb2Ti

c , a quantity easily
derived from theexternal control parameterDTT in experi-
ments through the simple relationDTc5Bi0 /~Bi011!DTT .

From the general relationship between the interfacial te
peratureTi and the Nusselt number Nu511Bi(k50)^u& the
coefficient Bi(k50) can be determined, even far fro
threshold, after measuringTi with a suitable technique an
Nu with a calorimetric technique.

A linear stability analysis gives us the convective thre
olds under quite general conditions. In the limiting case of
buoyancy~pure Marangoni effect! our results differ by less
than 1% from those obtained by Smith@19# considering the
whole surface-tension-driven instability~with deflections and
convection in air!. The general case is also considered a
we discuss some practical rules for obtaining the appropr
threshold values. Fortunately the linear relationshipRc /R0c
1Mc /M0c51 found by Nield@3# still holds provided the
C

os
e

i-
-

e

n-
n

ed
in

-

-
o

d
te

right threshold valuesR0c andM0c are used. A comparison
with recent experimental thresholds@9,10,18# is also pre-
sented. The critical wave numberkc in our analysis (kc
51.97) is slightly smaller than the smallest value obtain
by Nield @3# (kc51.99) but still higher than that in experi
ments (kc51.90)

Although the model presented here is strictly valid f
small supercriticality, the points raised in this paper must
taken into account in pursuing a nonlinear analysis and
particular, in fully explaining the striking hexagon-squa
transition recently discovered in experiments@18,20,21#.

From the experimental side, the effects studied in t
paper become more important as the air layer is made thin
(da,0.5 mm). Butda cannot be decreased below a wetti
value@11#. On the other hand, the thinner the fluid layerdl ,
the smaller the buoyancy and the bigger the thermocapil
effect. But the ratioda /dl should be kept as small as possib
to minimize the drawback of ak-dependent Biot number
The optimization of these factors may improve the expe
mental setups used so far. This comment is especially
evant for planning future experiments under micrograv
conditions.
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