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The Ising fluid we have investigated is a system of hard spheres which carry an Ising spin. A short range
ferromagnetic potential acts between particles. A renormalization group study of the model, based on the
hierarchical reference theory of fluids, gives quantitative predictions on the phase diagram and the phase
boundaries. The model can show two distinct phase transitions: a magnetic order-disorder transition and a
liquid-vapor phase separation which meet at a tricritical point. The critical properties of the magnetic transition
have been studied by Monte Carlo simulations at two densities in systems with up to 4000 particles. The
locations of the critical points are in good agreement with the theoretical estimates. However, a finite-size
scaling analysis shows effective critical exponents which deviate from the expected Ising values. These dis-
crepancies resemble the analogous result of a previous numerical study of Heisenberg fluids. Here they are
interpreted as due to crossover phenomena, partly related to Fisher exponent renormalization induced by the
presence of noncritical density fluctuatiofS1063-651X97)09012-0

PACS numbes): 61.20—-p, 64.60.Fr

I. INTRODUCTION ensemble(in which the simulations were carried ouhe
critical exponents of the fluid and the lattice are the same if
Models of fluids made of particles with some internal de-the lattice specific heat exponeat is negative. If, on the
gree of freedom like a spin are of current theoretical interesother hand, the lattice specific heat diverges>0), the
[1]. Phase transitions of different character can take place igxponents for the fluid are expected to be “renormalized” in
such systems, as studies of the phase diagram and of tilee following way. The fluid specific heat exponent becomes
associated critical phenomena have shown. In particular, rex=—«,/(1— ), the magnetization exponet becomes
cent simulations studied the magnetic transition in the8=p/(1—«) (with B, the lattice exponentthe suscepti-
Heisenberg fluid2]. This is a classical fluid in which all bility exponenty becomesy=1y,/(1—«,;) (with vy, the lat-
particles carry a Heisenberg spin. Two particles interact vidice exponent and similarly for the correlation length expo-
an exchangelike potential. In addition they have a hard coreentv=»,/(1—«).
which prevents them from overlapping. Such a fluid dis- The lattice specific heat exponent appeared to be well
plays, besides transitions between a solid, a liquid, and astablished by three successive simulatiofd—6|:
vapor phase, a magnetic order-disorder transition. The simux; = —0.1449). This value is also in reasonable agreement
lations studied the critical properties of this transition in thewith series expansions and transfer matrix studsese the
fluid region, away from the liquid-vapor phase boundary. Areferences ir{5,6]). It would imply that the lattice and the
finite-size scaling analysis gave critical exponents that arfluid exponents are the same. However, the most recently
different from those for the lattice Heisenberg model. Also,published simulation of the Heisenberg lattifg| differs
the obtained critical fourth-order cumulant is different from sharply from previous results and giveg=0.0752).
the value for the lattice. Hence the sign of, remains in doubt although we consider
These results differ from what is expected theoreticallythe dissonant result as questionable.
and are not well understood. They could be ascribed to the There are no such diverging views on the lattice Ising
use of too-small systems in the simulations, prohibiting themodel in three dimensions. Monte Caif®lC) simulations,
observation of the correct critical exponents. However, theMonte Carlo renormalization group, transfer matrix, aad
presence of such “corrections to scaling” is rendered lesexpansion studiegsee[8,9], and references thergimive
plausible by the fact that the same exponents are obtained far,>0 (a;=0.110(2)[9]). Hence, according to Fisher renor-
the three fluid densities which were studied. Moreover, themalization and insisting thaiy,<0 for the Heisenberg
critical indices satisfy an exact exponent relation and themodel, the situation for the Ising fluid should be different.
critical cumulants show no trend towards the value for theThe Ising fluid is defined as the Heisenberg fluid with the
lattice when the system size is increased. They do, howeveHeisenberg spins replaced by Ising spins. Even though the
show a slight dependence on the fluid’s denfiy, predictions of Fisher renormalization are not borne out for
A possible theoretical picture of the magnetic phase tranthe Heisenberg fluid, it is worthwhile to see what happens for
sition is that of “Fisher renormalization|3]. It relates the the Ising fluid.
critical exponents of the fluid to the exponents of the corre- An additional motivation for this study is that for the Ising
sponding lattice model. For example, the exponents for théluid it is possible to study in detail the criticality and the
Ising fluid are expressed in terms of those for the Ising latticecrossover phenomena by an appropriate analytical theory
model. Fisher renormalization predicts that in the canonica]10], the hierarchical reference thedigtRT), initially devel-
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oped for simple fluids and mixtures but easily applicable touniversal features within the-expansion framework. This
the Ising fluid. HRT is a liquid-state theory which embodiesmethod is known as hierarchical reference theory of fluids
the renormalization groupRG) structure close to a critical [10] and has been previously applied to simple fluids and to
point. In HRT one studies how the free energy and the corthe Ising model. An extension of the formalism to binary
relation functions evolve upon inclusion of fluctuations of mixtures was also provided showing that Fisher renormaliza-
increasing length scales, starting with the properties of a syston of the critical exponents due to field mixihg] has to be
tem with purely repulsive forces. With HRT one can studyexpected at generic critical points of binary fluids when ap-
the universal as well as the nonuniversal quantities and thproached along a regular path in the density-concentration
possible presence of crossover effects. plane.

