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Ferromagnetic order-disorder transition in an Ising fluid
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~Received 1 July 1997!

The Ising fluid we have investigated is a system of hard spheres which carry an Ising spin. A short range
ferromagnetic potential acts between particles. A renormalization group study of the model, based on the
hierarchical reference theory of fluids, gives quantitative predictions on the phase diagram and the phase
boundaries. The model can show two distinct phase transitions: a magnetic order-disorder transition and a
liquid-vapor phase separation which meet at a tricritical point. The critical properties of the magnetic transition
have been studied by Monte Carlo simulations at two densities in systems with up to 4000 particles. The
locations of the critical points are in good agreement with the theoretical estimates. However, a finite-size
scaling analysis shows effective critical exponents which deviate from the expected Ising values. These dis-
crepancies resemble the analogous result of a previous numerical study of Heisenberg fluids. Here they are
interpreted as due to crossover phenomena, partly related to Fisher exponent renormalization induced by the
presence of noncritical density fluctuations.@S1063-651X~97!09012-0#

PACS number~s!: 61.20.2p, 64.60.Fr
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I. INTRODUCTION

Models of fluids made of particles with some internal d
gree of freedom like a spin are of current theoretical inter
@1#. Phase transitions of different character can take plac
such systems, as studies of the phase diagram and o
associated critical phenomena have shown. In particular
cent simulations studied the magnetic transition in
Heisenberg fluid@2#. This is a classical fluid in which al
particles carry a Heisenberg spin. Two particles interact
an exchangelike potential. In addition they have a hard c
which prevents them from overlapping. Such a fluid d
plays, besides transitions between a solid, a liquid, an
vapor phase, a magnetic order-disorder transition. The si
lations studied the critical properties of this transition in t
fluid region, away from the liquid-vapor phase boundary.
finite-size scaling analysis gave critical exponents that
different from those for the lattice Heisenberg model. Als
the obtained critical fourth-order cumulant is different fro
the value for the lattice.

These results differ from what is expected theoretica
and are not well understood. They could be ascribed to
use of too-small systems in the simulations, prohibiting
observation of the correct critical exponents. However,
presence of such ‘‘corrections to scaling’’ is rendered l
plausible by the fact that the same exponents are obtaine
the three fluid densities which were studied. Moreover,
critical indices satisfy an exact exponent relation and
critical cumulants show no trend towards the value for
lattice when the system size is increased. They do, howe
show a slight dependence on the fluid’s density@2#.

A possible theoretical picture of the magnetic phase tr
sition is that of ‘‘Fisher renormalization’’@3#. It relates the
critical exponents of the fluid to the exponents of the cor
sponding lattice model. For example, the exponents for
Ising fluid are expressed in terms of those for the Ising lat
model. Fisher renormalization predicts that in the canon
571063-651X/98/57~1!/465~10!/$15.00
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ensemble~in which the simulations were carried out! the
critical exponents of the fluid and the lattice are the sam
the lattice specific heat exponenta l is negative. If, on the
other hand, the lattice specific heat diverges (a l.0), the
exponents for the fluid are expected to be ‘‘renormalized’’
the following way. The fluid specific heat exponent becom
a52a l /(12a l), the magnetization exponentb becomes
b5b l /(12a l) ~with b l the lattice exponent!, the suscepti-
bility exponentg becomesg5g l /(12a l) ~with g l the lat-
tice exponent!, and similarly for the correlation length expo
nentn5n l /(12a l).

The lattice specific heat exponent appeared to be w
established by three successive simulations@4–6#:
a l520.144(9). This value is also in reasonable agreeme
with series expansions and transfer matrix studies~see the
references in@5,6#!. It would imply that the lattice and the
fluid exponents are the same. However, the most rece
published simulation of the Heisenberg lattice@7# differs
sharply from previous results and givesa l50.075(2).
Hence the sign ofa l remains in doubt although we consid
the dissonant result as questionable.

There are no such diverging views on the lattice Isi
model in three dimensions. Monte Carlo~MC! simulations,
Monte Carlo renormalization group, transfer matrix, ande-
expansion studies~see @8,9#, and references therein! give
a l.0 ~a l50.110(2)@9#!. Hence, according to Fisher reno
malization and insisting thata l,0 for the Heisenberg
model, the situation for the Ising fluid should be differen
The Ising fluid is defined as the Heisenberg fluid with t
Heisenberg spins replaced by Ising spins. Even though
predictions of Fisher renormalization are not borne out
the Heisenberg fluid, it is worthwhile to see what happens
the Ising fluid.

An additional motivation for this study is that for the Isin
fluid it is possible to study in detail the criticality and th
crossover phenomena by an appropriate analytical the
@10#, the hierarchical reference theory~HRT!, initially devel-
465 © 1998 The American Physical Society



t
es
l
o
of
sy
dy
th

t-

he
o

ca
e

io
a
e

ly
v

p-
al
to
w
en

r

nd

ile
t
la
n

lin

ow
en
en
u

b
th
u

ro
a
sa
th

ids
to

ry
iza-

p-
tion

ry
by

d a

l

the
he
lity
-

e
we
m
ix-

rd-

ase
s
nct
: a
ity
f

ty-
to

he
s

x-
ase
ti-
al
all
ing

466 57M. J. P. NIJMEIJER, A. PAROLA, AND L. REATTO
oped for simple fluids and mixtures but easily applicable
the Ising fluid. HRT is a liquid-state theory which embodi
the renormalization group~RG! structure close to a critica
point. In HRT one studies how the free energy and the c
relation functions evolve upon inclusion of fluctuations
increasing length scales, starting with the properties of a
tem with purely repulsive forces. With HRT one can stu
the universal as well as the nonuniversal quantities and
possible presence of crossover effects.

