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Stability of a nonequilibrium interface in a driven phase-segregating system
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We investigate the dynamics of a nonequilibrium interface between coexisting phases in a system described
by a Cahn-Hilliard equation with an additional driving term. By means of a matched asymptotic expansion, we
derive equations for the interface motion. A linear stability analysis of these equations results in a condition for
the stability of a flat interface. We find that the stability properties of a flat interface depend on the structure of
the driving term in the original equatiofS1063-651X97)01212-9

PACS numbdrs): 64.75+g, 64.70.Ja, 68.16.m, 47.54:r

I. INTRODUCTION face? This question was addressed by Yeetngl.[11] for a
certain type of driving term. This driving term has the form

Off-equilibrium systems composed of regions with differ- of an additional current that is proportional to the field and a
ent phases can exhibit a variety of patterns, such as fingetonductivity. The conductivity was assumed to be a concave
aligned in a certain direction. A familiar example is spinodalsecond-order function of the order parameter with the same
decomposition of binary mixturefor a review sed1,2]). symmetry as the chemical potential. Yeugtgal. [11] found
When quenched below its critical temperature, an initiallythat the field modifies the interface dynamics. An interface
homogeneous system develops domains of the new equilitperpendicular to the external field is stable for one direction
rium phases. After some time these domains are well desf the field and unstable for the other direction.
fined, i.e., they are separated by sharp interfaces. The system In this paper we generalize the work of Yeueigal.[11].
further approaches equilibrium by means of the motion ofLike Yeunget al. we consider a modified CH equation with
these interfaces; the initial pattern evolves in the course oén isotropic chemical potentigMotivating the modified CH
time. Another example is the dynamics of driven diffusive equation with a free-energy argument, an isotropic chemical
systemgfor a review see Ref3]). Interacting particles un- potential is expected for a small enough field. In this paper,
dergoing biased diffusion tend to form clusters under certainve do not address the question of how good an approxima-
conditions. Like for the first example there are well-definedtion this is, but rather assume that the equation is reasonable
interfaces, which undergo some dynamics. In all of thesgor certain physical systems and start our discussion from
phase segregating systems patterns are selected accordingg@re) The driving term in our equation is proportional to the
their stability. For example, the instability of a flat interface fiq|q and an arbitrary conductivity. Our approach is the same
causes the growth of fingers 'out of an initially flat interfa'c.e.as the one from Ref11] (see also Ref[5]). Assuming that
For this reason one would like to understand the stabilityo griving field is sufficiently small we perform a matched
properties of noneqL_nllt:jrulJm |?tehrfaces.h . asymptotic expansion. The resulting set of linear equations

On a course-grained level these phase-segregating Syge <. inas the motion of an interface between coexisting

tems are described by means of an order parameter, such Shases. With the help of these equations we analyze the sta-

a particle density. Typically, the dynamics of this order pa—p.. ' . P . q analyze I

rameter can be modeled by means of some nonlinear differb'“ty of a flat interface. We find a general stability criterion,
hich takes a very simple form if we assume that the con-

ential equation. One of the simplest such equations is thi/nich tax : o
Cahn-Hilliard (CH) equation, which was introduced in the ductivity is a third-order polynomial in the order parameter.

context of binary mixture§4]. The properties of this equa- FOr Such a conductivity we show that an interface perpen-
tion are rather well understood. In particular, the dynamics officular to the external field can be unstable for either direc-
the domain boundaries obey a set of linear differential equation of the field and that an interface parallel to the external
tions, which have been derived by P& using a matched field is always stable.

asymptotic expansion. An instability of the Mullins-Sekerka ~ The paper is organized as follows. In Sec. Il we define the

type has been observed. model. A matched asymptotic expansion is done in Sec. Ill.
Certain modifications of the CH equation were introducedEquations for the motion of an interface are derived. In Sec.
to take into account the effect of external field§— IV we perform a linear stability analysis for a flat interface