Simulations of the two-dimensional Ising fluid and its lat- The HRT description of critical phenomena in binary
tice gas representation exist alreddyt]. These simulations mixtures can be directly applied to the Ising fluid problem by
studied the point where the magnetic transition line touchesbserving that the mapping (|)— (A,B) which associates
the liquid-vapor line. The simulations found that the twoan up (down) spin to an “A” (“B”) particle provides a
lines connect in a tricritical point and measured the tricriticalcorrespondence between the ferromagnetic Ising fluid and a
exponents. The study, carried out in the grand-canonical emnixture of hard spheres with attractiyeepulsive interac-
semble, did not address the issue of Fisher renormalizatiortions between liké¢unlike) particles. By introducing the total

We carried out MC simulations of the three-dimensionaldensity of the mixturep= p+ pg and the density difference
Ising fluid, in close analogy with the simulations for the c=p,—pg We can express the magnetic properties of the
Heisenberg fluid2]. We have studied by simulations only Ising fluid in terms of the corresponding quantities in the
the magnetic order-disorder transition. In addition, we havamixture. In particular, the magnetization and susceptibility
studied the Ising fluid by HRT in an Ornstein-Zernike ap-are related to the concentratigrand the osmotic compress-
proximation and the effects of a finite cutoff in the renormal-ibility by
ization scheme are examined. In this scheme a finite cutoff
mimics the finite size of simulated systems. The model we m—c=p(2x—1),
have studied consists of particles interacting with the poten- )
tial -

, )

1 92A

XTIV ac?

B(ri.r;,Si,8)= =J(rij)sis;, o<r;<2.50 (1) whereA is the _HeImhoItz free energy. In order to get some
0 [ >2 5y rough information on the phase diagram to be expected, we
' e can perform a mean field study of the model starting from
where ¢(r;,1;,5;,5;) denotes the potential between a par_the approximate representation of the free energy of the mix-
ticle i with positionr; and spins; and a particlej with ~ Uré:
positionr; and spins;. The spins can take the values 1 and
—1. A hard-core repulsion at distanceg (r;=|ri—r[) — BA(pa.ps.T)= — BAS pat ps)+V
smaller thano prohibits these interparticle distances while
two particles further than 2dbaway from each other do not
interact. The Ising-like potential, acting at intermolecular
distancer, has a ferromagnetic, Yukawa type coupling con-
stant:

—paln ppc®

Ba
—pg In pga®+ 7(pA_PB)2 , (4

where A7§ is the excess Helmholtz free energy of a hard-
—r+0) sphere fluid at densitg,+ pg anda~15.32%¢" is the inte-

g
J(r)=e rexl{ (2)  gral of the (truncatedl Yukawa potential(2) which defines
our model. This mean field approximation leads to the phase

wheree sets the energy scale of the interaction. The couplingliagram of Fig. 1a) where the projection of the critical lines
constant is the same as used for the Heisenberg [fR}id on the density-magnetization plane is shown. Two distinct

The paper is organized as follows. In Sec. Il we showsecond-order transitions are visible in this approximation: a
how the model can be studied by HRT. In Sec. Ill we presenterromagnetic critical line which extends up to high density
the method and the results of the simulations at two differen@nd a liquid-vapor critical line joining the critical points of

densities. A final section contains a discussion of the result#e two fully polarized states. In Fig(l), the ferromagnetic
and our conclusions. critical line at zero magnetization is plotted in the density-

temperature plane: This is the transition we are going to
study in some detail in the following. The intersection of the
two critical lines gives rise to a tricritical point which is
In this section we present an analysis of the Ising fluid bypredicted to occur at fairly low densityp(o3~0.1) within
renormalization group methods, in order to determine themean field approximation. Mean field theory is usually ex-
general features of the phase diagram and the expected umiected to give a good qualitative description of the phase
versality classes at the critical points. We adopt a microdiagram even if fluctuations are likely to modify the quanti-
scopic implementation of momentum space RG, which altative details and will certainly lead to nonclassical critical
lows for a rather accurate study of the nonuniversalexponents. In particular, a binary mixture is believed to fall
properties of a model together with the exact treatment of then the same universality class as simple fluids and Ising

Il. RENORMALIZATION GROUP ANALYSIS
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field picture, while atQ=0 the fully interacting model is

i ] restored. Therefore the rather artificial introduction of the
8- ] cutoff wave vectorQ is a mean for gradually introducing
: (®) 3 fluctuations into the model. The exact “evolution” equation
s 6 E for the fluctuation contributiomd to the Helmholtz free en-
P ] ergy in ad-dimensional model of mixture considerably sim-
C plifies with respect to the case of a generic mixt{k@] due
2F - to the special symmetry of the Ising fluid and reads
oF—+— A ] d [—pAR Q4 4,
0.4 // @) ] dQ ( vV )_ 2(27T)dQ ln[1+]:gc(k)ﬁ‘](k)]u
o2fF |/ 3 5
C X ]
= of 1 where() 4 is thed-dimensional solid anglel(k) is the Fou-

C l\ rier transform of the truncated Yukawa interactidn), Eq.
—0Rp N E (2), andFS, is the particular combination of the partial struc-
—0.4f AN . ture factors, at cutoff), which governs concentration fluc-

T a— o{g e os tuations:

fe)

