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Stability of anisotropic beams with space charge

I. Hofmann
GSI Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany
(Received 21 October 1997

Based on self-consistent Vlasov-Poisson equations, we derive coherent frequencies and stability properties
of anisotropic or “nonequipartitioned” beams with different focusing constants and emittances in the two
transverse directions. The thus obtained dispersion relations of transverse multipole oscillations with quadru-
polar, sextupolar, and octupolar symmetries are solved numerically. We find that for sufficiently large energy
anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. Applying our
results to high-current linear accelerators, we find that “nonequipartitioned” beams may exist in relatively
large regions of parameter space under stable conditions. It is only in beams with strongly space-charge-
depressed betatron tunes that harmful instabilities leading to emittance exchange should be expected.
[S1063-651%98)01704-9

PACS numbgs): 41.75-i, 29.27.Bd, 29.1#w, 52.25.Wz

[. INTRODUCTION Ref.[4]; in a recent computer simulation of this problem it
was found that possibly a similar mechanism is responsible
Coupling resonances leading to an exchange of energipr coupling[5]. The work of Refs[4,5] was based on freely
between different degrees of freedom are a familiar subjegbropagating waves in the direction of infinite beam extent,
in accelerators. It is usually assumed that they are driven bwhich is the main difference with our model of a confined
first or higher order deviations from ideal linear focusing. Inbeam.
this paper we show that in the space-charge-dominated re- A further potential application of the theory developed
gime beam self-fields can play a similar role in coupling andhere are beam halos. It is assumed that mismatch oscillations
lead to truly two-dimensional behavior, which differs signifi- can drive particles into a halo as a result of resonant interac-
cantly from that of beams where the two degrees of freedontion of these particles with the mismatch modd. So far
are treated symmetricallfisotropic beams We find that in  only second ordefenvelope oscillationsround (isotropig
the presence of internal energy anisotropy initially smallbeams have been considered as possible mismatch modes;
space-charge-coupling terms can grow exponentially due tthe influence of anisotropy on second and higher order mis-
collective instability for sufficiently strong space-charge ef-match modes is expected to be an important factor in halo
fects. For weak space charge as in circular accelerators, thiermation.
coherent frequencies calculated here allow us to determine The theory presented here might also be relevant to the
coherent shifts of sum or difference linear or nonlinear resofield of longitudinal laser cooling of bunched ion beams in
nances up to fourth order. We note that energy anisotropgtorage rings. Recent experiments have shown that bunches
can result from different emittances as well as focusingclose to the longitudinal space-charge limit can be achieved
strengths. [7]. We expect that for sufficiently high intensity the anisot-
The subject has a potential application in present studiespy instability leads to an exchange of transverse and lon-
of high-current linear accelerators for protons or ions likegitudinal oscillation energies, and thus enforces a collective
spallation neutron sources, radioactive waste transmutatioindirect cooling of the transverse degrees of freedom.
linacs, or heavy ion fusion linacs. In linac bunches one of the The mechanism of collisionless coherent anisotropy insta-
crucial beam dynamics issues is to what extent deviationbilities discussed here has an analogy in infinite plasmas con-
from “equipartitioning” (equal average oscillation energy in fined by magnetic fields. Temperature anisotropy in such
all degrees of freedojitan be tolerated without risk of emit- plasmas can give rise to electrostatic instabilities, which re-
tance growth(see Refs[1,2] for some recent discussions move the anisotropy8,9]. Beams are essentially different
Anisotropy leading to collective instability in the presence ofdue to the presence of an external focusing potential, which
space charge was suggested in R8f. as a possible ap- leads to the finite transverse dimension and changes the
proach to the equipartitioning question, since collisions caneigenmode structure substantially.
not be made responsible for energy transfer in linacs due to It should be mentioned that our analysis contains as a
their—relatively—short length. Although our mathematical special case the eigenmodes of round isotropic beams in con-
model is constrained to anisotropy between the two transstant focusing which were derived earli¢tO] for the
verse directions of a long beam—the only case where a seliKapchinskij-Vladimirskij (KV, or § function distribution
consistent analysis seems possible—we suggest that th&l]. While results for the isotropic case can be expressed in
same mechanism of instability and similar thresholds are reterms of one dimensionless parametér,, anisotropy re-
sponsible for the longitudinal-transverse coupling in linacquires two further dimensionless parameters, for instance,
bunches. For the different problem of an infinitely long beamthe ratio of betatron frequencies and the ellipticity in real
with initially zero longitudinal momentum spread but finite space.
transverse emittance, an analytical study was presented in The paper is organized in the following way: We start in
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Sec. Il with the equilibrium phase space distribution; in SecsHere T is the ratio of oscillation energies in the andy

[l and IV we solve Vlasov's equation and the resulting dis- directions which can be readily written for harmonic oscilla-
persion relations, whereas Sec. V presents applications tors as

coherent tune shift and to the equipartitioning concept.

