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Stability of a nonequilibrium interface in a driven phase-segregating system

Claude A. Laberge and Sven Sandow
Department of Physics and Center for Stochastic Processes in Science and Engineering,

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435
~Received 19 May 1997!

We investigate the dynamics of a nonequilibrium interface between coexisting phases in a system described
by a Cahn-Hilliard equation with an additional driving term. By means of a matched asymptotic expansion, we
derive equations for the interface motion. A linear stability analysis of these equations results in a condition for
the stability of a flat interface. We find that the stability properties of a flat interface depend on the structure of
the driving term in the original equation.@S1063-651X~97!01212-9#

PACS number~s!: 64.75.1g, 64.70.Ja, 68.10.2m, 47.54.1r
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I. INTRODUCTION

Off-equilibrium systems composed of regions with diffe
ent phases can exhibit a variety of patterns, such as fin
aligned in a certain direction. A familiar example is spinod
decomposition of binary mixtures~for a review see@1,2#!.
When quenched below its critical temperature, an initia
homogeneous system develops domains of the new equ
rium phases. After some time these domains are well
fined, i.e., they are separated by sharp interfaces. The sy
further approaches equilibrium by means of the motion
these interfaces; the initial pattern evolves in the course
time. Another example is the dynamics of driven diffusi
systems~for a review see Ref.@3#!. Interacting particles un-
dergoing biased diffusion tend to form clusters under cer
conditions. Like for the first example there are well-defin
interfaces, which undergo some dynamics. In all of th
phase segregating systems patterns are selected accord
their stability. For example, the instability of a flat interfa
causes the growth of fingers out of an initially flat interfac
For this reason one would like to understand the stab
properties of nonequilibrium interfaces.

On a course-grained level these phase-segregating
tems are described by means of an order parameter, su
a particle density. Typically, the dynamics of this order p
rameter can be modeled by means of some nonlinear di
ential equation. One of the simplest such equations is
Cahn-Hilliard ~CH! equation, which was introduced in th
context of binary mixtures@4#. The properties of this equa
tion are rather well understood. In particular, the dynamics
the domain boundaries obey a set of linear differential eq
tions, which have been derived by Pego@5# using a matched
asymptotic expansion. An instability of the Mullins-Seker
type has been observed.

Certain modifications of the CH equation were introduc
to take into account the effect of external fields,@6–
10,5,11,12# ~see Refs.@13,14,3# for modified CH equations
in the context of driven diffusive systems!. One of the ques-
tions one would like to answer is the following: How does
external field change the stability properties of a flat int
571063-651X/98/57~1!/47~7!/$15.00
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face? This question was addressed by Yeunget al. @11# for a
certain type of driving term. This driving term has the for
of an additional current that is proportional to the field and
conductivity. The conductivity was assumed to be a conc
second-order function of the order parameter with the sa
symmetry as the chemical potential. Yeunget al. @11# found
that the field modifies the interface dynamics. An interfa
perpendicular to the external field is stable for one direct
of the field and unstable for the other direction.

In this paper we generalize the work of Yeunget al. @11#.
Like Yeunget al. we consider a modified CH equation wit
an isotropic chemical potential.~Motivating the modified CH
equation with a free-energy argument, an isotropic chem
potential is expected for a small enough field. In this pap
we do not address the question of how good an approxi
tion this is, but rather assume that the equation is reason
for certain physical systems and start our discussion fr
there.! The driving term in our equation is proportional to th
field and an arbitrary conductivity. Our approach is the sa
as the one from Ref.@11# ~see also Ref.@5#!. Assuming that
the driving field is sufficiently small we perform a matche
asymptotic expansion. The resulting set of linear equati
describes the motion of an interface between coexis
phases. With the help of these equations we analyze the
bility of a flat interface. We find a general stability criterio
which takes a very simple form if we assume that the c
ductivity is a third-order polynomial in the order paramete
For such a conductivity we show that an interface perp
dicular to the external field can be unstable for either dir
tion of the field and that an interface parallel to the exter
field is always stable.