Fec K)=paSaa(K) + pgSpa(k) —2vpapeSas(k).  (6)
FIG. 1. Mean field critical lines of the Ising fluid projected onto . . . . . .
in the density-magnetization plarf@). The continuous line is the This d|_fferent|al gquat!on can be_ studied by introducing an
magnetic transition, the dashed line is the liquid-vapor critical Iine.approx'materelat'onSh'p expressing the structure faCto'fs In
In (b) the magnetic critical line is shown in the density-temperature€'ms of the free energy. The closure we adopted suitably
plane. Open squares are the estimates of HRT. The Monte Car@eneralizes the well known random phase approximation in
values atp* =0.5 andp*=0.3 are represented by full squares, liquid-state theory and is conveniently expressed as an ansatz
barely distinguishable from the HRT values. The HRT estimate ofor the wave vector dependence of the direct correlation
the tricritical point is marked by an open circle. functions(;; of the mixture, which are algebraically related
) ) ) to the partial structure factors by the Ornstein Zernike equa-
model when its physical properties are expressed as a funggp, Here, the labelsi (j) identify the type(i.e., spin of the

tion of fields (i.e., temperature and chemical potenfials 4 ticles. More precisely, the closure relation we have stud-
rather thandensities[12]. As noted by Fishef3], in the o4 s

density-concentratiothere density-magnetizatipplane, the
critical exponents turn out to beenormalizedby a factor cﬁ?(k):CHS(k)H\ﬁ?J(k), 7
1/(1- «;) due to the nonanalytic relationship between den-
sity and chemical potential. Here, represents the Ising where cHS are the direct correlation function of the hard-
critical exponent governing the divergence of the specificsphere fluid and the paramete?tg are defined by the re-
heat. Such a Fisher renormalization of critical exponents isgquirement that our approximatidi) satisfies the exact com-
however, hard to detect because of the generally small repressibility sum rule which relates the long wavelength limit
duced temperature range where the power laws characteriaf the direct correlation functions to the second density de-
ing the critical singularity acquire the (da;) correction rivatives of the free energy:
[13]. Low density critical points and vicinity of critical end
points have been recently identified as favorable conditions 9(k=0) = F*(— BACIV) 8
for the observability of Fisher renormalizati¢t4]. An in- i (k=0)= apidp; ®
teresting question to be addressed is whether the Ising fluid
model provides a case where signs of exponent renormalizaherefore Eq(5) becomes gartial differential equation for
tion may be detected in numerical simulations. In order tothe free energy density as a function of the cut@fand of
investigate this problem from the theoretical side, howeverthe density of the two speciep/,pg). Such an equation has
considerably more powerful tools than mean field approxi-been solved numerically by an implicit finite difference
mations are required. scheme on a 2020 mesh in the density-concentration plane.
Renormalization group ideas can be directly applied to a&he ferromagnetic critical temperatures at several densities
microscopic model of binary mixture by introducing a cutoff have been determined and are shown by open symbols in
wave vectoiQ for density and concentration fluctuations and Fig. 1(b). We see that the HRT result is close to the mean
deriving an exact hierarchy of equations describing the evofield estimate at the higher densities while deviating near the
lution of physical quantities when the momentum cut@ffs tricritical point which we have approximately located at a
changed. In the HRT approach this is achieved by defining density considerably higher than the mean field one:
sequence of auxiliary systems characterized by cutoff depenro®~0.27, kT,~3.35 (in mean field p,o3~0.1,
dent ferromagnetic interactiodg,(r) whose Fourier compo- KT~ 1.5¢).
nents coincide with those of the fully interacting system at The occurrence of a tricritical point at the end point of the
wave vectork larger thanQ while vanishing identically for critical line is a direct consequence of the up-down symme-
k<Q. At the limiting value Q=0 fluctuations over all try of the Ising fluid model and is generally expected in this
length scales are suppressed thereby recovering the meaystem. In Fig. 2 results from the numerical integration of
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with an exponenty, /(1— «,), slightly larger than the corre-
_ sponding Ising value, when the temperature approaches its
1 critical value. At the same time the isothermal compressibil-
. ] ity also diverges at the ferromagnetic transition, with a small
p =025 ] exponenta, /(1— «;), the divergence being induced by the
coupling between the two fluctuations.wf=0, no exponent
_ renormalization is present and the isothermal compressibility
- remains finite. Clearly, the larger is the couplimg the
] stronger are the effects of exponent renormalization. A de-
. tailed study shows that the crossover temperatyrscales
. - as the mixing parametex raised to the quite large power
L S . 2la;~17 leading to an extremely sensitive dependence of
] the crossover phenomenon on the value of the mixing param-
eter.
We have used the partial differential equati@ to ob-
tain estimates for these coupling constants for the Ising fluid,
. by stopping the HRT evolution at a cutoff wave vector
o z e Qoo ~0.4, sufficiently small that most of the short wave-
T length fluctuations have been included and the effective ac-
tion (9) can be considered a good approximation to the exact
FIG. 2. Dimensionless isothermal compressibility as a functionform. The effects of the long wavelength fluctuations have
of temperature along the isochop& =0.25 close to the tricritical been accurately studied by an examination of the effective
density. The dashed line shows an estimate of the tricritical temaction (9) in dimensiond: The RG flow of the four param-
perature. Data are obtained by integration of the nonlinear HReters ¢,g,u,w) has been modeled by use of a linearized
equations. form of the RG equations, correct to leading order in
e=4-d [10]:
the HRT equation are shown along the isochore
p* =po>=0.25 not far from the tricritical density. The dr
growth of k1 when approaching the tricritical point is appar- _QE =2r+(6u—f )(1-2r),
ent from the numerical data although the numerical mesh
size is too small for attempting a quantitative evaluation of
the corresponding tricritical exponent. _Qﬂ: eu—(6u—f )2
As far as the universal critical properties of the Ising fluid dQ '
at a generic critical point along the ferromagnetic line, HRT
does predict the phenomenon of exponent renormalization
[10]. In fact, an analytical study of the exact hierarchy near - d_Q: ef —f(24u—5f ), (10)
dimensiond=4 shows that the long wavelength fluctuations