10,5,11,12 (see Refs[13,14,3 for modified CH equations resulting in a condition for the stability of such an interface.
in the context of driven diffusive system®©ne of the ques- This condition is subsequently shown to take a simple form
tions one would like to answer is the following: How does anfor the case of a conductivity that is a third-order polynomial
external field change the stability properties of a flat inter-in the order parameter. Section V summarizes the results.
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Il. MODEL nothing but a change of the reference frame. We define a

We consider a two-dimensional system described by lengthL, and a timeT, obeying

conserved order parametgfR,T), whereR denotes a posi- 1=L5%ToAU? (4)
tion in space and the time. The dynamic is assumed to be m
defined by the following modified Cahn-Hilliard equation as well as a velocity

[8-12,14 »
Vg=|E[uy o (Up). 5
au
T -V.J, (1) Now we define dimensionless quantities as
r=Lo 'R—Lg'V,yTe, (6)
J=—Vu+Eaog(u), 2
t=T, T, 7
— _ % _ A v
M=AU[U > )(u Um) — £Veu. €] p:ur;]lu, ®)
In the above equations, is the current of the order param- Where
eter, u is the chemical potential of the free systelnjs an E
external field(e.g., an electric field ando(u) is the conduc- e= — 9
tivity. One may think of the chemical potential as related by |El

means of u=6F/6u to a free-energy functionaF[u]
= [dR{f[u(R) ]+ &?|Vu(R)|?/2}, wheref(u) is a bulk free
energy density the derivative of which isf’(u)
=\u(u— u,/2)(u—ug). The current has two additive con-
tributions: one that minimizes the free energy and another
one defining the transport caused by the field. The first one is —=-V.j, (10
specified by the structure of the chemical potential. Assum-
ing A\>0 andu,>0, Eq. (3) defines a chemical potential
such that the free energy has minima in regions withO or
yvith u=u,>0. The term proportior_1a| t@? r_esult"s in an (o= 1)(p— 1) — 272
increase of energy whenever there is a gradient, ine., £ v=p(p=1)(p=2) =€V,
stands for a surface tension. The current caused by the ﬁe{/‘\j/ith
is Eo(u), which depends on the functiarn(u). The standard
conductivity used in the literaturB8—12,14 is a concave =12\ "ty 2 (13)
second-order function af, which has the same symmetry as 0 m
the chemical potential, i.e., is symmetric aroung2. Here  gnd
we do not restrict ourselves to this type of function, but
rather want to see what kind of behavior can be observed for B(p)= € YE|eN"*u_* a(puy) — o(0)
a more general conductivity.

Equations of the typ€l)—(3) are usually motivated on a —plo(Un) —a(0)]}. (14)

purely phenomenologicdbee, e.99-12,14) or mean-field In Egs.(10)—(12) the operatoV stands for derivative with

(see, e.g.8]) level. The standard type of argument results in i - .
a mobility as a factor to the total current, i.e., a current of thereSpeCt to the new coordinateThe conductivity3(p) in the

type o(u)[ — V u+ E]. Assuming furthermore that the varia- hew frame has the property

tion of o(u) is small enoughg(u)V u is then replaced by B(1)=B(0)=0, (15)

V n. We follow the same logic here. It is also worthwhile

mentioning that a rigorous derivation of a more general typg.e., it vanishes at both minima of However, it is not nec-

of equation has been done for a diffusive system with & longessarily positive in the whole interval (0,1). In fact, later on
range interaction and Kawasaki dynamiit8]. However, the  we will identify a regime whereg(p)<0 for some part of
relation of our equation to the standard driven diffusive sys{0,1). For that reason it would be hard to give a direct physi-
tem studied in Refs[14,3] is not well understood. There, cal meaning to Eq410)—(14) in terms of the rescaled vari-
some interesting discrepancies between the Monte Carlgples.

