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Dielectric function and electrical dc conductivity of nonideal plasmas
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Within generalized linear response theory, an expression for the dielectric function is derived that is con-
sistent with standard approaches to the electrical dc conductivity. Explicit results are given for the first moment
Born approximation. Some exact relations as well as the limiting behavior at small values of wave number and
frequency are investigatefl51063-651X98)06504-(

PACS numbsgps): 52.25.Mq

I. INTRODUCTION function as well as the dc conductivity, which is consistent
with the Chapman-Enskog approach to dc conductivity and

The dielectric functiore(k, ) describing the response of aIIowsé for a perturbation expansion also in the region of
a charged particle system to an external, time and space démallk and w. In the following Sec. II the method of gen-
pendent electric fieldwave vectok, frequencyw) is related ~ €ralized linear respong@] is presented which can be used to
to various phenomena such as electric conductivity and opind very general relations between a dissipative quantity and
tical absorption of light. In particular, it is an important correlation functions describing the dynamical behavior of
quantity for plasma diagnostics, see, e.g., recent applicatiofiictuations in equilibrium. A special expression for the di-
to determine the parameters of high-density plasmas proe_Iectrlc _functlon 'Fhat is related to the use of the fort_:e;-for_ce
duced by picosecond lasdiE. However, the application of cprrelatlon function in evaluating the dc conductivity is

widely used simplified expressions for the dielectric function9'Ven: . —_
is questionable in the case of nonideal plasmas. Different methods can be applied to evaluate equilibrium

As is well known, the electrical dc conductivity of a correlation functions for nonideal plasmas. We shall use per-

charged particle system should be obtained as a limiting Caigrbation theory to evaluate thermodynamic Green functions
of the dielectric function. However, at present both quantities 10l Results in the Born approximation are given in Sec. IIl.
are treated by different theories. A standard approach to th&/ithin @ more sophisticated approach, partial summations
electrical dc conductivity is given by the Chapman-EnskogcPuld be performed using diagram techniques, as shown in
approach?2]. In dense plasmas, where many-particle effectaref. [3]. To evaluate equmbrlum' gorrelat|on funptlons in
are of importance, linear response theory has been workedi"ndly coupled plasmas, a promising alternative is given by
out to relate the conductivity to equilibrium correlation func- Molecular dynamics simulations. It is expected that reliable
tions which can be evaluated using the method of thermody€Sults for the dielectric function for dense systems by quan-
namic Green functions, sd@&]. This way it is possible to tum moleqular dyr_lam_|c§ will be avallablg in the near future.
derive results for the conductivity of partially ionized plas- Work in this direction is in progress but will not be discussed
mas not only on the level of ordinary kinetic theory, but alsoi” this paper. .
including two-particle nonequilibrium correlatiofi4]. _ To |II_ustrate_the_genera_I approach, explicit result_s for_ the
On the other hand, the dielectric function can also bedlelec_:trlc function in the first mpment Born approximation
expressed in terms of equilibrium correlation functions. Ne-2'€ given for hydrogen plasmas in Sec. IV. Sum rules as well
glecting collisions, the well-known random phase approxi-2S the dc conductivity are discussed. The simple approxima-
mation (RPA, see also belowis obtained where the contri- tion considered here will be improved in a subsequent paper
bution of charged particles with mass to the imaginary 11, where a four-moment approach to two-component plas-
part of the dielectric function is proportional to Mas is investigated.
wk 3 exd —mw?(2kgTk®)]. Obviously, a systematic pertur-
bation expansion to include collision effects is difficult to
carry out near the singular poikt=0, w=0. Different im-
provements are known to go beyond the well-known RPA
result. In the static limit, local field corrections have been We consider a charged particle system consisting of dif-
discussed extensive[], and the dynamical behavior of the ferent components with masses, and charge®,. In the
corrections to the RPA in the long-wavelength limit was in-following we shall use the index not only to denote species
vestigated in time-dependent mean field theory neglectinge g., electrore, ion i) but also to describe further internal
damping effect$6], see als¢7] for the strong coupling case. degrees of freedom such as spin.
At arbitraryl? and w, approximations are made on the basis The charged particle system is investigated under the
of sum rules for the lowest momen8]. However, these influence of an  external potential U q,(F,t)
approximations cannot give an unambiguous expression for ei(k‘r*“’t)Uext(IZ,w)ﬂLc.c. The total HamiltonianH (t)

e(k, ) in the entire k,») space. =H+Hgy(t) contains the system Hamiltonidd and the
We shall give here a unified approach to the dielectricinteraction with the external potential

