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Switching between bistable states in a discrete nonlinear model with long-range dispersion
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In the framework of a discrete nonlinear Scflimger equation with long-range dispersion, we propose a
general mechanism for obtaining a controlled switching between bistable localized excitations. We show that
the application of a spatially symmetric kick leads to the excitation of an internal breathing mode and that
switching between narrow, pinned states and broad, maobile states with only small radiative losses occurs when
the kick strength exceeds a threshold value. This mechanism could be important for controlling energy storage
and transport in molecular systemi$1063-651X98)01004-6

PACS numbdis): 63.20.Pw, 63.20.Ry

Describing the storage and transport of energy and charggpatially localized and symmetric modiébreathing mode”)
in the presence of discreteness, dispersion, and selbfthe stationary state is excited above a threshold value. The
interaction is a problem of major importance in solid-stateimportance of internal modes for the dynamics of nonlinear
physics, biophysics, and optics. Applications include, e.g.localized excitations in both discrefté,8] and continuuni9]
polaron formation in electron-lattice coupled systems, localsystems has been emphasized recently. In particular, it was
ization of vibrational energy in proteins, and localization of shown in Ref[7] that a pinned, discrete breather could be-
optical beams in arrays of nonlinear waveguides. The discome mobile by exciting a spatially antisymmetric transla-
crete nonlinear Schdinger (DNLS) equation has been used tional (“pinning” ) mode above a threshold value. Thus we
extensively in the literature to model these phenomena and find that the role of the breathing mode in the switching
is known to have exact spatially localized, time-periodic so-process is analogous to the role of the translational mode in
lutions (breathersthat are stationary statg$—4]. However, the depinning process.
since the standard DNLS equation only includes dispersive We consider the nonlocal discrete nonlinear Sdhrger
coupling between nearest neighbors, it does not approprequation of the form
ately describe situations where long-range interactions are
important(e.g., the DNA molecule contains charged groups
and therefore the vibration-excitation transfer is due to
dipole-dipole interactions decaying with distarnrcas 1f3).
To describe such situations, a DNLS equation with long-where the long-range dispersive coupling is taken to be ei-
range coupling was proposed[Bl. With the dispersive cou- ther exponentiallyd,=Je #" or algebraicallyd,=J|n| 3
pling decaying as 1? the coexistence of three on-site local- decreasing with distanae+ 0. In both cases, the constaht
ized stationary states having the same value of the norm wagill be normalized such that,_,J,=1 for all B ors. The
found when 2<s=<3.03. A further analysis showed that in ordinary nearest-neighbor DNLS equation is then recovered
the interval of multistability, the three different states couldin the limits 8—% ands—, respectively. Like the ordi-
be classified as one stable, broddontinuumlike™) state nary DNLS equation, Eqg(1) has two conserved quantities,
with high mobility; one unstable, intermediate state; and ongyamely, the norm(excitation numberA'==,|#,|? and the
stable, narrow*intrinsically localized” or “discrete”) state  Hamiltonian[5].
that is pinned to the lattice. This bistability phenomenon is  gtationary statess{M)(t) are time-periodic solutions to
generic(e.g., for exponentially decreasing coupliag?" it Eq. (1) of the form %A)(t)zd)neim' whereg,, is time inde-
occurs wherg=1.70 and can be understood as the result ofyenqent To investigate the time evolution of an initially

two competing length scales, one due to the long-range g a1 perturbations,,(0) of a stationary state, we follow the

ture of the dispersive coupling and the other resulting froma ) ; : _ QiAt
' . . . oach in1] and write ¢, (t)=€ +e&,(t)]. Decom-
the balance between nonlinearity and dispersion. Egin . i:tg real and ;/r/]qgi)inar [ﬁ?ts(f)n(a)rgd -0 and
Having established the existence of bistable stationary 2> ©n ginary partsn n