simulations and the mean field description have been ob- The velocityV, given by Eq.(5) is positive by definition.

serv_ed[l4]._ . ) . . Consequently, the new frame of reference moves in the di-
Since it is more convenient to work with a dimensionlessrection of the field with respect to the original one.

equation, we rescale Egd)—(3). Simultaneously, we add a
constant term to the conductivity and apply a Galilean trans-
formation such that the new current vanishes at both minima
of the chemical potential. The adding of a constant does not The model defined in the preceding section describes
change the equation far(R, T) since only the gradient aof phase segregation, i.e., the order paramgfert) evolves
enters into this equation. The Galilean transformation issuch that there are regions in space whefet) approxi-

is the unit vector in the direction of the field. Inserting the
above definitions into Eq$1)—(3) yields the dimensionless
equations

j=—Vv+eB(p), 11

(12

Ill. DYNAMICS OF AN INTERFACE
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mgtgly takgs the values for wh.ic.h the chemical potential is p=(r,7)=pg +€p1 (r,7)+O(€?) (23
minimal. Since there are two minima of the chemical poten-

tial, there are two types of regions, which are separated bwhere
transition layers. The transition layer between the different

regions, which is seen as a line on a large enough scale, po=1, po=0 (29)
evolves during time. We are going to give an analytical de- . . . .
scription of its motion for the case where accordlng to our previous assumptions. Inserting aboye ex-
pansion into Egs(22), (12), and(14) results in an equation
e<1 (16)  for p; (r,7) where the terms of zeroth order écancel each
other. Comparing terms of first order éyields the follow-
and for O<p<1, ing relation:
B(p)=0(e%, B'(p)=0(e) (17) [V2-2B*e V]p; (r,7)=0, (25)

in the rescaled equatiof40)—(14). In terms of the original  ith
parameters these conditions read

B'=p'(1), B =p'(0). 26
Loten— Y 1<, (19) B'(1) B’ (0) (26)

|E|§)\_3/2u_40'max<1l (19) B. Equations near the interface

" We are going to expand Eg&l0)—(12) in the transition
where o, denotes the largest valuegu) and its deriva-  |ayer where the chemical potential is not close to its minima.
tive o’ (u) take in[0,1]. The first of these conditions can be Let us denote by a point there, i.e., a point with a distance
fulfilled for any choice of the parameters simply by choosingof ordere from T, and introduce the quantih (r,7) as the
a large enough length scalg. However, the second condi- signed distance between point and the interfacd at the
tion poses a restriction on the parameters; it can be undefimet=¢"'7. The sign is chosen such th&t>0 in Q" and

stood as a small field condition. ®<0 in Q™. Furthermore, we define

Starting with the rescaled equatiofi)—(12) we apply a
matched asymptotic expansion. The basic idea is to expand m(rp,7)=Vo(ry,7), (27
the order parameter and its evolution equation in powers of
the small parameter. We closely follow the line of Ref§5] k(rp,7)=V2d(ry,7), (28
and[11]. Since we want to describe the motion of a single
interface, we consider an initial configuration with two semi- V(rp,1)=d,®(rp,7). (29

o ; N . )
infinite regions{)” and ) - and assume that the order pa As can be seen from these definitionsyf lies onT’, the

; o "~ -
rameter is equal to 1 (0) iR™ (©27) up _to corrections Of. vectorm is the unit normal of the interface at, « is the
ordere. The values 1 and 0 are the minima of the chemical

. ; + - curvature there, an¥ is the normal velocity ofl" on the
potential. The region§)™ and ()~ are separated by a tran- . oo
. . : time scaler. Signs are such that the vector points into
sition layer. We assume this layer to have a width of order

D ) T Q7 the curvatures is positive if the center of curvature lies
like it in the field free cas€5,11]. The characteristic time of in 0~, andV is positive if the interface moves towaréls .