Simulations of the two-dimensional Ising fluid and its la
tice gas representation exist already@11#. These simulations
studied the point where the magnetic transition line touc
the liquid-vapor line. The simulations found that the tw
lines connect in a tricritical point and measured the tricriti
exponents. The study, carried out in the grand-canonical
semble, did not address the issue of Fisher renormalizat

We carried out MC simulations of the three-dimension
Ising fluid, in close analogy with the simulations for th
Heisenberg fluid@2#. We have studied by simulations on
the magnetic order-disorder transition. In addition, we ha
studied the Ising fluid by HRT in an Ornstein-Zernike a
proximation and the effects of a finite cutoff in the renorm
ization scheme are examined. In this scheme a finite cu
mimics the finite size of simulated systems. The model
have studied consists of particles interacting with the pot
tial

f~r i ,r j ,si ,sj !5H `, r i j ,s

2J~r i j !sisj , s,r i j ,2.5s

0, r i j .2.5s

~1!

where f(r i ,r j ,si ,sj ) denotes the potential between a pa
ticle i with position r i and spinsi and a particlej with
position r j and spinsj . The spins can take the values 1 a
21. A hard-core repulsion at distancesr i j (r i j 5ur i2r j u)
smaller thans prohibits these interparticle distances wh
two particles further than 2.5s away from each other do no
interact. The Ising-like potential, acting at intermolecu
distancer , has a ferromagnetic, Yukawa type coupling co
stant:

J~r !5e
s

r
expS 2r 1s

s D , ~2!

wheree sets the energy scale of the interaction. The coup
constant is the same as used for the Heisenberg fluid@2#.

The paper is organized as follows. In Sec. II we sh
how the model can be studied by HRT. In Sec. III we pres
the method and the results of the simulations at two differ
densities. A final section contains a discussion of the res
and our conclusions.

II. RENORMALIZATION GROUP ANALYSIS

In this section we present an analysis of the Ising fluid
renormalization group methods, in order to determine
general features of the phase diagram and the expected
versality classes at the critical points. We adopt a mic
scopic implementation of momentum space RG, which
lows for a rather accurate study of the nonuniver
properties of a model together with the exact treatment of
o

r-

s-

e

s

l
n-
n.
l

e

-
ff
e
-

-

r
-

g

t
t

lts

y
e
ni-
-
l-
l
e

universal features within thee-expansion framework. This
method is known as hierarchical reference theory of flu
@10# and has been previously applied to simple fluids and
the Ising model. An extension of the formalism to bina
mixtures was also provided showing that Fisher renormal
tion of the critical exponents due to field mixing@3# has to be
expected at generic critical points of binary fluids when a
proached along a regular path in the density-concentra
plane.

The HRT description of critical phenomena in bina
mixtures can be directly applied to the Ising fluid problem
observing that the mapping (↑,↓)→(A,B) which associates
an up ~down! spin to an ‘‘A’’ ~‘‘ B’’ ! particle provides a
correspondence between the ferromagnetic Ising fluid an
mixture of hard spheres with attractive~repulsive! interac-
tions between like~unlike! particles. By introducing the tota
density of the mixturer5rA1rB and the density difference
c5rA2rB we can express the magnetic properties of
Ising fluid in terms of the corresponding quantities in t
mixture. In particular, the magnetization and susceptibi
are related to the concentrationx and the osmotic compress
ibility by

m→c5r~2x21!,

x→F 1

V

]2A

]c2 G21

, ~3!

whereA is the Helmholtz free energy. In order to get som
rough information on the phase diagram to be expected,
can perform a mean field study of the model starting fro
the approximate representation of the free energy of the m
ture:

2bA~rA ,rB ,T!52bAHS
ex~rA1rB!1VF2rA ln rAs3

2rB ln rBs31
ba

2
~rA2rB!2G , ~4!

whereAHS
ex is the excess Helmholtz free energy of a ha

sphere fluid at densityrA1rB anda;15.32es3 is the inte-
gral of the ~truncated! Yukawa potential~2! which defines
our model. This mean field approximation leads to the ph
diagram of Fig. 1~a! where the projection of the critical line
on the density-magnetization plane is shown. Two disti
second-order transitions are visible in this approximation
ferromagnetic critical line which extends up to high dens
and a liquid-vapor critical line joining the critical points o
the two fully polarized states. In Fig. 1~b!, the ferromagnetic
critical line at zero magnetization is plotted in the densi
temperature plane: This is the transition we are going
study in some detail in the following. The intersection of t
two critical lines gives rise to a tricritical point which i
predicted to occur at fairly low density (r ts

3;0.1) within
mean field approximation. Mean field theory is usually e
pected to give a good qualitative description of the ph
diagram even if fluctuations are likely to modify the quan
tative details and will certainly lead to nonclassical critic
exponents. In particular, a binary mixture is believed to f
in the same universality class as simple fluids and Is
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57 467FERROMAGNETIC ORDER-DISORDER TRANSITION IN . . .
model when its physical properties are expressed as a fu
tion of fields ~i.e., temperature and chemical potential!
rather thandensities@12#. As noted by Fisher@3#, in the
density-concentration~here density-magnetization! plane, the
critical exponents turn out to berenormalizedby a factor
1/(12a I) due to the nonanalytic relationship between de
sity and chemical potential. Herea I represents the Ising
critical exponent governing the divergence of the speci
heat. Such a Fisher renormalization of critical exponents
however, hard to detect because of the generally small
duced temperature range where the power laws characte
ing the critical singularity acquire the (12a I) correction
@13#. Low density critical points and vicinity of critical end
points have been recently identified as favorable conditio
for the observability of Fisher renormalization@14#. An in-
teresting question to be addressed is whether the Ising fl
model provides a case where signs of exponent renormal
tion may be detected in numerical simulations. In order
investigate this problem from the theoretical side, howev
considerably more powerful tools than mean field appro
mations are required.

