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Stability of anisotropic beams with space charge

I. Hofmann
GSI Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany

~Received 21 October 1997!

Based on self-consistent Vlasov-Poisson equations, we derive coherent frequencies and stability properties
of anisotropic or ‘‘nonequipartitioned’’ beams with different focusing constants and emittances in the two
transverse directions. The thus obtained dispersion relations of transverse multipole oscillations with quadru-
polar, sextupolar, and octupolar symmetries are solved numerically. We find that for sufficiently large energy
anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. Applying our
results to high-current linear accelerators, we find that ‘‘nonequipartitioned’’ beams may exist in relatively
large regions of parameter space under stable conditions. It is only in beams with strongly space-charge-
depressed betatron tunes that harmful instabilities leading to emittance exchange should be expected.
@S1063-651X~98!01704-8#

PACS number~s!: 41.75.2i, 29.27.Bd, 29.17.1w, 52.25.Wz
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I. INTRODUCTION

Coupling resonances leading to an exchange of ene
between different degrees of freedom are a familiar sub
in accelerators. It is usually assumed that they are driven
first or higher order deviations from ideal linear focusing.
this paper we show that in the space-charge-dominated
gime beam self-fields can play a similar role in coupling a
lead to truly two-dimensional behavior, which differs signi
cantly from that of beams where the two degrees of freed
are treated symmetrically~isotropic beams!. We find that in
the presence of internal energy anisotropy initially sm
space-charge-coupling terms can grow exponentially du
collective instability for sufficiently strong space-charge
fects. For weak space charge as in circular accelerators
coherent frequencies calculated here allow us to determ
coherent shifts of sum or difference linear or nonlinear re
nances up to fourth order. We note that energy anisotr
can result from different emittances as well as focus
strengths.

The subject has a potential application in present stu
of high-current linear accelerators for protons or ions l
spallation neutron sources, radioactive waste transmuta
linacs, or heavy ion fusion linacs. In linac bunches one of
crucial beam dynamics issues is to what extent deviati
from ‘‘equipartitioning’’ ~equal average oscillation energy
all degrees of freedom! can be tolerated without risk of emit
tance growth~see Refs.@1,2# for some recent discussions!.
Anisotropy leading to collective instability in the presence
space charge was suggested in Ref.@3# as a possible ap
proach to the equipartitioning question, since collisions c
not be made responsible for energy transfer in linacs du
their—relatively—short length. Although our mathematic
model is constrained to anisotropy between the two tra
verse directions of a long beam—the only case where a s
consistent analysis seems possible—we suggest that
same mechanism of instability and similar thresholds are
sponsible for the longitudinal-transverse coupling in lin
bunches. For the different problem of an infinitely long bea
with initially zero longitudinal momentum spread but fini
transverse emittance, an analytical study was presente
571063-651X/98/57~4!/4713~12!/$15.00
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Ref. @4#; in a recent computer simulation of this problem
was found that possibly a similar mechanism is respons
for coupling@5#. The work of Refs.@4,5# was based on freely
propagating waves in the direction of infinite beam exte
which is the main difference with our model of a confine
beam.

A further potential application of the theory develope
here are beam halos. It is assumed that mismatch oscillat
can drive particles into a halo as a result of resonant inte
tion of these particles with the mismatch mode@6#. So far
only second order~envelope oscillations! round ~isotropic!
beams have been considered as possible mismatch m
the influence of anisotropy on second and higher order m
match modes is expected to be an important factor in h
formation.

The theory presented here might also be relevant to
field of longitudinal laser cooling of bunched ion beams
storage rings. Recent experiments have shown that bun
close to the longitudinal space-charge limit can be achie
@7#. We expect that for sufficiently high intensity the aniso
ropy instability leads to an exchange of transverse and
gitudinal oscillation energies, and thus enforces a collec
indirect cooling of the transverse degrees of freedom.

The mechanism of collisionless coherent anisotropy ins
bilities discussed here has an analogy in infinite plasmas c
fined by magnetic fields. Temperature anisotropy in su
plasmas can give rise to electrostatic instabilities, which
move the anisotropy@8,9#. Beams are essentially differen
due to the presence of an external focusing potential, wh
leads to the finite transverse dimension and changes
eigenmode structure substantially.

