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Optimized random-phase approximations for arbitrary reference systems:
Extremum conditions and thermodynamic consistence
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The optimized random-phase approximati@RPA) for classical liquids is reexamined in the framework of
the generating functional approach to the integral equations. We show that the two main variants of the
approximation correspond to the addition of the same correction to two different first order approximations of
the homogeneous liquid free energy. Furthermore, we show that it is possible to consistently use the ORPA
with arbitrary reference systems described by continuous potentials and that the same approximation is equiva-
lent to a particular extremum condition for the corresponding generating functional. Finally, it is possible to
enforce the thermodynamic consistence between the thermal and the virial route to the equation of state by
requiring the global extremum condition on the generating functig®4l063-651X97)05612-2

PACS numbeps): 61.20.Gy

[. INTRODUCTION dicate that a soft reference system could provide a better
reference system for the ORPA. The original derivation of
The optimized random-phase approximati@RPA) [1] the ORPA does not allow a direct extension of the formulas
for classical liquids has been extensively used in the lasto the case of a reference system interacting without hard
decades to obtain information on the structure and, to a mieore. A nonstandard implementation for liquid alkali metals
nor extent, on the thermodynamics of simple liquids andusing a one component plasma as reference sygb¢nal-
mostly liquid metals[1-6]. The approximation was origi- though providing good results, was not general enough and
nally developed in the context of the perturbative approachvas subject to some criticisnj$2].
to the thermodynamic and structure of simple liqu[ds. More recently, motivated by the need of improving some
More recently, this approximation has been used as an ingresariational calculations for liquid metal4.3], we reviewed
dient for studying liquids in porous med[&@] and critical the ORPA from the computational as well from the theoret-
phenomena in simple liquid8]. The standard implementa- ical point of view. In a previous papé¢t4], we showed that
tion of ORPA is based on the splitting of the interparticle the solution of the ORPA equations is unique and we pro-
potential into a repulsivéreference and an attractivéper-  posed a robust, accurate and efficient numerical algorithm to
turbation part. The effect of the attraction on the pair corre-solve the equations. In the present paper we address the
lation functions of the purely repulsive reference system igproblem of reformulating the theory in order to deal in a
treated at the level of the random-phase approximatiomonsistent way with continuous reference systems without
(RPA) at large distances and by enforcing the excluded volany intermediate introduction of auxiliary hard-sphere sys-
ume effect at short distances. tems[1]. We give a solution to this problem in the same
Numerical studies have shown that the ORPA yields aspirit of Gillan's extension of the mean spherical approxima-
very accurate description of the structure factor and thermation for soft potential{15] and subsequent elaborations by
dynamics of simple fluids. At present, for simple liquids, the Rosenfeld 16].
quality of the ORPA results is comparable to that of state- We found it useful to recast the ORPA equations in the
of-the-art calculations based on the modified hypernetteffamework of the generating functionals for the integral
chain (MHNC) approximation[9,10] or other modern inte- equations of the theory of liquid47]. We show that the two
gral equations like the HMSA11]. different first order expansions of the free energy functional
Usually, the reference system is modeled by hard sphereorresponding to the well-known Gibbs-Bogolioubov and
interactions. However, in some cases, either the nature of th&/eeks-Chandler and Andersen approximations for the free
interactions or results from other theoretical approaches inenergy [18] can be transformed into two closely related
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forms of the ORPA by addition of the same functional. Thethe three-dimensional Fourier transforms of the correspond-
resulting correlation functions differ by the choice of the ing function defined in the space, whilep is the number
reference system pair correlation function. density of the system.

Moreover, we are able to show that our condition for a So far no approximation has been introduced. By comple-
continuous ORPA correction to the pair correlations ismenting Eq. (5 with any approximate relation between
equivalent to an extremum condition for the ORPA generatAh(r), Ac(r), and ¢4(r) we get a closed set of nonlinear
ing functional. Since only the variational determination of all integral equations that has to be solved.
the free parameters of the functional allows the identification In particular, the ORPA closure corresponds to the dual
of its value with the Helmoltz free energy, this choice en-relations:
forces the thermodynamic consistence in a natural way.