II. BASIC EQUATIONS T= . (8)

The unperturbed equilibrium beam is assumed to have
uniform density within an elliptic cross section defined b . . L
y P y The ratio of emittances is given by

X 2 2

y
—| +|=] <
> <1, (1) e, alv, o
=—.
with a and b the semiaxes of the confining ellipse. In the €& by

longitudinal direction the beam is supposed to be uniform.

From Poisson’s equation one obtains the well-known expresthe time-independerft, in Eg. (7) is a solution of Vlasov’s
sion for the space-charge electric field inside a beam of parequation

ticles with chargeq and line densityN (=nsab) in free

space: df of .of .of _ of . of 0 10
AN E—E+X5+y5+pxﬂ—m+pyﬁ—m— , (10
=~ omalath)’
° (2)  sinceHg, andHy, are constants of the motion. Integration
gNy over momentum space readily yields the uniform density
Ey=- m- within the boundary of Eq(l).
0 For the perturbed distribution function

Assuming linear and time-independent external focusing=fo(Hox.Hoy) + f1(X,y.px.py ), we linearize Vlasov's
forces for the equilibrium beart'smooth approximation’)  equation(see Ref[12]), keeping only first-order terms ify
we can write separate Hamiltonians for thandy motions: ~ and in the perturbed electrostatic potentlal and obtain

Hox= (p5-+ m2y?0x)/(2my), df,

afy  px dfy  py 9fq afq afq
e 22 O R ey Ty ay MG Y
Hoy=(py+m?y?uiy?)/(2my); Y Yy Px Py
and corresponding single-particle equations of motion as _ NTavy /vy D @Jer @
2m2m2y%a2\ " X Yoy
. 5 .
Px=—MymX, X=py/(my),
X * * 4 X &' [ pi+ vix?+ T(ps+viy?) — via?]. (12)

by: - m?’Viy, y: py/(mY)-
The perturbed electrostatic potentilis self-consistently

vox and v, are the betatron frequencies without spacecgiculated by writing Poisson’s equation for the perturbed
charge. The reduced betatron frequencies in the presence @arge density:

space charge are conveniently expressed as

q q

vi=vh,— w3/ (1+alb), ) V2h=— tp=—
€0

2 tandp,. a2

v§= Véy_ ws/(l-i- b/a),

Equations(11) and (12) are a closed set of equations,

ich can be solved with an appropriate boundary condition

for the electric field. Assuming that the beam pipe is suffi-
2N ciently far away we can ignore image charges and take the

wz_q— (6)  boundary condition of an electric field vanishing at infinity.

P eommyab

where we have introduced the “beam plasma frequency” ir\/vh
the laboratory frame according to

The assumption of uniform density is consistent with a IIl. INTEGRATION OF VLASOV'S EQUATION

é-function distribution of a linear combination of the tWo |, 4rger to solve the coupled partial differential equations
separate Hamiltonians which is a generalization of thg-qs (11) and(12), we use the method of characteristics by
Kapchinskij-Viadimirskij distribution integratingd f, /dt along the unperturbed orbits. To this end
we rewrite the solutions of the harmonic oscillator equations
S(Hox+ THoy— myv2a?/2). [I,Eqs.(4),] by introducipg a phase angle= et such that for
t'=t (¢’ = ¢) the orbit goes through the poirty,p,,py in
(7)  phase space:

NTvy /vy

fO(leleIPy): 2

27°mya
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Py with, x’, etc. according to Eq413). After insertingf, into
x'(t')=""sin(¢’— @) +x cos o'~ @), Eq. (12), we carry out the integration over the momentum
X space by introducing polar coordinattsand® according to
p,=P cos® and T*?p,=P sin®. Partial integration over
(13)  P? leads to a nonvanishing boundary term f8f=0 de-
scribing a surface charge perturbation on the unperturbed

Px(t’)=pyxcog @' — @) — Xy SiN(¢' — @),

y'(t')= &Sil’[a((p' —¢)]+y codale’ —¢)], beam boundary, as well as a volume charge perturbation:
14
y
Py ’ : ’ 1/22 2
py(t') =pycofa(e’ — )] -ywysirla(e’ — ¢)]. vz NTE Y i ot 1yt
. . . 27T2€0m’)/3a2
Here we have introduced the ratio of betatron frequencies
a=vy/v,. We now assume that is rational, hence ) ) ,
] X 2775[m’y/2(VXX2+TVyy2—anz)]
a=—, (14
2T (g u o o
with n and m some integer numbers. In this case the orbit X fo e X pX’JJFpr’W du
given by Eq.(13) is exactly periodic ing’ with period P2=0
L=27m. The perturbed distribution function along the un- 2mm 27 d I
perturbed orbitf(t,¢), is then also periodic i, and the +2myf e i (O)/Vx)uf — | po—
total derivative in Eq.11) can be written in terms of two 0 o dpP? ax'
variables only:
+Tp —) du do |.
df, of of v
d_tl = (9—':1 + an—(Pl. (15 %y Pzzmzyz(vf(az—xz)—Tviyz)
(19