II. DIELECTRIC FUNCTION WITHIN GENERALIZED
LINEAR RESPONSE THEORY
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where thez direction is parallel tk, k=ke,, we can also

Hext(t):Uext(IZ-w)e_iwtCEp €cNp, -kt C-C. @) express
where k 1 e - 1
M(k,w)=— = hp,8f o(PiK, @) T
Ng=(N§ 1 =al _128c.p 2 2 w Qo 55 M Uer(k,)
is the Wigner transform of the single-particle density given — £<Jk>teiwt (10)
in terms of creation and annihilation operators in the momen- Ueri(K, @)
tum representatiortg, indicating speciegsuch as electrom,
ion i) and spin. with the current density operator
Under the influence of the external potential, a time-
dependent charge density 1
= —1 , 11
=0 Ep TP (11)

1 o
— > efont ek Trec.
Qo S P,

Q, is the normalization volume.

The main problem in evaluating the mean vaug)!, Eq.
(11), of the current density is the determination gt). In
linear response theory where the external potential is consid-
will be induced. Here,sn¢ oK/ np K Tr{n k,po} denotes ered to be weak, the statistical operagédt) up to first order
the deviation from equnlbrlum where the equmbnum statis- IN Uey(K,w) can be given explicitly, see Appendix A. An
tical operator is given by important ingredient to generalized linear response theory is
that a set of relevant observables can be introduced whose
exp( — BH +ﬁ§ weNe

1 o
= Q—OCEp e.of(pik,w)e®=eVice. (3

mean values characterize the nonequilibrium state of the sys-
tem. In this paper, we shall consider the current denkity
. 4 Eqg. (11), as a relevant observable. This observable corre-
Tr ex;{ —BH +52 MCNC) sponds to the first moment of the single-particle distribution
c function. The extension to more general sets of relevant ob-
servables such as higher moments of the distribution func-
tion is discussed in Appendix A.

Po=

The averagd---)'=Tr{--- p(t)} has to be performed with

the nonequilibrium statistical operatp(t), which is derived Based on this first moment approach, we have the follow-

in linear response with respect to the external potential 'qng expression for the polarization function:
Appendix A. For homogeneous and isotropic systems, we

find simple algebraic relations between the different modes
i imp g i i Wi i ikz,BQO (Jk:Jk)2

(k,w) of the external potentiall(K,w) and the induced (K w)=— e(k,o) , (12)
single-particle distribution w Mj;
Ste(pk,w)=€"“'(sns 1, (5)  with
which allows one to introduce the dielectric function Mo —io(dy-] 33
e(k,w), the electric conductivityr(k,w), and the polariza- 25= ~10(3 30+ (I I w+in
tion function II(k,w). From standard electrodynamics we <j 3 wri
have _M<‘]k;jk>w+i . (13)
<Jk;‘]k>w+i77 K
i
e(k,w)=1+ Eo_w‘f(k!w)zl_ _6 kzn(k-‘") (6) The equilibrium correlation functions are defined as
0
and 1(8 )
(A;B)=(B";A") = —f dr Tr[A(—if7)Bpo],
1 - e 1 plo (14
M(k,w)= o CED ecb‘fc(p;k,w)m, 7
. _ izt .
where the polarization function is defined with respect to the (AB),= fo dte”(A(t);B),
effective potential
Uei(K,w) =Ug(k,w)/ e(K,w). (8)  with A(t)=exp(Ht/A)A exp(—iHt/%), andA=i[H,A]/%.
. . o Before evaluating the polarization functi¢h?) for a two-
Using the equation of continuity component plasma, we shall first discuss its relation to the

Kubo formula and afterwards the significance of the dielec-

0, Sf(pik )= X > 4,6 (piK, ), (9) tric function e(k,w) occurring in Eq.(12).
p me “p Applying partial integration
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i ) i ) interaction, whereas the remaining part contributes only from
(AiB)=3[(A;B)+(A;B).]= S [(AB)—(A;B)l, fourth order on. For instance, in the Born approximation the
(15) Faber-Ziman result for the electric conductivity is obtained

_ S _ _ _ [3]. The expressionr~*~(Jg;Jo)i, is also known as the
the time derivatives in the time correlation functions of ex-force-force correlation function expression for the resistivity.

pression(13) can be eliminated, More precisely, the resistivity should be given in terms of
. ) stochastic forces which are related to the second term in the
M= = 7(Ji; i) + (Ji: 3 + G I NI I w+in - denominator of Eq(22), see also Eq(A12) in Appendix A.