The paper is organized as follows. In Sec. II we define
model. A matched asymptotic expansion is done in Sec.
Equations for the motion of an interface are derived. In S
IV we perform a linear stability analysis for a flat interfac
resulting in a condition for the stability of such an interfac
This condition is subsequently shown to take a simple fo
for the case of a conductivity that is a third-order polynom
in the order parameter. Section V summarizes the result
47 © 1998 The American Physical Society



y

be
n

-

by

-
he
e
m
l

fie

s

u
f

in
th
-

le
p

ng

ys
,
ar
o

s
a
n
im
n

i

e a

e

n

si-
-

di-

bes

48 57CLAUDE A. LABERGE AND SVEN SANDOW
II. MODEL

We consider a two-dimensional system described b
conserved order parameteru(R,T), whereR denotes a posi-
tion in space andT the time. The dynamic is assumed to
defined by the following modified Cahn-Hilliard equatio
@8–12,14#

]u

]T
52“•J, ~1!

J52“m1Es~u!, ~2!

m5luS u2
um

2 D ~u2um!2j2¹2u. ~3!

In the above equations,J is the current of the order param
eter,m is the chemical potential of the free system,E is an
external field~e.g., an electric field!, ands(u) is the conduc-
tivity. One may think of the chemical potential as related
means of m5dF/du to a free-energy functionalF@u#
5*dR$ f @u(R)#1j2u¹u(R)u2/2%, where f (u) is a bulk free
energy density the derivative of which isf 8(u)
5lu(u2 um/2)(u2um). The current has two additive con
tributions: one that minimizes the free energy and anot
one defining the transport caused by the field. The first on
specified by the structure of the chemical potential. Assu
ing l.0 and um.0, Eq. ~3! defines a chemical potentia
such that the free energy has minima in regions withu50 or
with u5um.0. The term proportional toj2 results in an
increase of energy whenever there is a gradient inu, i.e., j2

stands for a surface tension. The current caused by the
is Es(u), which depends on the functions(u). The standard
conductivity used in the literature@8–12,14# is a concave
second-order function ofu, which has the same symmetry a
the chemical potential, i.e., is symmetric aroundum/2. Here
we do not restrict ourselves to this type of function, b
rather want to see what kind of behavior can be observed
a more general conductivity.

Equations of the type~1!–~3! are usually motivated on a
purely phenomenological~see, e.g.,@9–12,14#! or mean-field
~see, e.g.,@8#! level. The standard type of argument results
a mobility as a factor to the total current, i.e., a current of
types(u)@2“m1E#. Assuming furthermore that the varia
tion of s(u) is small enough,s(u)“m is then replaced by
“m. We follow the same logic here. It is also worthwhi
mentioning that a rigorous derivation of a more general ty
of equation has been done for a diffusive system with a lo
range interaction and Kawasaki dynamics@13#. However, the
relation of our equation to the standard driven diffusive s
tem studied in Refs.@14,3# is not well understood. There
some interesting discrepancies between the Monte C
simulations and the mean field description have been
served@14#.

Since it is more convenient to work with a dimensionle
equation, we rescale Eqs.~1!–~3!. Simultaneously, we add
constant term to the conductivity and apply a Galilean tra
formation such that the new current vanishes at both min
of the chemical potential. The adding of a constant does
change the equation foru(R,T) since only the gradient ofs
enters into this equation. The Galilean transformation
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nothing but a change of the reference frame. We defin
lengthL0 and a timeT0 obeying

15L0
22T0lum

2 ~4!

as well as a velocity

Vg5uEuum
21s~um!. ~5!

Now we define dimensionless quantities as

r5L0
21R2L0

21VgTe, ~6!

t5T0
21T, ~7!

r5um
21u, ~8!

where

e5
E

uEu
~9!

is the unit vector in the direction of the field. Inserting th
above definitions into Eqs.~1!–~3! yields the dimensionless
equations

]r

]t
52¹• j , ~10!

j52¹n1eb~r!, ~11!

n5r~r21!~r2 1
2 !2e2¹2r, ~12!

with

e25L0
22j2l21um

22 ~13!

and

b~r!5e21uEujl23/2um
24$s~rum!2s~0!

2r@s~um!2s~0!#%. ~14!

In Eqs. ~10!–~12! the operator“ stands for derivative with
respect to the new coordinater . The conductivityb(r) in the
new frame has the property

b~1!5b~0!50, ~15!

i.e., it vanishes at both minima ofn. However, it is not nec-
essarily positive in the whole interval (0,1). In fact, later o
we will identify a regime whereb(r),0 for some part of
(0,1). For that reason it would be hard to give a direct phy
cal meaning to Eqs.~10!–~14! in terms of the rescaled vari
ables.