The paper is organized as follows. In Sec. Il, we show Ac(r)=—Bey(r) for r>o, (6)
how two versions of the ORPA differing only in the treat-
ment of the reference system correlations can be obtained Ah(r)=0 for r<o. @)

from a variational problem for two related functionals. In

Sec. Il we show that it is possible to define a consistent These equations impose, up to the finite crossover dis-
ORPA for continuous potentials and that such an extension iganceo, the matching of the asymptotic long range behavior
equivalent to an additional requirement of extremum for theof Ac(r) [Eq. (6)] and the condition that the approximation
ORPA functionals. In Sec. IV the issue of the thermody-would not modify the pair correlation function at short dis-
namic consistency of the two approximations is briefly dis-tanceqEg.(7)]. Due to the presence of relati¢®) one could

cussed. Conclusions are summarized in Sec. V. use as an independent variable either the valudshgf) at
distances beyond or, more conveniently, the values of the
Il. TWO GENERATING FUNCTIONALS FOR THE ORPA function x(r)=Ac(r) for r<o (x(r)=0 forr>0).

It is easy to show that Eq7) corresponds to the extre-
The starting point of the ORPA is a suitable decomposi-mum condition for the following functiondll,17] of x(r):
tion of the interatomic potentiab(r) into a reference poten-
tial ¢po(r) and a perturbatiofithe rest ¢,(r): 1
FrinelX(r)]= —3f d®a{In[1+Sop(q)p(a)]
$(1)=o(r) + (1), (D 2(2m)%p

Although the original ORPA1] was based on a specific ~P(@)So(a)}, ®)
choice of such a decomposition, in the following discussion N - . .
we temporarily leave unspecified the exact characterizatioNere P(Q) =p[B¢1(a) —x(a)]. In a diagrammatic treat-

of ¢o(r). Equation(1) naturally leads to a similar decompo- ment'FR'NdG wou_ld co:lrelfpond to t_he sum o’rhg-li(I;e dia-h
sition of the total and the direct correlation functiong) grams and, as Is wel npwrx(r).—o corresponas to the
andc(r): random phase approximation, which usually violates the core

condition (7). The ORPA enforces such a condition.
h(r)=he(r)+Ah(r), 2) Alndeed, by taking the functional derivative with respect to
Ac(q) we have
c(r)=co(r)+Ac(r), ()
oFRriING _ p
sAC(q)  (2m)°

where ho(r) and cq(r) are the correlation functions of a Ah(q) C)
reference fluid whose particles interact via the potential
¢o(r). The thermodynamics and the correlation functions Ofand Fourier transforming to the space we get for all the
the reference system are considered as known quantitie\\?alues of -
Ah(r) andAc(r) are defined by Eq42) and(3) and are the ‘
unknown functions of the theory. A relation among them, for

a fluid whose number density ip, is provided by the

Ornstein-Zernike equation

5FRING
SAc(r)

=Ah(r). (10

For O<r <o, Eq. (10) becomes an integral equation for

h(r)=c(r)+pf d3r'h(r")e(|r=r']), (4)  the unknowny(r), different from zero only in such a region:
which, taking into account the fact thhg(r) andcy(r) do 5FR'NG:0 for r<o. (12)
satisfy the same equation, results in the following relation ox(r)

between the Fourier transforms &ah(r) andAc(r): _ _ ) )
Thus, Eq.(11) is equivalent to imposing an extremum

A?:(q)Sé(q) condition on Fgng With respect to variations of
Aﬁ(q)zA—_ (5) Ac(r)=x(r) (inside o). If the reference potential is such
1-pAc(q)Sy(q) thatgo(r) insideo is zero, we see that the extremum condi-