Renormalization group ideas can be directly applied to
microscopic model of binary mixture by introducing a cuto
wave vectorQ for density and concentration fluctuations an
deriving an exact hierarchy of equations describing the e
lution of physical quantities when the momentum cutoffQ is
changed. In the HRT approach this is achieved by definin
sequence of auxiliary systems characterized by cutoff dep
dent ferromagnetic interactionsJQ(r ) whose Fourier compo-
nents coincide with those of the fully interacting system
wave vectorsk larger thanQ while vanishing identically for
k,Q. At the limiting value Q5` fluctuations over all
length scales are suppressed thereby recovering the m

FIG. 1. Mean field critical lines of the Ising fluid projected ont
in the density-magnetization plane~a!. The continuous line is the
magnetic transition, the dashed line is the liquid-vapor critical lin
In ~b! the magnetic critical line is shown in the density-temperatu
plane. Open squares are the estimates of HRT. The Monte C
values atr* 50.5 andr* 50.3 are represented by full squares
barely distinguishable from the HRT values. The HRT estimate
the tricritical point is marked by an open circle.
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field picture, while atQ50 the fully interacting model is
restored. Therefore the rather artificial introduction of t
cutoff wave vectorQ is a mean for gradually introducing
fluctuations into the model. The exact ‘‘evolution’’ equatio
for the fluctuation contributionA to the Helmholtz free en-
ergy in ad-dimensional model of mixture considerably sim
plifies with respect to the case of a generic mixture@10# due
to the special symmetry of the Ising fluid and reads

2
d

dQ S 2bAQ

V D5
Vd

2~2p!d Qd21 ln@11Fcc
Q ~k!bJ~k!#,

~5!

whereVd is thed-dimensional solid angle,J(k) is the Fou-
rier transform of the truncated Yukawa interactionJ(r ), Eq.
~2!, andFcc

Q is the particular combination of the partial stru
ture factors, at cutoffQ, which governs concentration fluc
tuations:

Fcc~k!5rASAA~k!1rBSBB~k!22ArArBSAB~k!. ~6!

This differential equation can be studied by introducing
approximaterelationship expressing the structure factors
terms of the free energy. The closure we adopted suita
generalizes the well known random phase approximation
liquid-state theory and is conveniently expressed as an an
for the wave vector dependence of the direct correlat
functionsCi j of the mixture, which are algebraically relate
to the partial structure factors by the Ornstein Zernike eq
tion. Here, the labels (i , j ) identify the type~i.e., spin! of the
particles. More precisely, the closure relation we have st
ied is

Ci j
Q~k!5cHS~k!1l i j

QJ~k!, ~7!

where cHS are the direct correlation function of the har
sphere fluid and the parametersl i j

Q are defined by the re
quirement that our approximation~7! satisfies the exact com
pressibility sum rule which relates the long wavelength lim
of the direct correlation functions to the second density
rivatives of the free energy:

Ci j
Q~k50!5

]2~2bAQ/V!

]r i]r j
. ~8!

Therefore Eq.~5! becomes apartial differential equation for
the free energy density as a function of the cutoffQ and of
the density of the two species (rA ,rB). Such an equation ha
been solved numerically by an implicit finite differenc
scheme on a 20320 mesh in the density-concentration plan
The ferromagnetic critical temperatures at several dens
have been determined and are shown by open symbo
Fig. 1~b!. We see that the HRT result is close to the me
field estimate at the higher densities while deviating near
tricritical point which we have approximately located at
density considerably higher than the mean field o
r ts

3;0.27, kTt;3.35e ~in mean field r ts
3;0.1,

kTt;1.5e!.
The occurrence of a tricritical point at the end point of t

critical line is a direct consequence of the up-down symm
try of the Ising fluid model and is generally expected in th
system. In Fig. 2 results from the numerical integration
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468 57M. J. P. NIJMEIJER, A. PAROLA, AND L. REATTO
the HRT equation are shown along the isocho
r* 5rs350.25 not far from the tricritical density. Th
growth ofkT when approaching the tricritical point is appa
ent from the numerical data although the numerical m
size is too small for attempting a quantitative evaluation
the corresponding tricritical exponent.

As far as the universal critical properties of the Ising flu
at a generic critical point along the ferromagnetic line, HR
does predict the phenomenon of exponent renormaliza
@10#. In fact, an analytical study of the exact hierarchy ne
dimensiond54 shows that the long wavelength fluctuatio
should be described by two scalar fields (f1 ,f2) which, for
the Ising fluid, represent magnetization and density fluct
tions. The effective action acquires the general form.