The applicability of correlation functions for the inverse
transport coefficients has been widely discussed, for a review
see Ref[9]. The approach to the dielectric function given in
) i the present paper is based on the cha@kh for the set of
(A;B)= B Tr{[A,B']po} (17)  relevant observables and may be considered as the generali-
zation of the force-force correlation function method for the
[to prove this, perform the integral in the definiti6hy)], so e_lectricfreﬁistivity tfo trlle dielectt)ric funbcltionr.] Possbible exten-
T o1y _ - sions of the set of relevant observables have been investi-
that (i Ji) =i Tr{[J.Jic]pol/(71/5) =0. In conclusion, ex- < gated in evaluating the dc conductivity in Rg&] and wil
be considered in evaluating the dielectric function in a forth-
k280 (3303w coming papef1l]. | |
30— 7330w The origin of the dielectric functioa(k,) in Eq. (12) is
kodk) ™ Mk atig 1 due to the definition of the polarization functigacreened
susceptibility with respect to the effective potential
Performing the limity— 0, we obtain for finite values of the Uen(k, ), Eq.(8). For instance, the Kubo formuld9) can
correlation function(Jy;Jy),,+i, the simple result be rewritten as

Furthermore, we use the property

pression(12) for the polarization function can be rewritten a

II(k,w)=—e(k,w)

k280 1 _BQ
b %33 wriy (19 m—1=—|?:<3kuk>w+w. 23)

II(k,w)=—e(k,w)

(0]

which is denoted as the Kubo formula for the polarizationA similar relation can also be found for EL2).
function. Similarly, this result can also be obtained from On the other hand, the occurrence of the dielectric func-
more general sets of observables. In particular, the Kubdion in the expressions for the polarization function has a
formula can be derived if the set of relevant observables isimple consequence if the correlation functions are evaluated
empty, see Appendix A, EqAL5). Different approaches by standard many particle methods such as perturbation
based on different sets of relevant observables are formalltheory for thermodynamic Green functions. In this context
equivalent as long as no approximations in evaluating théhe correlation functions containing(k,»)Jy are obtained
correlation functions are made. from irreducible diagrams to Green functions containipg
However, expressiond 2) and(19) are differently suited which cannot be separated into two pieces by cutting a single
to perform perturbation expansions. For this we consider thénteraction line.
dc conductivity

[lI. EVALUATION OF CORRELATION FUNCTIONS

w
o=limlima(k,0)=ilimlim — I(kw). (20 We apply the method developed above to two-component
w—0k=0 w—0k—0 K plasmas consisting of electrofimassm,, chargee,, den-
sity ng) and ions(massm;, chargee;, densityn;) with

We compare the correlation function e:neten;=0 for a charge-neutral plasma. The Hamiltonian

BQ(Jo: )i (21 s given by
in the Kubo formula(19) with the expression _ t
a(19) P H—CED ESal ,ac
(Jo;\]o)2

B (22

Og— - — - ,
<‘J0;JO>i77_<‘]0;‘J0>i77<~]0;‘]0>i771<‘]0;J0>in

arising in the corresponding formu(é2) [as discussed at the

end of this section, the prefactetk,w) disappears if only where E‘°)=f12p2/2mc denotes the kinetic energy and

irreducible contributions of the correlation functions are con-Ve (q) = e.e. /(€,Q09?) describes the Coulomb interac-

sidered. It is evident that perturbation theory cannot be ap-tion between electrons and ions as well as the electron-

plied to expressiori21l) because in zeroth order this expres- electron and ion-ion interaction.

sion is already diverging. In contrast, express(i@g) allows Within the generalized linear response approach, the po-

for a perturbative expansion. The denominator vanishes ifarization function is given in terms of correlation functions.

zeroth order in the interaction. The correlation functionThe correlation functions occurring in E¢L2) contain the

(J30;30)i , gives a contribution already of second order in theoperatorshy = aZ’p_k,ZaC,erk,z andhg’kz —(ifpkime)ng

1
+
+§ 2 Vcc’(Q)az,pfqac',p'+qaC’,P’anp' (24)
cc’.pp'q
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+up «» Where the first term arises from the kinetic energy In the nondegenerate case the following expression is ob-
and gives a contribution even if the collisions in the plasmaained:
are neglected, i.e., to the RPA result. The second term