Its motion Is Since the transition layer has a width of orderit is
r=et=€T, T, (20)  convenient to introduce a variable
-1
In order to have a clear definition on any scale we define the z=€ "®(rp,7) (30

interfacel” as the set of points wheye= 3. (Our results are
not sensitive to the choice of the value 1/2/e are going to
expand our equations on the time scalfirst in the bulk of
QF and Q™ and then in the transition layer, i.e., near the

and for an arbitrary field(ry-,t) a field f(z,rp-,7) by

f(rp,t)=T(e *D(rp),rr,et). (31)

interfacel". The derivatives occurring in our equations are transformed as
follows:
A. Equations far from the interface
— -1 s
Far from the interfac& we define the new field Vi=[V,+e "md,]f, (32
pr(r,m)=p(r,e t) (21) V2f=[V2+ e tkd,+ e 22T, (33

and similarly »*(r,7) and 8*(r,7), where the superscript
denotes the region we are considering. Equatid® and
(11) result in the following equations on the time scale  \hereV, is the gradient acting on- only, and arguments
- oo+ _ - were dropped for convenience. Assuming furthermore that
€dzp=(r,7)=V=v=(r,7)—e VA=(r,7), (22 LIl relevant fields neaF depend only on their relative posi-
wherer® andB* are defined by Eq€12) and(14), respec-  tion with respect tol', i.e., that f(zrp+ém(rr,7),7)
tively. Next we expang*(r,7) in powers ofe as = f(z,rr,7) for any small numbe#, we find

of=[€d, +Va,]T, (34)
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VO&(rp,7)-V, T(zrp,7)=0. (35) lim po(z,rr,7)=p5(rp, 7+ lim [zm-Vpi(rp,7)].
Z— *+t oo Z— + oo
With the above relations we are ready to transform and (50
expand in powers o as
P P Here we used Eq$21), (23), and(24).
p=;=;0+ 6;1+ 62'52+O(e3), (36) Or_n_-} can now solve Eq$44) and (39) with the boundary
condition (48). The result is
v=v=ro+ev,+€v,+0(€d), (37 Doz, D=[1+e 771, (51)
B=B=Po+eB1+ B, +0(€), (38) Vo(zrp,7)=0. (52)
where the arguments, which we have dropped for conveget ys now define the following integrals for later use:
nience, have to be taken according to E8fl). The expan-
sions ofv ando are related to the one pfby means of Egs. © ) NA
(12) and(14). These relations can be cast in an explicit form S= f_w[azpo(z)] dz= 5, (53
using Egs.(32)—(35). The following ones we are going to
use later: o _ 1p71
o= [ o BGo2z= 2 [ 2 pprap

vo=po(Po—1)(po— 3)—po (39

v1=[3po(po—1)+ 31p1—Kd.po—32p1, (40

~ ~ o~ -~ 3 ~
v2=[3po(po—1)+ 3102+ 5(2po— 1)p}

—VZpo— Kkdp1—3d2pa, (41)
Fo=,8(50), (42)
B1=p1B'(po). (43

Relations(42) and (43) hold under the conditioril7) only.
Inserting now expression82)—(34) as well as expansions
(36)—(38) into our evolution equation$10) and (11) and
comparing terms of ordee 2, 1, €%, respectively, results
in the set of equations

0=d2vo, (44)
0= Kkd,vo+d2v1—e md,By, (45)

Va,po=VZvo+kdvi+d2v,— eV, Bo—e md,B;.
(46)

(54)

The first integral was computed and the second one was sim-
plified using Eq.(51). Next we insertro=0 into Eq. (45)

and integrate over. We fix the integration constants by
means of the limitg— * . In order to compute these limits
we expand lim ... v(z,rp,7)=lim,_ . .v(rp+ezm,e 17)

in powers ofe and use the fact thg8(0)=p8(1)=0. We
obtain

d,v1=e-mpBy. (55)

Integrating once more ovexr and taking again the limits
z— + yields a relation betweep; andp; . Another rela-
tion is obtained by multiplying Eq(45) by d,po and inte-
grating overz from —« to +. Combining those two yields

p1(rp,7)=—2Sk(rp,7)+2l,e-m(rp,7), (56)

p1(rp,7)=—2Sk(rp,7)+2(1,—lg)e-m(rp,7), (57)

wherely andl, are the integrals defined by E(4).