S@f1 ,f2#5E dxH 1

2
u¹f1u21H@f1 ,f2#J ,

H@f1 ,f2#5rf1
21g2f2

21uf1
41wgf1

2f2 , ~9!

which suitably generalizes the familiarf4 form of simple
fluids. The four coupling constants (r ,g,u,w) are nonuniver-
sal parameters which do not affect the universality class
the model but may strongly influence the extension of
asymptotic regime and the strength of the corrections to
scaling behavior. In particular, the parameterr is the
‘‘mass’’ of the strongly fluctuating fieldf1 ~the magnetiza-
tion in our case!, while u represents the self-interaction o
this field, analogously to the usual, one component or
parameter case. Insteadg2 is the ‘‘mass term’’ for the
weakly fluctuating field~representing density fluctuations
our model!. Finally, the coupling constantw is the ‘‘mix-
ing’’ parameters which couples density and magnetizat
fluctuations and leads to the exponent renormalization.
instance, because of this coupling, the susceptibility diver

FIG. 2. Dimensionless isothermal compressibility as a funct
of temperature along the isochorer* 50.25 close to the tricritical
density. The dashed line shows an estimate of the tricritical t
perature. Data are obtained by integration of the nonlinear H
equations.
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with an exponentg I /(12a I), slightly larger than the corre
sponding Ising value, when the temperature approache
critical value. At the same time the isothermal compressi
ity also diverges at the ferromagnetic transition, with a sm
exponenta I /(12a I), the divergence being induced by th
coupling between the two fluctuations. Ifw50, no exponent
renormalization is present and the isothermal compressib
remains finite. Clearly, the larger is the couplingw, the
stronger are the effects of exponent renormalization. A
tailed study shows that the crossover temperaturet3 scales
as the mixing parameterw raised to the quite large powe
2/a I;17 leading to an extremely sensitive dependence
the crossover phenomenon on the value of the mixing par
eter.

We have used the partial differential equation~5! to ob-
tain estimates for these coupling constants for the Ising flu
by stopping the HRT evolution at a cutoff wave vect
Q0s;0.4, sufficiently small that most of the short wav
length fluctuations have been included and the effective
tion ~9! can be considered a good approximation to the ex
form. The effects of the long wavelength fluctuations ha
been accurately studied by an examination of the effec
action ~9! in dimensiond: The RG flow of the four param-
eters (r ,g,u,w) has been modeled by use of a lineariz
form of the RG equations, correct to leading order
e542d @10#:

2Q
dr

dQ
52r 1~6u2 f !~122r !,

2Q
du

dQ
5eu2~6u2 f !2,

2Q
d f

dQ
5e f 2 f ~24u25 f !, ~10!

wheref 5w2/g2. We have chosen to switch to these simp
RG equations, rather than to follow the full HRT evolutio
mainly because this procedure allows for a very close
proach to the critical point which would have been otherw
prevented by the uncertainties in the numerical integration
the partial differential equation~5!. In such a way, we have
been able to study the behavior of theeffectivecritical expo-
nents when the temperature closely approachesTc . As usual,
the RG flow is stopped when the momentum cutoffQ
matches the physical inverse correlation lengthj21;A2rQ,
i.e., when 2r;1. Equations~10! faithfully describe the RG
flow: in particular they display both Ising and Fishe
renormalized fixed points which can be calculated anal
cally together with the corresponding critical exponen
Critical indices satisfy scaling relations and, ind53, their
values are rather close to the commonly accepted o
h50, n I50.6, g I51.2, a I50.2 near the Ising fixed point
The Fisher-renormalized exponents are obtained by divid
the Ising values by (12a I)50.8.

By numerically integrating these equations we can e
mate the behavior of the physical quantities~free energy,
compressibility, etc.! as a function on temperature. In pa
ticular, the effective critical exponents can be obtained a
function of the reduced temperature thereby providing

n

-
T
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57 469FERROMAGNETIC ORDER-DISORDER TRANSITION IN . . .
measure of the crossover between the unstable Ising fi
point and the stable Fisher fixed point. A typical result f
the exponentneff52d ln j/d ln(T2Tc) is shown in Fig. 3
where a clear monotonic crossover between the two va
corresponding to Ising (n I50.6) and Fisher renormalize
(n50.75) occur through several decades. Such a slow cr
over can be easily interpreted as a power law divergenc
experimental or numerical data are available in a limi
range of reduced temperatures. Although the effects of th
crossover phenomena on the critical exponents may be
sidered as due to the presence of strong corrections to
ing, the RG analysis shows that their origin is in fact qu
different. Usual corrections to scaling are due to the con
butions of irrelevant operators around a unique fixed po
and are therefore characterized by universal subleading
ponents. Instead, crossovers originate from the compet
of different fixed points which may attract the RG flow up
some characteristic length scale. Therefore, in general,
slow change in critical exponents determined by crossov
cannot be fitted by use of the standard methods develope
the framework of the corrections to scaling problem.

III. SIMULATIONS

Simulations of the three-dimensional Ising fluid in the c
nonical ensemble have been performed. The particles are
closed in a cubic box with periodic boundary conditions.

We vary the temperatureT in our simulations while keep
ing the density fixed. We do this for two densities:r* 50.3
andr* 50.5 ~wherer* 5rs3!. The systems have a numb
of particles N ranging from N5108 to N52000 ~for
r* 50.3! or from N5108 to N54000 ~for r* 50.5!. All
systems are listed in Tables I and II.