should be described by two scalar fields, (¢,) which, for  \heref =w2/g2. We have chosen to switch to these simpler
the Ising fluid, represent magnetization and density fluctuagg equations, rather than to follow the full HRT evolution,

0.8

0.4~

Ky
B m e e — — — - — —]
.

tions. The effective action acquires the general form. mainly because this procedure allows for a very close ap-
1 proach to the critical point which would have been otherwise
b1= | dx{ Z|Ve|2+H , , prevented by the uncertainties in the numerical integration of

S 1 62] f 2| el [61.] the partial differential equatiofb). In such a way, we have

been able to study the behavior of thiectivecritical expo-
H[ ¢1,d2]=r p2+g2dp3+udi+wgdie,, (9)  nents when the temperature closely approadhesAs usual,

the RG flow is stopped when the momentum cutQff
which suitably generalizes the familia#* form of simple  matches the physical inverse correlation length~\/2rQ,
fluids. The four coupling constants,@,u,w) are nonuniver- i.e., when 2~ 1. Equationg10) faithfully describe the RG
sal parameters which do not affect the universality class oflow: in particular they display both Ising and Fisher-
the model but may strongly influence the extension of theaenormalized fixed points which can be calculated analyti-
asymptotic regime and the strength of the corrections to theally together with the corresponding critical exponents.
scaling behavior. In particular, the parameteris the Critical indices satisfy scaling relations and, ds= 3, their
“mass” of the strongly fluctuating fieldp, (the magnetiza- values are rather close to the commonly accepted ones:
tion in our casg while u represents the self-interaction of =0, v,=0.6, v,=1.2, a;=0.2 near the Ising fixed point.
this field, analogously to the usual, one component ordefhe Fisher-renormalized exponents are obtained by dividing
parameter case. Insteagf is the “mass term” for the the Ising values by (% «,)=0.8.
weakly fluctuating fieldrepresenting density fluctuations in By numerically integrating these equations we can esti-
our mode). Finally, the coupling constanw is the “mix- mate the behavior of the physical quantitideee energy,
ing” parameters which couples density and magnetizatiorcompressibility, etg.as a function on temperature. In par-
fluctuations and leads to the exponent renormalization. Faticular, the effective critical exponents can be obtained as a
instance, because of this coupling, the susceptibility divergeiinction of the reduced temperature thereby providing a
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08— TABLE I. Number of particlesN and temperatureg of the runs
carried out at the density* =0.3. The second and third columns
are the results for the average enefgy and the average magne-
tization (m) from the run.

N T (W (m)
108 4 —1.095(1) 0.544@)
108 4.3 —0.798(1) 0.4066)
256 4 —1.098(1) 0.529)
256 4.3 —0.754(1) 0.340B)
500 4 —1.1080(9) 0.528%)
0.6¢- Ising 7 500 43 —0.730(1) 0.29468)
1000 4 —1.1153(6) 0.5288)
L 1000 4.3 —0.7138(9) 0.250®)
2048 4.1 —0.9746(7) 0.442()
2048 4.3 —0.7019(7) 0.209¢)

Log (T-T)/T,
the particle positions. The construction of one Wolff cluster
_ _ _is followed by two sweeps through the system, in each of
FIG. 3. Effective exponent for the divergence of the suscepti- \\ hich we try to move each particle once. The maximum
bility as a function of the reduced temperature as predicted by HRTdispIacement of the particles is such that the acceptance rate
The Ising and Fisher-renormalized exponents are marked on th&c particle displacements is around 50%. All runs consist of
axis. The base of the logarithms is 10. - . ;
10° sweeps with the corresponding &30° Wolff updates.

We carried out one run in which we performed 20 sweeps
ough the system between two Wolff updates. It allowed us
to check that the ratio of sweeps to Wolff steps does not
influence the data. The results are listed in Table IIl, which
€hows that there is indeed no such influence.