(kw)=—B> einf1+2zD(z)]

vC . = T
pk_% E Vcc (q)[a c,p—k/i2— qac p’+qaC p’ac p+k/2

¢’ \q Lo e2e? pi? o 2(2m)1?
; —j—
- az,p—k/zac',p'+qac',p’ac,p+k/2+q] (25 k2 (4meg)? © (kBT)5/2 S e2n./m,
C
Cc
contains the interactioW .. (q). It has to be taken into ac- N 1 5 -1
count if collisions are included. fx - ( — )
X | dpe P|In — Wi , (2
To evaluate the correlation functions, we perform a per- 0 P ?\+1 A+1 (P) @
turbation expansion with respect to the interactign (q).
Within a quantum statistical approach, the correlation func-
tions are related to Green functions which can be evaluate#ith
by diagram techniques. This has been discussed in detail for
the case of the static electric conductiVi8] and will not be 2
detailed here any further. Instead, we will consider only the 2 (e, e 22 eNncl 1+ 2:D(Zc)]
lowest orders of perturbation theory, see Appendix B. W(p)= §p mm
e I

As shown in Appendix B, evaluating the polarization
function to zeroth order, the RPA result for the dielectric
function is reproduced. Expanding up to second order with

Ml/? _ 1 'm.
I’eSpeCt td\/cc’(q)7 — —f;z(%— %) J dCC[eeD( Zei— %Cp)
ei e i -1 e

2
; eng/mg

k2
— i _ - 1.\(0) m
H(k,w) |BQOw<Jk1‘Jk>w+I7] +eID Zei+ Hecp) i (28)
i
[ h? e (S vl )9,
X[ 1+ 3 i Spp, N Here, 7= wlkyMgf2kgT,  2.= w/kymdZKaT,  A(p)
cdpp’ 220 MelM (Jii ) = (1K) (4ueksTP) +1, Me=Me+M;,  pei=mem;/
i Mgi, and
1 1 dx
X — - D(z)= — J— ‘X2m=i\/;e‘22[1+erf(iz)]
n—io+i—pk 7Tio+i—pk 29
My c
© 1 denotes the Dawson integral. Equati®V) is an analytic
= Ity (26) expression for the polarization function which can be evalu-
(J; 0@ ' ated in the entire, w) space. Note that a statically screened

potential was used in Eq25) to obtain a convergent colli-
sion integral, the screening parameter is given by

2 . .
collisions are included. The correlation functions K= Z2c€cNc/(€oksT). From Eq.(27) it can be seen imme-
<v‘,§,k:vﬁ,,k>w+in are of at least second order in the interac-diately that the RPA result is obtained in the limit of vanish-

tion V..(q). Evaluating the correlation function containing ing interactions\W(p) =0.

creation and_ ann|h|!at|on operators, cf. H@5), to zeroth V. RESULTS FOR HYDROGEN PLASMAS

order in the interaction, the collisions are taken into account

in the Born approximation. Note that the prefactdk,w) Expression27) for the polarization function is simplified
disappears if only irreducible diagrams are considered irfor a system consisting of protons and electrons, where
evaluating the correlation functions. €= —€, Nj=n,, andm;/m,=1836:

(K,w)=1+ en [2+2.D(z)+2D(z)]| 1-i = ¢ et 2(2 )1’med P<| A1, 2
e(K,w)= —_— Z 4 Z; Z; —— n m e n——+_——
eokgTk2 0T K2 (47eg)?  (KgT)"2 Rt "Nt1l A+l

2 Mei 12 ~q m;
X 5p[2+zeD(ze)+ziD(zi)]—(7) f_ldcc[D(zei—\/Ecp>—D

el

me
Zeit EC P

-1
1 . (30




57 DIELECTRIC FUNCTION AND ELECTRICAL dc ... 4677

We first discuss the limiting case of smal. For 1.8
k<wym./(2kgT) we use the expansion
16 |
> 1 1
—i —z°_ T _ +...
D(z)=ime ——5a* (32) <
A 14 F
so that after expansion also with respectiwz,; we have §
Il
2 = 12t
(,()p| [0
€0w)=1- ———— (32 @«
o tiwlT 1ol
with w)=e?n/(eope;) and
/ 0843 107 107 10° 10°
2 3/2, 112
e (4meg)” (KeT)™ g 3 (@ frequency o in units of Ry
et no 42m 0.40
xfwd 4t AL, 2 33
o, dPPe TN TN (33
0.30 +
According to Eq.(6), the dc conductivity 3
U(O,w—>0)=ws|eo7' (39 § 0.20 |
|
<
is obtained, which coincides with the Faber-Ziman formula =
at finite temperaturef3]. " oq0 kb
On the other hand, in the limiting case of smallwe use
the expansion
0.00 ' . .
_ o 4 10° 10 10 10° 10°
D(2)=i \/;e £ —-2z+ §23i e (35) (b) frequency @ in units of Ry