The velocityVg given by Eq.~5! is positive by definition.
Consequently, the new frame of reference moves in the
rection of the field with respect to the original one.

III. DYNAMICS OF AN INTERFACE

The model defined in the preceding section descri
phase segregation, i.e., the order parameterr(r ,t) evolves
such that there are regions in space wherer(r ,t) approxi-
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57 49STABILITY OF A NONEQUILIBRIUM INTERFACE IN . . .
mately takes the values for which the chemical potentia
minimal. Since there are two minima of the chemical pote
tial, there are two types of regions, which are separated
transition layers. The transition layer between the differ
regions, which is seen as a line on a large enough sc
evolves during time. We are going to give an analytical d
scription of its motion for the case where

e!1 ~16!

and for 0<r<1,

b~r!5O~e0!, b8~r!5O~e0! ~17!

in the rescaled equations~10!–~14!. In terms of the original
parameters these conditions read

L0
21jl2 1/2um

21!1, ~18!

uEujl23/2um
24smax!1, ~19!

wheresmax denotes the largest valuess(u) and its deriva-
tive s8(u) take in@0,1#. The first of these conditions can b
fulfilled for any choice of the parameters simply by choosi
a large enough length scaleL0. However, the second cond
tion poses a restriction on the parameters; it can be un
stood as a small field condition.

Starting with the rescaled equations~10!–~12! we apply a
matched asymptotic expansion. The basic idea is to exp
the order parameter and its evolution equation in power
the small parametere. We closely follow the line of Refs.@5#
and @11#. Since we want to describe the motion of a sing
interface, we consider an initial configuration with two sem
infinite regionsV1 and V2 and assume that the order p
rameter is equal to 1 (0) inV1 (V2) up to corrections of
ordere. The values 1 and 0 are the minima of the chemi
potential. The regionsV1 andV2 are separated by a tran
sition layer. We assume this layer to have a width of ordee
like it in the field free case@5,11#. The characteristic time o
its motion is

t5et5eT0
21T. ~20!

In order to have a clear definition on any scale we define
interfaceG as the set of points wherer5 1

2. ~Our results are
not sensitive to the choice of the value 1/2.! We are going to
expand our equations on the time scalet first in the bulk of
V1 and V2 and then in the transition layer, i.e., near t
interfaceG.

A. Equations far from the interface

Far from the interfaceG we define the new field

r6~r ,t!5r~r ,e21t ! ~21!

and similarly n6(r ,t) and b6(r ,t), where the superscrip
denotes the region we are considering. Equations~10! and
~11! result in the following equations on the time scalet:

e]tr
6~r ,t!5¹2n6~r ,t!2e•¹b6~r ,t!, ~22!

wheren6 andb6 are defined by Eqs.~12! and~14!, respec-
tively. Next we expandr6(r ,t) in powers ofe as
s
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r6~r ,t!5r0
61er1

6~r ,t!1O~e2! ~23!

where

r0
151, r0

250 ~24!

according to our previous assumptions. Inserting above
pansion into Eqs.~22!, ~12!, and~14! results in an equation
for r1

6(r ,t) where the terms of zeroth order ine cancel each
other. Comparing terms of first order ine yields the follow-
ing relation:

@¹222B6e•“#r1
6~r ,t!50, ~25!

with

B15b8~1!, B25b8~0!. ~26!

B. Equations near the interface

We are going to expand Eqs.~10!–~12! in the transition
layer where the chemical potential is not close to its minim
Let us denote byrG a point there, i.e., a point with a distanc
of ordere from G, and introduce the quantityF(rG ,t) as the
signed distance between pointrG and the interfaceG at the
time t5e21t. The sign is chosen such thatF.0 in V1 and
F,0 in V2. Furthermore, we define

m~rG ,t!5“F~rG ,t!, ~27!

k~rG ,t!5¹2F~rG ,t!, ~28!

V~rG ,t!5]tF~rG ,t!. ~29!

As can be seen from these definitions, ifrG lies on G, the
vector m is the unit normal of the interface atrG , k is the
curvature there, andV is the normal velocity ofG on the
time scalet. Signs are such that the vectorm points into
V1, the curvaturek is positive if the center of curvature lie
in V2, andV is positive if the interface moves towardsV2.