As for the Heisenberg fluid, we measure the moments of
fhe magnetization distribution. For Ising spins, the magneti-
dQationm of a particle configuration is defined as

measure of the crossover between the unstable Ising fixeﬁj1r
point and the stable Fisher fixed point. A typical result for
the exponentvey=—dIn &dIn(T—Tc) is shown in Fig. 3
where a clear monotonic crossover between the two valu
corresponding to Ising,=0.6) and Fisher renormalized
(v=0.75) occur through several decades. Such a slow cros
over can be easily interpreted as a power law divergence
experimental or numerical data are available in a limite
range of reduced temperatures. Although the effects of these

crossover phenomena on the critical exponents may be con- m=
sidered as due to the presence of strong corrections to scal-

ing, the RG analysis shows that their origin is in fact quiteD ing the simulati h dth
different. Usual corrections to scaling are due to the contri2Ufng the simulations, we store the energy and the magne-

butions of irrelevant operators around a unique fixed point:uzatlon of the current configuration after each tenth Wolff

and are therefore characterized by universal subleading ek'fdate' Ftr'omt'theseccijata, Wecan calciulattetﬁar:omcal atveragets
ponents. Instead, crossovers originate from the competitioﬂ magnetization and energy moments at the temperatures a
of different fixed points which may attract the RG flow up to .
some characteristic length scale. Therefore, in general, the TABLE l. Numbﬁr of pa.rt'CIESN anﬁ temperatures Ef the |
slow change in critical exponents determined by crossoverg > carried out at the densipy” =0.5. The second and third col-

. ﬁmns are the results for the average engngy and the average
cannot be fitted by use of the standard methods developed T L

. . agnetizationm) from the run.

the framework of the corrections to scaling problem.

=1

1
N . (11

N T {u) (m)

lll. SIMULATIONS 108 7.5 ~1.329(3) 0.464¢7)

Simulations of the three-dimensional Ising fluid in the ca- 108 8.5 —0.692(2) 0.277%)
nonical ensemble have been performed. The particles are en-256 7 —1.941(2) 0.6148Y)
closed in a cubic box with periodic boundary conditions. 256 8 —0.804(2) 0.275®)
We vary the temperaturE in our simulations while keep- 500 7.5 —1.234(2) 0.4156)
ing the density fixed. We do this for two densitigs:=0.3 500 7.8 —0.877(2) 0.278(7)
andp* =0.5 (wherep* =po?). The systems have a number 1000 7.6 —1.075(2) 0.34768)
of particles N ranging from N=108 to N=2000 (for 1000 7.9 —0.757(1) 0.201¢0)
p*=0.3) or from N=108 to N=4000 (for p*=0.5. All 2048 7.6 —1.060(1) 0.335(8)
systems are listed in Tables | and II. 2048 7.9 —0.726(1) 0.156@®)
The simulations proceed in nearly the same way as those4000 7.6 —1.057(1) 0.331(7)
for the Heisenberg fluid. We use the Wolff algoritidb] to 4000 7.9 —0.7077(9) 0.118(6)

update the particle spins and intertwine it with the update of
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TABLE lll. Effect of the ratio of move sweepsl to Wolff
updatesN,y. The two runs are carried out at =0.5, T=7.5 and
N=108. Results are shown for the average enétgy the average
magnetizatiof m), the susceptibilityy, and the fourth-order cumu-
lantu,. There is no significant effect of the ratid, /Ny .

0.60

0.50
Ns Ny
¢ 10° (u) (m) X Uy 5" 040
5 0.25 —1.329(3) 0.468.) 0.6123) 0.5081)
1 0.5 —1.329(3) 0.464¢) 0.6152) 0.50368) 0.30

0.20
which we performed the simulations. The histogram re-

weighting technique allows us to calculate these moments a 0.10 , , . .
an arbitrary temperatur@ot too far from the temperatures at 70 7.2 7.4 7.6 7.8 8.0
which we performed the simulationgl6]. T
Error bars were obtained by dividing each run in 50 ,
blocks. Histogram reweighting was carried out on the corre- FIG. 4 Fourth-order c;umulant asa f‘_J“C“O“ of temperature and
sponding blocks of runs at different temperatutbat the system size for the densip* =0.5. The circles show the results of
same number of particles and densitin this way, we ob- individual simulations(error bars on these results are smaller than
. . p - way, the symbol sizg the lines result from multihistogram reweighting.
tained 50 estimates of any quantity we studied at each tem-
perature. Standard deviations were calculated from these aghows the Binder parametay (also called the fourth-order

erages. cumulang [21],
For quantities whose average depends on the sample size
(such as the susceptibilitywe did not use the block results. (m*)

We used results averaged over entire runs to calculate such
guantities. The block results were only used to calculate er-
ror bars on these quantities. where the bracket§) denote a canonical average, as a func-

By varying the number of blocks and its effect on thetion of the temperature for the six system sizes. We deter-
error bars, we verified that 50 was a small enough number dhined the 15 intersection points and their error béhe
blocks to obtain quasi-independent block averages. latter are calculated from 50 intersection points obtained

Our random number generattRNG) was based on two from the 50 block results for each system $i2é&/e fitted
binary feedback shift registers, one of length 9689, the othel22] the intersection pointsT ,uy;) of the curve forN and
of length 127, which are combined by means of theN’ particles to the relatioif;=T.+c/In b with ¢ a constant,
exclusive-or operation. For comparison, we carried out on®=N'/N, N">N [4,5,21). Similarly usj=usc+c'/Inb. The
run with the subtract-with-carrygSWC) RNG [17,18. This  temperatureT, is the critical temperaturey,. the critical
RNG is believed to be inferior to the form¢t9,2(. The  Binder parameter.
results are shown in Table IV. The differences between the The fit gives forN=108 andN" all the larger size¢from
two RNG’s are rather large but too small to substantiate &56 to 4000 particlgsT.=7.7224), c=(3+3)10°% anda
systematic effect of the choice of RNG. goodness of fiQ=0.03 for the critical temperatur@ll tem-

Simulations of systems up to 1000 particles were carriegberatures are in units’kg, kg is Boltzmann’s constaptFor
out on a HP 9000 735 workstation. The systems of 2048 anthe critical Binder parameter we obtain,,=0.4532),
4000 particles ran at a Cray C-90. ¢'=(—-4+11)10 4 Q=0.38.