It should be mentioned that our analysis contains a
special case the eigenmodes of round isotropic beams in
stant focusing which were derived earlier@10# for the
Kapchinskij-Vladimirskij ~KV, or d function! distribution
@11#. While results for the isotropic case can be expresse
terms of one dimensionless parametern/n0, anisotropy re-
quires two further dimensionless parameters, for instan
the ratio of betatron frequencies and the ellipticity in re
space.

The paper is organized in the following way: We start
4713 © 1998 The American Physical Society
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4714 57I. HOFMANN
Sec. II with the equilibrium phase space distribution; in Se
III and IV we solve Vlasov’s equation and the resulting d
persion relations, whereas Sec. V presents application
coherent tune shift and to the equipartitioning concept.

II. BASIC EQUATIONS

The unperturbed equilibrium beam is assumed to h
uniform density within an elliptic cross section defined by

S x

aD 2

1S y

bD 2

<1 , ~1!

with a and b the semiaxes of the confining ellipse. In th
longitudinal direction the beam is supposed to be unifo
From Poisson’s equation one obtains the well-known exp
sion for the space-charge electric field inside a beam of
ticles with chargeq and line densityN (5npab) in free
space:

Ex52
qNx

e0pa~a1b!
,

~2!

Ey52
qNy

e0pb~a1b!
.

Assuming linear and time-independent external focus
forces for the equilibrium beam~‘‘smooth approximation’’!
we can write separate Hamiltonians for thex andy motions:

H0x5~px
21m2g2nx

2x2!/~2mg!,
~3!

H0y5~py
21m2g2ny

2y2!/~2mg!;

and corresponding single-particle equations of motion as

ṗx52mgnx
2x, ẋ5px /~mg!,

~4!

ṗy52mgny
2y, ẏ5py /~mg!.

n0x and n0y are the betatron frequencies without spa
charge. The reduced betatron frequencies in the presen
space charge are conveniently expressed as

nx
25n0x

2 2vp
2/~11a/b!,

~5!

ny
25n0y

2 2vp
2/~11b/a!,

where we have introduced the ‘‘beam plasma frequency’
the laboratory frame according to

vp
25

q2N

e0pmg3ab
. ~6!

The assumption of uniform density is consistent with
d-function distribution of a linear combination of the tw
separate Hamiltonians which is a generalization of
Kapchinskij-Vladimirskij distribution

f 0~x,y,px ,py!5
NTny /nx

2p2mga2
d~H0x1TH0y2mgnx

2a2/2!.

~7!
.
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Here T is the ratio of oscillation energies in thex and y
directions which can be readily written for harmonic oscill
tors as

T5
a2nx

2

b2ny
2

. ~8!

The ratio of emittances is given by

ex

ey
5

a2nx

b2ny

. ~9!

The time-independentf 0 in Eq. ~7! is a solution of Vlasov’s
equation

d f

dt
[

] f

]t
1 ẋ

] f

]x
1 ẏ

] f

]y
1pẋ

] f

]px
1pẏ

] f

]py
50 , ~10!

sinceH0x and H0y are constants of the motion. Integratio
over momentum space readily yields the uniform dens
within the boundary of Eq.~1!.

For the perturbed distribution functio
f [ f 0(H0x ,H0y)1 f 1(x,y,px ,py ,t), we linearize Vlasov’s
equation~see Ref.@12#!, keeping only first-order terms inf 1
and in the perturbed electrostatic potentialF, and obtain

d f1

dt
[

] f 1

]t
1

px

mg

] f 1

]x
1

py

mg

] f 1

]y
2mgnx

2x
] f 1

]px
2mgny

2y
] f 1

]py

5
NTqny /nx

2p2m2g4a2 S px

]F

]x
1Tpy

]F

]y D
3d8@px

21nx
2x21T~py

21ny
2y2!2nx

2a2#. ~11!

The perturbed electrostatic potentialF is self-consistently
calculated by writing Poisson’s equation for the perturb
charge density:

¹2F52
q

e0
n152

q

e0
E f 1dpxdpy . ~12!