states in the nonlocal DNLS system, a natural question tha)(pearlzmg aroundy(")(t), we obtain
arises concerns the possibility afwitching between the " ) )
; d e € 0 H e
stable states under the influence of some external perturba- — ( n )=M< n ):( ~ )( n
tions. Switching of this type is important in the description of dt | &l gl —H 0 /\el
nonlinear transport and storage of energy in biomolecules
such as DNA since a mobile continuumlike state can providavhere for a system withN sites,H" and H™ are NXN
action at a distance, while the switching to a discrete, pinnedhatrices defined by Hﬁ =[A—(2F1)p?+ 216,;—Ji-j
state can facilitate the structural changes of DA Itisthe  (with Jo=0). Thus we obtain information about the dynam-
purpose of the present paper to show that switching willics close to the stationary state by studying the eigenvalues
occur if the system is perturbed in a way so that an internaland eigenvectors(,, ,) " of the 2N x 2N matrix M [1,10].
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By definition, the solutions{\)(t) is linearly stableif the
perturbation ,(t) as calculated from Eq(2) remains
bounded for all times. Linear stability is then equivalent to
the matrix M having no eigenvalues with a positive real
part, which, due to the symplectic nature of Eg), means
that all its eigenvalues must be located as complex-conjugate
pairs on the imaginary axis. By changing some parameter
(e.g.,A or J), a stable state might become unstable, which is
seen as two eigenvalues of the matfix colliding and leav-
ing the imaginary axis. The “direction” in which an initial
perturbation will grow is then determined by the eigenvector
corresponding to the eigenvalue #ffl with a positive real
part. In the stable case, the eigenvectors corresponding t
eigenvalues ofM on the imaginary axis can be of two dif-
ferent types: extended, corresponding to a continuous spec
trum in the limit N—oo, or localized, corresponding to a
discrete spectrum. We will here be particularly interested in
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the localized eigenvectors since they correspond to the inter-
nal modes of the stationary states through which the switch- 16 1
ing between states can occur. Since the location of the con 14t
tinuous spectrume (k) can be analytically determined from
the linear dispersion relation of E(R) with ¢,=0, we can 20 W o
numerically identify the localized eigenmodes as corre-# Lr
sponding to eigenvalues outside the linear band. For ex- 08 |
ample, when the coupling is exponentially decreasing with
exponentg, the continuous spectrum is given by the inter-
vals on the imaginary axis whergu(k)|e[A,A+4(1

+e A1,

As was shown in Ref[5], stationary states that are spa-
tially symmetric and localized with a single maximum at a
lattice site(*‘on-site” states or “single-site breathergare
linearly stable if and only if the well-knowf8,12] condition FIG. 1. (a DependenceV(A) for stationary on-site localized