We note that the assumption of rationalis not a real
restriction in the present context: there are always rational

numbers arbitrarily close to any real number, hence for any§ flt '? stralg_?gqrwardq ttpb )[/_enfy ththat—kowmg thJ t_the
finite time interval the deviation of the harmonic oscillator 2~ Unction equilibrium cistribution—the unknown Solutions

orbits of Egs.(13) for rational @ from the real orbit can be Iﬁr q) tca_n be fta;lﬁenbas finite otrdher dp?lyno?ﬂgglmralnc:_y n that
made arbitrarily small. e interior of the beam, matched to outside solutions tha

We can now assume an explicit time dependence for gansfy Laplace’s equation in elliptic coordinates:
single eigenmode by introducing a coherent mode frequency

®, , 1 [P0 P
, _ Ve =— >+t— /=0, (20
fi=fi(p)e ', d=0(p)e 'l (16) c?(cosé—code)| 982 o
f1(¢) can be determined by integrating the total derivativeWith
df,/dt over a full periodL of the unperturbed orbisee, for
example, Ref[12]):
X=C COSI¥ cos ¢,
<p+Ldf1 ) o+L o,
e dt ¢ y=c sinh ¢ sin ¢, (21
(P+L{9f1 —iwe'lv ’
+VXL &—qo,e ¢ de c2=a?_p2

= f e—iwqo/v>< e—iwL/Vx_l ) 1
vxfale) ( )- @D Here we assume without loss of generality thatb. The

Hence, by inserting Eq(15) into Eq. (17), introducing ~ ©utside solutior{ £>£,, with coshg,=a/c)] is a superposi-
u=¢'— ¢, and dropping the explicit time dependence, wetion of angular harmonics which vanish at infinity:
obtain
et fcos/p, e fsin /. (22
NTqu/V)z( il .
Pyl
2m'm*y"a Integration of Eq(19) across the beam boundaryét &,
L oD gives rise to a jump of the derivativigb/9¢ that equgls_the _
XJ py—+Tp) _) e i(@vougy (18  surface charge on the boundary and matches the inside with
0 ox’ ay’ the outside solution:

f1(@)=




4716 I. HOFMANN 57

tationally symmetric unperturbed beams a distinction be-
tween even and odd modes is unnecessary, as is the case in
Ref. [10]. For completeness we note that the first order
modes corresponding to a rigid displacement of the beam are
a trivial case. In the absence of image charges the corre-
sponding coherent frequencies are just the zero-space-charge
betatron frequencies in either direction.

By inserting the expande@® into Eqgs.(19) and(23) we
obtain linear equations for the expansion coefficients and
find the dispersion relation in each order as condition of
vanishing determinant. For convenience we introduce a set
of three dimensionless variables to describe the equilibrium
beam in terms of intensity, ratio of betatron frequencies and
the envelope ratidellipticity):

even modes odd modes

2
2:& =ﬂ =E>
= e=y, (D (24

The eigenfrequency is characterized by the dimensionless
coherent frequency

o=—. (25

FIG. 1. Beam cross sections for second, third and fourth order ) o ) .
even and odd modeschematic, withx horizontal andy vertical Hence the energy anisotropy is given bf//a and the ratio
coordinateks of emittances byz?/a. The dimensionless frequency de-

pends on the three parameter%,a, and 7z, wherec is re-
lated to its zero intensity value, according to

£+0 2/.3
@ 0 — Nq /VX (e727rim(a)/vx)_1)fl
13 2, 4.2 2
&H—0 TEMTy a 2 2 %p 2
0 a‘=ag+t 1+7](a0— 7). (26)
2mm . ()
XJ‘ T e|(w/vx)u< pxro') : N
0 X A. Second order(envelope and tilting mode$

P We begin with the even modes, which are the well-known
+pr,—,) du. (23 envelope oscillations also following directly from the KV
'/ pa_g envelope equation$ll] by linearizing them around the
matched envelopes. The leading term in the perturbed space
charge potential inside and outside for the evenrfiode is
IV. DISPERSION RELATION i ) )
The requirement of solving Eq$19) and (23) with a P2e =a0X"+ 2%,
polynomial ansatz fo in the interior and the angular har- 2 2 2 2
monic expansion Eq22) outside leads to a dispersion rela- q)(zeX):a 3 b'a, (a ao—b2 az_)cos{Z ¥) ’
tion for the coherent frequenay. It is a peculiarity of the e 2 2 2?7770
S-function distribution that only the leading terms in they ) i )
expansion ofb are needed to determine the eigenfrequency@nd the dispersion relation results as
In the subsequent list of eigenfunctions we therefore ignore
all Iqwer order _terms. Eigenmodes are char_ac_terized by the D,.=(1+ 7)%+ 02
leading powet in this expansion, where we limit the evalu- ’ P
ation to second, third, and fourth orders; furthermore they are 5
characterized by the symmetry with respect to the angular +g4 5 U ——
variablep, where the even modésos( ¢)] have thex axis P(4—0°)(4a”—0?)
as symmetry plane. The ordeof this polynomial is related ) ] . i
to the spatial profile of the density perturbation in the For the isotropic round beam with=1 anda=1, this
plane as is shown in Fig. 1. reduces to
It is noted that the even modes are symmetric with respect
to the horizontal(here x) axis. The odd modes lack this D, =4+
. . . 2e—
symmetry; in three dimensions these modes correspond to a :
lack of rotational symmetry around the longitudinal axis,
hence they are suppressedrinz simulation codes. For ro- which is solved by the familiar result