R tion is equivalent to the physical requirement that the size of
In formula (5), Sg(q) =1+ phg(q) is the structure factor the exclusion hole of the reference system is preserved by the
of the reference system. A caret on a functiomgdhdicates  perturbation.
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It is quite easy to verify that the solution of E), pro-
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(5)], but the reference system pair correlation functioggs

vided it exists, is actually unique and corresponds to then one case ang,e #? in the other case. Due to the form of

maximum of the ORPA generating functiorjd¥] (8).

the reference system pair correlation functions and the cor-

To complete the description of the system, an explicitresponding generating functionals, we refer to the former
prescription for the reference system pair correlation funcapproximation as the Gibbs-Bogoliubov ORPBB-ORPA
tion go(r) is required. In the usual approach to ORPA, theand to the latter as the Weeks-Chandler-Andersen ORPA
choice ofgy(r) is treated as a separate step. Here we prefefWCA-ORPA).

to define a “total” generating functional from which the full
ORPAQg(r) is derived. Actually we can introduce two func-

tionals having bothFgng @s a generator of the “ORPA”

Notice that at this level the two functionals have been
introduced just as generating functionals for the pair correla-
tion functions and we are not allowed yet to identify the

contribution to the pair correlations and differing in the re-values of the two functionals at the extremum with the Hel-

sulting go.

moltz free energy.

For a homogeneous liquid interacting through a pair po-

tential ¢, the Helmoltz free energy per particke can be
considered 18] a functional of¢(r) as well as a functional
of the functione(r)=e #%(_ |t is easy to show that

SBF p

WZEQ(V) (12
and that

SBF

=2y, 13

where y(r) is the so-called cavity correlation function

[y(r)=g(r)ef¢("]. We introduce two functionals —
Ferl ] and Fyycal €] — as follows:

Fodl 61- 2 [ dra(r)a 61

1(1)3
_Z<5) qu{p(q)so(q)

—In[1+p(q)Sp(a) ]} (14)
P
fWCA[e]:_EJ dryg(r)Ae(r)
1/1)3
_5<5) qu{p(q)so(q)
—In[1+p(a)Sp(a) 1}, (15

whereA ¢(r) = ¢(r)— ¢o(r) andAe(r)=e(r)—ep(r).
By functional differentiation ofF5g and Fyca With re-
spect toB¢(r) ande(r), respectively, we get
g=go+Ah(r) (16)
and
y=Yyo+ef?Ah(r). (17

From the last equation we get immediately g{e) resulting
from Fyca as
g=yoe P+ Ah(r). (18

Thus, the functionalsFgg and Fyca are such that the

Ill. ORPA FOR CONTINUOUS POTENTIALS

For a general value of the parameterthe solutiony(r)
of Eq.(11) and the resultingsh(r) are discontinuous at no
matter if the reference system potential is continuous or not.
While such a discontinuity looks relatively harmless if the
referencegy(r) has a hard core of diameter, a discontinu-
ity in Ah(r) would be spurious in connection with a continu-
ous reference system.

For a similar problem, occurring in the case of the mean
spherical approximatiofMSA), a satisfactory solution was
found[15] by determiningo in such a way that the resulting
correlation functions were continuous @t Also in the con-
text of the different but related soft-MSA closufd9],
Nartenet al. [20] proposed a similar criterion for the detes-
rmination of o.

Here, we can similarly impose the continuity ®h(r) [or
equivalentlyAc(r)] atr=o. Thus, we add the condition

Ah(a™)=0 (19
as an additional equation far.

Moreover, still in analogy with the MSA case, we can
prove that the continuity condition at is equivalent to an
extremum condition of the ORPA functioné8) as a func-
tion of o.

As shown in the Appendix we have

IF oppal do=2mp?x?*(07). (20
Thus, the continuity condition on the correlation functions
implies that the GB-ORPA and WCA-ORPA functionals
have an extremurfinflection poin} at o. As we will discuss
in the next section, this extremum condition is also the clue
for a thermodynamic consistent theory.