Equations~11! and ~12! are a closed set of equation
which can be solved with an appropriate boundary condit
for the electric field. Assuming that the beam pipe is su
ciently far away we can ignore image charges and take
boundary condition of an electric field vanishing at infinit

III. INTEGRATION OF VLASOV’S EQUATION

In order to solve the coupled partial differential equatio
Eqs. ~11! and ~12!, we use the method of characteristics
integratingd f1 /dt along the unperturbed orbits. To this en
we rewrite the solutions of the harmonic oscillator equatio
@Eqs.~4!# by introducing a phase anglew[nxt such that for
t85t (w85w) the orbit goes through the pointx,y,px ,py in
phase space:
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57 4715STABILITY OF ANISOTROPIC BEAMS WITH SPACE CHARGE
x8~ t8!5
px

nx
sin~w82w!1x cos~w82w!,

px8~ t8!5pxcos~w82w!2xnx sin~w82w!,
~13!

y8~ t8!5
py

ny
sin@a~w82w!#1y cos@a~w82w!#,

py8~ t8!5pycos@a~w82w!#2ynysin@a~w82w!#.

Here we have introduced the ratio of betatron frequenc
a[ny /nx . We now assume thata is rational, hence

a5
n

m
, ~14!

with n and m some integer numbers. In this case the or
given by Eq. ~13! is exactly periodic inw8 with period
L52pm. The perturbed distribution function along the u
perturbed orbit,f 1(t,w), is then also periodic inw, and the
total derivative in Eq.~11! can be written in terms of two
variables only:

d f1

dt
5

] f 1

]t
1nx

] f 1

]w
. ~15!

We note that the assumption of rationala is not a real
restriction in the present context: there are always ratio
numbers arbitrarily close to any real number, hence for
finite time interval the deviation of the harmonic oscillat
orbits of Eqs.~13! for rationala from the real orbit can be
made arbitrarily small.

We can now assume an explicit time dependence fo
single eigenmode by introducing a coherent mode freque
v,

f 15 f 1~w!e2 ivt, F5F~w!e2 ivt. ~16!

f 1(w) can be determined by integrating the total derivat
d f1 /dt over a full periodL of the unperturbed orbit~see, for
example, Ref.@12#!:

E
w

w1Ld f1

dt8
dw852 ivE

w

w1L

f 1~w8!e2 ivw8/nxdw8

1nxE
w

w1L ] f 1

]w8
e2 ivw8/nxdw8

5nxf 1~w!e2 ivw/nx~e2 ivL/nx21!. ~17!

Hence, by inserting Eq.~15! into Eq. ~17!, introducing
u[w82w, and dropping the explicit time dependence,
obtain

f 1~w!5
NTqny /nx

2

2p2m2g4a2
~e2 ivL/nx21!21d8

3E
0

LS px8
]F

]x8
1Tpy8

]F

]y8
D e2 i ~v/nx! udu, ~18!
s

it

al
y
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with, x8, etc. according to Eqs.~13!. After inserting f 1 into
Eq. ~12!, we carry out the integration over the momentu
space by introducing polar coordinatesP andQ according to
px5P cosQ and T1/2py5P sinQ. Partial integration over
P2 leads to a nonvanishing boundary term forP250 de-
scribing a surface charge perturbation on the unpertur
beam boundary, as well as a volume charge perturbation

¹2F5
NT1/2q2ny /nx

2

2p2e0mg3a2
~e22p im ~v/nx!21!21

3F 2pd@mg/2~nx
2x21Tny

2y22nx
2a2!#

3E
0

2pm

e2 i ~v/nx! uS px8

]F

]x8
1Tpy8

]F

]y8
D

P250

du

12mgE
0

2pm

e2 i ~v/nx! uE
0

2p d

dP2 S px8

]F

]x8

1Tpy8

]F

]y8
D

P25m2g2
„n

x
2~a22x2!2Tn

y
2y2

…

du dQG .

~19!

It is straightforward to verify that—owing to the
d-function equilibrium distribution—the unknown solution
for F can be taken as finite order polynomials inx andy in
the interior of the beam, matched to outside solutions t
satisfy Laplace’s equation in elliptic coordinates:

¹2F5
1

c2~cosh2j2cos2w!
S ]2F

]j2
1

]2F

]w2 D 50, ~20!

with

x5c coshj cosw,

y5c sinh j sin w, ~21!

c25a22b2.