The simulations proceed in nearly the same way as th
for the Heisenberg fluid. We use the Wolff algorithm@15# to
update the particle spins and intertwine it with the update

FIG. 3. Effective exponentn for the divergence of the suscept
bility as a function of the reduced temperature as predicted by H
The Ising and Fisher-renormalized exponents are marked on
axis. The base of the logarithms is 10.
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the particle positions. The construction of one Wolff clus
is followed by two sweeps through the system, in each
which we try to move each particle once. The maximu
displacement of the particles is such that the acceptance
of particle displacements is around 50%. All runs consist
106 sweeps with the corresponding 0.53106 Wolff updates.

We carried out one run in which we performed 20 swee
through the system between two Wolff updates. It allowed
to check that the ratio of sweeps to Wolff steps does
influence the data. The results are listed in Table III, wh
shows that there is indeed no such influence.

As for the Heisenberg fluid, we measure the moments
the magnetization distribution. For Ising spins, the magn
zationm of a particle configuration is defined as

m5
1

N U(
i 51

N

siU. ~11!

During the simulations, we store the energy and the mag
tization of the current configuration after each tenth Wo
update. From these data, we can calculate canonical aver
of magnetization and energy moments at the temperature

T.
he

TABLE I. Number of particlesN and temperaturesT of the runs
carried out at the densityr* 50.3. The second and third column
are the results for the average energy^u& and the average magne
tization ^m& from the run.

N T ^u& ^m&

108 4 21.095(1) 0.5449~7!

108 4.3 20.798(1) 0.4066~7!

256 4 21.098(1) 0.5297~7!

256 4.3 20.754(1) 0.3407~8!

500 4 21.1080(9) 0.5283~5!

500 4.3 20.730(1) 0.2945~8!

1000 4 21.1153(6) 0.5289~3!

1000 4.3 20.7138(9) 0.2509~8!

2048 4.1 20.9746(7) 0.4421~5!

2048 4.3 20.7019(7) 0.2092~7!

TABLE II. Number of particlesN and temperaturesT of the
runs carried out at the densityr* 50.5. The second and third col
umns are the results for the average energy^u& and the average
magnetization̂ m& from the run.

N T ^u& ^m&

108 7.5 21.329(3) 0.4642~7!

108 8.5 20.692(2) 0.2779~6!

256 7 21.941(2) 0.6148~4!

256 8 20.804(2) 0.2759~6!

500 7.5 21.234(2) 0.4155~6!

500 7.8 20.877(2) 0.2780~7!

1000 7.6 21.075(2) 0.3478~8!

1000 7.9 20.757(1) 0.2012~7!

2048 7.6 21.060(1) 0.3351~8!

2048 7.9 20.726(1) 0.1563~6!

4000 7.6 21.057(1) 0.3310~7!

4000 7.9 20.7077(9) 0.1181~5!



re
s
at

50
re

em
a

s
.

su
e

he
r

th
he
on

th
e

ie
an

-
a

ag
re

r

c-
ter-

ed

n

ts,

t
o

les

-

t-

and
f
an
.

470 57M. J. P. NIJMEIJER, A. PAROLA, AND L. REATTO
which we performed the simulations. The histogram
weighting technique allows us to calculate these moment
an arbitrary temperature~not too far from the temperatures
which we performed the simulations! @16#.

Error bars were obtained by dividing each run in
blocks. Histogram reweighting was carried out on the cor
sponding blocks of runs at different temperatures~but the
same number of particles and density!. In this way, we ob-
tained 50 estimates of any quantity we studied at each t
perature. Standard deviations were calculated from these
erages.

For quantities whose average depends on the sample
~such as the susceptibility!, we did not use the block results
We used results averaged over entire runs to calculate
quantities. The block results were only used to calculate
ror bars on these quantities.

By varying the number of blocks and its effect on t
error bars, we verified that 50 was a small enough numbe
blocks to obtain quasi-independent block averages.

Our random number generator~RNG! was based on two
binary feedback shift registers, one of length 9689, the o
of length 127, which are combined by means of t
exclusive-or operation. For comparison, we carried out
run with the subtract-with-carry~SWC! RNG @17,18#. This
RNG is believed to be inferior to the former@19,20#. The
results are shown in Table IV. The differences between
two RNG’s are rather large but too small to substantiat
systematic effect of the choice of RNG.

Simulations of systems up to 1000 particles were carr
out on a HP 9000 735 workstation. The systems of 2048
4000 particles ran at a Cray C-90.

A. Results for the densityr* 50.5

At the densityr* 50.5 we carried out simulations of sys
tems from 108 to 4000 particles. Precise run parameters
listed in Table I together with the average energy and m
netization at those temperatures and system sizes. Figu

TABLE III. Effect of the ratio of move sweepsNs to Wolff
updatesNW . The two runs are carried out atr* 50.5, T57.5 and
N5108. Results are shown for the average energy^u&, the average
magnetization̂m&, the susceptibilityx, and the fourth-order cumu
lant u4 . There is no significant effect of the ratioNs /NW .

NS

106
NW

106 ^u& ^m& x u4

5 0.25 21.329(3) 0.465~1! 0.612~3! 0.505~1!

1 0.5 21.329(3) 0.4642~7! 0.615~2! 0.5036~8!

TABLE IV. Comparison of results obtained with the subtrac
with-carry ~SWC! and the combined shift-register~CSR! random
number generator. Both runs are carried out withN5108, T57.5,
r* 50.5 and consist of 106 sweeps with 0.53106 Wolff updates.
The CSR data are also shown in Table III.