FIG. 1. e(k,w) as a function ofw (in Ry/t) at k=1/ag for a
hydrogen plasman,=3.2 13° cm 3, T=50 eV. Upper panel,
Re €; lower panel, Ime; broken line, RPA; full line, first moment

for << {2kgT/m;k and obtain

i lim e(k,o) =1+ —< 0141 2 77—”“') Born approximation.
K—0w—0 —iw+dk? 2k V 2kgT
(36) First we discuss the dependence of the dielectric function
on frequency for different values &, see Figs. 1-4. For
with large values ok our result for the dielectric function coin-
cides with the RPA result. At decreasikgstrong deviations
L et 4(2m)2ul? 1= dp 2 are observed. .
=— 5N o f — Both the RPA expression as well as the expressii
(4meo) (kgT) o P for the dielectric function fulfill important relations such as
A—1 2 the Kramers-Kronig relation and the condition of total
X In N1 + 1) (37) screening. The validity of the sum rule
Here, in evaluating the last expression of E0), also fww Im e(k,w)dw=zw2| (39
Zei+ (Mmo/m;,)Y2cp is considered as a small quantity, whereas 0 2"
Zoi— (m;/my)Y%cp is large in the region of relevamt. For

small valuesk<2.2kgT/(7m;)/d, the second term in the is checked by numerical integration. The RPA result coin-
numerator of Eq(36) can be neglected, and the diffusion cides with the exact value§|w/2=3.74 to be compared with
type form of e(k,w) is obtained, se€l2]. expression(30) which gives 3.74 ak=1, 3.75 atk=0.1,
As an example, a dense plasma is considered with paran3.71 atk=0.01, and 3.74 &=0.001. The small deviations
eter valuesT=50 eV andn,=3.2x10” cm 3. Such param- are possibly due to numerical accuracy.
eter values have been reported recently in laser produced To investigate the behavior at sméll we give a log-log
high-density plasmas by Sauerbreyal, see[1]. We will plot of Im e(k,w) as a function ot for different values in
use Rydberg units so that=3.68 in Ry andn,=0.0474 in  Fig. 5. Forw>+/2kgT/m.k= 3.84k the Drude-like behavior
ag3. At these parameter values, the plasma frequency i€32) is clearly seen, withr=8.36.
obtained aswp=1.54, and the screening parameter as Considering the limit of smallw, a log-log plot of
x=0.805. Im e(k,w) as a function ok for different valuesw is shown
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FIG. 3. The same as Fig. 1 far=0.01b5.

FIG. 2. The same as Fig. 1 far=0.1/ag.

an improvement of the results can be obtaing()ithe Born
approximation is improved including higher orders of pertur-
bation theory, andii) higher moments of the single-particle
distribution are taken into account. Both points have been
discussed for the limiting case of dc conductifig], where

a virial expansion of the inverse conductivity was given.

A four-moment approach will be presented in a subse-
qguent papefll], where also the comparison with the Kubo
approach and computer simulations are discussed. Within the
?cpproach given here it is also possible to treat the degenerate
%.?se. Work in this direction is in progress.

in Fig. 6. The diffusion behavior(36) occurs for
k<{2kgT/(7m;)=0.00732 atk>m;/(2kgT)w=11.17w
with d=13.8. Altogether the numerical evaluation of the
general expressiofB80) for the dielectric function confirms
the validity of the simple limiting formula$32) and(36).

In this paper we have focused on discussion of the prop
erties only ofe(k,w). Related quantities such as *(k,w)
will be investigated in a forthcoming papgkl]. The param-
eter values for density and temperature can be extended
other nondegenerate plasmas such as ordinary laborato
plasmas or the solar plasma. This has been done with results

showing the same qualitative behavior of the expression ACKNOWLEDGMENTS
(30), but at shifted values df and w. The author is indebted to V. Morosov and A. Wierling for
many helpful discussions, and to A. Schnell for his help in

V. CONCLUSIONS performing the computer calculations.

An expression for the dielectric function of Coulomb sys-  A\ppENDIX A: GENERALIZED LINEAR RESPONSE
tems is derived that is consistent with the Chapman-Enskog THEORY

approach to dc conductivity. For a two-component plasma,
explicit calculations have been performed in the lowest mo- Generalized linear response theory has been considered in
ment approach. In the Born approximation, expressions ardifferent works[13], see[9] for a recent presentation. We
given that allow the determination efk, ) in an analytical  give here briefly the main ideas to construct the nonequilib-
way. Within numerical accuracy it is shown that general re-rium statistical operatorp(t) = py(t) + pirel(t) using the
lations such as sum rules are fulfilled. The dc conductivity isdensity matrix approackL4]. Characterizing the nonequilib-
obtained in agreement with the Ziman-Faber result. rium state of the system by the mean val(Bg(r))' of a set