Here we assume without loss of generality thata>b. The
outside solution@j.j0, with coshj05a/c)] is a superposi-
tion of angular harmonics which vanish at infinity:

e2l ~j2j0!cos l w, e2l ~j2j0!sin l w. ~22!

Integration of Eq.~19! across the beam boundary atj5j0
gives rise to a jump of the derivative]F/]j that equals the
surface charge on the boundary and matches the inside
the outside solution:
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F]F

]j G
j020

j010

5
Nq2/nx

3

pe0m2g4a2
~e22p im ~v/nx!21!21

3E
0

2pm

e2 i ~v/nx! uS px8

]F

]x8

1Tpy8

]F

]y8
D

P250

du. ~23!

IV. DISPERSION RELATION

The requirement of solving Eqs.~19! and ~23! with a
polynomial ansatz forF in the interior and the angular har-
monic expansion Eq.~22! outside leads to a dispersion rela-
tion for the coherent frequencyv. It is a peculiarity of the
d-function distribution that only the leading terms in thex, y
expansion ofF are needed to determine the eigenfrequenc
In the subsequent list of eigenfunctions we therefore igno
all lower order terms. Eigenmodes are characterized by th
leading powerl in this expansion, where we limit the evalu-
ation to second, third, and fourth orders; furthermore they a
characterized by the symmetry with respect to the angul
variablew, where the even modes@cos(lw)# have thex axis
as symmetry plane. The orderl of this polynomial is related
to the spatial profile of the density perturbation in thex,y
plane as is shown in Fig. 1.

It is noted that the even modes are symmetric with respe
to the horizontal~here x) axis. The odd modes lack this
symmetry; in three dimensions these modes correspond to
lack of rotational symmetry around the longitudinal axis
hence they are suppressed inr 2z simulation codes. For ro-

FIG. 1. Beam cross sections for second, third and fourth orde
even and odd modes~schematic, withx horizontal andy vertical
coordinates!.
y.
re
e

re
ar

ct

a
,

tationally symmetric unperturbed beams a distinction
tween even and odd modes is unnecessary, as is the ca
Ref. @10#. For completeness we note that the first ord
modes corresponding to a rigid displacement of the beam
a trivial case. In the absence of image charges the co
sponding coherent frequencies are just the zero-space-ch
betatron frequencies in either direction.

By inserting the expandedF into Eqs.~19! and ~23! we
obtain linear equations for the expansion coefficients a
find the dispersion relation in each order as condition
vanishing determinant. For convenience we introduce a
of three dimensionless variables to describe the equilibr
beam in terms of intensity, ratio of betatron frequencies a
the envelope ratio~ellipticity!:

sp
2[

vp
2

nx
2

, a[
ny

nx
, h[

a

b
~>1!. ~24!

The eigenfrequency is characterized by the dimension
coherent frequency

s[
v

nx
. ~25!

Hence the energy anisotropy is given byh2/a2 and the ratio
of emittances byh2/a. The dimensionless frequency de
pends on the three parameterssp

2 ,a, andh, wherea is re-
lated to its zero intensity valuea0 according to

a25a0
21

sp
2

11h
~a0

22h!. ~26!

A. Second order„envelope and tilting modes…

We begin with the even modes, which are the well-kno
envelope oscillations also following directly from the K
envelope equations@11# by linearizing them around the
matched envelopes. The leading term in the perturbed sp
charge potential inside and outside for the even (e) mode is

F2,e
~ in!5a0x21a2y2,

~27!

F2,e
~ex!5

a2a0

2
1

b2a2

2
1

~a2a02b2a2!cos~2 c!

2 e2 ~h2h 0! ,

and the dispersion relation results as

D2,e[~11h!21sp
2S 112h

42s2 1
2h1h2

4a22s2D
1sp

4 2 h

~42s2!~4a22s2!
50. ~28!