(27)

1+29 2p+75°
4—0g?  4a’—a?

=0. (28

60'% 203
J’_
4—0?  (4—0°)%

(29
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v, v, =1 alb=1 2-nd order modes v, IV, =0.48 a/b=1.54  2-nd order even modes

0 0.2 0.4 0.6 0.8

1

V,/Vy

v, v, =0.48 a/b=1.54 2-nd order odd modes
FIG. 2. Coherent frequencies of second or@stvelopé modes 4
; : Jroee RE @MV, e VY
for an isotropic round beam. ov, ]

Hesess Im (,l)/VYO )

2 K

2 2 2 9p 1
o1=4+op, o=4+ 2 (30 ]

For zero space charge both mode frequencies approach t
limiting frequencyw = 2v, (ignoring the negative frequency T TR —
branches The high-frequency or “fast mode” corresponds ]
to a round, spatially symmetric perturbatidfibreathing
mode”), and the low-frequency or*“slow mode” to a quadru- 0 L L A B
polar perturbatiorspatially antisymmetric modeThe larger 0 02 04 06 Oy, !
coherent tune shift of the breathing mode reflects the spact

charge density compression. At the space-charge limit we
9 y P b 9 FIG. 3. Examples of coherent frequencies for second order even

obtain readilyw = w, for the fast mode and)pr/\/E for ! .
the slow mode. It should be noted that in the anisotropic cas%nOI odd modes for an anisotropic beaf(10.5).

both the fast and slow eigenmodes have quadrupolar symme-
try.

The familiar results for envelope mode frequencies given
in EQ. (30) are shown in Fig. 2. In this and the following
graphs the eigenfrequencies have been normalized g,  which is solved byo?=4+ (rg/Z. This is identical with the
and plotted against the “tune depression; /v, for fixed  above even slow mode frequency, since for rotationally sym-
ratio of betatron frequencies, /v, and ellipticity a/b. This  metric focusing the angular rotation has no restoring force.
means that in the general anisotropic case according to EqQhe odd slow frequency is zero for the same reason; it is
(26) the ratio of external focusing constanigy, iS not a  only finite if the rotational symmetry is broken by unsym-
constant in such a graph. We also plot the tune depressiametric focusing.
vyl vyo, Which differs fromw, /v, in the general anisotropic The solutions for the even mode are always stable, which
case. is not necessarily true for the odd modes. We find that the

For the odd mode we have low-frequency branch leads to imaginaty if (assuming

n>1) the following conditions are satisfied :

2 a'g
Doo=4+,—_2 (33

@gjg:alxy,

(3D a<l, 1<ay<7. (34)

¢§?;)=%, This means that the beam is unstable if for an external fo-

cusing stronger in thg direction space charge leads to a
: . . . . strongerx focusing. This tilting instability betweer andy
which results in the dispersion relation obviously requires a sufficiently large anisotropy.
2 ) An example with anisotropyT(= 10.5) is shown in Fig. 3.
D, =(1+ )2+ﬂ (1-a)(1—7a) The low-frequency branch of the odd mode b_ecomes un-
20 K 2\ (1-a)®-0? stable at tune depression below 0.3. The instability occurs as

“confluence” of a positive frequency branch with — o
(32) (not shown in the figurgsmerging into a pair of solutions

with Rew=0 (“nonoscillatory”) and Imw>0 (unstable

and Imw<0 (damped. The free energy driving this insta-
For the isotropic round case this simplifies to bility obviously stems from the anisotropy. It is noted from

(1+a)(1+ 172/01))_
(1+a)2—0'2 =0
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Egs.(28) and(32) that for vanishing space charge {—0) vV o /b 1 3-rd order modes
the zeros of the denominators determine the limiting mode 30— .
frequencies. Hence the low-frequency odd mode is related t /v,

a “difference resonance’w=vy;— vy . In our model the 25
driving term for this “difference resonance” is not a skew
quadrupole as in synchrotrons, but the internal space-charg
force caused by the exponentially growing initial “tilting”
of the beam cross section. As for synchrotron difference
resonances, we may expect that the effect of the instability is 1.0 Shemeswanitl
an exchange of emittance betweeandy. The correspond-

ing high-frequency branch is related to a “sum resonance” 0.5
= vyt vyo. FOr the even modes the zero-space-charge lim-
its are 2v,, and 2vy,. An alternative approach describing
even and odd second order modes by a matrix formalism wa
derived in Ref.[13], and applied to a stellarator field for

high-current electron beam transport. FIG. 4. Coherent frequencies of third order modes for an isotro-
pic round beam.