dN1dA>0 is fulfilled. In Fig. 1@ we show the dependence solutions to Eq(1) with J,, exponentially decreasing. From top to
MA) for the on-site state in the case of exponentially de-ottom in the left part of the figure3=0.5, B=1.0, 3=1.5, B
creasing couplingl, (the corresponding curve for algebra- =2.0, andB— o, respectively(b) Eigenvaluesu of the matrix M
ically decreasing coupling was plotted as Fig. 2 in RBY). in Eq. (2) versusA for g=1.0. The solid(dotted line shows the
For 8=1.70 the norm is a monotonically increasing functionimaginary (rea) part of the eigenvalug.® corresponding to the
of the frequency\, implying that the state is linearly stable spatially symmetric, localized mode; the dash-dotted line shows the
for all A, while for =<1.70 the curve is nonmonotonic, im- imaginary part of the eigenvalye® corresponding to the transla-
plying the simultaneous existence of three stationary stateliPnal mode; the straight dashed line shows the lower bound of the
with different frequencies, two of which are stable and onecontinuous spectrumiThe spectrum is symmetric around=0.)
unstable, having the same norm for some value’cfo be  The inset in(b) shows, from top to bottom at=no=31, ¢,/\,
specific, we will in the following mainly discuss the cage 7 and —i&, respectively, wherap, is the stationary state
=1.0, where multistability occurs in the interval 323/  Used as the initial condition in Fig.@ and €, 7{)" is the
<3.78. corresponding normalized eigenvector of the matvikwith eigen-
The results obtained from a numerical diagonalization of/alue u(9~0.286 (choosing the overall phase so theff) is real
the matrix M in Eq. (2) for B=1.0 are illustrated in Fig. 2nd Positive.
1(b). We find that for large values oA (A=1.93), i.e,
when the stationary state is strongly localized, there is n@ontinuumlike nature, is again stable. As—0, u(® ap-
discrete spectrum and consequently the stationary state hpsoaches the band edge of the continuous spectrum, but we
no localized internal mode. Wheft=1.93, an eigenvalue find that a localized breathing mode exists also close to the
w1 corresponding to a spatially symmetric breathing modecontinuum limit. Furthermore, as is seen in Figb)l a sec-
bifurcates off the band edge of the continuous spectrum aind eigenvalueu®, corresponding to a spatially antisym-
k=0. As is seen from Fig. (b), this eigenvalue approaches metric translational mode, bifurcates from the=0 band
zero along the imaginary axis for a further decreas&,aind edge atA~0.51. Since the appearance of a translational
for A=~0.76 it becomes real and the state becomes unstablmode implies that the stationary state gains mobility that
Decreasing\ further results in an instability that grows until increases au(® approaches zer7], the continuumlike
u® reaches a maximum value and then becomes weakatate will have a high mobilityin particular for A<0.25
again asu(® approaches zero. AL ~0.39 the eigenvalue whereu® is very close to zerno
returns to the imaginary axis and the state, which now has a The scenario described above and illustrated in Fig) 1

Im (1) — 7
Rr:(lil(s))

Im (| (a)) e o
Im (u(k=0))




57 SWITCHING BETWEEN BISTABLE STATES INA . .. 4741

35 ;
(€)]

25t
|2

N’no
L5 r

05

0 . . . . ) 1 . . .
0 20 40 60 80 100 120 140 160 130 200

2
Wl

0 20 40 60 80 100 120 140 160 180 200
t

04 @

02

0.4 0.6 0.8 1 1.2 1.4 1.6

FIG. 2. (a) Switching from a continuumlike to a discrete state,
where the initial stateb, has frequency ~0.310 and\V=3.6. The
main figure shows the time evolution ‘bifuno(t)|2 when a phase
torsion is applied to the central site with=0.261 (lower curve
and «=0.262 (upper curveg, respectively; the inset shows the time
evolution of| ¢, (t)|? for «=0.262.(b) Switching from a discrete to
a continuumlike state, where the initial statg has frequency\
~1.423 and\/=3.6. The main figure shows the time evolution of
|zpno(t)|2 with a=—0.490 (upper curve and o= —0.491 (lower
curve), respectively; the inset shows the time evolutior] g(t)|?
for a=-0.491 (only a part of a larger system is showr(c)
Threshold value of the phase torsiag, versusA. Switching occurs
when|a|>|ay| anda>0 (a<0) for an initial continuumlike(dis-
crete state. In all figuresp=1.0.

FIG. 3. Switching from a discrete state to a moving, continuum-
like state. The initial staté,, is the same as in Fig(B), but with an
initial perturbation containing also a spatially antisymmetric com-
ponent = —0.1). In(a), the phase torsion at the central site is just
below threshold for switchingd= —0.47), while in(b) it is just
above @=—0.48) (only a small part of a larger system is shgwn
Note that the threshold for switching is slightly smaller than in Fig.
2(b).

remains qualitatively unchanged for all values @£1.70

and also for the algebraically decaying coupling witht

=<3.03, where multistability occurs. When increasi@gor

s) the maximum value attained hy® in the instability re-
gime decreases; fg8=1.70 (5=3.03) u(® stays imaginary
for all A where it exists and no instability develops.