Here we just notice that there is a manifold of solutions of
Eqg.(19). However, a lower limit folo is given by the size of
the excluded volume region of the reference system. That is,
the region such that

g(r)~0. (21

A choice ofo smaller than the reference system exclusion
hole would result again in an unphysical ORB£). On the
other hand, sincéca and Fgg are increasing functions of

deviation from the reference system pair correlation functioro [Eq. (20)], the minimum value will be achieved for the

is always given by the ORPA approximatiadh(r) [Eq.

first value of o larger than the reference system exclusion
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hole. Moreover, increasing, the size of the ORPA correc-
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Different choices of the reference system parameters are

tion to the reference system thermodynamics and correlacertainly conceivable and actually this is the existing situa-

tions rapidly decreases.

IV. GENERATING FUNCTIONALS AND
THERMODYNAMIC CONSISTENCE

tion. It is not easy to anticipate what is the best choice for all
possible systems and a final assessment should be left to
explicit numerical investigations. However, here we can no-
tice that only the choices corresponding to extrema of the
generating functionals or choices completely independent of

Now we are in the position to discuss the thermodynamiahe thermodynamic state would ensure the free energy nature

interpretation of the functional&gg and Fyca and the spe-
cific issue of the thermodynamic consistency.

It is well known that approximate integral equation theo-
ries for the correlation functions show quantitative violations

of the generating functionals and then, as a consequence, the
consistence of the energy and virial routes to the equation of
state.

of fundamental thermodynamic equalities. In particular, here

we are concerned with the equalities generated by the iden-

tification of the generating functional with the Helmoltz free
energy per particlé. The most obvious of such equalities is
the equality between the pressyreobtained from the free
energy per particld,

V. CONCLUSIONS

In the present paper we have rephrased the ORPA in the
language of the generating functionals for the pair correla-

tion function. In this way we could easily obtain three main

results:
(1) We can derive from a unified treatment the two pre-

scriptions for the reference systag(r) present in the litera-
ture [Egs.(16) and (18)].

(2) We can show how the ORPA can be extended to deal

with continuous reference system interactions, potentially in-

Bp _ d(Bf)
—=p— 22
o P, (22
and that found through the virial theorem,
Bp 1 )
7=1—gpf g(r)rBe’(r)dr. (23)

creasing the range of applicability of this approximation.

(3) We show that the closure equations, the removal of

the discontinuity in the resulting pair correlations and the
identification of the generating functionals with the Helmoltz
free energy can be reduced to the unique and unifying re-

quirement of a variational principle on the functionals with

A necessary condition to ensure that a functidhd] is
actually a free energy functional is the validity of E4G2)
[or (13)] [21,22.

respect to all the independent variables and parameters.

The theory presented in this paper provides a general

scheme corresponding to many possible choices for the indi-

Such a condition would be fulfilled by the functionals vidual ingredients of the ORPA. Actually, depending on the
defined in Eqs(14) and(15) if the dependence of such func- reference system and on the flavor of the ORE@8 or
tionals on all the parameters of the reference systemy on WCA), we have introduced different possibilities. For this
(say a;) and onAy vanishes. Then we have to satisfy the reason we postpone detailed numerical investigations to the

following equations:

application of the approximation to specific problems.

Taking into account the already satisfactory level of ac-

curacy of the standard implementations of the ORPA, and
judging from preliminary calculations, we can anticipate a

good quality of the numerical results. In particular thermo-

dynamical investigations could now benefit from the clarified
status of thermodynamic consistency in the ORPA. In this
respect, we believe that the ORPA could play an important

role as one of the best candidates for the investigation of the

JoF _

ga O (24
JF _

750 (25
ok _ (26)
Sx(r)

Equation(26) corresponds to the ORPA formyld] while

Eqg.(24) is a way of determining the reference system param-

fluid phase diagrams.
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an extremum with respect to variationsaif the parameters.