RNG ^u& ^m& x u4

SWC 21.333(3) 0.4661~7! 0.609~2! 0.5061~7!

CSR 21.329(3) 0.4642~7! 0.615~2! 0.5036~8!
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shows the Binder parameteru4 ~also called the fourth-orde
cumulant! @21#,

u4512
^m4&

3^m2&2 , ~12!

where the bracketŝ& denote a canonical average, as a fun
tion of the temperature for the six system sizes. We de
mined the 15 intersection points and their error bars~the
latter are calculated from 50 intersection points obtain
from the 50 block results for each system size!. We fitted
@22# the intersection points (Ti ,u4i) of the curve forN and
N8 particles to the relationTi5Tc1c/ ln b with c a constant,
b5N8/N, N8.N @4,5,21#. Similarly u4i5u4c1c8/ ln b. The
temperatureTc is the critical temperature,u4c the critical
Binder parameter.

The fit gives forN5108 andN8 all the larger sizes~from
256 to 4000 particles!: Tc57.722(4), c5(363)1023, and a
goodness of fitQ50.03 for the critical temperature~all tem-
peratures are in unitse/kB , kB is Boltzmann’s constant!. For
the critical Binder parameter we obtainu4c50.453(2),
c85(24611)1024, Q50.38.

Taking N5256 we obtain Tc57.726(5), c
5(2263)1023, Q50.10 and u4c50.453(3), c8
5(162)1023, Q50.45.

Taking N5500 ~in which case only three intersectio
points remain! we obtain Tc57.711(6), c5(963)1023,
Q50.89 andu4c50.459(4), c85(2562)1023, Q50.88.

Finite-size scaling~FSS! predicts the magnetization atTc ,
mc , to vary with the linear system sizeL asmc}L2b/n with
b andn the magnetization and correlation length exponen
respectively@21#. We attempted straight line fits of lnmc
versus lnL for various estimates ofTc . If we include all
systems~from 108 to 4000 particles! in the fits, we obtain the
best straight fits forTc57.72(1) with, however, a poor bes
Q valueQ50.03. If we limit the fits to systems from 500 t
4000 particles we obtainTc57.70(2) with a bestQ value
Q50.40, see Fig. 5. With a final estimateTc57.71(2) the
straight fits to systems with a minimum size of 500 partic
give b/n50.49(7).

FIG. 4. Fourth-order cumulant as a function of temperature
system size for the densityr* 50.5. The circles show the results o
individual simulations~error bars on these results are smaller th
the symbol size!, the lines result from multihistogram reweighting
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Straight line fits of ln̂m2& at Tc versus lnL for
Tc57.71(2) give 2b/n50.9(1).

The exponent ratiog/n with g the susceptibility exponen
has been obtained from the FSS of the susceptibilityx:

x5
L3

kBT
~^m2&2^m&2!. ~13!

The susceptibilities as a function of the temperature
shown in Fig. 6. The maximum of the susceptibility shou
scale asxm}Lg/n @21#. Straight line fits lnxm5c1(g/n)ln L
give g/n51.906(4) but a poorQ50.08, see Fig. 7. A close
inspection shows that this poorQ value is due to a sligh
scatter of the data points around the best straight line fit.
this reason, the fit does not change significantly if we limi
to the four largest system sizes:g/n51.912(8) and
Q50.02.

FIG. 5. Goodness of fitQ of straight-line fits of lnmc versus
ln L as a function of the estimated critical temperatureTc . The fits
are for the densityr* 50.5 and exclude the system sizesN5108
andN5256.

FIG. 6. Susceptibilityx as a function of the temperature and t
system size for the densityr* 50.5. The circles show the results o
individual simulations~error bars on these results are smaller th
the symbol size!, the lines result from multihistogram reweightin
e

or
t

The expected scaling of the susceptibility atTc , xc , is
identical. A straight line fit of lnxc versus lnL yields
g/n51.924(4), Q50.30 for Tc57.71 and all system size
included. Limiting the fit to the systems of 500 particles a
more, we obtaing/n51.930(8) andQ50.16.

We used three estimators to determine the ratio 1n:
] ln m/]T, ] logm2/]T, and]u4 /]T. All three exhibit a mini-
mum as a function of the temperature which should dive
to 2` with the system size asL1/n @8#.

A straight line fit of ln(] ln m/]T)min versus lnL yields
1/n51.573(4), Q50.01 if all system sizes are included. Th
four largest systems give 1/n51.55(1), Q50.28. This
strong increase ofQ indicates a slight curvature in the da
although the change in the slope 1/n is small.

A similar fit for ] ln m2/]T yields 1/n51.562(9),
Q50.35 for the four largest system sizes. The estima
]u4 /]T gives 1/n51.52(2), Q50.37.

Our final estimates areTc57.71(2), u4c50.456(6),
b/n50.51(2), g/n51.92(2), and 1/n51.54(3) for the den-
sity r* 50.5. They are summarized in Table V.

A striking feature in these results is the low estimate
g/n. The Ising lattice model hasg/n51.963(3)@9# and this
ratio should not change for the fluid if the arguments
Fisher renormalization hold. We checked whether our res
can be explained by corrections to FSS. We fitted the d
for xm to the functional formxm(L)5c1Lg/n1c2L2y1(g/n).
All system sizes were included in the fit. The ratiog/n is

n

FIG. 7. Circles denote the maximum of the susceptibilityxm as
a function of the system lengthL on a log-log scale. Error bars ar
smaller than the symbol size. The line is the best straight line fi
the data. The fit is poor (Q50.08) due to a slight scatter in the dat
not visible on this scale.