We performed exploratory calculations to illustrate howof relevant observabld8,(f)}, from the maximum entropy
the generalized linear response approach works. Obviouslgrinciple the generalized Gibbs state
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thermodynamic parameteffagrange multipliers ¢, (r,t)
are determined by the self-consistency conditions

TrH{Bn(F)pre(t)} = (Bn( F)>t

and will be evaluated within linear response theory below.
The relevant statistical operatohl) does not solve the
von Neumann equation, but it can serve to formulate the
correct boundary conditions to obtain the retarded solution of
the von Neumann equation. Using Abel’s theorem, the irrel-
evant part of the nonequilibrium statistical operaf6y is
found with the help of the time evolution operatd(t,t’),

(A2)

m%ua,t'):Hm«t)ua,t’), Ut'th=1, (A3

as

t !
Pirrel(t) = _f dt’e” 7" U(t,t’)

i J
X[%[Htot(t’)yp rel(t’) ]+ Eprel(t,) u(t’,t),

(A4)

where the limit»—0 has to be taken after the thermody-

namic limit. The self-consistency conditio&2) which de-

termine the Lagrange multipliers take the form
Tr{Bn(1) pirrei(t)} =0. (A5)

For a weak external fieltl,;, the system remains near
thermal equilibrium described by, [EqQ. (4)]. Expanding the
nonequilibrium statistical operator up to first order Uk,
and ¢,(f,t), it is convenient to use the Fourier representa-
tion so that

fd3r¢n(r,t)5n(r)=¢n(|2,w)e—ith;+c.c. (A6)

with
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bo(F )= ® Vg (K w), Bn=fd3r|3n(r*)e—ik'r’.

Up to first order, the contributions te(t) are

. B N
pelt1=pore ™ [" dr 3 Blin gu(K.w)potc

0 n
(A8)
and, applying the Kubo identity
B
(Apol= [ dre MiHAleHp, (A0
0

we find

t s
pirrel(t):_f dt'e "t-tHg-iot f dr
. .
x{% ecn (1 —t+ifi7) Ugy(K, )

(Bm;Jk)+<Bm;Jk>w+in_<Bm;Jk>w+in
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+> [BNt' —t+ihr) —iwB!
n

X(t' —t+ifhr)]dn(K,w) | potc.c.  (AL0)

Inserting this result in the self-consistency conditidA%)
we get the response equations

—(BmiA)osiUext(K,®)=(BmiClusin, (ALl

with the correlation functions defined by Eql14),
A=ikQody=3¢ peN5 , andC=3,[B,+iwB,] % (K, 0).

To make the relation between the response equations
(A11) and the Boltzmann equation more close, E&g we
introduce the ‘“stochastic” part of forces applying partial
integrations according to E@l5), so that Eq(Al1l) can be
rewritten as

—ikQo(Bm;JUen(k, ) =

:(Bm;c)+<

We find the following form for the response equations:
—ikQMmoUex(k,@) = 2 Mmsdn(k,w)  (A13)

with M ,,0=(B;Jy) and
M= (Bm;[Bn+iwB,])

: <Bm;Jk>w+i e .
+<|:Bm_ mBm},[Bnﬁ-len:O

wt+in

(A14)

The system of equation@\13) can be solved applying the

(Bm ;‘]k>w+i7]

B

<Bm;C>w+i7i
<Bm;Jk>w+in } <Bm;C>w+i7] >
_\PmiIkletin o ety g ) Al2
<Bm;~]k>w+i77 " <Bm;Jk>“’+i’7 ‘ w+in ( )

evant observabledB,}, we can directly use the self-
consistency conditionéA2) and have

(Jte e =Tr Jpret) €' (A16)
Comparing with Eq(A15) we see that the remaining terms
on the right-hand side of EqA15) compensate due to the
response equationig11). After expandingp,(t) up to first
order in ¢,(k,»), Eq. (A8), we have

<Jk>te““=32 (Ji;Bp) dn(K, 0). (A17)

Cramers rule. Then, the response parameters are represent8gerting the solutions fog, in the form of determinants, we

as a ratio of two determinants.