Taking N=256 we obtain T,=7.7265), ¢
=(-2+3)10% Q=0.10 and u,=0.4533), c’
=(1+2)103, Q=0.45.

At the densityp* =0.5 we carried out simulations of sys-  Taking N=500 (in which case only three intersection
tems f_rom 108 to 4000 par.ticles. Precise run parameters aigints remaih we obtain T.=7.71%6), c=(9=3)10 3,
Ilstgd in Table | together with the average energy and.mango_gg andu,.=0.4594), ¢'=(—5+2)10 3, Q=0.88.
netization at those temperatures and system sizes. Figure 4 Finjte-size scalingFS9 predicts the magnetization &,

m., to vary with the linear system sizeasm.=L ~#'” with

TABLE IV. Comparison of results obtained with the subtract- 8 and » the magnetization and correlation length exponents,
with-carry (SWQ) and the combined shift-registé€SR random respectively[21]. We attempted straight line fits of mn,
number generator: Both runs are car_ried out Wth 108, T=7.5, versus IrL for various estimates of .. If we include all
p*=0.5 and consist of fOswegps with 0.5 10° Wolff updates. systemgfrom 108 to 4000 particlgsn the fits, we obtain the
The CSR data are also shown in Table lil. best straight fits foff.=7.72(1) with, however, a poor best
Q valueQ=0.03. If we limit the fits to systems from 500 to

A. Results for the densityp* =0.5

RNG {w (m) X ta 4000 particles we obtaifi;=7.70(2) with a besQ value
SWC —1.333(3) 0.466() 0.6092) 0.50617) Q=0.40, see Fig. 5. With a final estimale=7.71(2) the
CSR —1.329(3) 0.464¢7) 0.6152)  0.50368) straight fits to systems with a minimum size of 500 particles

give B/v=0.497).
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FIG. 5. Goodness of fiQ of straight-line fits of Inm. versus
In L as a function of the estimated critical temperatiige The fits
are for the densityp* =0.5 and exclude the system sizds- 108
andN=256.

Straight line fits of Ifm?) at T. versus InL for
T.=7.71(2) give B/v=0.9(1).

The exponent ratig/ v with y the susceptibility exponent
has been obtained from the FSS of the susceptibylity

L3

kT (M) —(m)?).

shown in Fig. 6. The maximum of the susceptibility should
scale asy,cL?” [21]. Straight line fits Iny,=c+(y/v)in L
give y/v=1.906(4) but a poo®=0.08, see Fig. 7. A closer
inspection shows that this po® value is due to a slight
scatter of the data points around the best straight line fit. F
this reason, the fit does not change significantly if we limit it
to the four largest system sizesy/v=1.912(8) and
Q=0.02.

8.0 T T T

6.0

X 40

2.0

N=108
L
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1
74
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72
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FIG. 6. Susceptibilityy as a function of the temperature and the
system size for the densip* =0.5. The circles show the results of

individual simulationgerror bars on these results are smaller than| attice

the symbol sizg the lines result from multihistogram reweighting.
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FIG. 7. Circles denote the maximum of the susceptibiiityas
a function of the system length on a log-log scale. Error bars are
smaller than the symbol size. The line is the best straight line fit to
the data. The fit is poor@=0.08) due to a slight scatter in the data,
not visible on this scale.

The expected scaling of the susceptibility |&at, x., is
identical. A straight line fit of Iny. versus InL yields
vlv=1.9244), Q=0.30 for T,=7.71 and all system sizes
included. Limiting the fit to the systems of 500 particles and
more, we obtainy/v=1.930(8) andQ=0.16.

We used three estimators to determine the ratio: 1/
9 In m/dT, 9 logm?/dT, anddu, /JT. All three exhibit a mini-

$hum as a function of the temperature which should diverge

to —o with the system size ds'” [8].

A straight line fit of In@In m/dT),,, versus InL yields
1/v=1.5734), Q=0.01 if all system sizes are included. The
four largest systems give d#1.551), Q=0.28. This
gtrong increase of) indicates a slight curvature in the data
although the change in the slopey i small.

A similar fit for o Innm?dT vyields 1h=1.5629),
Q=0.35 for the four largest system sizes. The estimator
du,ldT gives 1b=1.522), Q=0.37.

Our final estimates arel.=7.71(2), u,.,=0.456),
Blv=0.512), y/v=1.922), and 1/ =1.54(3) for the den-
sity p* =0.5. They are summarized in Table V.