Since the transition layer has a width of ordere, it is
convenient to introduce a variable

z5e21F~rG ,t! ~30!

and for an arbitrary fieldf (rG ,t) a field f̃ (z,rG ,t) by

f ~rG ,t !5 f̃ „e21F~rG!,rG ,et…. ~31!

The derivatives occurring in our equations are transformed
follows:

¹ f 5@¹ r1e21m]z# f̃ , ~32!

¹2f 5@¹ r
21e21k]z1e22]z

2# f̃ , ~33!

] t f 5@e]t1V]z# f̃ , ~34!

where“ r is the gradient acting onrG only, and arguments
were dropped for convenience. Assuming furthermore t
all relevant fields nearG depend only on their relative pos
tion with respect toG, i.e., that f̃ „z,rG1dm(rG ,t),t…

5 f̃ (z,rG ,t) for any small numberd, we find
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50 57CLAUDE A. LABERGE AND SVEN SANDOW
¹F~rG ,t!•¹ r f̃ ~z,rG ,t!50. ~35!

With the above relations we are ready to transform a
expand in powers ofe as

r5 r̃ 5 r̃ 01e r̃ 11e2 r̃ 21O~e3!, ~36!

n5 ñ 5 ñ 01e ñ 11e2 ñ 21O~e3!, ~37!

b5b̃5b̃01eb̃11e2b̃21O~e3!, ~38!

where the arguments, which we have dropped for con
nience, have to be taken according to Eq.~31!. The expan-
sions ofn ands are related to the one ofr by means of Eqs.
~12! and~14!. These relations can be cast in an explicit fo
using Eqs.~32!–~35!. The following ones we are going t
use later:

ñ 05 r̃ 0~ r̃ 021!~ r̃ 02 1
2 !2]z

2 r̃ 0, ~39!

ñ 15@3 r̃ 0~ r̃ 021!1 1
2 # r̃ 12k]zr̃ 02]z

2 r̃ 1, ~40!

ñ 25@3 r̃ 0~ r̃ 021!1 1
2 # r̃ 21

3

2
~2 r̃ 021! r̃ 1

2

2¹ r
2 r̃ 02k]zr̃ 12]z

2 r̃ 2, ~41!

b̃05b~ r̃ 0!, ~42!

b̃15 r̃ 1b8~ r̃ 0!. ~43!

Relations~42! and ~43! hold under the condition~17! only.
Inserting now expressions~32!–~34! as well as expansion
~36!–~38! into our evolution equations~10! and ~11! and
comparing terms of ordere22,e21,e0, respectively, results
in the set of equations

05]z
2 ñ 0 , ~44!

05k]zñ 01]z
2 ñ 12e•m]zb̃0 , ~45!

V]zr̃ 05¹ r
2 ñ 01k]zñ 11]z

2 ñ 22e•¹ r b̃02e•m]zb̃1 .
~46!

The dynamics of the order parameter near the interfac
described by the above equations combined with the follo
ing boundary conditions: The solution of the above equati
should matchr6(rG ,t) in V6, i.e., outside the transition
layer. We demand

lim
z→6`

r̃ ~z,rG ,t!5r6~rG ,t!. ~47!

Using limz→6` r̃ (z,rG ,t)5 limz→6`r(rG1ezm,e21t) and
expanding the above condition in powers ofe yields

lim
z→6`

r̃ 0~z,rG ,t!5r0
6 , ~48!

lim
z→6`

r̃ 1~z,rG ,t!5r1
6~rG ,t!, ~49!
d

e-

is
-
s

lim
z→6`

r̃ 2~z,rG ,t!5r2
6~rG ,t!1 lim

z→6`

@zm•¹r1
6~rG ,t!#.

~50!

Here we used Eqs.~21!, ~23!, and~24!.
One can now solve Eqs.~44! and~39! with the boundary

condition ~48!. The result is

r̃ 0~z,rG ,t!5@11e2z/A2#21, ~51!

ñ 0~z,rG ,t!50. ~52!

Let us now define the following integrals for later use:

S5E
2`

`

@]zr̃ 0~z!#2dz5
A2

12
, ~53!

I n5E
2`

`

@ r̃ 0~z!#nb„r̃ 0~z!…dz5A2E
0

1rn21

12r
b~r!dr.

~54!