An analogous requirement for the choice of the reference

system in connection with the modified hypernetted chain
approximation(MHNC) was derived by Ladcet al. [10].

Even closer to the present problem is the analysis of the

choice of the reference system within the WCA perturbation
theory provided by Lad$23].

APPENDIX

The proof of Eq.(20) is given as follows. Let

p(a)=Bpdi(q)—px(Q). (A1)
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Since the only dependence Giyca OF Fyca ON o IS
through y, the derivative ofFgne [EQ. (8)], we have to
evaluate

Frng 1

o |

p(Q)

Jdo
p[ 1)° ax(q)
__E(ﬂ) fd Ah(q )— (A2)
Now, taking into account the finite support o{r),
ox(q) Am J ) 4m_
= _FUX(U )sin(qo)+ | r = Fsm(qr)dr

By using Parseval's equality, E¢A2) becomes
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JF 1)\3
;'NG———f drAh(r )L—g(—w) (4m)?
X f:qAﬁ(qm(o)sin(qa)dq. (A3)

The first term in Eq(A3) is zero because whekh+0, the
other term is zero and the reverse also follows. Equation
(A3) eventually reduces to

IFRING
Jo

o )Ah(e™)=—-2mpaix?(o7),
(Ad)

=—2mpa’x(

giving Eqg. (20) when we take into account th&tg g ap-
pears in Eqs(14) and(15) with a negative sign.

[1] J.D. Weeks, D. Chandler, and H.C. Andersen, J. Chem. Phy¢$12] G. Kahl and J. Hafner, Z. Phys. B8, 283(1985.

54, 5237(1971).
[2] C. Regnault, J. Phys. E6, 295(1986.

[13] z. Badirkhan, O. Akinlade, G. Pastore, and M.P. Tosi, J.
Phys.: Condens. Mattel, 6173(1992.

[3] H.C. Andersen, D. Chandler, and J.D. Weeks, J. Chem. Phyg14] G. Pastore, F. Matthews, O. Akinlade, and Z. Badirkhan, Mol.

56, 3812(1972.

[4] D. Henderson and J.A. Barker, Rev. Mod. Phy® 587
(1976.

[5] G. Kahl and J. Hafner, Phys. Rev. 29, 3310(1984).

[6] G. Pastore and M.P. Tosi, PhysicalRB4, 383(1984).

[7] E. Kierlik, M.L. Rosinberg, G. Tarjus, and P.A. Monson, J.

Chem. Phys106, 264 (1997).

[8] A. Parola and L. Reatto, Phys. Rev.34, 3309(1985.

[9] Y. Rosenfeld and N.W. Ashcroft, Phys. Rev. 20, 1208
(1979.

[10] F. Lado, S.M. Foiles, and N.W. Ashcroft, Phys. Rev.28,
2374(1983.

[11] G. Zerah and J.P. Hansen, J. Chem. PB#s2336(1986.

Phys.84, 653(1995.

[15] M.J. Gillan, Mol. Phys38, 1781(1979.

[16] Y. Rosenfeld, J. Stat. Phy37, 215(1984).

[17] W. Olivares and D.A. McQuarrie, J. Chem. Phgs, 3604
(1976.

[18] J.P. Hansen and I.R. Mc Donal@heory of Simple Liquids
(Academic Press, London, 1986

[19] L. Blum and A.H. Narten, J. Chem. Phys6, 5197 (1972.

[20] A.H. Narten, L. Blum, and R.H. Fowler, J. Chem. Phg§,
3378(1974.

[21] S. Hoye and G. Stell, J. Chem. Phy&7, 439 (1977.

[22] T. Morita and K. Hiroike, Prog. Theor. Phy23, 1003(1960.

[23] F. Lado, Mol. Phys52, 871(1984.