In a last step we integrate E¢46) and take the limits
z— * o, As a result we obtain an expression for the interface
velocity

1
_ + _ -
The dynamics of the order parameter near the interface is V(rp,7)=sm(re, 7)[Vpy (r,7)=Vpy () e=r,
described by the above equations combined with the follow- L
ing boundary conditions: The solution of the above equations +[lo+2(B"=B7)Sle-m(rp,7)k(rp,7)

should matchp™(rp,7) in Q*, i.e., outside the transition
layer. We demand

lim p(z,rp,7)=p*(rp,7). (47)

Z—*w

Using lim, . ..p(z,rp,7)=lim,_ ..p(rr+ezm,e *7) and
expanding the above condition in powerseoyields

lim po(z,rr, 7 =pg , (48)

Z—*+

lim py(zrp,7)=p1(rp,7), (49)

Z— *+

—2[(B*=B7)I;+B lolle-m(ry, 7)1
(59)

whereB™ is defined by Eq(26), S by Eq.(53) andlg,l, by
Eq. (59).

The above equations provide a macroscopic description of
the interface dynamics. Macroscopic means that the space
resolution is of order®, so that the transition layer can be
identified with interfacd’, i.e., any pointr can be consid-
ered as lying of’. Suppose that at a timte= e~ 7 there is
an interfacel’ with a unit normalm(rr,7) and a curvature
k(rp,7) atits pointsri. Away from the interface the order
parameter is given by (rp,7)=p, +€p; (rr,7), where
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po =1, po =0, andp; (rr,7) is given by the solution of Eq. y
(25 with boundary conditions on the interface defined by ot
Egs. (56) and (57) in terms ofm(rr,7) and x(rr, 7). This
solution in turn determines the normal velocity of each inter-
face point by means of Eq58).

7

IV. LINEAR STABILITY ANALYSIS

As derived in the preceding section, on the scale =]
=€ t=¢€ 1T, 'T the motion of an interface at=ry
separating the two region§ ™ [with a particle density » o~
pt(r,m)=1+ep](r,7)+0(?)] and Q~ [with p(r,7)
=0+ ep; (r,7)+O(€?)] is given the normal interfacial ve-
locity V of the interface

1
V(rp,r)==m(rp,n)[Vps(r,7r)=Vpi(r,7)]| -
: 2 : ! ' |r T FIG. 1. Schematic picture of the approximately flat interf&ce

+ - defined by Eq.(63). The interface separates the semi-infinite re-
+lot+2(B"=B")Sle-m(rp, 7)«(ry,7) gions Q" and Q~, in which p~1 and p~0, respectively. In the
—2[(B*=B)I;+B Ig][e-m(rp,7)]% figurem denotes the unit normal vector Bfandh the amplitude of

the perturbation around a flat interface. The unit normal vector of
(59 the external field is denoted ky

wherem is the local normal to the interface=V -m is the
local curvature, andB*, S, |,, andl, are constants that
depend exclusively on the form of the conductiwityand are