A striking feature in these results is the low estimate of
vlv. The Ising lattice model hag/v=1.963(3)[9] and this
ratio should not change for the fluid if the arguments of
Fisher renormalization hold. We checked whether our results
can be explained by corrections to FSS. We fitted the data
for xm to the functional formy,(L)=c,L”"+c,L YT/,

All system sizes were included in the fit. The ratiov is

TABLE V. Summary of results. Our exponent ratios have been
obtained without allowing for corrections to FSS. The results for
the Ising lattice are taken from Bimet al. [9].

p* T, Uge Blv ylv v
0.3 4.2595) 0.4624) 0.542) 1.9318) 1.474)
0.5 7.712) 0.4566) 0.5142) 1.922) 1.543)

4.51152) 0.46523) 0.5192) 1.9633) 1.5872)
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fixed at 1.963 in the fit and the correction expongrshould

be positive. Fol in the rangey=0.2—0.9 we obtain the fits 14

with Q values in the range 0.12-0.19. The maxim@n

values occur foy=0.5-0.6. Fory=0.6 the amplitudes are

c;=(1.60+0.01)10 2 and ¢c,=(6.7+0.4)10 3. These fits 1ok

are better, although not convincingly good, than the straight &

line fits of In x,, versus InL in which y/v is a fit parameter. g
Equally striking is our estimate for &/which is in be- % 06 -

tween the value 1.588%) for the Ising model and the value =

1.4094) which is expected from “Fisher renormalization” -

(both values are obtained from RE8]). We tried to repro- 02

duce both these values by allowing for corrections to scaling.

We fitted the data for the minimum &fIn nVJT to the func-

tional form g In m/dT=a,L. Y +a,L Y+, o2 \ )
With 1/v fixed at 1.5887 and all data included in the fit, 1.8 23 InL 28
we obtain very poor fits for all values gf For example, we
obtain Q=0.01 for y=0.01 decreasing t®Q=0.005 for FIG. 8. Circles denote the logarithmic derivative of the magne-

y=0.5. If on the other hand we fix &/at 1.409 we obtain jzationm as a function of the system lengthon a log-log scale.
Q=0.24 fory=0.3, decreasing tQ=0.23 fory=0.2 and  Error bars are smaller than the symbol size. The line is the best
Q=0.19 at y=04. The amplitudes area;=(7.92 straight line fit to the data for the four largest system sizes. The
+0.07)10 2 anda,=(—5.6=0.1)10 2. smallest system size deviates visibly from the fit.

However, if we limit the fit to the four largest system
sizes we obtain very different results. If we fixyldt 1.5887 is not possible to fit all data to a straight line on a log-log
we obtain fits that become increasingly better with increasingcale. Therefore we omitted the= 108 system from our fits.
y. For example, we obtai@® =0.89 for an unacceptably high The estimatord In nVdT yields 1h=1.491), Q=0.57,
valuey=2.5. If, on the other hand, we fix d/at 1.409 we g In n?/dT vyields 1k=1.50(1), Q=0.47, and du,/dT
obtain increasingly better fits for decreasing valueg.ofor  vyields 1~#=1.41(3), Q=0.37 If, for the latter estimator, we
example, we obtainQ=0.07 for y=0.3 increasing to |imit the fit to the three largest systems we obtain 1/
Q=0.19 fory=0.01. =1.426), Q=0.16.

We conclude that our data are not good enough to reliably Combining these results we finally estimat&,
study corrections to scaling. We extract leading-order expo=4.2595), u,.=0.4634), B/v=0.542), y/v=1.9318),
nents from our fits and bear in mind that they should beand 1/=1.47(4) forp* =0.3. The results are summarized

considered as “effective exponents.” in Table V.
We also inspecte@for both densitiesthe specific heat,,
B. Results for the densityp* =0.3 which, as a function of temperature, has a maximum. The

h vsis fon* = is similar but d includ maximum grows with increasing system size. It proved,
The analysis fop™ =0.3 Is similar but does not include a g eyer, difficult to distinguish between a developing diver-
system of 4000 particles. The largest system that we S'mbbence and a developing cusp singularity, i.e., between

lated at this density contains 2048 particles. ~0 anda..<0.The arowth of the peak heiaht in passin
The fits of the intersection points of the Binder parameterfc:gfrfn a Sysctvgfrfn oﬁ\l pa?ticles to a s)r/)stem o:‘grOLIJgf?IyIS{ISZI °

i = = —_— 73 = i .— . . . . .
Zi’;ld ;I;:Cr;;efgjr)e C;rg dl?i—sz)lfs q’z?_%?(;o: ir;ioc—“stl particles neither accelerates nor slows down with increasing
4c— Y. ) =(2=* ,

Q=0.88 for the critical Binder parameter. These data are for

the intersection with th&l=108 curve. The intersection with

the N=256 curve givesT.,=4.2595), c=(—8+30)10 4,

Q=0.54 andu,.=0.4634), c=(7+20)10 4, Q=0.63. In comparison with the results for the Heisenberg fluid
Straight line fits of Inm versus InL are good for an esti- [2], the simulation data for the Ising fluid are less accurate.

mate of T, as T.=4.261). The goodness of fit peaks at In particular, corrections to finite-size scaling play a larger

IV. DISCUSSION

Q=0.94. The fit includes all system sizes. role. This is manifested in lowdp values for many fits and
With a final estimate T.=4.259(5) the fits give the observation that different estimators of a given quantity
Blv=0.542). sometimes give results that are barely consistent with each