The first integral was computed and the second one was
plified using Eq.~51!. Next we insertñ 050 into Eq. ~45!
and integrate overz. We fix the integration constants b
means of the limitsz→6`. In order to compute these limit
we expand limz→6` ñ (z,rG ,t)5 limz→6`n(rG1ezm,e21t)
in powers ofe and use the fact thatb(0)5b(1)50. We
obtain

]zñ 15e•mb0 . ~55!

Integrating once more overz and taking again the limits
z→6` yields a relation betweenr1

1 andr1
2 . Another rela-

tion is obtained by multiplying Eq.~45! by ]zr̃ 0 and inte-
grating overz from 2` to 1`. Combining those two yields

r1
1~rG ,t!522Sk~rG ,t!12I 1e•m~rG ,t!, ~56!

r1
2~rG ,t!522Sk~rG ,t!12~ I 12I 0!e•m~rG ,t!, ~57!

whereI 0 and I 1 are the integrals defined by Eq.~54!.
In a last step we integrate Eq.~46! and take the limits

z→6`. As a result we obtain an expression for the interfa
velocity

V~rG ,t!5
1

2
m~rG ,t!@¹r1

1~r ,t!2¹r1
2~r ,t!#ur 5r G

1@ I 012~B12B2!S#e•m~rG ,t!k~rG ,t!

22@~B12B2!I 11B2I 0#@e•m~rG ,t!#2,

~58!

whereB6 is defined by Eq.~26!, S by Eq.~53! andI 0 ,I 1 by
Eq. ~54!.

The above equations provide a macroscopic descriptio
the interface dynamics. Macroscopic means that the sp
resolution is of ordere0, so that the transition layer can b
identified with interfaceG, i.e., any pointrG can be consid-
ered as lying onG. Suppose that at a timet5e21t there is
an interfaceG with a unit normalm(rG ,t) and a curvature
k(rG ,t) at its pointsrG . Away from the interface the orde
parameter is given byr6(rG ,t)5r0

61er1
6(rG ,t), where
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r0
151, r0

250, andr1
6(rG ,t) is given by the solution of Eq

~25! with boundary conditions on the interface defined
Eqs. ~56! and ~57! in terms ofm(rG ,t) and k(rG ,t). This
solution in turn determines the normal velocity of each int
face point by means of Eq.~58!.

IV. LINEAR STABILITY ANALYSIS

As derived in the preceding section, on the sc
t5e21t5e21T0

21T the motion of an interface atr5rG

separating the two regionsV1 @with a particle density
r1(r ,t)511er1

1(r ,t)1O(e2)] and V2 @with r2(r ,t)
501er1

2(r ,t)1O(e2)] is given the normal interfacial ve
locity V of the interface

V~rG ,t!5
1

2
m~rG ,t!@¹r1

1~r ,t!2¹r1
2~r ,t!#ur 5r G

1@ I 012~B12B2!S#e•m~rG ,t!k~rG ,t!

22@~B12B2!I 11B2I 0#@e•m~rG ,t!#2,

~59!

wherem is the local normal to the interface,k5“•m is the
local curvature, andB6, S, I 0, and I 1 are constants tha
depend exclusively on the form of the conductivitys and are
given by Eqs.~26!, ~53!, and~54!. The velocity depends on
r1

6(r ,t), which satisfy thelinear partial differential equation

@¹222B6e•¹#r1
6~r ,t!50 ~60!

subjected to the boundary conditions

r1
1~rG ,t!522Sk~rG ,t!12I 1e•m~rG ,t!, ~61!

r1
2~rG ,t!522Sk~rG ,t!12~ I 12I 0!e•m~rG ,t! ~62!

on the pointsrG of the interface.
We are interested in the stability of a flat interface agai

small perturbations in its profile. Let us consider an interfa
G of the form

yG~x,t!5hei ~kx2vt!1V0t, kh!1 ~63!

~see Fig. 1! separating two semi-infinite regionsV1 @where
y.yG(x,t)] andV2 @wherey,yG(x,t)]. The directione of
the external electric field is arbitrary for the moment. To fi
order inkh, we have

mx52 ikhei ~kx2vt!, my51 ~64!

for the x and y components ofm, respectively. The loca
curvaturek of the interface is given by

k5k2hei ~kx2vt!, ~65!

while the normal velocityV takes the form

V52dys /dt52V01 ivhei ~kx2vt!. ~66!