For the isotropic round beam withh51 anda51, this
reduces to

D2,e[41
6 sp

2

42s2 1
2 sp

4

~42s2!2 , ~29!

which is solved by the familiar result

r
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57 4717STABILITY OF ANISOTROPIC BEAMS WITH SPACE CHARGE
s1
2541sp

2 , s2
2541

sp
2

2
. ~30!

For zero space charge both mode frequencies approac
limiting frequencyv52n0 ~ignoring the negative frequenc
branches!. The high-frequency or ‘‘fast mode’’ correspond
to a round, spatially symmetric perturbation~‘‘breathing
mode’’!, and the low-frequency or‘‘slow mode’’ to a quadru
polar perturbation~spatially antisymmetric mode!. The larger
coherent tune shift of the breathing mode reflects the sp
charge density compression. At the space-charge limit
obtain readilyv5vp for the fast mode andv5vp /A2 for
the slow mode. It should be noted that in the anisotropic c
both the fast and slow eigenmodes have quadrupolar sym
try.

The familiar results for envelope mode frequencies giv
in Eq. ~30! are shown in Fig. 2. In this and the followin
graphs the eigenfrequencies have been normalized tov/ny0
and plotted against the ‘‘tune depression’’ny /ny0 for fixed
ratio of betatron frequenciesny /nx and ellipticity a/b. This
means that in the general anisotropic case according to
~26! the ratio of external focusing constants,a0, is not a
constant in such a graph. We also plot the tune depres
nx /nx0, which differs fromny /ny0 in the general anisotropic
case.

For the odd mode we have

F2,o
~in!5a1xy,

~31!

F2,o
~ex!5

aba1 sin~2 c!

2 e2 ~h2h0! ,

which results in the dispersion relation

D2,o[~11h!21
sp

2

2 S ~12a!~12h2/a!

~12a!22s2

1
~11a!~11h2/a!

~11a!22s2 D50. ~32!

For the isotropic round case this simplifies to

FIG. 2. Coherent frequencies of second order~envelope! modes
for an isotropic round beam.
the

e-
e

se
e-

n

q.

on

D2,o[41
2 sp

2

42s2 , ~33!

which is solved bys2541sp
2/2. This is identical with the

above even slow mode frequency, since for rotationally sy
metric focusing the angular rotation has no restoring for
The odd slow frequency is zero for the same reason; it
only finite if the rotational symmetry is broken by unsym
metric focusing.

The solutions for the even mode are always stable, wh
is not necessarily true for the odd modes. We find that
low-frequency branch leads to imaginaryv if ~assuming
h.1) the following conditions are satisfied :

a,1, 1,a0,Ah. ~34!

This means that the beam is unstable if for an external
cusing stronger in they direction space charge leads to
strongerx focusing. This tilting instability betweenx andy
obviously requires a sufficiently large anisotropy.

An example with anisotropy (T510.5) is shown in Fig. 3.
The low-frequency branch of the odd mode becomes u
stable at tune depression below 0.3. The instability occurs
‘‘confluence’’ of a positive frequency branchv with 2v
~not shown in the figures! merging into a pair of solutions
with Rev50 ~‘‘nonoscillatory’’! and Imv.0 ~unstable!
and Imv,0 ~damped!. The free energy driving this insta
bility obviously stems from the anisotropy. It is noted from

FIG. 3. Examples of coherent frequencies for second order e
and odd modes for an anisotropic beam (T510.5).
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4718 57I. HOFMANN
Eqs.~28! and ~32! that for vanishing space charge (sp→0)
the zeros of the denominators determine the limiting mo
frequencies. Hence the low-frequency odd mode is relate
a ‘‘difference resonance’’v5nx02ny0. In our model the
driving term for this ‘‘difference resonance’’ is not a ske
quadrupole as in synchrotrons, but the internal space-ch
force caused by the exponentially growing initial ‘‘tilting’
of the beam cross section. As for synchrotron differen
resonances, we may expect that the effect of the instabili
an exchange of emittance betweenx andy. The correspond-
ing high-frequency branch is related to a ‘‘sum resonanc
v5nx01ny0. For the even modes the zero-space-charge
its are 2nx0 and 2ny0. An alternative approach describin
even and odd second order modes by a matrix formalism
derived in Ref.@13#, and applied to a stellarator field fo
high-current electron beam transport.