2 \/—2_4
2 _ 10+ o 64+ 20 optop

2.0

1.5 Foosnnmneartts

B. Third order (sextupolar mode$

For higher than second order the perturbed densities lead

to nonlinear space-charge forces. F6¢ 3 these forces have 712 2 ’ 38
the same expansion ik andy as the fields from sextupole (38
magnets. The spatial boundaries of these modes are shown in , 20+ O'Si \256+ 16 o§+ og
Fig. 1. It is noted that even and odd modes can be inter- 034= 4 :
changed by exchanging andy, which is not the case in
second and fourth orders. The numerical solutions for the coherent frequencies of the

Leading order terms in the perturbed space-charge potelisotropic round case are shown in Fig. 4. As expected, no
tial are instability exists in this casglQ].

DLV =agx®+apxy?, @5
) vy vV, =048 a/b=1.54  3-rd order even modes

(3aay+ab?a,)cog ) . (alag—ab?a,)coq3¢)

D)=
3e A"~ 0 4e3(777 70)

The even mode dispersion relation is

2 2
ool 1-57 9+27n+ 24y
D3e=(1+7)3+ =2} +
3e ( 77) 8 _0-2 9_0-2
(1—2a)(1—2772/a)(3+ 7) 1 ;
+ (12)2 > 0.01 T
Tea)y—o 0 02 0.4 0.6 08 |
5 4 vy/vyo
+ (l+2a)(1+27’ /a)(3+ 77) ﬂ -1 v /v =048 a’b=1.54  3-rd order odd modes
(1+2a)%— a2 8 | (1—0?)? 10—
(”/Vyo 1.« Re w/vyo e VIV
3 3(1-2a) ]

! (1-0?)(9-0?) " (9-0)[(1-2a)®-0?]

. 3(1+2a)
(9— ) [(1+2a)%—o?]

=0, (36)

which is simplified for the isotropic round beam to

D,.=8+ 07 12 ot 4053 o) (37) ’ ’ ’ R
= — , 0
3e Po_ 42 9(9_02)2(1_02)2 vy

FIG. 5. Examples of coherent frequencies for third order even
with solutions and odd modes for an anisotropic beam.
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For the odd mode perturbed potential we have latory growth rates are found to be much smallaiso see
Sec. V B for details The different branches in Fig. 5 can
again be characterized by the resonant denominators of Eq.
(36) and the corresponding odd mode expression.

®M=a,x%y +azy?,
3,0 1X7y 3y (39)

a’ba; +3b3%ag)sin(¢) (a?ba;—b3az)sin(3¢)
47 M0 * 4e3(7=m0) ’ C. Fourth order (octupolar mode9

(
vl

Spatial boundaries of these modes have nonuniform den-

The odd mode dispersion relation is obtained by interchangéity and space-charge forces like those of octupole magnets

ing Vx andvy as V\.’e" asa andb in_ Egs.(24) and (25?’ and . (/=4 in Fig. 1). For the perturbed even mode potentials
solving Eq.(36) with the new variables. For an anisotropic

case with the parameters of Fig. 3, the result is shown in Fig. dI =g x4+ a,x2v2+a,v?
5 4e = a0 2X7Y 4y (40)
For the anisotropic case we have chosen an example 4 242 4 4 4
. - o . 3a*agta“h“a,+3b"a a“ag—b"a,)cog2
where instability appears below a critical tune depression.d (&)= 0 2 4, (@73 4)CO42 ¢)

The first instability with Rew=0 (nonoscillatory occurs for 8 2e% (= m0)
the even mode at,/v,,<0.84 and for the odd mode at 4 o2 4

vy 1v,9<0.38. The odd mode also shows oscillatory instabil- L (@3 —a b“a,+b"a,)cod4 ¥)

ity for wy/v,<02 and a narrow band for 8e? (1= m0) '

0.72<vy/v,,<0.81. The normalized growth rates of the
nonoscillatory case can be as large as 0.2, whereas the osaile find the dispersion relation

5/4+ 579+ 297924+ 47°  3(1—a)(1— n?la)(1+4n+ 7?8
D4’eE(l+77)4+0'2 Y Y 7 i ( )( nla)( n+7°)

P (16— 0?) [4(1-a)?— 0]
+3(1+a)(1+ 7?la)(1+4n+ 772)/8+477+29172/4+5173+5774/4_ 277 B 279? A 1/4+n
[4(1+ @)?—d?] (16 a?— d?) (4-0?) (4a?—dd)| Pl(4-0?)?2
1/2+27y 55p+97°+57° 57512 N 5522 7?12
(16— 0?)(4—0?) (16—0%)(16a%—0?) (4—0?)(16a’—0?) (16— 0?)(4a’—0?) (4—0d%)(4a’—0?)
7+ 4 273+ 12 3(1—a)(1—7?la)(1+47n)/8 3(1+a)(1+ % a)(1+47)/8
(4a?—0?)? (16a%—d?)(4a’— o) (16— 02)[4(1—01)2—0'2] (16— 02)[4(1+ a)2—0'2]

-7
(4— 0'2)2(16 a’—o?)