with {=y—he (=27 The boundary condition$61) and
(62) are satisfied for

given by Egs.(26), (53), and(54). The velocity depends on o o ~tq 2Bte
p1 (r,7), which satisfy thdinear partial differential equation F(=2l6,~C (1-e™ 39, (68)
2_oR*aA. * _ Bte
[V5=2B"e-Vipy (r,n)=0 (60 0" (£)=—[2Sk+ 2ie,l e {—2Ct =~
subjected to the boundary conditions . .
X(e™h —e”® %), (69
p1(rp,7)=—2Sk(rp,7)+2le-m(rp,7), (61
- — _ - __ 2B ey
p1(rr,m)=—2Sk(rr, 7 +2(1,—lge-m(rr,7) (62 F@=201~lge,~C (1= 59, (70
. . _ B e
on the points - of the interface. ()= —[2Sk+ 2ie(l.—1)le N {—2¢C- y
We are interested in the stability of a flat interface against g (0 [ li=lo)]
small perturbations in its profile. Let us consider an interface - P
I' of the form X(e™ {—e®® %9, (72)
yr(x,7)=hd®=en v 7 kh<1 (63) Wwheree, and e, are thex andy components of the unit

vectore pointing in the direction of the external fiel and
(see Fig. 1 separating two semi-infinite regio3™ [where  \* are solutions of the quadratic equation
y>yr(x,7)] andQ~ [wherey<yr(x,7)]. The directione of
the external electric field is arbitrary for the moment. To first (N7)2+2B e\ " —k(k+2ie,B*)=0 (72)

order inkh, we have
subjected to the constraint Re()>0 [Re(\ )< 0]. The

m,=—ikhd 7 m=1 (64 new constant€™ andC~ are determined by the boundary

) conditions atz= +. We will discuss the effects a&* in
for the x andy components oin, respectively. The local ggc v A.

curvaturex of the interface is given by Insertingp; (r,7) given by Eqs(67)—(71) into the equa-
w=k2hd (kx—on) 65) tion (59) for the normal velocity, we can compare with Eq.
' (66) to obtain an expression for the constant velo®ty

while the normal velocityv takes the form B B

. Vo=B"(2l,6,~C")e,~B7[2(I;—Ig)e,—C ]ey
V=—dy/dr=—Vy+iwhd® e, (66) (73

Equation(60) has a solutiorp; (r,7) of the form =[B*pi(z=+»)-B pi(z=—)]e,, (74)

pi(r,m)=Ff5(9)+khe® 7g=()+0(kh)? (67  and forw,
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+ —

B
+(I1—lg)—|.
BT T

Using the explicit expressiong8)—(83), one can show
that w; <0, i.e., that the interface is stable, for any choice of
{o¢,01,05,03}. This result does not depend on the sign of
e,, hor does it depend on the actual boundary conditions
away from the interface through the consta@ts.

1 d
(U:Ekd_z[g+(z)_g_(z)]|z=0+k2[|0+28(8+_B_)]ey w;=k¥ 1, (84)
+4K[1oB™+1,(B*—B")Jie,e, . (75)

Assuming thatC* are real and writingh ==\, +i\;" and
w=w,+iw;, we get

wi=—k[1o+2S(B* —B7)]e,~k®S(\ —\,)

+K[I 1)\i+_(| - |0)7\i_]ex_C+B+()\r++25+ey)ey 2. External field perpendicular to interface
o B In this case we have,=0 ande,=+1 if the external
+C B (A +2B ey)ey. (76)  field points into the high density regiof* or e,=0 and

) ) ) ] e,=—1 if it points towards the low density regidn . We
A flat interface is unstable against small perturbation ofyicy haven*=0 from Eq.(72)
i (72).

the form (63) if _the exte_rn{:lllfield, the conductivity, anq the Depending on the signs @c+ey andB e, we get differ-
boundary conqmons at |nf|n'|ty are such that>0. Equation ent conditions on the possible values of the consténts
(76) is the main result of this paper. From Eqs.(68) we see that iB*ey>O (B~ ey<0) we must
take C* =0 (C~=0) in order forp; (p;) to be finite as
A. The case of a third-order conductivity z— (z— —). This means that the system does not sup-
In order to further study the properties of E{6) we Porta single interface in this case unless there is some cur-
assume in this section that the conductivityu) can be rent of particles at infinity(see also the discussion of the

written as a polynomial of the form one-dimensional model in Ref12]).
If B*e,<<0 (B~ e,>0) then there are no such constraints
o(u)=og+ou+ou’+osul. (77)  on C* (C7) and we chose the special case3 =2Ie,