With the solutionsp,, , the explicit form ofp(t) is known,
and we can evaluate mean values of arbitrary observables. In
the evaluation of
(Ji)" explwt) to calculate the polarization functigid0) us-

particular, we are interested in

ing Egs.(A8) and(A10),
(30'€"= B2 {(J;Bn) = (Ii[BntiwBal) gt bn(K )

—ikQoB(Ik: ) wrinUex( K ). (A15)

get for the polarization function(10) with Mg, (k,w)
= (Ji;B,) the result

k2

T(k,w)=ie(k,0) 30—

0 Mgyy(k,w)
“Muo(k@) Mk, o)

/ |an(k:w)|'

(A18)

Specifying to only one relevant observaldg=J,, the re-

If J, can be represented by a linear combination of the relsult (12) for the polarization function follows.
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APPENDIX B: EVALUATION OF THE COLLISION TERM
IN BORN APPROXIMATION

Let us first consider the lowest order of perturbation

4681

so that from Eq.(12) the random phase approximation
(RPA)

theory where the correlation functions are immediately

evaluated using Wick’s theorem. We find

(nd ;nC, ):'fC Spp! ’
p.k ' p’ k p,kCpp’ “cd (B1)

(NG ki Npr Wwrin= (7= i@ +ihpKIM) ™ Sppr Sca,

with

Fe = (BAZpKIM) ~H(FS o= 5110 (B2)

Note that lim_of5,=fS={exdBE;—ud]+1} % In the

classical limit where the Fermi function can be replaced by

1Ok, w)=— B2, eln[1+2z.D(z.)] (B8)

is obtained. The prefactan(k,w) disappears taking into ac-
count only irreducible diagrams fokl(k,w). The corre-
sponding RPA dielectric functiof6) describes the collision-
less plasma.

To include collisions, we have to consider higher orders
of the interaction. In the numerator of E(L2), the higher
order expansion forJ;J,) leads to the replacement of the
occupation numberl;,cJ for the free fermion gas by the occu-
pation numbers in an interacting fermion gas. These self-
energy corrections in the Born approximation can be given
as a shift of the single-particle energies and can be replaced
by a shift of the chemical potential, s¢8]. They do not
describe collision effects and will not be considered here.
Collision terms arise from the time correlation functions

the Maxwell distribution, we have to lowest order in the SUCh as{J;Ji)w+in iN EQ. (13). The force term, already

Coulomb interaction

keT < €2

(Jk;Jk)(o):Q_OE —N¢,

2 (B3)

w1
(i dokiy= ~iiz o 2 end1+2D(z0)], (B4)

with z.= w/kym2kgT and the Dawson integral

D(2)= fw eI B5
(Z)—\/—; I vyt (BS)
Furthermore, we have
. KeT « €2
N0 BT\ e
<‘]k1‘]k>w+i7;_ ‘Q’O = mcnc
w? 1
~1 O & end1+2:D(z)]
=— (I, (B6)
O o keT « €
<Jk1‘]k>w+i7,:_lwﬂ_o g Fcnc
w3 1

i 2
[ 2 O EC: enf1+z.D(z)], (B7)

contains the interactioV..(q) according to Eq.(25), so
that a collision term in the Born approximation is obtained if
the corresponding correlation function containing the cre-
ation and annihilation operatoes ,a is evaluated in zeroth
order with respect to the interaction. To extract also the col-
lision terms in the Born approximation from time correlation

functions such a$Jk;.'Jk)w+i,,, we use the relations

<nﬁ,k:vﬂr,k>w+i,,=(n— iw+ifpkimg) t

..d ..d
X[(ng'k,vpr’k)+<vg'k1vp7’k>w+i77]’

(B9)

(Vpk i”g/,k>w+iy,:(7]— io+ihpik/img) 1
X[(vg,k;ng’,k)_@g,k ;Ug’,k>a)+i77]i
(B10)

which can be proven by partial integrati¢h5). Collecting
all terms of the forr’n(uka;z)g,J()a,H,7 which contribute to
collisions in the Born approximation, we find from Ed.3)