B. Third order „sextupolar modes…

For higher than second order the perturbed densities
to nonlinear space-charge forces. Forl 53 these forces have
the same expansion inx and y as the fields from sextupol
magnets. The spatial boundaries of these modes are sho
Fig. 1. It is noted that even and odd modes can be in
changed by exchangingx and y, which is not the case in
second and fourth orders.

Leading order terms in the perturbed space-charge po
tial are

F3,e
~ in!5a0x31a2xy2,

~35!

F3,e
~ex!5

~3a3a01ab2a2!cos~c!

4eh2h0
1

~a3a02ab2a2!cos~3c!

4e3~h2h0!
.

The even mode dispersion relation is

D3,e[~11h!31
sp

2

8 F125h

12s2
1

9127h124h2

92s2

1
~122a!~122h2/a!~31h!

~122a!22s2

1
~112a!~112h2/a!~31h!

~112a!22s2 G1
sp

4

8
F 21

~12s2!2

1
3

~12s2!~92s2!
1

3~122a!

~92s2!@~122a!22s2#

1
3~112a!

~92s2!@~112a!22s2#
G50, ~36!

which is simplified for the isotropic round beam to

D3,e581sp
2 12

92s2
2sp

4 4s2~32s2!

~92s2!2~12s2!2
, ~37!

with solutions
e
to

ge

e
is

’’
-

as

ad

in
r-

n-

s1,2
2 5

101sp
26A64120sp

21sp
4

2
,

~38!

s3,4
2 5

201sp
26A256116sp

21sp
4

4
.

The numerical solutions for the coherent frequencies of
isotropic round case are shown in Fig. 4. As expected,
instability exists in this case@10#.

FIG. 5. Examples of coherent frequencies for third order ev
and odd modes for an anisotropic beam.

FIG. 4. Coherent frequencies of third order modes for an iso
pic round beam.



n

ic
Fi

p
io

t
il

r
e
s

n
Eq.

en-
nets

57 4719STABILITY OF ANISOTROPIC BEAMS WITH SPACE CHARGE
For the odd mode perturbed potential we have

F3,o
~ in!5a1x2y1a3y3,

~39!

F3,o
~ex!5

~a2ba113b3a3!sin~c!

4eh2h0
1

~a2ba12b3a3!sin~3c!

4e3~h2h0!
.

The odd mode dispersion relation is obtained by intercha
ing nx andny as well asa andb in Eqs.~24! and ~25!, and
solving Eq.~36! with the new variables. For an anisotrop
case with the parameters of Fig. 3, the result is shown in
5.

For the anisotropic case we have chosen an exam
where instability appears below a critical tune depress
The first instability with Rev50 ~nonoscillatory! occurs for
the even mode atny /ny0,0.84 and for the odd mode a
ny /ny0,0.38. The odd mode also shows oscillatory instab
ity for ny /ny0,0.2 and a narrow band fo
0.72,ny /ny0,0.81. The normalized growth rates of th
nonoscillatory case can be as large as 0.2, whereas the o
si
g-

g.

le
n.

-

cil-

latory growth rates are found to be much smaller~also see
Sec. V B for details!. The different branches in Fig. 5 ca
again be characterized by the resonant denominators of
~36! and the corresponding odd mode expression.

C. Fourth order „octupolar modes…

Spatial boundaries of these modes have nonuniform d
sity and space-charge forces like those of octupole mag
(l 54 in Fig. 1!. For the perturbed even mode potentials

F4,e
~ in!5a0x41a2x2y21a4y4,

~40!

F4,e
~ex!5

3 a4a01a2b2a213 b4a4

8
1

~a4a02b4a4!cos~2 c!

2e2 ~h2h0!

1
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8e4 ~h2h0!
,

we find the dispersion relation
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For the round isotropic beam, this reduces to the expres
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These coherent frequencies are shown in Fig. 6, wh
indicates an instability forn/n0,0.24, which was identified
in Ref. @10#. The origin of this instability is thed-function
nature of the initial distribution. It has been shown by mea
of computer simulation that this particular instability leve
.

h

s

off at small amplitude with a practically negligable effect o
the phase space density@16#. Analytical work has also shown
that a moderate broadening of thed-function distribution
suffices to suppress this particular mode@15#.