[C=2(I1—1¢)ey] which makesp; (p;) vanish at infinity.
Previous studie§l1] of the stability of a flat interface in a We are left with four cases to study far .
driven Cahn-Hilliard system of the forfd)—(3) have limited Case A: B'e,>0 and B e,<0. If we assume thak

themselves to the.case whautéu);u(um—u)._ Whllelwe <B*, them\ri%%(kzey/Bi) and we get, to lowest order,
can reproduce their results, we will observe interesting new

effects considering the more general fo(#Y) of o(u). w;=—k?¢,[1o+2S(B*—B7)]. (85
The constants in Eq.76) can be expressed explicitly in Y
terms of the system parameters. Using E@$§), (53), (54), Case B: Eey<0 and B e,>0. To lowest order we
and(14) we find write \;" = —2B~e,[1+ k¥/4(B~)?— k*/16(B*)*], and get
B*=A(0,+203Up), (78 — k%
wsm[u(mz—(ll—Io><B+>2
Biz_A(O'2+(T3Um), (79)
+2S(B*—B7)B*B7]. (86)
lo= = V2A(0z+ 3 0aln), (0 Case C: Be<0 and Be<0. With )/
=—2B%e[1+ k?4(B*)?], A\, =— k’e,/2B~, we get
l1=—\2A(} 02+ o3up), (81 ¢ ' ¢
w;i=—k%,(lo—1;—2SB"). (87)
S= \/_E (82 Case D: B*ey>0 and B e,>0. This is essentially the
12 reverse of the previous case. With, = kzey/B+,
. T = - + 2 -\ 2
with N, 2B ey[1+ k“/4(B7)“], and get
w;=—k?%,(I,+2SB"). (88
A= e E|en 32> 0. 83) ' e

Inserting the explicit expression§8)—(83) for B*, I,
All of the above constants are independentrgfando,. The 1, andS into the above equations fas;, one arrives at the
reason for this is that the equations for the order parametdpllowing conclusion: In all four cases the interface is un-
do not depend owr, and that a change af; amounts to a  stable if
change of the reference frame only.
(20’2+ 3U3Um)ey>0 (89)

1. External field parallel to interface and stable otherwise. Conditi@89) is the main result of this
In this case the direction of the field is such tegt =1, section.
e,=0. To lowest order ink we get, using A, It is natural to assume the conductivity to be positive in

~+kYA|B)Y2 and\; = kB e, /N, , the whole interva[O,u,,]. Assuming furthermore that(u)
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is symmetric around,, like the chemical potential and van- tivity o(u). We derived equations for the dynamics of an
ishes for u=0, we are led to the standard expressioninterface separating two regions in different phdsee Egs.
o(u)=u(uy—u) [11]. Thereo,<0, o3=0, and the inter- (25), (56), (57), and(58)] and studied the stability of a flat
face is unstable ie,=—1, i.e., the case where the external interface against small perturbations. We found a general
field points away from the high density regidd™ [11].  condition[see Eq(76)] for the stability of such an interface
Although the assumptions of symmetry and vanishir(@)  and discussed in more detail the case whefe) can be
are natural for certain Ising-likg8-12,14 or particle- written as a third-order polynomial in. In this case the
hopping modelg13], one can think of more general situa- interface is always stable if the field is parallel to it. How-
tions (e.g., the microscopic model {15]). Then the param- ever, if the field is perpendicular to the interface, the inter-
eters{oy,0,,0,,03} can be such that (®+303u,)>0. face can be either stable or unstable, depending on the con-
In this case the interface is unstable &= +1, i.e,, if the  ductivity and on the direction of the fiel¢ee Eq.(89)].
external field points into the high-density regién’.
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