Straight line fits of Iny,, versus InL give y/v=1.9416), other. For example,,, predicts a ratioy/v=1.912(8)
Q=0.23 if all system sizes are included in the fit. If we omit whereasy. gives y/v=1.930(8) at the density* =0.5.
the system of 108 particles we obtaig/v=1.9318), Moreover, appropriate fits that try to explain our results by
Q=0.67. leading-order Isindor Fisher-renormalizedbehavior plus a
Straight line fits of the susceptibility aff, (with  correction term sometimes work reasonably well.
T.=4.259 yield y/»=1.9445), Q=0.19 with all system Not allowing for such corrections to scaling, we obtain a
sizes included. Discarding the smallest system we obtaiset of exponents that is the same for the two densities. They
vlv=1.9337), Q=0.68 satisfy the exponent relation @+ y)/v=d (with d=3):
Our three estimators for i#/all show a pronounced failure (28+ y)/v=2.94(4) atp*=0.5 and 3.014) at p*=0.3.
of the FSS scaling laws for the smallest system, see Fig. 8. Also the critical Binder parameter is the same at the two
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densities. It is not distinguishable from the value for the Ising ] L e s B s s B B
lattice and this is also true for the rat®/ v [8]. On the other
hand, the ratioy/ v appears to be lower than the ratio for the
lattice and so does the exponent .1/ L

This was different for the Heisenberg case for which the 1.5
values ofu,. were significantly different for the lattice and r
the fluid. The exponents it/on the other hand were the i
same. The rati@/ v was slightly higher in the fluid. As far as
the ratioy/v is concerned, the situation for the Heisenberg
and the Ising case is similar. In both cases one finds a valut
for y/v that is significantly lower in the fluid.

Note that our estimates of d/in the Ising fluid are in |
between those for the lattice and the value predicted by 05
Fisher renormalization[3]: 1/v=(1-«,)/v,=1.4094). L 4
This lends support to an interpretation of our data as a cross - 1
over phenomenon. I

In order to better understand the simulation results we R
have tried to mimic the finite-size scaling behavior by use of 1 1.2 1.4 Log L 1.6 1.8 2
renormalization group equations. Clearly, we cannot directly

address the issues related to the ratio because the ap- , ) e )
FIG. 9. Size scaling of the temperature derivative of the inverse

proximations of our RG equatior{40) imply »=0 and then . I o
ylv=2 at both the competing fixed points. However, we Cansusceptlblllty as mimicked by momentum space renormalization

investigate the problem of how the critical exponent group evplution equations. The dotted line shows t_he expected
changes when the characteristic length scale increases: Raéymptom slope 1/=4/3. The base of the logarithms is 10.
equations can be used for getting a qualitative idea about the . ] . _

extent of finite-size corrections to the critical singularity, lower densities even if the critical exponents still present
which is quite an important issue when numerical simula-Slow variations over enormously large length scales, show-
tions are performed near a critical point. In fact, momenturdng that in this system quantitative results cannot be ex-
space RG, and equivalently HRT, sets a cu@fivhich pre-  tracted from simulations. . _ .
vents the occurrence of long wavelength fluctuations, This compargtlve :_study'su_ggests that simulations of criti-
thereby playing a role analogous to the simulation box gi-cal phenome_na in fluids with internal degrees of freedom, or
mensionL e« 1/Q. This interpretation gets some support from €quivalently in mixtures, can be affected by strong nonuni-
the observation that the Binder parametgy which attains a  Versal crossovers which hide the true asymptotic critical be-
nontrivial value onlyat the critical point as—, can be havior giving effective critical .exponents with .rather gooq
expressed, via the correspondetce 1/Q, in terms of the ~ POWer law fits slowly approaching the asymptotic value. This

fixed point solution of the RG equations. Therefore, up to a?he€nomenology is related to the presence of two competing
proportionality factor, we can identify the cuto@ with the ~ fx€d points which, in our model, correspond to Ising and
reciprocal of the box size and extract information about the Sher renormalized critical exponents. More generally, we
finite-size scaling from the RG flow. In particular we have expect similar crossovers whenever an unsta_blg fixed point
solved the approximate RG equatiofi®) with initial con- strongly affects the RG flow over nonnegligible length

ditions appropriate for the critical point at the two densitiesSCa/€s. In these circumstances, the interpretation of experi-
p* =0.5 andp* = 0.3 which have been investigated by simu- mental or simulation data on the basis of a simple power law

lation. Figure 9 shows th@educed temperature derivative °€havior which characterizes the asymptotic region may lead
of the inverse susceptibility as a function of the “box size” to the apparent violation of scaling laws and of the univer-

L=2#/Q along the momentum cutoff integration. From sality of critical phenomena.

scaling law arguments, this derivative should diverge in both "€ model we investigated here, due to its simplicity,
cases a& 1 with v=1v,/(1— a,)=0.75 within our approxi- turns out to be particularly suitable for the study of crossover

mation. In fact, if the integration is carried out up to ex- phenomena and finite-size scaling both via numerical simu-

tremely largeL this result is correctly recovered. However, lations ar_1d renormalizaﬁon group techniques..The Same Sys-
up to boxes of_~100s (which correspond to hundreds of tem, besides representing the simplest classical model of a

thousands of particles in the simulation bdRke results are fluid Wlth'lnternal dggrees of freedom, can pe fruitiully used
for studying the critical phenomena associated to the pres-

ence of a tricritical point and the competition between mag-

effective exponentvr~0.66 which is still considerably . . .
smaller than the asymptotic one. Instead, the higher densi etic phase transition and phase separation. We hope these
i roblems will be addressed in future works.

seems still dominated by the Ising fixed point with a corre-
sponding critical exponent which is only slightly larger
than its Ising valuer_/, =0.6, within this approximat@on. ACKNOWLEDGMENT
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