6
Op

3(1-a)(1— 9%l a)(4y+ 1;2)/8_ 3(1+a)(1+ 7%l a)(4y+ 17)I8 .
(16a°—0?)[4(1-a)*~0d?]  (16a°—0c?)[4(1+a)*~0?]

. 27 . 3(1—a)(1— %%l a) 52
(16— 0?)(4—0?) (16 a®>—0?) (16— )[4 (1— a)?>— 0?](16 a®>— 0?)

N 3(1+a)(1+ 9%l a)nl2 B 7 N 2793
(16— 0?)[4 (1+ a)?—0?](16 a®’—0?) (16— 0?)(4a’—0?)? (16— 0?)(16 a’— 0?)(4a’—o?)

=0. (4

For the round isotropic beam, this reduces to the expressionith solutions

— 2 4
D,4e=16+02 +o

2_ 2
( _ 34 0'1—16+0'p,

44 4
16— g2 4—g?

(16— 0?)?

20+ 02+ \/(20+ 02)2— 4 (64— 2 02)
2 ) 6( 6 2 0%~ P > P43

=022 7P\ (16— 02 (16— 0?)(d—0?)?

40+ 0%+ \/(40+ 05)>— 8 (128+1007)
B 4

4
T 16- 0?24 02)) ’ (42) Ths
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These coherent frequencies are shown in Fig. 6, whicloff at small amplitude with a practically negligable effect on
indicates an instability fow/v7<0.24, which was identified the phase space densjty6]. Analytical work has also shown
in Ref.[10]. The origin of this instability is theS-function  that a moderate broadening of tl&function distribution

nature of the initial distribution. It has been shown by meanssuffices to suppress this particular mdds.
of computer simulation that this particular instability levels The odd modes have

Yy =agy +axy’, "

_(a’bagt+ab’ay)sin2 ¢)  (a’bay—ab’a,)sin(4 )
N 4e2 (1= m0) + 8e? (1= 7o)

vy

and

2
(o
Dyo=(1+7)*+ 14

2(1—a)(1— 772/a)(1—47]+ 7]2) N ’)(1+ a)(1+ 772/a)(1—477+ 772)
16 <

[(1-a)*~0?] [(1+a)?~0?]
. (1-3a)(1-37%%/a)(5+4p+ 7?) . (1+3a)(1+37%% a)(5+ 47+ 7?)
[(1-3a)?—0?] [(14+3a)?—0?]

. (3—a)(3— p?la)(1+479+57%°) . (3+a)(3+ p?la)(1+479+57%°)
[(3—a)*~0?] [(3+a)*~0?]

4
p

p 6(1—a?)(1— p*a?) _3(l—a)2(l—172/a)2_3(l+a)2(l+ 7°l a)?
64

C[(1-@)?-o?[(1+a)2—o?] [(1-a)*~0?]? [(1+a)*~0?)?

N (3—4da+a?)(3— 4%l a+ n*la?) N (3+4a+a®)(3+47% a+ 5% a?)
[(1-a)*~6?][(3~a)*~ 7] [(1+a)*~0?][(3+a)’—o?]

N (3—2a—a?)(3—29%a— n*la?) N (3+2a—a®)(3+27% a— 7% a?)
[(1-a)?~0?][(3+a)*~ 7] [(1+a)*~0?][(3~a)*~ 7]

. (1+2a—3a?)(1+25% a—379% a?) . (1-2 a—3a?)(1—27%a—375* «?)
[(1—a)?—a?][(1+3a)?—0?] [(1+a)?—a?][(1-3a)?—0?]

. (3+8a—3a?)(3+87% a—37% a?) . (3—8a—3a?)(3—87%a—37%a?)
[(3—a)?—a?][(143a)?—0?] [(3+a)?—a?][(1-3a)?—0?]
(1+4a+3a?) (1+47% a+379% a?) N (1—4da+3a?)(1-47% a+37% a?)
[(1+a)?—a?][(1+3a)?—0?] [(1- a)?—6?][(1-3a)?—0?]

N (34 10+ 3a?)(3+109%/ a+ 37 a?) N (3— 10+ 3a?)(3—107%/ a+37* a?) B
[(3+ )%= o?][(1+3a)2— 0?) [(3—a)?—a?][(1-3a)?—0?) |

0, (45

with the isotropic round beam limit we find a transition to nonoscillatory instability for
vy lvy0<0.3, and several regions of oscillatory instability

( 4 20 with smaller growth rates.