An illustration of how the presence of an internal breath-
ing mode affects the dynamics of a slightly perturbed stable
stationary state is given in Fig. 2. To excite the breathing
mode, we apply a spatially symmetric, localized perturba-
tion, which we choose to be norm conserving in order not to
change the effective nonlinearity of the system. The simplest
choice, which we have used in the simulations shown here, is
to kick the central sitan, of the system at=0 by adding a
parametric force term of the forménynoé(t)wn to the left-

hand side of Eq(1). As can easily be shown, this perturba-
tion affects only the sit&y att=0 and results in a “twist”

of the stationary state at this site with an angie i.e.,
z,bno(O):qbnoe'“. From a biophysical point of view, such a
kick may occur as a consequence of the interaction between
a biomolecule and solvent molecules and igfigands.
Namely, an instantaneous attachment and detachment of a
ligand to the molecule leads to a local, instantaneous fre-
quency change for its vibrational units, and in a rotating-
wave approximation a DNLS equation with the additional
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parametric force term considered here can be defit8H the direction of the breathing mode, but we consider such a
The immediate consequence of the kick is, as can be deperturbation to be somewhat artificial since in a real system
duced from the form of Eq(2), that (d/dt)(|1//n0|2) will be  such as a biomolecule the exact shape of the breathing mode
positive (negativé when >0 (a<0). Thus, to obtain in general cannot be assumed to be known. Also, we believe
switching from the continuumlike state to the discrete statghat the mechanism for switching described here can be ap-
we chooser>0, while we choosex<<0 when investigating plied for any multistable system where the instability is con-
switching in the opposite direction. We find that in a largenected with a breathing mode. For example, we observed a
part of the multistability regime there is a well-defined similar switching behavior in the nearest-neighbor DNLS
threshold valuery, such that when the initial phase torsion is equation with a higher degree of nonlinearity, which is
smaller thanay, periodic, slowly decaying breather oscilla- known[3] to exhibit multistability.
tions around the initial state will occur, while for strong  Since in the simulations discussed above the initial per-
enough kicks (phase torsions larger thamy,) the state turbations are spatially symmetric, also the potentially mo-
switches into. thg other stable stati_onary state, around whichjle proad statege.g., the final state in Fig.(B)] remain
breather oscillations develdjsee Figs. @) and 2b)]. The  gtatic, their translational modes being unexcited. However,
numerically calculated dependencecf, on A is plotted in  py including also a spatially nonsymmetric component in the
Fig. 2(c). Since also some extended eigenmodes are exciteghtyrhation, a moving, broad excitation will result if also the
by the perturbation, there will be some radiation escaping tansiational mode is excited above its threshold véllie
infinity ast— o, so that the norm of the final state after the (This could, e.g., be the result of including a small random
switching process will pe slig_htly. smaller thqn the initial 1gise corresponding to thermal fluctuationdn example
norm. In the cases considered in Fig. 2, we estimate the norfjhere the use of an initial perturbation having both a spa-
of the final localized states to be approximately 3.5. Due Qja|ly symmetric and an antisymmetric part leads to a direct
the radiative losses, the switching occurs only once wien gyitching from a narrow, pinned state to a broad, moving

is close toay,. However, when the phase torsion is consid-gsiate is shown in Fig. 3. Here the initial perturbation has the
erably larger than the threshold value, we have also observeg,y, #(0)= € *(N~No)giadnn,

situations where multiple switching between the states oc- |, conclusion. we have shown how the excitation of an

curs[14]. _ _ _ . internal breathing mode above a threshold value can lead to
_ We stress that the particular choice of perturbation is nokyitching between bistable pinned and mobile nonlinear lo-
important for the qualitative features of the switching, ascajized excitations and indicated how this mechanism may

long as there is a substantial overlap between the perturbgg ysed as a model for the control of storage and transport of
tion and the internal breathing mode. For example, th&nergy in biomolecules.

breathing mode corresponding to the continuumlike state is
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