TABLE V. Summary of results. Our exponent ratios have be
obtained without allowing for corrections to FSS. The results
the Ising lattice are taken from Blo¨te et al. @9#.

r* Tc u4c b/n g/n 1/n

0.3 4.259~5! 0.462~4! 0.54~2! 1.931~8! 1.47~4!

0.5 7.71~2! 0.456~6! 0.51~2! 1.92~2! 1.54~3!

Lattice 4.51152~2! 0.4652~3! 0.519~2! 1.963~3! 1.587~2!
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fixed at 1.963 in the fit and the correction exponenty should
be positive. Fory in the rangey50.2–0.9 we obtain the fits
with Q values in the range 0.12–0.19. The maximumQ
values occur fory50.5– 0.6. Fory50.6 the amplitudes are
c15(1.6060.01)1022 and c25(6.760.4)1023. These fits
are better, although not convincingly good, than the stra
line fits of lnxm versus lnL in which g/n is a fit parameter.

Equally striking is our estimate for 1/n which is in be-
tween the value 1.5887~4! for the Ising model and the valu
1.409~4! which is expected from ‘‘Fisher renormalization
~both values are obtained from Ref.@8#!. We tried to repro-
duce both these values by allowing for corrections to scal
We fitted the data for the minimum of] ln m/]T to the func-
tional form ] ln m/]T5a1L

1/n1a2L2y1(1/n).
With 1/n fixed at 1.5887 and all data included in the fi

we obtain very poor fits for all values ofy. For example, we
obtain Q50.01 for y50.01 decreasing toQ50.005 for
y50.5. If on the other hand we fix 1/n at 1.409 we obtain
Q50.24 for y50.3, decreasing toQ50.23 for y50.2 and
Q50.19 at y50.4. The amplitudes area15(7.92
60.07)1022 anda25(25.660.1)1022.

However, if we limit the fit to the four largest system
sizes we obtain very different results. If we fix 1/n at 1.5887
we obtain fits that become increasingly better with increas
y. For example, we obtainQ50.89 for an unacceptably hig
value y52.5. If, on the other hand, we fix 1/n at 1.409 we
obtain increasingly better fits for decreasing values ofy. For
example, we obtainQ50.07 for y50.3 increasing to
Q50.19 for y50.01.

We conclude that our data are not good enough to relia
study corrections to scaling. We extract leading-order ex
nents from our fits and bear in mind that they should
considered as ‘‘effective exponents.’’

B. Results for the densityr* 50.3

The analysis forr* 50.3 is similar but does not include
system of 4000 particles. The largest system that we si
lated at this density contains 2048 particles.

The fits of the intersection points of the Binder parame
yield Tc54.26(3), c5(2563)1023, Q50.75 for the criti-
cal temperature andu4c50.466(2), c5(261)1023,
Q50.88 for the critical Binder parameter. These data are
the intersection with theN5108 curve. The intersection with
the N5256 curve givesTc54.259(5), c5(28630)1024,
Q50.54 andu4c50.462(4), c5(7620)1024, Q50.63.

Straight line fits of lnmc versus lnL are good for an esti-
mate of Tc as Tc54.26(1). The goodness of fit peaks a
Q50.94. The fit includes all system sizes.

With a final estimate Tc54.259(5) the fits give
b/n50.54(2).

Straight line fits of lnxm versus lnL give g/n51.941(6),
Q50.23 if all system sizes are included in the fit. If we om
the system of 108 particles we obtaing/n51.931(8),
Q50.67.

Straight line fits of the susceptibility atTc ~with
Tc54.259! yield g/n51.942(5), Q50.19 with all system
sizes included. Discarding the smallest system we ob
g/n51.932(7), Q50.68

Our three estimators for 1/n all show a pronounced failure
of the FSS scaling laws for the smallest system, see Fig.
t
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is not possible to fit all data to a straight line on a log-l
scale. Therefore we omitted theN5108 system from our fits.

The estimator] ln m/]T yields 1/n51.48(1), Q50.57,
] ln m2/]T yields 1/n51.50(1), Q50.47, and ]u4 /]T
yields 1/n51.41(3), Q50.37 If, for the latter estimator, we
limit the fit to the three largest systems we obtain 1n
51.42(6), Q50.16.

Combining these results we finally estimateTc
54.259(5), u4c50.462(4), b/n50.54(2), g/n51.931(8),
and 1/n51.47(4) forr* 50.3. The results are summarize
in Table V.

We also inspected~for both densities! the specific heatcV
which, as a function of temperature, has a maximum. T
maximum grows with increasing system size. It prove
however, difficult to distinguish between a developing dive
gence and a developing cusp singularity, i.e., betw
aeff.0 andaeff,0. The growth of the peak height in passin
from a system ofN particles to a system of roughly 2N
particles neither accelerates nor slows down with increas
N.

IV. DISCUSSION

In comparison with the results for the Heisenberg flu
@2#, the simulation data for the Ising fluid are less accura
In particular, corrections to finite-size scaling play a larg
role. This is manifested in lowerQ values for many fits and
the observation that different estimators of a given quan
sometimes give results that are barely consistent with e
other. For example,xm predicts a ratiog/n51.912(8)
whereasxc gives g/n51.930(8) at the densityr* 50.5.
Moreover, appropriate fits that try to explain our results
leading-order Ising~or Fisher-renormalized! behavior plus a
correction term sometimes work reasonably well.