2 )

_|_
4—g?% 16—¢?

D4,OE 16+ (Tp

V. APPLICATIONS

A. Coherent tune shifts and resonances in circular machines

4 4 4
top 22" 2 > |- (40
(16=09)° (16-0°)(4-0") A potential application is the effect of transverse anisot-
ropy and space charge in crossing of linear or nonlinear reso-
The solutions are identical with the; and o, 5 of the even  nances in circular accelerators. The resonance condition

case due to the isotropy. In the anisotropic example of Fig. pv,,+mvy,,=N (with n,m, andN integers, and.,, and vy
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v, v, =1 a/b =1 4-th order modes VyO/VxO ~0.78 a/b =2 2-nd order modes
10 7 4
Jow RewVy — mmmm VY 1 Re o/v,, VIV,
(J)/'Vyo (l)/vyo ] —_—
3 A
: i SR vy
0.1
1 ! ‘ e e I
(U00) B s I L B B B L B LI 0 +r—Tr—r—rT—r—rr—T T T T
0 0.2 04 0.6 0.8 1 0 02 0.4 0.6 0.8 1
vy/vyo Vy/"yo

EIG. 6. Coherent frequencies of fourth order modes for an iso- F|g. 8. Coherent tune shifts for sum, difference, and envelope
tropic round beam. resonances modified by space charge.

here defined as betatron tunes giving the number of betatron o=ny,+my,+Aw=N, (47

oscillation periods per revolutigrdefined in the absence of

space charge cannot be replaced simply by using the spacghich expresses the fact that the coherent mode resonates

charge-shifted incoherent betatron frequencigsand vy, with the linear or nonlinear driving harmoni.

since the ensemble of particles responds to the resonance in a|n Fig. 8 we show the result for the coherent frequency of

coherent way. For such a coherently oscillating space chargge linear(second ordérresonance assuming a fixed ratio of

the resonance condition is shifted, and should be replaced e zero-space-charge  betatron  frequenciethere

the “coherent resonance condition” vyo! vxo=3.45/4.45-0.78), hence the graph applies to a
given focusing structurén contrast with the graphs in Sec.
IV). We characterize the modes according to their zero-

v, IV, =0.48 a/b=1.54 4-th order even modes space-charge frequencies: the odd modes which—in the
y x . '
10 3 v presence of lattice skew quadrupole terms—Ilead to differ-
o, | Ko ence (yo— ryo) OF SUM (ryo+ 1yo) resonances as well as the

iik%!i!iw%sswisisswsxfn

even modes (2,9,2v,0). Equations(28) and (32) can be
O used to determine the expected tune shifts.

B. Instability charts and equipartitioning

0.1 7+ T TR
y For the design of high-current linacs and other applica-
: . 5 tions where stability is of interest it is desirable to identify
N . . regions in parameter space where growth rates leading to
001 T T '0'8' T ] emittance exchange might occur. An important parameter
0 0.2 0.4 0.6 .
vy/vyo
v /v =0.48 a/b=1.54  4-th order odd modes v IV =06 € /g =5
yox y y0 ' x Y
10 ] — Vx/V 1.0 7
J v/ ]
&)/Vyo ;;Smw“‘“ ;15;zxxzmmmmw”’““ - 0.8 7
1 ]
0.6
0.4
0.1 ]
b5 02
R : - Y x ]
(U0 B e e L R L L L B L 0.0 T T T T T T T T T T
0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2 2.5 3 35
ViV v /v,

FIG. 7. Examples of coherent frequencies for fourth order even FIG. 9. Variation of the space-charge tune depressionfor a
and odd modes for an anisotropic beam. given emittance ratio and tune depressiotyin
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Ex/€y =5 2-nd order modes - instability chart

v, IV, =0.6 € /g =5 3-rd order modes
odd: + Rew=0 o XY
1.0 0.25
/ ] Im w/v 1 === cVén
VIV i i
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FIG. 11. Growth rates for constani,/»,,=0.6 ande,/e,=5.

g/ey=5  4-thorder modes - instability chart Note thatT=1 corresponds ta,/v,=0.2 on this graph.

even: "Rew=0 -Rew>0 odd: *Rewy=0 -Rew>0

VE/VYO E
: and corresponding marks whenever an eigenfrequency indi-
cates instability. Hence, at the boundaries of the marked re-
gions, growth rates vanish. The anisotropys given by the
product of tune ratio and emittance ratio, and can be larger or
smaller than unity. The largest growth rates are found for the
nonoscillatory instabilities with Re=0 (large markg for

the oscillatory instabilities with Re>0 (small mark$
growth rates are found to be generally smaller. Equipartition-
ing is indicated by the lind=1.