Equation~60! has a solutionr1
6(r ,t) of the form

r1
6~r ,t!5 f 6~z!1khei ~kx2vt!g6~z!1O~kh!2, ~67!
-

e

t
e

t

with z5y2hei (kx2vt). The boundary conditions~61! and
~62! are satisfied for

f 1~z!52I 1ey2C1~12e2B1eyz!, ~68!

g1~z!52@2Sk12iexI 1#e2l1z22C1
B1ey

k

3~e2l1z2e2B1eyz!, ~69!

f 2~z!52~ I 12I 0!ey2C2~12e2B2eyz!, ~70!

g2~z!52@2Sk12iex~ I 12I 0!#e2l2z22C2
B2ey

k

3~e2l2z2e2B2eyz!, ~71!

where ex and ey are thex and y components of the uni
vectore pointing in the direction of the external fieldE and
l6 are solutions of the quadratic equation

~l6!212B6eyl
62k~k12iexB

6!50 ~72!

subjected to the constraint Re(l1).0 @Re(l2),0]. The
new constantsC1 and C2 are determined by the boundar
conditions atz56`. We will discuss the effects ofC6 in
Sec. IV A.

Insertingr1
6(r ,t) given by Eqs.~67!–~71! into the equa-

tion ~59! for the normal velocity, we can compare with E
~66! to obtain an expression for the constant velocityV0,

V05B1~2I 1ey2C1!ey2B2@2~ I 12I 0!ey2C2#ey
~73!

5@B1r1
1~z51`!2B2r1

2~z52`!#ey , ~74!

and forv,

FIG. 1. Schematic picture of the approximately flat interfaceG
defined by Eq.~63!. The interface separates the semi-infinite r
gions V1 and V2, in which r'1 and r'0, respectively. In the
figurem denotes the unit normal vector ofG andh the amplitude of
the perturbation around a flat interface. The unit normal vecto
the external field is denoted byê.
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iv5
1

2
k

d

dz
@g1~z!2g2~z!#uz501k2@ I 012S~B12B2!#ey

14k@ I 0B21I 1~B12B2!# iexey . ~75!

Assuming thatC6 are real and writingl65l r
61 il i

6 and
v5v r1 iv i , we get

v i52k2@ I 012S~B12B2!#ey2k2S~l r
12l r

2!

1k@ I 1l i
12~ I 12I 0!l i

2#ex2C1B1~l r
112B1ey!ey

1C2B2~l r
212B2ey!ey . ~76!

A flat interface is unstable against small perturbation
the form ~63! if the external field, the conductivity, and th
boundary conditions at infinity are such thatv i.0. Equation
~76! is the main result of this paper.

A. The case of a third-order conductivity

In order to further study the properties of Eq.~76! we
assume in this section that the conductivitys(u) can be
written as a polynomial of the form

s~u!5s01s1u1s2u21s3u3. ~77!

Previous studies@11# of the stability of a flat interface in a
driven Cahn-Hilliard system of the form~1!–~3! have limited
themselves to the case wheres(u)5u(um2u). While we
can reproduce their results, we will observe interesting n
effects considering the more general form~77! of s(u).

The constants in Eq.~76! can be expressed explicitly i
terms of the system parameters. Using Eqs.~26!, ~53!, ~54!,
and ~14! we find

B15A~s212s3um!, ~78!

B252A~s21s3um!, ~79!

I 052A2A~s21 3
2 s3um!, ~80!

I 152A2A~ 1
2 s21 s3um!, ~81!

S5
A2

12
, ~82!

with

A5e21uEujl23/2um
22. 0. ~83!

All of the above constants are independent ofs0 ands1. The
reason for this is that the equations for the order param
do not depend ons0 and that a change ofs1 amounts to a
change of the reference frame only.

1. External field parallel to interface

In this case the direction of the field is such thatex561,
ey50. To lowest order in k we get, using l r

6

'6k1/2(uB6u)1/2 andl i
65 kB6ex /l r

6 ,
f

w

er

v i5k3/2F I 1

B1

AuB1u
1~ I 12I 0!

B2

AuB2u
G . ~84!

Using the explicit expressions~78!–~83!, one can show
thatv i,0, i.e., that the interface is stable, for any choice
$s0 ,s1 ,s2 ,s3%. This result does not depend on the sign
ex , nor does it depend on the actual boundary conditio
away from the interface through the constantsC6.