Not allowing for such corrections to scaling, we obtain
set of exponents that is the same for the two densities. T
satisfy the exponent relation (2b1g)/n5d ~with d53!:
(2b1g)/n52.94(4) at r* 50.5 and 3.01~4! at r* 50.3.
Also the critical Binder parameter is the same at the t

FIG. 8. Circles denote the logarithmic derivative of the magn
tization m as a function of the system lengthL on a log-log scale.
Error bars are smaller than the symbol size. The line is the b
straight line fit to the data for the four largest system sizes. T
smallest system size deviates visibly from the fit.
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densities. It is not distinguishable from the value for the Is
lattice and this is also true for the ratiob/n @8#. On the other
hand, the ratiog/n appears to be lower than the ratio for th
lattice and so does the exponent 1/n.

This was different for the Heisenberg case for which
values ofu4c were significantly different for the lattice an
the fluid. The exponents 1/n on the other hand were th
same. The ratiob/n was slightly higher in the fluid. As far a
the ratiog/n is concerned, the situation for the Heisenbe
and the Ising case is similar. In both cases one finds a v
for g/n that is significantly lower in the fluid.

Note that our estimates of 1/n in the Ising fluid are in
between those for the lattice and the value predicted
Fisher renormalization@3#: 1/n5(12a I)/n I51.409(4).
This lends support to an interpretation of our data as a cr
over phenomenon.

In order to better understand the simulation results
have tried to mimic the finite-size scaling behavior by use
renormalization group equations. Clearly, we cannot dire
address the issues related to the ratiog/n because the ap
proximations of our RG equations~10! imply h50 and then
g/n52 at both the competing fixed points. However, we c
investigate the problem of how the critical exponentn
changes when the characteristic length scale increases
equations can be used for getting a qualitative idea abou
extent of finite-size corrections to the critical singularit
which is quite an important issue when numerical simu
tions are performed near a critical point. In fact, moment
space RG, and equivalently HRT, sets a cutoffQ which pre-
vents the occurrence of long wavelength fluctuatio
thereby playing a role analogous to the simulation box
mension:L}1/Q. This interpretation gets some support fro
the observation that the Binder parameteru4 , which attains a
nontrivial value onlyat the critical point asL→`, can be
expressed, via the correspondenceL↔1/Q, in terms of the
fixed point solution of the RG equations. Therefore, up t
proportionality factor, we can identify the cutoffQ with the
reciprocal of the box size and extract information about
finite-size scaling from the RG flow. In particular we ha
solved the approximate RG equations~10! with initial con-
ditions appropriate for the critical point at the two densit
r* 50.5 andr* 50.3 which have been investigated by sim
lation. Figure 9 shows the~reduced! temperature derivative
of the inverse susceptibility as a function of the ‘‘box size
L52p/Q along the momentum cutoff integration. Fro
scaling law arguments, this derivative should diverge in b
cases asL1/n with n5n I /(12a I)50.75 within our approxi-
mation. In fact, if the integration is carried out up to e
tremely largeL this result is correctly recovered. Howeve
up to boxes ofL;100s ~which correspond to hundreds o
thousands of particles in the simulation box! the results are
different at the two densities. The lower density shows
effective exponentn;0.66 which is still considerably
smaller than the asymptotic one. Instead, the higher den
seems still dominated by the Ising fixed point with a cor
sponding critical exponentn which is only slightly larger
than its Ising valuen I50.6, within this approximation.
Therefore RG analysis reproduces the same qualitative
tures encountered in the simulations, with strong crosso
along the whole magnetic critical line of this model. Som
hint of the true asymptotic critical behavior can be found
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lower densities even if the critical exponents still prese
slow variations over enormously large length scales, sh
ing that in this system quantitative results cannot be
tracted from simulations.

This comparative study suggests that simulations of c
cal phenomena in fluids with internal degrees of freedom
equivalently in mixtures, can be affected by strong nonu
versal crossovers which hide the true asymptotic critical
havior giving effective critical exponents with rather goo
power law fits slowly approaching the asymptotic value. T
phenomenology is related to the presence of two compe
fixed points which, in our model, correspond to Ising a
Fisher renormalized critical exponents. More generally,
expect similar crossovers whenever an unstable fixed p
strongly affects the RG flow over nonnegligible leng
scales. In these circumstances, the interpretation of exp
mental or simulation data on the basis of a simple power
behavior which characterizes the asymptotic region may l
to the apparent violation of scaling laws and of the univ
sality of critical phenomena.

The model we investigated here, due to its simplici
turns out to be particularly suitable for the study of crosso
phenomena and finite-size scaling both via numerical sim
lations and renormalization group techniques. The same
tem, besides representing the simplest classical model
fluid with internal degrees of freedom, can be fruitfully us
for studying the critical phenomena associated to the p
ence of a tricritical point and the competition between ma
netic phase transition and phase separation. We hope t
problems will be addressed in future works.
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FIG. 9. Size scaling of the temperature derivative of the inve
susceptibility as mimicked by momentum space renormaliza
group evolution equations. The dotted line shows the expec
asymptotic slope 1/n54/3. The base of the logarithms is 10.
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