The odd modes have
F4,o
~ in!5a0x3y1a2xy3,
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and
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ot-
so-

ition
with the isotropic round beam limit

D4,o[161sp
2S 4

42s2
1

20

162s2D
1sp

4S 4

~162s2!2
1

4

~162s2!~42s2!
D . ~46!

The solutions are identical with thes1 ands4,5 of the even
case due to the isotropy. In the anisotropic example of Fig
 7,

we find a transition to nonoscillatory instability fo
ny /ny0,0.3, and several regions of oscillatory instabili
with smaller growth rates.

V. APPLICATIONS

A. Coherent tune shifts and resonances in circular machines

A potential application is the effect of transverse anis
ropy and space charge in crossing of linear or nonlinear re
nances in circular accelerators. The resonance cond
nnx01mny05N ~with n,m, andN integers, andnx0 andny0
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here defined as betatron tunes giving the number of betat
oscillation periods per revolution! defined in the absence of
space charge cannot be replaced simply by using the spa
charge-shifted incoherent betatron frequenciesnx and ny
since the ensemble of particles responds to the resonance
coherent way. For such a coherently oscillating space cha
the resonance condition is shifted, and should be replaced
the ‘‘coherent resonance condition’’

FIG. 6. Coherent frequencies of fourth order modes for an is
tropic round beam.

FIG. 7. Examples of coherent frequencies for fourth order ev
and odd modes for an anisotropic beam.
on

ce-

in a
ge
by

v5nnx1mny1Dv5N, ~47!

which expresses the fact that the coherent mode resonate
with the linear or nonlinear driving harmonicN.

In Fig. 8 we show the result for the coherent frequency of
the linear~second order! resonance assuming a fixed ratio of
the zero-space-charge betatron frequencies~here
ny0 /nx053.45/4.4550.78), hence the graph applies to a
given focusing structure~in contrast with the graphs in Sec.
IV !. We characterize the modes according to their zero-
space-charge frequencies: the odd modes which—in the
presence of lattice skew quadrupole terms—lead to differ-
ence (nx02ny0) or sum (nx01ny0) resonances as well as the
even modes (2nx0 ,2ny0). Equations~28! and ~32! can be
used to determine the expected tune shifts.

B. Instability charts and equipartitioning

For the design of high-current linacs and other applica-
tions where stability is of interest it is desirable to identify
regions in parameter space where growth rates leading to
emittance exchange might occur. An important parameter

-

n FIG. 9. Variation of the space-charge tune depression inx for a
given emittance ratio and tune depression iny.

FIG. 8. Coherent tune shifts for sum, difference, and envelope
resonances modified by space charge.
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4722 57I. HOFMANN
besides anisotropy is the space-charge-induced tune de
sionsny /ny0 or nx /nx0. Since we useny /ny0 it should be
kept in mind that the tune depression inx follows from the
tune and emittance ratios. As an example, we show in Fi
such a dependence forny /ny050.6 andex /ey55. One finds
that for 0,T,2.5 (0,nx /ny,0.5) thex tune is the more
strongly depressed one~only weakly dependent of the emi
tance ratio as long asex /ey@1).

In Fig. 10 we present charts which show the tune dep
sionny /ny0 versus tune ratio for a given ratio of emittance

FIG. 10. Stability charts for second, third, and fourth ord
modes assumingex /ey55 ~with square markers referring to eve
modes, and diamond markers to odd modes!.
es-

9

s-
,

and corresponding marks whenever an eigenfrequency ind
cates instability. Hence, at the boundaries of the marked re
gions, growth rates vanish. The anisotropyT is given by the
product of tune ratio and emittance ratio, and can be larger o
smaller than unity. The largest growth rates are found for the
nonoscillatory instabilities with Rev50 ~large marks!; for
the oscillatory instabilities with Rev.0 ~small marks!
growth rates are found to be generally smaller. Equipartition-
ing is indicated by the lineT51.