33007 h? ey

- .1 1\(0 a2
<‘]k1Jk>EuJ)rir; ca,pp’ g MeMa

ry.c .. d
33 PP (Vb ki Watin

;3@ 1
x{—1+ S "()0) [ -

<‘]k;Jk>w+i7]L77_|w+|ﬁpzk/md

1

+ — =M9P+MY.
n—iw+ifhpk/im, 3 3

(B11)
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i i 2
Introducing according to Eq$B3) and (B4) D 2 5 ey 0 b
JJ Eg &b memyg P AVp ki VI w+ing
1
(0) 2 2 _ . :
(N kT k* 2ECeCnC/mC | X{—1+ R[n—lwﬂhpzk/mc
<~]k k>w+|7; wzcecnc[1+ZcD(Zc)] 1
(B12 n (B14)
p—iw+ihlkimg||"

we have Dropping single-particle exchange terms that can be jus-

tified for the Coulomb interaction in the low-density limit,
(0) ), we find the collision term in the Born approximation by us-
=R(Jk; ) (B13  ing Wick's theorem,

<vE,k:v3/,k>m+in=§%q chcr(q)f?,m(l—f;,’,)
X{fg—klz—q(l_fg+k/2)5(Eg—k/2—q+E;f’wq_E;cwk/z_ E;:,-I—ﬁw)
X[Vee (=) Sed(Spr p-q= Spr p) T Vere(K+a) Serd( Spr prswiz+q— Opr pr—ki2) ]
— k21— f oo ) S(Ep ot E;:urq_ Epki2rq— E;:,—F fiw)
X[V (— Q) 8ed(8pr p— 8pr prg) T Verc(K+ Q) 8cra(Spr prrkizrq— Fpr pr—ki2) 1} (B15
For smallk, » we have with Eqs(B14) and(B15)

f ) . e € e e
W_,™ e i _pe_piyg | eS|, 5
MJJ Q(z) % V |(q)f f 5(Ep+q+El—q Ep EI)QZ( me mi){<mepz+ mi Iz

- ZR( : P G & & ) (B16)

ikpy I Me— i@t 7 Mg~ TAKLIM —i@t 7 m

The further evaluation is done introducing total and relative moméhtep+1, p’=(mp—mel)/Mq;, p"=p’+q,

Mei=Met+m;, ug'=mg'+m*. Inserting the distribution functionk)=n (274 % mcksT) ¥2exd —#%p%(2mksT)] and the
screened potentla}'el(q) €€ /(eOQO(q2+ k%)), we obtain

har e2e? 2mwh?\32 [ 2712 \%2 2
M =2 = ne< ) ni( ) “e'f 3PJ o 'fd3 v
Qo & MekgT mikeT) (2m)° #2

thz ﬁ2p12

X €7 2MgkaTe  ZugkaTo(p'2—p"?) ! (pi—p )( Ce e')
eifB MeikB - = T
[(p'—p")2+x22 7" 77 m,
€e € Mejw €e €
X e E_ﬁ)_ in22| o, M, Mo +P M, Meo | ¢ (B17
z me P Ak n LA P K n

Furthermore, we introduce dimensionless variady2M kg T)¥2 #p’ (2ueiksT)Y2 N=(22k?)/(4peiksTp'?) +1,

spherical coordinatgs’ = (p’ (1—c?)¥20p'c), p”=(p"(1— ) Y2 cos¢,p’(1—2)"? sin ¢,p"2), and perform the integral over
¢ according to

2w 1 A—CZ
d =27 B18
fo ¢[)\—cz— V1-c?J1-27% cos ¢]? (N2—1+c?—2ncz+2%)%? (B18

so that
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1/2
Mei 1J°°1 ,zJ'1 Jl J 2 A—cz
—|——=—] 5| —dpe™® dc| dz—:;| d®Pe P z—c
"5\ (2m)3KgT op i -1 Jo1 32 (A 2—1+Cz—2)\CZ+ZZ)3/2( )

" rZC(ee_e‘)ZHR ,(e ei) w / e
P me  m P me M) kgTk? V g m, m, o [Mg
P Vin?’ % Vaier mP ¢k VakT

B i B

(B19)
Now, the integrals over and P can be performed. Using
fld A—cCz ( ) ( )\—1Jr 2 (B20)
z z—c)=c|In —
1 (A2—1+c?—2ncz+ 22) P2 A+1 N+

and the definition of the Dawson integi@9) to perform the integral oveP,, we finally find after integrating the transverse
components of
1 e[ mei |2 1 (> of N=1 2 \[2 [e. g)\?
D=~ hpn 21 el —p i e _
M =g, 2 \2kBT) 4773/40 dpe ('” Arl AFl [:a'o(me m,
Co_&)_ o M. f M \[fme
Me m.)kBTk2 dcc[ee (Ze' me " %i™ N °P

with z,;= w/kyMg/2kgT. Together with Eqs(B13) and (B3), this result can be inserted in expressid®) to evaluate
Nk, w).

+iR

+eiD

} (B21)
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