Regions of instability are found in a large fraction of pa-
rameter space. The practical significance of an unstable
mode depends on the growth rate as well as the width of a
zone of instability. Small bands of instability are easily left
due to detuning by the changing emittance ratio, or by pa-
rameter changes during the acceleration process. In Fig. 11
we show the actual growth rates for cuts in Fig. 10 at
vylvy,=0.6, and in Fig. 12 ab, /v,(,=0.3.
besides anisotropy is the space-charge-induced tune depres-Large growth rates with extended bands are seen to occur
sions vy /vyg OF vy /vyg. Since we usevy /v, it should be  only for the nonoscillatory modes with Re=0 and the
kept in mind that the tune depressionxrfollows from the  stronger tune depression of 0.3. It is noteworthy that the
tune and emittance ratios. As an example, we show in Fig. @nstable regions of these modes merge into the single-
such a dependence foy /v, ,=0.6 ande,/e,=5. One finds  particle resonance conditions of difference resonances:
that for 0<T<2.5 (0<w,/»,<0.5) thex tune is the more »,—2»,~0 and 2,—v,~0 for the third order even and
strongly depressed ortenly weakly dependent of the emit- odd modes; and &—2»,~0 and»,—3»,~0, as well as
tance ratio as long as,/€,>1). 3vy—vy=~0, for the fourth order even and odd modes. This

In Fig. 10 we present charts which show the tune depressuggests that these instabilities lead to emittance exchange
sion vy /vyq versus tune ratio for a given ratio of emittances, betweenx andy.

FIG. 10. Stability charts for second, third, and fourth order
modes assuming,/e,=5 (with square markers referring to even
modes, and diamond markers to odd modes
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€ /e, = 1.5 3-rd order modes - instability chart
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FIG. 12. Growth rates for constant, /v =0.3 ande,/e,=5.

Note thatT=1 corresponds t@,/»,=0.2 on this graph FIG. 13. Stability charts for third and fourth order modes assum-
x! Py : .

ing ec/e,=1.5 (with square markers referring to even, diamond
markers to odd modgs

Linac design:With reference to the design of linear ac-
celerators we suggest that these stability charts can give a ) . o
useful orientation not only for the-y coupling case but also  (Sufficiently) above unity(or T sufficiently below unity if the
for the more important longitudinal-transverse couplimgy( ~ €Mittance ratio is reversgdrhe normalized growth rates of
and likewisez-x). If €;/€,>1 we identifyl with x andt with ~ 0.25 reached for the transverse tune depression offdg3
y, whereas for, /e,<1 one needs to identify with y andt 12) would result in ane-folding time of four periods of be-
with x. Such a chart for a typical value @f/e,=1.5 rel- tatron oscillation(defined without space charngelhese are
evant to high-current linacs is shown in Fig. 13. also, roughly speaking, the peak values of growth rates we

We find that there is sufficient space free of instabilitieshave found for a variety of parameters.
right and left of the equipartitioning lind=1. ForT=% Hence we conclude that linac beams can be “nonequipar-
(three times higher transverse oscillation engrdgr in- titioned” without risk of emittance transfer, as long as the
stance, the transversg)(tune depression must be below 0.6 tune depression is not excessive. We suggest that the region
(hence the longitudinal one is even significantly smaller acOf transverse tune depression between 0.7 and 1 should be
cording to Fig. 9 to enter into the unstable region of the safe from a practical point of view.
third order (nonoscillatory even mode, and even lower for
the fourth order(nonoscillatory even mode. This is hardly
the case in any practical design, where one finds the trans- VI. CONCLUSION
verse tune depression closer to 0.8. The oscillatory instabili- i i
ties left of T=1 (see Figs. 11 and )2have (normalized We have shown that the step from one-dimensional to
growth rates limited to 0.05. This corresponds to the relafwo-dimensional equilibria with anisotropy and space charge
tively long e-folding time of 20 periods of betatron oscilla- l€ads to considerably more complexity in the calculation of
tion (deﬁned without space ChameThe narrow spikes of coherent tune shifts and in the stability behavior. Such beams
odd mode instabilities near,/v,=0.5 andv,/v,=0.33 are must be described by three independent parameters. We ar-
also expected to be harmless. gue that practically significant anisotropy instabilities occur

Growth rates inside the bands of instability as well as thgfor strong tune depression only, when extended regions in
width of these bands increase gradually if the transverse tungarameter space give instability predominantly of the non-
depression drops below 0.6, and if at the same tims  oscillatory type. Hence, beams in “nonequipartitioned”
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linac designs with medium or weak space-charge tune desf real beams where the many free parameters make com-
pression can be expected to be stable and thus not subjectpoter simulation extremely demanding.

emittance exchange. Obviously computer simulation is re-
quired to take into account periodic focusing, external focus- ACKNOWLEDGMENTS

ing nonlinearities, and the influence of more realistic distri- The author benefited from several discussions with R. A.
bution functions. The analytical theory may, however, servelameson and M. Reiser on the role of equipartitioning in
as an important guideline in the multi-dimensional situationlinac design.
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