Regions of instability are found in a large fraction of pa-
rameter space. The practical significance of an unstabl
mode depends on the growth rate as well as the width of a
zone of instability. Small bands of instability are easily left
due to detuning by the changing emittance ratio, or by pa
rameter changes during the acceleration process. In Fig. 1
we show the actual growth rates for cuts in Fig. 10 at
ny /ny050.6, and in Fig. 12 atny /ny050.3.

Large growth rates with extended bands are seen to occu
only for the nonoscillatory modes with Rev50 and the
stronger tune depression of 0.3. It is noteworthy that the
unstable regions of these modes merge into the single
particle resonance conditions of difference resonances
nx22ny'0 and 2nx2ny'0 for the third order even and
odd modes; and 2nx22ny'0 andnx23ny'0, as well as
3nx2ny'0, for the fourth order even and odd modes. This
suggests that these instabilities lead to emittance exchang
betweenx andy.

r

FIG. 11. Growth rates for constantny /ny050.6 andex /ey55.
Note thatT51 corresponds tonx /ny50.2 on this graph.
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Linac design:With reference to the design of linear ac-
celerators we suggest that these stability charts can give
useful orientation not only for thex-y coupling case but also
for the more important longitudinal-transverse coupling (z-y
and likewisez-x). If e l /e t.1 we identifyl with x andt with
y, whereas fore l /e t,1 one needs to identifyl with y and t
with x. Such a chart for a typical value ofex /ey51.5 rel-
evant to high-current linacs is shown in Fig. 13.

We find that there is sufficient space free of instabilities

right and left of the equipartitioning lineT51. For T5 1
3

~three times higher transverse oscillation energy!, for in-
stance, the transverse (y) tune depression must be below 0.6
~hence the longitudinal one is even significantly smaller ac
cording to Fig. 9! to enter into the unstable region of the
third order ~nonoscillatory! even mode, and even lower for
the fourth order~nonoscillatory! even mode. This is hardly
the case in any practical design, where one finds the tran
verse tune depression closer to 0.8. The oscillatory instabi
ties left of T51 ~see Figs. 11 and 12! have ~normalized!
growth rates limited to 0.05. This corresponds to the rela
tively long e-folding time of 20 periods of betatron oscilla-
tion ~defined without space charge!. The narrow spikes of
odd mode instabilities nearnx /ny50.5 andnx /ny50.33 are
also expected to be harmless.

Growth rates inside the bands of instability as well as th
width of these bands increase gradually if the transverse tu
depression drops below 0.6, and if at the same timeT is

FIG. 12. Growth rates for constantny /ny050.3 andex /ey55.
Note thatT51 corresponds tonx /ny50.2 on this graph.
a

-

s-
li-

-

e
ne

~sufficiently! above unity~or T sufficiently below unity if the
emittance ratio is reversed!. The normalized growth rates o
0.25 reached for the transverse tune depression of 0.3~Fig.
12! would result in ane-folding time of four periods of be-
tatron oscillation~defined without space charge!. These are
also, roughly speaking, the peak values of growth rates
have found for a variety of parameters.

Hence we conclude that linac beams can be ‘‘nonequip
titioned’’ without risk of emittance transfer, as long as th
tune depression is not excessive. We suggest that the re
of transverse tune depression between 0.7 and 1 shoul
safe from a practical point of view.

VI. CONCLUSION

We have shown that the step from one-dimensional
two-dimensional equilibria with anisotropy and space cha
leads to considerably more complexity in the calculation
coherent tune shifts and in the stability behavior. Such bea
must be described by three independent parameters. W
gue that practically significant anisotropy instabilities occ
for strong tune depression only, when extended region
parameter space give instability predominantly of the n
oscillatory type. Hence, beams in ‘‘nonequipartitioned

FIG. 13. Stability charts for third and fourth order modes assu
ing ex /ey51.5 ~with square markers referring to even, diamo
markers to odd modes!.
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linac designs with medium or weak space-charge tune
pression can be expected to be stable and thus not subje
emittance exchange. Obviously computer simulation is
quired to take into account periodic focusing, external foc
ing nonlinearities, and the influence of more realistic dis
bution functions. The analytical theory may, however, se
as an important guideline in the multi-dimensional situat
B

n-
ce
e-
t to
-
-

-
e

of real beams where the many free parameters make c
puter simulation extremely demanding.
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