2. External field perpendicular to interface

In this case we haveex50 andey511 if the external
field points into the high density regionV1 or ex50 and
ey521 if it points towards the low density regionV2. We
also havel i

650 from Eq.~72!.
Depending on the signs ofB1ey andB2ey we get differ-

ent conditions on the possible values of the constantsC6.
From Eqs.~68! we see that ifB1ey.0 (B2ey,0) we must
take C150 (C250) in order forr1

1 (r1
2) to be finite as

z→` (z→2`). This means that the system does not su
port a single interface in this case unless there is some
rent of particles at infinity~see also the discussion of th
one-dimensional model in Ref.@12#!.

If B1ey,0 (B2ey.0) then there are no such constrain
on C1 (C2) and we chose the special casesC152I 1ey

@C252(I 12I 0)ey# which makesr1
1 (r1

2) vanish at infinity.
We are left with four cases to study forv i .
Case A: B1ey.0 and B2ey,0. If we assume thatk

!B6, thenl r
6' 1

2 (k2ey /B6) and we get, to lowest order,

v i52k2ey@ I 012S~B12B2!#. ~85!

Case B: B1ey,0 and B2ey.0. To lowest order we
write l r

6522B6ey@11 k2/4(B6)22 k4/16(B6)4#, and get

v i5
2k4ey

4~B1!2~B2!2
@ I 1~B2!22~ I 12I 0!~B1!2

12S~B12B2!B1B2#. ~86!

Case C: B1ey,0 and B2ey,0. With l r
1

522B1ey@11 k2/4(B1)2#, l r
252 k2ey/2B2, we get

v i52k2ey~ I 02I 122SB2!. ~87!

Case D: B1ey.0 and B2ey.0. This is essentially the
reverse of the previous case. Withl r

15 k2ey /B1,
l r

2522B2ey@11 k2/4(B2)2#, and get

v i52k2ey~ I 112SB1!. ~88!

Inserting the explicit expressions~78!–~83! for B6, I 0 ,
I 1, andS into the above equations forv i , one arrives at the
following conclusion: In all four cases the interface is u
stable if

~2s213s3um!ey.0 ~89!

and stable otherwise. Condition~89! is the main result of this
section.

It is natural to assume the conductivity to be positive
the whole interval@0,um#. Assuming furthermore thats(u)
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is symmetric aroundum like the chemical potential and van
ishes for u50, we are led to the standard expressi
s(u)5u(um2u) @11#. Theres2,0, s350, and the inter-
face is unstable ifey521, i.e., the case where the extern
field points away from the high density regionV1 @11#.
Although the assumptions of symmetry and vanishings(0)
are natural for certain Ising-like@8–12,14# or particle-
hopping models@13#, one can think of more general situa
tions ~e.g., the microscopic model in@15#!. Then the param-
eters$s0 ,s1 ,s2 ,s3% can be such that (2s213s3um).0.
In this case the interface is unstable forey511, i.e., if the
external field points into the high-density regionV1.

V. SUMMARY

We have applied a matched asymptotic expansion t
system of equations describing the dynamics of phase se
gation in the presence of an external field. The influence
the field on a region of local densityu is given by a conduc-
.

z

l

a
re-
f

tivity s(u). We derived equations for the dynamics of a
interface separating two regions in different phases@see Eqs.
~25!, ~56!, ~57!, and ~58!# and studied the stability of a fla
interface against small perturbations. We found a gen
condition@see Eq.~76!# for the stability of such an interface
and discussed in more detail the case wheres(u) can be
written as a third-order polynomial inu. In this case the
interface is always stable if the field is parallel to it. How
ever, if the field is perpendicular to the interface, the int
face can be either stable or unstable, depending on the
ductivity and on the direction of the field@see Eq.~89!#.

ACKNOWLEDGMENTS

We thank B. Schmittmann and R. K. P. Zia for stimula
ing discussions. S.S. gratefully acknowledges financial s
port by the Deutsche Forschungsgemeinschaft. C.A.L.
been supported by the National Science Foundation thro
Grant No. DMR 94-19393.
o,

,

P.
@1# J. D. Gunton, M. San Miguel, and P. S. Shani, inPhase Tran-
sitions and Critical Phenomena, edited by C. Domb and J. L
Lebowitz ~Academic, New York, 1983!, Vol. 8.

@2# J. S. Langer, inSolids far from Equilibrium, edited by C.
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